
Technical Report
Number 598

Computer Laboratory

UCAM-CL-TR-598
ISSN 1476-2986

Transition systems, link graphs and
Petri nets

James J. Leifer, Robin Milner

August 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 James J. Leifer, Robin Milner

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Transition systems, link graphs
and Petri nets

James J. Leifer1 Robin Milner2

Abstract: A framework is defined within which reactive systems can be
studied formally. The framework is based upons-categories, a new va-
riety of categories, within which reactive systems can be set up in such
a way thatlabelled transition systemscan be uniformly extracted. These
lead in turn to behavioural preorders and equivalences, such as the fail-
ures preorder (treated elsewhere) and bisimilarity, whichare guaranteed
to be congruential. The theory rests upon the notion ofrelative pushout
previously introduced by the authors.

The framework is applied to a particular graphical model known aslink
graphs, which encompasses a variety of calculi for mobile distributed pro-
cesses. The specific theory of link graphs is developed. It isthen applied
to an established calculus, namelycondition-event Petri nets.

In particular, a labelled transition system is derived for condition-event
nets, corresponding to a natural notion of observable actions in Petri net
theory. The transition system yields a congruential bisimilarity coinciding
with one derived directly from the observable actions. Thisyields a cal-
ibration of the general theory of reactive systems and link graphs against
known specific theories.

1INRIA, Domaine de Voluceau, BP105, 78153 Le Chesnay, France
2University of Cambridge, Computer Laboratory, JJ Thomson Avenue, Cambridge CB3 0FD, UK

3

Contents:

Introduction 5

PART I Reactive systems and transition systems 7

PART II Link graphs and their dynamics 23

PART III Sorting and condition-event nets 43

Related and future research 57

References 58

APPENDIX Proofs 63

4

L

K

L

L

K

M

M

N

N

x y

Figure 1: An example of a bigraph

1 Introduction

Process calculi have made progress in modelling interactive concurrent systems [6,
2, 22, 32], systems with mobile connectivity [39, 17] and systems with mobile local-
ity [3, 10]. There is some agreement among all these approaches, both in their basic
notions and in their theories; perhaps the strongest feature is a good understanding
of behavioural specification and equivalence. At the same time the space of possi-
ble calculi is large, we lack a uniform development of their theories, and in particu-
lar there is no settled way to combine their various kinds of mobility. As shown by
Castellani’s [11] comprehensive survey, widely varying notions of locality have been
explored, and this implies a similar variety in treating mobility.

There is therefore a dual challenge: first to find a larger common theoretical basis
for process calculi, and second to find a common treatment of mobility. The two chal-
lenges may appear to be independent, and it would be simpler if that were so; but it
appears that mobility is becoming essential to a huge range of applications, so that the
search for a common theoretical basis should attend to mobility at the outset if it is not
to risk irrelevancy.

The authors’ response [30, 29] to the first aspect has been to propose a uniform
treatment of transition systems for process calculi, and toerect upon it a uniform be-
havioural theory. In parallel, the response to the second aspect [37, 25] has been to
propose and apply a (topo)graphical process model, known asbigraphs, which not
only unifies a variety of treatments of mobility, but also underlies process calculi that
are not obviously ‘mobile’. In other words, it unifies mobility with other computational
notions (such as scope and control) that appear separate at first sight. A typical bigraph
is shown in Figure 1; it shows how the nesting of nodes (theplaces) is independent of

5

the connectivity (thelinks) among them. Further details are deferred to Section 5.
These twin proposals have been combined in application to theπ-calculus [25, 26],

the ambient calculus [26, 24] and Petri nets [34], yielding behavioural theory agreeing
well with those proposed independently. The theory developed to this point is rather
rich; it is therefore appropriate to publish a paper presenting just those parts needed
to support one particular case study. The study of Petri nets[34] is a good choice,
since it requires just one of the two constituents of bigraphs: link graphs. The other
constituent,place graphs, is not needed since Petri nets involve no nested localitiesand
no notion of the scope of names.

Thus the present paper can serve both as an introduction to the theory and as a test of
its value to applications. We present notions independently wherever possible, allowing
the effect of different choices to be assessed. One choice wehave made deserves
special mention; we have adopted an approach based upon s-categories, which are a
well-behaved class of precategories. Treating bigraphs asthe arrows in an s-category
is especially convenient for analysing the notion ofoccurrenceof an entity in a bigraph.
In Section 11 we compare this with two alternative approaches; one uses a category of
graph embeddings and the other uses a 2-category.

Synopsis The rest of this paper is divided into three parts, followed by a concluding
section on related and future work.

Part I begins with a view of the theoretical challenge, and then presents a category-
theoretic framework for deriving transition systems. The main structural topics are the
notion of s-category and the properties of relative pushouts (RPOs) and idem pushouts
(IPOs). Reactive systems are introduced by adding reactionrules to the s-categories.
Transition systems based upon IPOs are then derived uniformly from these rules, using
RPOs. It is proved that, when enough RPOs exist, bisimilarity is a congruence. Part I
ends with a study of how a reactive system may be equipped withdifferent transition
systems, and how these may be related to one another.

Part II begins with a view of the challenge from mobile applications, including a
summary of the bigraphical model of which link graphs are a constituent. It continues
with a mathematical formulation of link graphs, including aconstruction of RPOs and
IPOs for them. A central feature is the characterisation of the family of IPOs for any
consistent pair of link graphs. Link-graphical reactive systems (LRSs) are then defined,
as reactive systems over link graphs. The theory of Part I is applied to derive transition
systems for LRSs, for which a congruential bisimilarity is guaranteed. A particular
class, thesimpleLRSs, is shown to admit especially simple transition systems.

Part III begins with the concept ofsorting disciplinesfor LRSs. A certain class of
sorting disciplines allows the transition theory of well-sorted LRSs to be transferred
from the unsorted ones, by pulling RPOs back along a forgetful functor. In particu-
lar, many-onesorting is shown to enjoy this property; it also allows condition-event
nets to be represented accurately as an LRS, for which the work of Part II yields a
tractable transition system. It is then shown that the corresponding congruential bisim-
ilarity coincides with one that arises from a natural experimental equivalence defined
independently of link graphs.

The concluding section, Section 11, discusses related and future research.

6

Part I
Reactive systems and transition systems

2 The challenge from process theory

In process calculi it is common to present thedynamicsof processes by means of
reactions(typically known as rewriting rules) of the forma ⊲ a′, wherea anda′

are agents. This treatment is often accompanied bylabelled transitionsof the form
a ℓ

⊲ a′, where the labelℓ is drawn from some vocabulary expressing the possible
interactions between an agent and its environment. Typically, there is a distinguished
labelτ such that the labelled transition relationτ ⊲ concides with the reaction relation

⊲ . The full family of labelled transitions has the great advantage that it supports the
definition of behavioural preorders and equivalences, suchas traces, failures and bisim-
ilarity, and these often turn out to be congruences. But hitherto the labelled transitions
have been tailored for each calculus.

We therefore ask whether these labels can bederiveduniformly from any given set
of reaction rules of the formr ⊲ r′, where theredexr is an agent that may change
its state to thereactumr′. A natural approach is to take the labels to be a certain
class of (environmental)contexts; if L is such a context, the transitiona L

⊲ a′ implies
that a reaction can occur inL ◦a leading to a new statea′. In fact we shall represent
agents and contexts as arrows in a category, or more generally a precategory, where
the compositionL ◦a represents the insertion of agenta in contextL. Moreover, we
would like to be sure that the behavioural relations —such as bisimilarity— that are
determined by the transitions are indeed congruential, i.e. preserved by insertion into
any surrounding environment.

But we do not wantall contexts as labels; as Sewell [49] points out, the behavioural
equivalences that result from this choice are unsatisfactory. How to find a satisfactory
—and suitably minimal— set of labels, and to do it uniformly, remained an open prob-
lem for many years. As a first step, Sewell [49] was able to derive context-labelled
transitions uniformly for parametric term-rewriting systems with parallel composition
and blocking, and showed bisimilarity to be a congruence. His approach did not han-
dle reactive systems with “connectivity”, the (potentially non-linear) sharing of names
which arises in many process calculi.

Recently the authors [30] were able to define minimal labels in terms of the cat-
egorical notion ofrelative pushout(RPO), and moreover to ensure that behavioural
equivalence is a congruence for a wide class of reactive systems. These results were
extended and refined in Leifer’s PhD Dissertation [29], and Cattani et al [12] applied
this theory to action graphs with rich connectivity. Meanwhile, Milner developed the
bigraph model [36, 37] from action graphs, with inspirationfrom the mobile ambients
of Cardelli and Gordon. The development was driven by the simplicity that comes
from treating locality and connectivity independently, and was also inspired by Gard-
ner’s development [19] ofsymmetricaction graphs (i.e. with undirected edges).

7

These applications have motivated the effort to formulate the RPO theory more
succinctly [26], in a way that eases both the theory itself and the characterisation of
the transition systems to which it gives rise. This is the topic of Part I of our paper. It
turns out that these two tasks can be addressed well using a variant of category which
we call asupported precategory, or s-category.

A precategory is a category in which composition is not always defined. It issup-
ported if both of the following conditions hold: (a) each arrowf has asupport|f |, a
finite set, and (b) the compositiong ◦f is defined if and only if|g|∩|f | = ∅. This struc-
ture makes s-categories remarkably well-behaved. They inherit many notions from cat-
egories with no change, and most work is unaffected by the partiality of composition.
They also admit direct treatment of the notion ofoccurrence(e.g. of a node in a graph),
which in Part II we find essential to the characterisation of behaviour.

In Section 3 we introduce our categorical framework; we thendefine RPOs and
IPOs and derive their properties. This leads in Section 4 toreactive systems, and thence
to the derivation oftransition systemsbased upon IPOs. The central theorem is proved
that bisimilarity for these transition systems is a congruence provided enough RPOs
exist. The remainder of the section deals with useful relationships among transition
systems, in preparation for Part II where we need to refine them by varying their agents
or transitions or both.

3 S-categories and relative pushouts

In this section and Section 4 we develop a mathematical framework for the static and
dynamic properties of mobile interactive systems. Though abstract, it is developed
with a view to underpinning the bigraphical model [37, 25] and its applications. More
specifically, to keep the paper well-focussed, the abstractdevelopment is only taken far
enough to underpin link graphs, which are constituents of bigraphs. These two sections
are an adaptation and extension of work started by Leifer andMilner [30], then further
developed by Leifer in his PhD Dissertation [29] and by Milner [37].

The reader can perfectly well study Parts II and III independently of Part I, provided
he or she is willing to take the main results of Part I on trust and to refer back to
important definitions from time to time.

The present section is concerned with the categorical framework and the important
concepts, especially relative pushouts, that will underlie the treatment of dynamics in
Section 4.

Notation We shall always accent the name of a precategory, as in´C. We use ‘◦ ’,
‘ id’ and ‘⊗’ for composition, identity and tensor product. We denote the domainI and
codomainJ of an arrowf : I →J by dom(f) andcod(f); the set of arrows fromI to
J , called ahomset, will be denoted býC(I →J) or justI →J .

IdS will denote the identity function on a setS, and∅S the empty function from∅
to S. We shall useS ⊎ T for union of setsS andT known or assumed to be disjoint,
andf ⊎ g for union of functions whose domains are known or assumed to be disjoint.
This use of⊎ on sets should not be confused with the disjoint sum ‘+’, which disjoins

8

setsbeforetaking their union. We assume a fixed representation of disjoint sums; for
example,X+Y means({0}×X)∪({1}×Y), and

∑
v∈V Pv means

⋃
v∈V ({v}×Pv).

We writef ↾S for the restriction of a functionf to the domainS. If R is a binary
relation we writeR↾S for R∩S2; also if≡ is an equivalence then we defineR≡ to be
the closure ofR under≡ i.e. the relational composition≡R≡ .

A natural numberm is often interpreted as a finite ordinalm = {0, 1, . . . ,m− 1}.
We often usei to range overm; whenm = 2 we useı for the complement1 − i of i.
We use~x to denote a sequence{xi | i ∈ m}; whenm = 2 this is an ordered pair.

Definition 3.1 (precategory, functor) A precategorý C is defined exactly as a cat-
egory, except that the composition of arrows is not always defined. Composition with
the identities is always defined, andid ◦f = f = f ◦ id. In the equationh ◦ (g ◦f) =
(h ◦g) ◦f , the two sides are either equal or both undefined.

A subprecategorýD of ´C is defined like a subcategory, withg ◦f defined in´D
exactly when defined ińC. A functorF : ´D→ ´C between precategories is a total
function on objects and on arrows that preserves identitiesand composition, in the
sense that ifg ◦f is defined iń D, thenF(g) ◦F(f) = F(g ◦f) in ´C.

In general we shall useI, J,K, . . . to stand for objects andf, g, h, . . . for arrows.
We shall extend category-theoretic concepts to precategories without comment when
they are unambiguous. One concept which we now extend explicitly is that of a
monoidal category:

Definition 3.2 (tensor product, monoidal precategory, monoidal functor) A (strict,
symmetric) monoidalprecategory has a partialtensor product⊗ both on objects and
on arrows. It has a unit objectǫ, called theorigin, such thatI ⊗ ǫ = ǫ ⊗ I = I for all
I. GivenI ⊗ J andJ ⊗ I it also has asymmetryisomorphismγI,J : I ⊗ J → J ⊗ I.
The tensor and symmetries satisfy the following equations when both sides exist:

(1) f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h and idǫ ⊗ f = f
(2) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦f0) ⊗ (g1 ◦g0)
(3) γI,ǫ = idI

(4) γJ,I ◦γI,J = idI⊗J

(5) γI,K ◦ (f ⊗ g) = (g ⊗ f) ◦γH,J (for f : H → I, g : J →K) .

A monoidalfunctor is one that preserves tensor product and origin.

Note that the symmetric identity lawf ⊗ idǫ = f is provable from (1), (3) and (5).
‘Strict’ means that associativity holds exactly, as stated, not merely up to isomorphism;
‘symmetric’ refers to the symmetry isomorphisms satisfying equations (3)–(5). We
shall omit ‘strict’ and ‘symmetric’ from now on, as we shall always assume these prop-
erties.

Why do we wish to work in precategories? In the introduction wepointed out that
the dynamic theory of bigraphs will require the existence ofrelative pushouts (RPOs).
This means that we need to develop the theory first forconcretebigraphs, those in
which nodes have identity; then we can transfer the results to abstractgraphs by the

9

quotient functor that forgets this identity. Precategories allow a direct presentation of
concrete bigraphs; for we can stipulate that two bigraphsF andG may be composed to
form H = G ◦F only if their node sets are disjoint. We can think of this composition
as askeeping trackof nodes3; we can see inH exactly which nodes come fromF and
which fromG.

More generally, we are interested in monoidal precategories where the definedness
of composition and of tensor product depends upon asupportset associated with each
arrow. In bigraphs the support of an arrow will be its node set. In general we assume
support to be drawn from some unspecified infinite set. We now give a general defi-
nition of precategorieśC with support; we continue to use this accented notation for
them, dropping the accent only when we have a category.

Definition 3.3 ((monoidal) s-category) We say that a precategory´C is supported,
or an s-category, if it has:

• for each arrowf , a finite set|f | called itssupport, such that|idI | = ∅. The
compositiong ◦f is defined iff|g|∩|f | = ∅ anddom(g) = cod(f); then|g ◦f | =
|g| ⊎ |f |.

• for any arrowf : I →J and any injective mapρ whose domain includes|f |, an
arrowρ�f : I →J called asupport translationof f such that

(1) ρ� idI = idI

(2) ρ�(g ◦f) = ρ�g ◦ρ�f
(3) Id|f | �f = f
(4) (ρ1 ◦ρ0)�f = ρ1 �(ρ0 �f)
(5) ρ�f = (ρ↾ |f |)�f
(6) |ρ�f | = ρ(|f |) .

If ´C is monoidal as a precategory, it is amonoidals-category if, forf : H → I and
g : J →K, their tensor productf ⊗ g is defined exactly whenH ⊗ J andI ⊗ K exist
and|f | ∩ |g| = ∅, and then the product satisfies|f ⊗ g| = |f | ⊎ |g| and

(7) ρ�(f ⊗ g) = ρ�f ⊗ ρ�g .

Each of these seven equations is required to hold only when both sides are defined.

Exercises Deduce condition (1) from conditions (5) and (3). Prove thatevery isomor-
phism has empty support. Show that in conditions (2) and (7) either both sides are
defined or both are undefined.

We now consider functors between s-categories.

Definition 3.4 (support equivalence, supported functor) Let Á be an s-category.
Two arrowsf, g : I →J in Á aresupport-equivalent, written f ≏ g, if ρ � f = g

3Leifer’s development [29] (see Chapter 7) made use of a specialcategoryTrack(´C) to keep track of
nodes in a precategory´C. This allowed the theory of RPOs to be developed for categories rather than for
precategories. However, it can be developed more succinctlyif we stay with the latter.

10

for some support translationρ. By Definition 3.3 this is an equivalence relation. If´B
is another supported precategory, then a functorF : Á → ´B is calledsupportedif it
preserves support equivalence, i.e.f ≏ g impliesF(f) ≏ F(g).

When we no longer need to keep track of support we may use a quotientcategory(not
just s-category). To define such quotients, we need the following notion:4

Definition 3.5 (static congruence) Let≡ be an equivalence defined on every homset
of a supported precategory´C. We call≡ a static(monoidal) congruence ońC if it is
preserved by composition (and by tensor product), namely: if f ≡ f ′ andg ≡ g′ then
f ◦g ≡ f ′

◦g′ whenever the latter are defined (and likewise for tensor product).

As an example of a simple static congruence on link graphs, wemay definef ≡ f ′ to
mean thatf andf ′ are identical when allK-nodes are discarded, for some particular
controlK. (See Section 6 for the definitions of controls and link graphs.)

The most important example of a static congruence will be support equivalence
(≏). But the following definition shows that any static congruence at least as coarse as
support equivalence will yield a well-defined quotient category:

Definition 3.6 (quotient categories) Let ´C be an s-category, and let≡ be a static
(monoidal) congruence ońC that includes support equivalence, i.e.≏ ⊆ ≡. Then the
quotientof ´C by ≡ is a categoryC def

= ´C/≡, whose objects are the objects of´C and
whose arrows are equivalence classes of arrows in´C:

C(I, J)
def
= { [f]≡ | f ∈ ´C(I, J) } .

In C, identities and composition (and tensor product when´C has it) are given by

idm
def
= [idm]≡

[f]≡ ◦ [g]≡
def
= [f ◦g]≡

[f]≡ ⊗ [g]≡
def
= [f ⊗ g]≡ .

By assigning empty support to every arrow we may also regardC as an s-category, so
that[·]≡ : ´C→C is a special supported functor called the≡-quotient functorfor ´C.

Note that the quotient does not affect objects; thus any tensor product onC may still
be partial on objects. ButC is indeed a category; composition is always well-defined
becausef ≏ g impliesf ≡ g, and so also is tensor product provided it is defined on
the domains and codomains.

We often abbreviate[·]≏ to [·]; we call it thesupport quotient functor. From the
definition, clearly a coarser quotient[·]≡ exists whenever≡ is a congruence that in-
cludes support equivalence. In Part II we shall define a coarser quotient functor by this
means.

We now turn to the notion of relative pushout (RPO), which is of crucial importance
in defining labelled transitions in the following section.

4We use the termstaticcongruence to emphasize that these congruences depend only on static structure,
in contrast withdynamiccongruences such as bisimilarity, which depend upon transitions.

11

Notation In what follows we shall frequently use~f to denote a pairf0, f1 of arrows
in a precategory. If, for example, the two arrows share a domain H and have codomains
I0, I1 we write ~f : H → ~I.

Definition 3.7 (bound, consistent) If two arrows ~f : H → ~I share domainH, the
pair~g : ~I →K share codomainK andg0 ◦f0 = g1 ◦f1, then we say that~g is abound
for ~f . If ~f has any bound, then it is said to beconsistent.

f0 f1 f0 f1

h0 h1

k0

k1

g0 h g1

h0 h1

g0 g1
h k

j

Definition 3.8 (relative pushout) In a precategory, let~g : ~I →K be a bound for
~f : H → ~I. A bound for ~f relative to~g is a triple(~h, h) of arrows such that~h is a
bound for~f andh ◦hi = gi (i = 0, 1). We may call the triple arelative boundwhen~g
is understood.

A relative pushout(RPO) for ~f relative to~g is a relative bound(~h, h) such that for
any other relative bound(~k, k) there is a unique arrowj for whichj ◦hi = ki (i = 0, 1)
andk ◦ j = h.

We say that a precategoryhas RPOsif, whenever~f has a bound, it also has an RPO
relative to that bound.

We shall often omit the word ‘relative’; for example we may call (~h, h) a bound (or
RPO) for ~f to ~g.

The more familiar notion, a pushout, is a bound~h for ~f such thatfor any bound
~g there exists anh which makes the left-hand diagram commute. Thus a pushout isa
leastbound, while an RPO provides aminimalbound relative to a given bound~g. In
Section 6 we find that RPOs exist for link graphs in cases wherethere is no pushout.

Now suppose that we can create an RPO(~h, h) for ~f to ~g; what happens if we try
to iterate the construction? More precisely, is there an RPOfor ~f to~h? The answer lies
in the following important concept:

Definition 3.9 (idem pushout) In a precategory, if~f : H → ~I is a pair of arrows with
common domain, then a pair~h : ~I → J is anidem pushout(IPO) for ~f if (~h, idJ) is an
RPO for ~f to~h.

Then it turns out that the attempt to iterate the RPO construction will yield the same
bound (up to isomorphism); intuitively, the minimal bound for ~f to any bound~g is
reached in just one step. This is a consequence of the first twoparts of the following
proposition, which summarises the essential properties ofRPOs and IPOs on which

12

our work relies. They are proved for categories in Leifer’s Dissertation [29] (see also
Leifer and Milner [30]), and the proofs can be routinely adapted for precategories.5

Proposition 3.10 (properties of RPOs)In any precategorýA:

1. If an RPO for~f to ~g exists, then it is unique up to isomorphism.

2. If (~h, h) is an RPO for~f to ~g, then~h is an IPO for ~f .

3. If ~h is an IPO for ~f , and an RPO exists for~f to h ◦h0, h ◦h1, then the triple
(~h, h) is such an RPO.

4. (IPO pasting) Suppose that the diagram below commutes, and thatf0, g0 has an
RPO to the pairh1 ◦h0, f2 ◦g1. Then

• if the two squares are IPOs, so is the big rectangle;

• if the big rectangle and the left square are IPOs, so is the right square.

f0 f1

g0 g1

h0

f2

h1

5. (IPO sliding) If Á is an s-category then IPOs are preserved by support trans-
lation; that is, if ~g is an IPO for ~f and ρ is any injective map whose domain
includes the supports of~f and~g, thenρ�~g is an IPO forρ� ~f .

We now consider a property of RPOs which may not be present in all precategories,
but will be enjoyed by link graphs. We know that the RPO statusof a triple is preserved
by isomorphism at its mediating interface, i.e. if(~h, h) is an RPO then so is(i ◦~h, h ◦ j)

wherei, j is an iso. But can RPO status be retained by keeping~h fixed and varyingh?
If not we say that the RPO is rigid. Formally:

Definition 3.11 (rigid RPO) An RPO(~h, h) for ~f to~g is rigid if, whenever(~h, k) is
another RPO for~f to ~g, thenk = h.

Exercises Prove that if~f has a rigid RPO relative to~g, then all its RPOs relative to
~g are rigid. More difficult: find a category in which there is a non-rigid RPO. (These
exercises are not needed for what follows.)

In Section 6 we shall show that every link graph RPO is rigid. This in useful, since
we can then deduce from the following proposition that, in link graphs, a unique IPO
is a pushout.

Proposition 3.12 (unique IPOs are pushouts)Let ~f have a rigid RPO relative to
some bound. Then an IPO for~f that is unique up to isomorphism is a pushout.

5This adaptation works for the definition of precategory in Definition 3.1, which is satisfied by our sup-
ported precategories.

13

f0 f1

k0

k1

g0

h0

h1

hk
ι

g1

Proof Let~k be an IPO for~f , and let~g be any bound. Under the assumptions we must
find a unique mediatork such thatk ◦ki = gi (i = 0, 1).

Take a rigid RPO(~h, h) for ~f to~g. Then~h is an IPO by Proposition 3.10(2); hence
by assumption there is an isomorphismι as shown such thatι ◦ki = hi (i = 0, 1).
Thenh ◦ ι satisfies the required property of the mediatork.

Now let k be any such mediator, and letι′ be the inverse ofι. Then(k ◦ ι′) ◦hi =

k ◦ ι′ ◦ ι ◦ki = k ◦ki = gi (i = 0, 1). It follows from Proposition 3.10(3) that(~h, k ◦ ι′)

is an RPO for~f to ~g. But (~h, h) is rigid by assumption, hencek ◦ ι′ = h. So finally
k = h ◦ ι, showing that the mediatorh ◦ ι is unique as required.

4 Reactive and transition systems

We now introduce a kind of dynamical system, of which link graphs will be an instance.
In previous work [30, 29] a notion of reactive system was defined. In our present
terms, this consists first of a monoidal s-category whose arrows are calledcontexts.
The objectsI, J, . . . will be calledinterfaces. We adopt a change of notation from the
preceding section: we shall now use upper caseA,B,C, . . . for arbitrary arrows. A
compositionC ◦A represents placingA in the contextC.

ContextsC : ǫ→ I with the origin as domain are in a sense trivial, since in this
case we haveC ◦A = C⊗A. We shall call a contextgroundif its domain is the origin,
and use lower casea, b, c, . . . for ground arrows. We writea : I for a : ǫ→ I, and
Gr(I) for the homsetǫ→ I.

The second ingredient of a reactive system in [30, 29] was a set of ground pairs
(r, r′) calledreaction rules, and a subprecategory of so-calledactivecontexts. The re-
action relation ⊲ between agents was taken to be the smallest such thatD ◦ r ⊲ D ◦ r′

for every active contextD and reaction rule(r, r′).
For such systems we uniformly derived labelled transitionsbased upon IPOs. Sev-

eral behavioural preorders and equivalences based upon these transitions, including
bisimilarity, were shown to be congruences, subject to two conditions: first, that suf-
ficient RPOs exist in the s-category; second, that decomposition preserves activity —
i.e. D ◦C active implies bothC andD active. In subsequent work, sufficient RPOs
were found in interesting cases (Leifer [29], Cattani et al [12]).

The present section is essentially a reformulation of the work in [30, 29]. However,
we omit the notion of ‘active’ context since it does not applyto link graphs (where
everycontext is active); we also simplify the treatment of functors between reactive
systems.

We are now ready to define reactive systems:

14

Definition 4.2 (reactive system) A reactive system (RS)is a supported monoidal pre-
categorýA equipped with a set́R of reaction rulesof the form(r : I, r′ : I), in which
r is theredexandr′ the reactum. We requiré R to be closed under support equiva-
lence, i.e. if(r, r′) is a rule then so is(s, s′) wheneverr ≏ s andr′ ≏ s′.

The reaction relation ⊲ over ground arrows is the smallest closed both sides
under support equivalence, and such thatD ◦ r ⊲ D ◦ r′ whenever(r, r′) is a reaction
rule andD a context.

We denote this RS býA(´R), or just Á when´R is understood. Closing the reaction
rules under support equivalence allows us in Definition 4.5 to divide Á by ≏, forming
a quotient RS.

To close´R under support equivalence is a significant decision. Recallthat we
have adopted the notion of support in concrete link graphs, or bigraphs, so that nodes
have identity; this enables us to construct RPOs (which would otherwise not exist)
and thence to derive transitions, as we shall see shortly. For this derivation it was not
necessary that node-identity should persist through a reaction. Our closure condition
prevents this persistent identity; we adopt it order to capture in bigraphs the standard
behavioural equivalences in process calculi, where there is no notion of tracking the
identity of components through reaction.

An alternative decision merits close attention. It would replace the closure condi-
tion by a more modest one: that if(r, r′) is a reaction rule then so is(ρ � r, ρ � r′). It
therefore respects the transmission of the identity of nodes fromr to r′. One important
use of this is to admit logical analysis in the style of Cairesand Cardelli [8], using
spatio-temporal assertions like “here there will always bea K-node”. We leave this
promising avenue of research to the future.

We extend the notion of functorF : Á → ´B to RSs, requiring it to preserve reac-
tion. Recall from Definition 3.4 that a supported functor is one that preserves support
equivalence.

Definition 4.3 (RS functor, sub-RS) A supported monoidal functorF : Á → ´B of
monoidal s-categories is anRS functorif it preserves reaction rules, i.e. if(r, r′) is a
rule of Á then(F(r),F(r′)) is a rule of´B. If F is injective on objects and arrows
then we calĺA asub-RSof ´B.

Proposition 4.4 (RS functors preserve reaction)An RS functorF : Á → ´B preserves
reaction, i.e. ifg ⊲ g′ in Á thenF(g) ⊲F(g′) in ´B.

Clearly RSs and their functors form a category. An importantexample of a functor is
the support quotient functor, extended to RSs as follows:

Definition 4.5 (quotient RS) Let Á be a reactive system equipped with´R. Then
its support quotientreactive system is based upon the support quotientA = Á/≏. Its
reaction rules are{([r], [r′]) | (r, r′) ∈ ´R}.

Proposition 4.6 (quotient reflects reaction)The support quotient functor[·] : Á →A
both preserves and reflects reaction, i.e.[g] ⊲ [g′] in A iff g ⊲ g′ in Á.

15

The quotient functor takes aconcreteRS, based on an s-category, to anabstractRS
based upon a category. Later we show how to obtain a behavioural congruence for an
arbitrary concrete RŚA with sufficient RPOs. The support quotientA of Á may not
possess RPOs, but nevertheless the quotient functor allowsus to derive a behavioural
congruence forA also. This use of a concrete RS with RPOs to supply a behavioural
congruence for the corresponding abstract RS was first represented by thefunctorial
reactive systemsof Leifer’s thesis [29].

We now consider how to equip an RS with labelled transitions.Conventionally, a
labelled transition takes the forma ℓ

⊲ a′, wherea, a′ are agents and the labelℓ comes
from some explicitly defined set. Here we shall studycontextualtransitions, in which
the labels are contexts into which agents may be inserted; these are in contrast with
raw transitions where the label set is defined by other means.

Traditionally (for example in CCS) transitions were raw, and defined independently
of, or even in preference to, reaction rules. But the latter are conceptually simpler, so it
is natural to take them —rather than transitions— as primitive. Given a reactive system,
we have previously [30] defined a labelled transition to be a triple writtena L

⊲ a′ for
which there is a reaction rule(r, r′) and an ‘active’ contextD such that(L,D) is an
idem pushout (IPO) for(a, r) anda′ = D ◦ r′. We shall adopt this, except that we do
not always require an IPO, nor do we impose an activeness condition:

Da
r

L

Definition 4.7 (transition) A (contextual) transitionis a triple writtena L
⊲ a′, where

a anda′ are ground,L is a context, and there exist a reaction rule(r, r′) and a context
D such that the diagram commutes anda′ ≏ D ◦ r′. We say that the reaction rule and
the diagramunderliethe transition. A transition isminimal if the underlying diagram
is an IPO.

For a fixed reactive system many different sets of transitions may be considered,
according to the agents that we wish to observe, and the experiments —represented by
labels— that we wish to perform upon them. This leads to the following:

Definition 4.8 (transition system) Given an RŚA, a (labelled) transition systemL
for Á is a pair (IntL, TransL), where

• IntL is a set of interfaces called theagent interfaces; theagentsof L are defined
asAgL

def
= {a : I | I ∈ IntL}.

• TransL is a set of transitions whose sources and targets are agents of L; thelabels
of L are those that appear in some transition ofTransL.

Thefull (resp.standard) transition system for an RS consists of all interfaces, together
with all (resp. all minimal) transitions. When the RS is understood we shall denote
these two transition systems respectively byFT andST.

16

We abbreviate ‘(labelled) transition system’ to TS. Another transition systemM is
asub-TSof L, writtenM ≺ L, if IntM ⊆ IntL andTransM ⊆ TransL.

Whether transitions are derived from reactions or defined in some other way, we
may use them to define behavioural equivalences and preorders. We are also interested
conditions under which these behavioural relations are congruential, i.e. preserved by
context. Here we shall limit attention to strong bisimilarity. (Throughout this paper we
shall omit ‘strong’ since we do not define or use weak bisimilarity.)

Definition 4.9 (bisimilarity, congruence) Let Á be a reactive system equipped with
a TSL. A simulation onL is a binary relationS between agents with equal inter-
face such that ifaSb anda L

⊲ a′ in L, then wheneverL ◦ b is defined there existsb′

such thatb L
⊲ b′ in L anda′Sb′. A bisimulationis a symmetric simulation. Then

bisimilarity onL, denoted by∼L, is the largest bisimulation onL.
We say that bisimilarity onL is acongruenceif

a ∼L b ⇒ C ◦a ∼L C ◦ b

for all a, b : I andC : I →J , whereI, J ∈ IntL.

We shall often omit ‘onL’, and write∼ for ∼L, whenL is understood from the context.
This will usually be whenL is ST.

Note the slight departure from the usual definition of bisimulation of Park [41];
since we are in an s-category we must requireL ◦ b to be defined. This is merely a
technical detail, provided that the TS respects support translation; for then, whenever
L ◦a is defined there will always existL′ ≏ L for which both L′

◦a andL′
◦ b are

defined. If we are working in a category, in particular if it isa support quotient category,
then the side-condition holds automatically and the definition of bisimilarity reduces to
the standard one.

We define bisimilarity only for ground link graphs. As a consequence, if bisimilar-
ity is a congruence then it is also preserved by tensor product; that is, if a ∼L b then
a ⊗ c ∼L b ⊗ c. To see this, note thata ⊗ c = (id ⊗ c) ◦a.

Definition 4.10 (respect) Let ≡ be a static congruence (Definition 3.5) in an RS
equipped withL. Suppose that for every transitiona L

⊲ a′ in L, if a ≡ b andL ≡ M
for another labelM of L with M ◦ b defined, then there exist an agentb′ and a transition
b M

⊲ b′ in L such thata′ ≡ b′. Then≡ andL are said torespectone another.

Note that ‘respect’ is mutual between an equivalence and a TS, so that ‘L respects≡ ’
means the same as ‘≡ respectsL’; we shall use them interchangeably.

It is well known [32] that if≡ is included in (strong) bisimilarity, then to establish
bisimilarity it is enough exhibit abisimulation up to≡; that is, a symmetric relation
S such that wheneveraSb then each transition ofa is matched byb in S≡. We now
deduce from Proposition 3.10(5) that support equivalence can be used in this way:

Proposition 4.11 (support translation of transitions) In a reactive systeḿA the full
and standard transition systems respect support equivalence. Hence in each case≏ is
a bisimulation, and a bisimulation up to≏ suffices to establish bisimilarity.

17

We may now prove our main congruence theorem for RSs, asserting thatST ensures
bisimulation congruence. The reader can deduce the (more obvious!) result thatFT

ensures the same; simply replace the word ‘IPO’ by‘commuting square’ in the proof.

Theorem 4.12 (congruence of bisimilarity) In a reactive system with RPOs, equipped
with the standard transition system, bisimilarity of agents is a congruence; that is, if
a0 ∼ a1 thenC ◦a0 ∼ C ◦a1.

(a) (b) (c) (d)

E0C ◦a0

a1 D1

L

M

r1

a0 D0

r0

L

M

a1 D1

r1

L
EE

M

r0

C

E1

C

E0

Proof The proof is along the lines of Theorem 3.9 in Leifer [29]. We establish the
following as a bisimulation up to≏:

S
def
= {(C ◦a0, C ◦a1) | a0 ∼ a1} .

Suppose thata0 ∼ a1, and thatC ◦a0
M

⊲ b′0, for some labelM such thatM ◦C ◦a1

is defined. It is enough to findb′1 such thatC ◦a1
M

⊲ b′1 and(b′0, b
′
1) ∈ S≏.

There exist a reaction rule(r0, r
′
0) and a contextE0 such that diagram (a) is an

IPO; moreoverb′0 ≏ E0 ◦ r′0. Then because consistent pairs have RPOs, there exists
an RPO for(a0, r0) relative to the given bound, and using Proposition 3.10(4) we can
complete diagram (b) so that each square is an IPO.

So the lower square of (b) underlies a transitiona0
L

⊲ a′
0, wherea′

0 = D0 ◦ r′0.
Now L ◦a1 is defined (sinceM ◦C ◦a1 is defined andM ◦C = E ◦L) anda0 ∼ a1, so
there is a transitiona1

L
⊲ a′

1 with a′
0 ∼ a′

1. But support translation ofa′
1 preserves

both of these properties; so we may assume a rule(r1, r
′
1) and contextD1 such that

diagram (c) is an IPO,a′
1 = D1 ◦ r′1 and|E| ∩ |a′

1| = ∅.
Now replace the lower square of (b) by diagram (c), obtainingdiagram (d) in which,

by Proposition 3.10(4), the large square is an IPO. Hence, setting E1
def
= E ◦D1, we

haveC ◦a1
M

⊲ b′1 whereb′1
def
= E1 ◦ r′1. Finally (b′0, b

′
1) ∈ S≏ as required, because

b′0 ≏ E ◦a′
0 andb′1 ≏ E ◦a′

1 with a′
0 ∼ a′

1.

We should remark that we are taking (strong) bisimilarity asa representative of many
preorders and equivalences; Leifer [29] has proved congruence theorems for several
others, and we expect that those results can be transferred to the present setting.

Now, if an RS is equipped with a TS we wish to define transitionsfor various
quotient RSs. For this purpose, it is useful to extend a functor in the obvious way
to sets and tuples of objects and arrows. Thus, for example, on transitions we have

F(a L
⊲ a′) = F(a)

F(L)
⊲F(a′).

18

Definition 4.13 (functors respecting, inducing transitions) Let F : Á → ´B be an
RS functor, and let́A be equipped with a TSL. We say thatF respectsL if the static
congruence it induces onÁ respectsL. We callF(L) the TSinducedon ´B by F .

This definition always makes sense, but it will not always make bisimilarity a congru-
ence in´B, even if it is so in Á. However, the next theorem shows that congruence
of bisimilarity is preserved when we quotient by any static congruence that includes
support equivalence. Recall that afull functor is surjective for each homset.

Theorem 4.14 (functors on bisimilarity) Let Á be equipped with a TSL. LetF be
a full RS functor froḿA to ´B that is the identity on objects and respectsL, and such
thata ≏ b impliesF(a) = F(b). Then the following hold forF(L):

1. a ∼L b in Á iff F(a) ∼F(L) F(b) in ´B.

2. If ∼L is a congruence ińA then∼F(L) is a congruence ińB.

Proof (1) (⇒) We establish ińB the bisimulation

R = {(F(a),F(b)) | a ∼L b} .

Let a ∼L b in Á, and letp = F(a), q = F(b) andp M
⊲ p′ in ´B, with M ◦ q defined.

Then by definition of the induced TS we can findL anda′ such thatM = F(L) and

p′ = F(a′), anda L
⊲ a′ in Á with L ◦ b defined. So for someb′ we haveb L

⊲ b′

with a′ ∼L b′. It follows thatq M
⊲ q′ in ´B, whereq′ = F(b′) and(p′, q′) ∈ R, so we

are done.
(1) (⇐) We establish ińA the bisimulation

S = {(a, b) | F(a) ∼F(L) F(b)} .

Let F(a) ∼F(L) F(b) in ´B, and letp = F(a), q = F(b) wherea L
⊲ a′ in Á with

L ◦ b defined. Thenp M
⊲ p′ in ´B, whereM = F(L) andp′ = F(a′). So for some

q′ we haveq M
⊲ q′ with p′ ∼F(L) q′. This transition must arise from a transition

b1
L1 ⊲ b′1 in Á, whereq = F(b1), M = F(L1) andq′ = F(b′1). But thenb1 ≡ b and

L1 ≡ L, where≡ is the equivalence induced byF ; we also haveL ◦ b defined, andL
respects≡, so we can findb′ for which b L

⊲ b′ andb′1 ≡ b′. But also(a′, b′) ∈ S so
we are done.

(2) Assume that∼L is a congruence. IńB, let p ∼F(L) q and letG be a context
with G ◦p andG ◦ q defined. Then there exista, b, C in Á with p = F(a), q = F(b)
andG = F(C), and withC ◦a andC ◦ b defined. From (1)(⇐) we havea ∼L b,
hence by assumptionC ◦a ∼L C ◦ b. Applying the functorF we have from (1)(⇒)
thatG ◦p ∼F(L) G ◦ q in ´B, as required.

In a later section we shall set up link-graphical reactive systems as RSs. Then using
the theorems we have just proved, or close analogues of them,we shall derive TS and
deduce behavioural congruences for them.

19

We now turn to a question that arises strongly in applications. Our standard TS,
containing only the minimal transitions, is of course much smaller than the full TS.
But it turns out that in particular cases we can reduce the standard TS still further,
without affecting bisimilarity. We introduce here the basic concepts to make this idea
precise, since they do not depend on the domain of application of our theory.

Definition 4.15 (relative bisimulation, adequacy) Assume given a TSL, with a
sub-TSM. A relative bisimulation forM on L is a symmetric relationS such that
wheneveraSb, then for every transitiona L

⊲ a′ in M, with L ◦ b defined, there exists
b′ such thatb L

⊲ b′ in L anda′Sb′. Definerelative bisimilarity forM onL, denoted
by ∼M

L
, to be the largest relative bisimulation forM onL.

We callM adequate (forL) if ∼M

L
coincides with∼L on the agents ofM; we

write this as∼M

L
= ∼L ↾ IntM.

WhenL is understood we may omit ‘onL’; equally we may write∼M for ∼M

L
.

Note that, fora ∼M

L
b, we requireb only to match the transitions ofa that lie inM,

andb’s matching transition need not lie inM. This means that relative bisimilarity is
in general not transitive, so it is not in itself a behavioural equivalence.

Relative bisimilarity is valuable whenM is adequate forL, for then the proof
technique of relative bisimulation can lighten the task of checking a large class of
transitions. Indeed fewer labels may occur inM-transitions than inL-transitions; then
we only need consider transitions involving this smaller set of labels.

An important example of adequacy arises from the intuition that the transitions that
really matter are those where the agent ‘contributes’ to theunderlying reaction, i.e.a
supplies a ‘part’ of the redexr, leaving the labelL to supply the rest. We can make this
precise in terms of support: we are interested in transitions a whose underlying redex
r is such that|a| ∩ |r| 6= ∅. We call such transitionsengaged.

Intuitively, we may conjecture that the engaged transitions are adequate, for the
standard TS. We shall later prove this for a particular classof link-graphical reactive
systems, and indeed in [25] the result is shown to extend to a class ofbigraphical
reactive systems (BRSs) broad enough to include theπ-calculus [39] and the ambient
calculus [10]. It is pleasant when the conjecture holds, forit means that the only
significant labelsL are such that|L| (|r| for some redexr.

We now look at a well-behaved kind of sub-TS whose transitions are determined
by a set of labels.

Definition 4.16 (definite, full sub-TS) Let M ≺ L. Then we callM definitefor L
if, for some subsetLs of the labels ofL,

TransM = {a L
⊲ a′ ∈ TransL | L ∈ Ls} .

We callM full for L if Ls contains all labelsL : I →J of L such thatI ∈ IntM.

To clarify these ideas, suppose thata L
⊲ a′ is a transition ofL. If M is definite forL,

then the transition’s presence inM is determined entirely byL : I → J , i.e. whether
L ∈ Ls. For this, it is clearlynecessarythatI ∈ IntM. If furthermoreM is full for L,
then the latter condition is alsosufficientfor the transition’s presence inM.

20

Thus a definite sub-TS ofL is obtained by cutting down thetransitions, possibly
leaving the interfaces unchanged; on the other hand a full sub-TS is obtained by reduc-
ing to a smaller set ofinterfacesbut keeping all transitions at those interfaces. We now
show that both definiteness and fullness yield congruence properties that will be useful
in Section 9. For a definite sub-TS (hence also for a full sub-TS) we immediately find
that a relative bisimilarity is an absolute one:

Proposition 4.17 (definite sub-TS)If M is definite forL then∼M = ∼M

L
.

Corollary 4.18 (adequate sub-congruence)Let M be definite and adequate forL.
Then

1. The bisimilarities onM andL coincide atIntM, i.e.∼M = ∼L↾ IntM.

2. If ∼L is a congruence, then∼M is a congruence; that is, for anyC : I →J
whereI, J ∈ IntM, if a ∼M b thenC ◦a ∼M C ◦ b.

Finally, we discover that fullness implies not only definiteness, but also adequacy:

Proposition 4.19 (full sub-congruence)If M is full for L then it is also adequate for
L, and hence the results of Corollary 4.18 hold.

Proof It is enough to prove that∼M = ∼L ↾ IntM; for this, we show that∼M is an
L-bisimulation and that∼L ↾ IntM is anM-bisimulation.

oOo

21

22

Part II
Link graphs and their dynamics

5 Introduction to link graphs

Bigraphical reactive systems [36, 37, 38, 25, 26] are a graphical model of computation
in which bothlocality andconnectivityare prominent. Recognising the increasingly
topographical quality of global computing, they take up thechallenge to base all dis-
tributed computation on graphical structure. A typical bigraph was shown in Figure 1.
Such a graph is reconfigurable, and its nodes (the ovals and circles) may represent a
great variety of computational objects: a physical location, an administrative region, a
data constructor, aπ-calculus input guard, an ambient, a cryptographic key, a message,
a replicator, and so on. We discussed several applications of bigraphs in Section 1.

Bigraphs are a development of action calculi [33]. They use ideas from many
sources: the Chemical Abstract machine (Cham) of Berry and Boudol [3], theπ-
calculus of Milner, Parrow and Walker [39], the interactionnets of Lafont [27], the
mobile ambients of Cardelli and Gordon [10], the explicit fusions of Gardner and Wis-
chik [20] developed from the fusion calculus of Parrow and Victor [44], Nomadic Pict
by Wojciechowski and Sewell [52]. They also use the theoretical basis set out in Part I.

The nesting of nodes in Figure 1 has many uses. A node may represent a location;
it may limit or even prevent activity within its boundary; itmay represent the scope
of a link, i.e. forbid certain links to cross its boundary; itmay define what should be
replicated or discarded by certain reactions. When none of these are needed, then the
theory is simpler. But it has been set up [26] so that theplacing —i.e. the nesting
structure of nodes— is orthogonal to thelinking of nodes; this means that the theory
of bigraphs consists of two almost independent theories, soit is easy to factor out the
theory of placing.

If the nesting structure of Figure 1 is forgotten, then what remains is alink graph;
a simple one is shown in Figure 2. These graphs are almost exactly those of stan-
dard graph theory, except that we enrich them with inner and outer interfaces to allow
categorical composition.

In Sections 6 and 7 we set out respectively the structure and the dynamic theory of
link graphs, in preparation for their application in Part III.

6 Link graphs

In this section we define the notion oflink graph formally. In Section 7 we define a
link-graphical reactive system(LRS) and study its dynamic behaviour; then we apply
the results on RSs to derive labelled transitions and congruences for LRSs.

The family of link graphs in any LRS is determined by the kindsof nodes it has,
and these are specified as follows:

23

inner names

outer names . . .

v3

v2

v0

v1
e1

e0

y1 y2y0

K

L

L
M

x0 x1

Figure 2: A link graphG : {x0, x1}→{y0, y1, y2}

Definition 6.1 (pure signature) A pure signatureK provides a set whose elements
are calledcontrols. For each controlK the signature also provides a finite ordinal
ar(K), its arity. We writeK : n for a controlK with arity n.

In refinements of the theory a signature may carry further information, such as asort
for each arity member. Thesesortedsignatures will be defined in Section 8,

In developing link graphs and LRSs we shall use two running examples. Here first
are their signatures:

arithmetic nets Karith = {0 : 1, S : 2, + : 3, → : 2}
These controls representzero, successor, plus and forwarding. The associated
LRS will evaluate arithmetic expressions. It resembles Lafont’s interaction nets,
but allows sharing of subevaluations.

condition-event nets Kpetri = {M : 1, U : 1, Ehk : h+k}
These controls represent amarked condition, an unmarked condition, and an
eventwith h preconditions andk postconditions. The associated LRS will repre-
sent the behaviour of condition-event Petri nets. We shall derive for it a labelled
transition system and an observational congruence relation, and compare them
with those in the literature.

We now proceed to define link graphs over a signatureK. Informally, every node
in a link graph has an associated controlK : n, and hasn ports; the graph consists
essentially of an arbitrary linking of these ports, together with an inner and outer inter-
face which provides access to some of these links. These interfaces will be the objects
of an s-category whose arrows are link graphs. To express theinterface we presume an
infinite setX of names. Formally:

Definition 6.2 (interface) An interfaceX,Y, . . . is a finite set of names drawn from
X . We refer to the empty interface as theorigin.

Definition 6.3 (link graph) A concrete link graph

A = (V,E, ctrl , link) : X →Y

24

has interfacesX andY , called itsinner andouter names, and disjoint finite setsV of
nodesandE of edges. It also has acontrol mapand alink map, respectivelyctrl :

V →K andlink : X ⊎ P →E ⊎ Y , whereP
def
=

∑
v∈V ar(ctrl(v)) is the set ofports

of A.
We shall call the inner namesX and portsP thepointsof A, and the edgesE and

outer namesY its links.

The term ‘concrete’ means that nodes and edges have identity. The support of a con-
crete link graph consists of its nodes and edges; in terms of the definition,|A| = V ⊎E.
If ρ is an injective map on|A|, the support translationρ �A is obtained by replacing
eachv ∈ V by ρ(v) and eache ∈ E by ρ(e) in every component ofA.

Figure 2 shows a link graphG : X →Y with X = {x0, x1} andY = {y0, y1, y2},
over the signature(K : 1, L : 2,M : 4). The figure shows both the nodesV =
{v0, . . . , v3} and the edgesE = {e0, e1}; in future diagrams we omit these details
unless we need them. Note that the links corresponding toy0, y1 andy2 have three,
one and three points respectively; one of these points is theinner namex0.

By working in an s-category of link graphs, with explicit node and edge identities,
we enable the construction of RPOs. Later we shall take the quotient by support equiv-
alence to obtainabstractlink graphs, where RPOs do not exist in general. As is usual
in graph theory, we shall omit the adjectives ‘concrete’ and‘abstract’ when they are
unimportant or implied by the context.

Note that the names in an interface are identified alphabetically, not positionally.
Alphabetical names are convenient for link graphs just as they are convenient in the
λ-calculus, and they also lead naturally to forms of parallelproduct that are familiar
from process calculi, as we shall see below.

Let us now look at the elementary link graphs. The first kind, the elementary
wirings, are shown in Figure 3; they have no nodes. Thelinker y/~x : {~x}→{y}
has no edges, and its link map sends the names~x (all distinct) toy. The case when
~x is empty, writteny : ∅→ y, is just a link graph with a single idle name (see Defini-
tion 6.8). Theclosure/x : {x}→∅ has just one edge, to which it maps the inner name
x. When we draw a link graph we put all its nodes in a dotted rectangle, with the outer
names above and the inner names below, and links (usually curved) joining them.

The second kind of elementary link graph is theatomK~x : ∅→{~x}, whereK : n
is a control and~x a vector ofn distinct names. It consists of a single node with a link
xi for each porti ∈ n. Figures 4 and 5 show the node graphs0x etc for arithmetic
nets, andE21xyz etc for condition-event nets. We draw nodes with a variety ofshapes;
the shape has no formal purpose except to determine the ordering of ports.

All link graphs can be expressed in terms of atoms and elementary wirings, with
the help of composition and tensor product, which we now define.

Definition 6.4 (s-category of link graphs) The s-categorýL IG(K) over a signature
K has name sets as objects and link graphs as arrows. The composition A1 ◦A0 :
X0 →X2 of two link graphsAi = (Vi, Ei, ctrl i, link i) : Xi →Xi+1 (i = 0, 1) is
defined when their supports are disjoint; then their composite is

A1 ◦A0
def
= (V0 ⊎ V1, E0 ⊎ E1, ctrl , link) : X0 →X2

25

y/~x y /x

y

x1 x2 x3 x

y

Figure 3: elementary wirings

S +0

x x y x y z yx

→

Figure 4: atoms for arithmetic nets

E21 M U

zyx x x

Figure 5: atoms for condition-event nets

26

x y z

0

S
+

+

F

+

x y z

0

S

H

G

+

+

+
F = H ◦G

Figure 6: A ground link graph and its decomposition

wherectrl = ctrl0 ⊎ ctrl1 andlink = (IdE0
⊎ link1) ◦ (link0 ⊎ IdP1

).
The identity link graph atX is idX

def
= (∅, ∅, ∅K, IdX) : X →X. A ground link

graphG : ∅→X is one whose inner interface is the origin.

To clarify composition, here is another way to define the linkmap ofA1 ◦A0, consid-
ering all possible argumentsp ∈ X0 ⊎ P0 ⊎ P1:

link(p) =





link0(p) if p ∈ X0 ⊎ P0 andlink0(p) ∈ E0

link1(x) if p ∈ X0 ⊎ P0 andlink0(p) = x ∈ X1

link1(p) if p ∈ P1 .

We often denote the link map ofA simply byA.
Note that the link map treats inner and outer names differently. Two inner names

may be linked —indeed, this is the purpose of the elementary linker— but each outer
name constitutes (the target of) a distinct link. The effectis that we do not allow
‘aliases’, i.e. synonymous outer names. A previous versionof bigraphs [37] allowed
these; the effect was a much harder proof of the existence of RPOs, and then only under
certain conditions. The present version has wide application.

Figure 6 shows a ground link graphF in ´L IG(Karith). In such diagrams we often
omit the identities of nodes and edges. Also note that a link with several points is
represented by forking lines. The way the lines fork has no formal significance, but
may be suggestive of the intended application; for example,here it suggests that the
‘output’ of the successor node is ‘input’ by two plus nodes.

The figure also shows howF may be composed from a smaller ground link graphG
and a contextH. Later we shall see thatG is theredexof a reaction rule for arithmetic;
it is in fact part of the primitive-recursive definition of summation in terms of zero and
successor. The sharing of the successor node is achieved by composition because its
‘output’ port belongs to a link ofG that is open (see Definition 6.8).

27

Definition 6.5 (tensor product) The tensor product⊗ in ´L IG(K) is defined as fol-
lows: On objects,X ⊗Y is simply the unionX ⊎Y of sets required to be disjoint. For
two link graphsAi : Xi →Yi (i = 0, 1) we takeA0 ⊗ A1 : X0 ⊗ X1 →Y0 ⊗ Y1 to be
defined when they have disjoint support and the interface products are defined; its link
map is the union of those ofA0 andA1.

The identityid∅ is clearly a unit for tensor product, which also obeys the axioms for a
monoidal s-category. We therefore obtain the following:

Proposition 6.6 (link graphs are monoidal) The s-categorýL IG(K) is monoidal, with
origin ǫ = ∅.

We shall call a tensor product of linkers asubstitution, and useσ, τ to range over
substitutions. A tensor product of linkers and closures is call a wiring; we useω to
range over wirings.

We can conveniently blur the distinction between substitutions as functions and
as link graphs; their composition and tensor product means the same in either case.
Substitutions can be used to derive an important variant of tensor product of link graphs
that merges outer names, i.e. does not require them to be disjoint:

Definition 6.7 (parallel product) The parallel product | in ´L IG(K) is defined as
follows: On objects,X |Y

def
= X ∪ Y . On link graphsAi : Xi →Yi (i = 0, 1) with

disjoint support we defineA0 |A1 : X0 ⊗ X1 →Y0 |Y1 wheneverX0 and X1 are
disjoint, by taking the union of link maps.

In fact letσi : Yi →Zi (i = 0, 1) be bijective substitutions with disjoint codomains,
and letτ : Z0 ⊗ Z1 →Y0 ∪ Y1 be the union of their inverses; then

A0 |A1 = τ ◦ ((σ0 ◦A0) ⊗ (σ1 ◦A1)) .

Parallel product has fewer algebraic properties than the tensor (categorically, it is not
a bifunctor), but will be important in modelling process calculi such as theπ-calculus
and the ambient calculus.

We now define some basic properties:

Definition 6.8 (idle, open, closed, peer, lean)A link with no preimage under the
link map is idle. An outer name is anopen link, an edge is aclosedlink. A point
(i.e. an inner name or port) isopenif its link is open, otherwiseclosed. Two distinct
points arepeersif they are in the same link. A link graph with no idle edges islean.

An idle nameis sometimes needed; for example we may want to consider two link
graphs as members of the same homset, even if one of them uses anamex and the
other does not. On the other hand an idleedgeserves no useful purpose, but may
be created by composition. Sometimes we shall need to ensurethat the property of
leanness (no idle edges) is preserved by certain constructions.

Isomorphisms, epimorphisms and monomorphisms are easy to characterise, and
will play an important part:

28

Proposition 6.9 (isos, epis and monos in link graphs)A link graph is an iso iff it is
a bijective substitution; it is epi iff no outer name is idle;it is mono iff no two inner
names are peers.

For what follows we need some more notation:

Notation When considering a pair~A : W → ~X of link graphs with common domain
W , we shall adopt a convention for naming their nodes, ports and edges. We denote
the node set ofAi (i = 0, 1) by Vi, and denoteV0∩V1 by V2. We shall usevi, v

′
i, . . . to

range overVi (i = 0, 1, 2). Similarly we usepi ∈ Pi andei ∈ Ei for ports and edges
(i = 0, 1, 2). However, we shall sometimes usepi also for points, i.e.pi ∈ W ⊎Pi; the
context will resolve any ambiguity.

We now turn to constructing RPOs for concrete link graphs. Aninformal intuition
will help in understanding the construction. Suppose~D is a bound for~A, and we wish
to construct the RPO(~B,B). To form ~B, we first truncate~D by removing its outer
names, and all nodes and edges not present in~A. (Of course, for this the identity of
nodes and edges is essential.) Then for the outer names of~B, we create a name for
each link severed by the truncation, equating these new names only when required to
ensure thatB0 ◦A0 = B1 ◦A1. Formally:

Construction 6.10 (RPOs in link graphs) An RPO(~B : ~X → X̂,B : X̂ →Z), for a
pair ~A : W → ~X of link graphs relative to a bound~D : ~X →Z, will be built in three
stages. We use the notational conventions introduced above.

nodes and edges: If Vi are the nodes ofAi (i = 0, 1) then the nodes ofDi are
(Vı−V2) ⊎ V3 for someV3. Define the nodes ofBi andB to beVı−V2 (i = 0, 1) and
V3 respectively. Edges are treated exactly analogously, and ports inherit the analogous
treatment from nodes.

interface: Construct the outer nameŝX of ~B as follows. First, define the names in
eachXi that must be mapped intôX:

X ′
i

def
= {x ∈ Xi | Di(x) ∈ E3 ⊎ Z} .

Next, on the disjoint sumX ′
0 + X ′

1, define∼= to be the smallest equivalence for which
(0, x0) ∼= (1, x1) wheneverA0(p) = x0 andA1(p) = x1 for some pointp ∈ W ⊎ P2.
Then defineX̂ up to isomorphism as follows:

X̂
def
= (X ′

0 + X ′
1)/

∼= .

For eachx ∈ X ′
i we denote bŷi, x the name inX̂ corresponding to the∼=-equivalence

class of(i, x).

links: DefineB0 to simulateD0 as far as possible (B1 is similar):

Forx ∈ X0 : B0(x)
def
=

{
0̂, x if x ∈ X ′

0

D0(x) if x /∈ X ′
0

Forp ∈ P1−P2 : B0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

29

Finally defineB, to simulate bothD0 andD1:

For x̂ ∈ X̂ : B(x̂)
def
= Di(x) wherex ∈ Xi andî, x = x̂

Forp ∈ P3 : B(p)
def
= Di(p) .

To prove this definition sound we have to show that the right-hand sides in the clauses
defining link mapsBi andB are well-defined links inBi andB respectively:

Lemma 6.11 The definition in Construction 6.10 is sound.

Proof The second clause definingB0(x) is sound, since ifx 6∈ X ′
0 then by definition

D0(x) ∈ E1−E2, which is indeed the port set ofB0. Similar reasoning applies to the
second clause definingB0(p).

The first clause definingB0(p) is sound, since ifA1(p) = x with p ∈ P1−P2

then we havex ∈ X ′
1; for if not, thenD1(x) ∈ E0−E2, which is impossible since

D1 ◦A1 = D0 ◦A0.
Finally, the clauses definingB are sound because the right-hand sides are indepen-

dent of the choice ofi and ofx; this is seen by appeal to the definition of∼= and the
equationD1 ◦A1 = D0 ◦A0.

The full justification of our construction lies in the following lemma and theorem, both
of which are proved in the Appendix:

Lemma 6.12 (~B,B) is a candidate RPO for~A relative to ~D.

Theorem 6.13 (RPOs in link graphs) Ĺ IG(K) has RPOs; that is, whenever a pair
~A of link graphs has a bound~D, there exists an RPO(~B,B) for ~B to ~D. Moreover
Construction 6.10 yields such an RPO.

It is clear that the identity of nodes and edges plays an important role in our RPO
construction. Indeed, the category LIG of abstract link graphs does not possess RPOs in
general. A counter-example appears as Example 10 (Figure 12) in [26]; it is presented
in terms of bigraphs, but involves only their link graph components.

Now, to prepare for the derivation of labelled transition systems, we proceed to
characterise all the IPOs for a given pair~A : W → ~X of link graphs. Recall that~B is
an IPO for ~A iff (~B,B) is an RPO for someB.

How does a link graph RPO(~B,B) vary, when we keep~A fixed but vary the given
bound~D? The answer is that if~A are both epi, then~B remains fixed and onlyB varies,
so that in this case~B is a pushout. But we need to treat the general case. The first step
is to establish consistency conditions.

Definition 6.14 (consistency conditions for link graphs) We define threeconsistency
conditions on a pair~A : W → ~X of place graphs. We usep to range over arbitrary
points andp2, p

′
2, . . . to range overW ⊎ P2, the shared points.

CL0 If v ∈ V0 ∩ V1 thenctrl0(v) = ctrl1(v) .
CL1 If Ai(p) ∈ E2 thenp ∈ W ⊎ P2 andAı(p) = Ai(p) .
CL2 If Ai(p2) ∈ Ei−E2 thenAı(p2) ∈ Xı, and if alsoAı(p) = Aı(p2)

thenp ∈ W ⊎ P2 andAi(p) = Ai(p2) .

30

y0x0 x1 y1

y1x0

z0

z0

B1B0

A0 A1

ww

= B1 ◦A1B0 ◦A0

x1y0

v0v′
1v1

v′
2

v′
2

v′
1

v1

v′′
2

v2 v′′
2

v′′
2

v1

v2 v′
2v2 v′

2

v′
1

v0

v0

w

e1e2

e0

e2

e2e0 e1

e0

e1

Figure 7: A consistent pair~A of link graphs, with bound~B

Let us expressCL1 andCL2 in words. Ifi = 0, CL1 says that if the link of any pointp
in A0 is closed and shared withA1, thenp is also shared and has the same link inA1.
CL2 says, on the other hand, that if the link of a shared pointp2 in A0 is closed and
unshared, then its link inA1 must be open, and further that any peer ofp2 in A1 must
also be its peer inA0.

We shall find that the consistency conditions are necessary and sufficient for at least
one IPO to exist. Necessity is straightforward:

Proposition 6.15 (consistency in link graphs)If the pair ~A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple example.

Example 1 (consistent link graphs)Consider the pair~A : ∅→ ~X of link graphs in
Figure 7, whereX0 = {x0, y0, z0} andX1 = {x1, y1}. Nodes and edges with sub-
script 2 are shared; circular nodes are unshared. (Controlsare not shown). The pair is
consistent, with bound~B as shown. It is worth checking the consistency conditions.

Now, assuming the consistency conditions of Definition 6.14, we shall construct
a non-empty family of IPOs for arbitrary~A. Informally, the construction works as
follows: We choose an arbitrary subset of the idle outer names of ~A which will be
given special treatment. If there are no idle outer names then there will be a unique

31

IPO which is also a pushout. We have a degree of freedom for each such outer name
x in Ai (i = 0, 1). In an IPO~C we may chooseCi(x) either to be a new open link, or
to be any closed link inCi. We call the latter case anelisionof the idle namex; in the
following construction the setLi represents the set of idle names to be elided.

Construction 6.16 (IPOs in link graphs) Assume the consistency conditions for the
pair of link graphs~A : W → ~X. We define a family of IPOs~C : ~X →Y for ~A as
follows.

nodes and edges:Take the nodes and edges ofCi to beVı−V2 andEı−E2.

interface: For i = 0, 1 choose any subsetLi of the namesXi such that all members
of Li are idle. SetKi = Xi−Li. DefineK ′

i ⊆ Ki, the names to be mapped to the
codomainY , by

K ′
i

def
= {xi ∈ Ki | ∀p ∈ P2. Ai(p) = xi ⇒ Aı(p) ∈ Xı} .

Next, on the disjoint sumK ′
0 + K ′

1, define≃ to be the smallest equivalence such that
(0, x0) ≃ (1, x1) wheneverA0(p) = x0 andA1(p) = x1 for somep ∈ W ⊎ P2. Then
define the codomain up to isomorphism:

Y
def
= (K ′

0 + K ′
1)/≃ .

For eachx ∈ K ′
i we denote the≃-equivalence class of(i, x) by î, x.

links: Choose two arbitrary mapsηi : Li →Eı−E2 (i = 0, 1), calledelisionmaps,
and define the link mapsCi : Xi →Y as follows (we giveC0; C1 is similar):

Forx ∈ X0 :

C0(x)
def
=





0̂, x if x ∈ K ′
0

A1(p) if x ∈ K0−K ′
0, for p ∈ W ⊎ P2 with A0(p) = x

η0(x) if x ∈ L0

Forp ∈ P1−P2 :

C0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1 .

Thus there is a distinct IPO for each choice of setsLi and elision mapsηi. However the
IPO will be unique ifLi = ∅ is forced. This can happen for one of two reasons: either,
as previously mentioned,Ai has no idle names (i.e. it is epi); orEı−E2 is empty (i.e.
all edges ofAı are shared), so no elision can exist.

A particular case of~A with no elisive IPOs is when one member,A1 say, has no
idle names and no edges (closed links). This is because the former prevents elisions
from A1, while the latter entails thatC0 has no edges and so prevents elisions fromA0.
Now our principle application of IPOs is to derive transitions forA0 whenA1 is the
redex of a reaction rule, and in many reactive systems the redexes do indeed have this
desirable property. We shall see later that this yields rather simple transition systems.

Lemma 6.17 The definition of~C is sound and yields a bound.

32

Proof In the second clause forC0(x) we must ensure thatp ∈ W ⊎ P2 exists such
thatA0(p) = x, and that each suchp yields the same valueA1(p) in P1−P2; in the first
clause forC0(p) we must ensure thatx ∈ K ′

1. The consistency conditions do indeed
ensure this, and they also ensure thatC0 ◦A0 = C1 ◦A1.

We can now prove the essential theorem that underlies the derivation of labelled tran-
sition systems. It states that our construction creates alland only IPOs for~A.

Theorem 6.18 (characterising IPOs for link graphs) A pair ~C : ~X →Y is an IPO
for ~A : W → ~X iff it is generated (up to isomorphism) by Construction 6.16.

Proof (outline)

(⇒) Recall that a bound~B for ~A is an IPO iff it is the legs of an RPO for some
bound ~D. So assume such a~B : ~X → X̂ built by Construction 6.10, and recall the
subsetsX ′

i ⊆ Xi and the equivalence∼= over :X ′
0 + X ′

1 defined there. Now apply
Construction 6.16 to create a pair~C : ~X →Y , by choosing the sets~L and elision
maps~η as follows:

Li
def
= {x ∈ Xi | x idle in Ai,Di(x) ∈ Pı}

ηi : Li →Pı
def
= Di ↾Li .

Then indeed~C coincides with ~B. To prove this, first show thatK ′
0,K

′
1 and≃ in

the IPO construction coincide withX ′
0,X

′
1 and∼= in the RPO construction; hence the

codomainY of ~C coincides with the codomain̂X of ~B. Then show that the link maps
Ci coincide withBi. Thus every IPO is a bound built by Construction 6.16.

(⇐) To prove the converse, consider any bound~C : ~X →Y built by Construction 6.16,
for some sets~L and elision maps~η. Now apply Construction 6.10 to yield an RPO
(~B,B) for ~A to ~C.

Then indeed~B coincides with~C up to isomorphism. To prove this, first show that
X ′

0,X
′
1 and∼= in the RPO construction coincide withK ′

0,K
′
1 and≃ in the IPO con-

struction; hence the codomain̂X of ~B coincides with the codomainY of ~C. Then show
that the link mapsBi coincide withCi. Thus every bound built by Construction 6.16
is an IPO.

The reader may like to check the IPO construction by confirming that the bound illus-
trated in Figure 7 is in fact an IPO.

We continue with properties of IPOs that we shall need. First, tensor product pre-
serves IPOs with disjoint support:

Proposition 6.19 (tensor IPO) In ´L IG(K), let ~C be an IPO for~A and ~D be an IPO
for ~B, where the supports of the two IPOs are disjoint. Then, provided the tensor
products exist,~C ⊗ ~D is an IPO for ~A ⊗ ~B.

An important corollary is:

33

Y

a ⊗ id

X⊗Y

b

a

id ⊗ b
X

ǫ

id ⊗ B
X⊗Y

X′⊗Y

(a) (b)

A ⊗ id

id ⊗ B

A ⊗ id

X⊗Y ′

X′⊗Y ′

Corollary 6.20 (tensor IPOs with identities) LetA : X ′ →X andB : Y ′ →Y have
disjoint support, and letX ′∪X be disjoint fromY ′∪Y . Then the pair(A⊗idY ′ , idX′⊗
B) has an IPO(idX ⊗ B,A ⊗ idY). See diagram(a).

In particular ifX ′ = Y ′ = ǫ thenA = a andB = b are ground link graphs, and the
IPO is as in diagram (b).

Our next proposition shows exactly when an IPO becomes a pushout.

Proposition 6.21 (unique IPOs are pushouts)In link graphs, an IPO is unique up
to isomorphism iff it is a pushout.

Proof For the forward implication, we claim first that the RPO(~B,B) built by
Construction 6.10 is rigid, in the sense Definition 3.11, i.e. the last componentB is
determined by the first two~B. This follows from the fact that the equations definingB
in that construction are necessary to ensure thatB ◦Bi = Di (i = 0, 1), It follows that
in link graphs a pair~A has a rigid RPO relative to any bound. Proposition 3.12 then
yields the required result.

For the reverse implication, it is easy to check that a pushout for ~A provides an
RPO relative to any bound, and is therefore an IPO by Proposition 3.10(2).

Recall that a link graph islean if it has no idle edges. In Section 7 we shall need
to transform IPOs by the addition or subtraction of idle edges. Let us writeAE for the
result of adding a setE of fresh idle edges toA. The following is easy to prove from
the IPO construction for link graphs:

Proposition 6.22 (IPOs, idle edges and leanness)For any two pairs~A and ~B:

1. If ~B is an IPO for ~A, andA1 is lean, thenB0 is lean.

2. For any fresh setE of edges,~B is an IPO for ~A iff (B0, B
E
1) is an IPO for

(AE
0 , A1).

We now turn to abstract link graphs. To get them from concretebigraphs, we wish
to factor out the identity of nodes and edges; we also wish to forget any idle edges. So
we define an equivalence≎ that is a little coarser than support equivalence (≏):

Definition 6.23 (abstract link graphs and their category) Two concrete link graphs
A andB arelean-support equivalent, writtenA ≎ B, if after discarding any idle edges
they are support equivalent. The category LIG(K) of abstract link graphshas the same
objects aśL IG(K), and its arrows are lean-support equivalence classes of concrete link
graphs. Lean-support equivalence is clearly a static congruence (Definition 3.5). The
associated quotient functor, as defined in Definition 3.6, is

[[·]] : ´L IG(K)→ L IG(K) .

34

The reason for studying concrete, rather than abstract, link graphs is that they possess
RPOs. This will allow us Section 7 to derive a behavioural congruence foŕ L IG, and
then to show how to transfer it, under certain assumptions, to LIG.

To see why we cannot work directly in LIG, we point out that it lacks structure that
is present ińL IG. For example, the functor[[·]] does not preserve epis. More seriously,
L IG lacks RPOs in general; this arises because it lacks any notion of theoccurrenceof
a node or edge. A counter-example appears as Example 10 (Figure 12) in [26] (It is
presented in terms of bigraphs, but involves only their linkgraph components.)

7 Reactions and transitions for link graphs

We are now ready to specialise the definitions and theory for reactive systems (RSs) in
Section 4, to obtain link-graphical reactive systems (LRSs), which form the objects of
a category whose arrows are RS functors.

Definition 7.1 (link-graphical reactive system) A (concrete) link-graphical reac-
tive system (LRS)over a signatureK consists of a monoidal reactive system over
´L IG(K), with a rule-set́R in which every redex in lean. We denote it by

´L IG(K, ´R) .

As an example, Figure 8 shows a likely set of rules for the evaluation of arithmetic
nets, whose atoms appeared in Figure 4. The left-hand two rules represent the primi-
tive recursive definition of+, while the right-hand two rules deal with the forwarder,
→. In each case we consider the names~x and~y to represent inputs and outputs respec-
tively. (In Section 8 we shall capture this distinction by imposing a sort-discipline on
link graphs.) The upper left-hand rule introduces a forwarder node. The upper right-
hand rule creates a bypass around a forwarder; it is really a family of rules, since ‘?’
represents any of the three controls{S,+, →} and the dotted link represents any extra
inputs to the node with that control. The lower right-hand rule eliminates a forwarder
that has finished its work.

Figure 6 shows how a redex, denoted byG, may occur within a ground arithmetic
netF ; the occurrence is represented by the contextH. The reader may like to draw
compositions that represent two other redex occurrences within F . This example is
close to Hasegawa’s sharing graphs [21], which enrich Lafont’s interaction nets [27]
by permitting shared subevaluations .

We now proceed to consider the derivation of labelled transitions for LRSs. This
derivation instantiates the derivation for arbitrary RSs of transitionsa L

⊲ a′ based
upon IPOs, leading to the standard transition systemST. LRSs thereby inherit the
definition of bisimilarity, so we have the following corollary of Theorem 4.12:

Corollary 7.2 (congruence of bisimilarity) In any concrete LRS equipped with the
standard transition systemST, bisimilarity of agents is a congruence.

A natural question arises about identity transitionsa id
⊲ a′; do they differ from

reactionsa ⊲ a′? The two clearly coincide in the full transition systemFT; but even

35

0 0
+

x

x

x~y ~y ~y

x

??

S

S

+
+

S

~x~x ~y ~y

~y~x~x

→

→ →

→

Figure 8: Reaction rules for arithmetic

in ST we would expect them to coincide, since both appear to represent the occurrence
of a reaction without external assistance. In fact we have the following:

Proposition 7.3 (identity transitions are reactions) In a concrete LRS equipped with

standard transitions, if no redex has idle names thena id
⊲ a′ iff a ⊲ a′.

Proof The forward implication is immediate. For the reverse, ifa ⊲ a′ then
a = D ◦ r anda′ ≏ D ◦ r′ for some rule(r, r′). But r has no idle names, so by Propo-
sition 6.9 it is epi. But then it can be shown (by purely categorical means) that the pair
(D ◦ r, r) has(id,D) as a pushout, and hence as an IPO; it follows thata id

⊲ a′.

This result is valuable, since we see little value in a redex with idle names. The
reader may agree that it would be strange to have a rule wherex is idle in the redex but
not in the reactum, and if it is idle in both it makes good senseto delete it.

We shall later examine the transition systemST carefully, with the help of a detailed
example of condition-event Petri nets. For now, we considerhow ST and its induced
bisimilarity congruence are transferred to the abstract LRS LIG(K,R), where LIG(K)
is defined by the quotient functor[[·]] of Definition 6.23, andR is obtained froḿR
also by[[·]].

Now recall that this functor, the quotient by lean-support equivalence (≎), is a little
coarser than the quotient by support equivalence (≏), because it discards idle edges.
To transfer the congruence result we must prove that≎ respectsST. For this purpose,
we have required all redexes in´R to be lean (which is no limitation in practice). We
then deduce the crucial property of lean-support equivalence:

Proposition 7.4 (transitions respect equivalence)In a concrete LRS equipped with
standard transitons:

1. Every transition labelL is lean.

36

2. Transitions respect lean-support equivalence (≎) in the sense of Definition 4.8.
That is, for every transitiona L

⊲ a′, if a ≎ b andL ≎ M whereM is another
label withM ◦ b defined, then there exists a transitionb M

⊲ b′ for someb′ such
thata′ ≎ b′.

Proof For the first part, use Proposition 6.22(1). For the second part, use Proposi-
tion 6.22(2); the assumption that each redex is lean ensuresthat it cannot share an idle
edge with the agenta.

We are now ready to transfer transition systems, bisimilarities and congruence re-
sults from concrete to abstract LRSs. The following is immediate by invoking Theo-
rem 4.14 and Proposition 7.4, followed by Corollary 7.2:

Corollary 7.5 (behavioural congruence in abstract LRSs)Let Á be a concrete LRS
equipped with a TSL that respects lean-support equivalence. Denote byA the lean-
support quotient of́A, and denote by∼L the bisimilarity induced byL in both Á and
A. Then

1. a ∼L b in Á iff [[a]] ∼L [[b]] in A.

2. If ∼L is a congruence ińA then it is a congruence inA.

3. The bisimilarity induced byST in A is a congruence.

This concludes the elementary theory of LRSs. We shall now specialise it by defining
the simpleLRSs, whose redexes have certain structural properties. Aspredicted in
Section 4, working ińL IG we then show that engaged transitions are adequate for the
standard transition systemST. This yields a more tractable TS, which we can again
transfer to abstract LRSs over LIG, yielding a bisimilarity that is a congruence.

Recall from Section 6 that a link isopenif it an outer name, otherwiseclosed, and
that these properties are inherited by the points of the link.

Definition 7.6 (simple) A link graph issimpleif it has no idle names and all its links
are open. An LRS issimpleif all its redexes are simple.

We have already argued that the first condition is easy to accept, so the main constraint
is openness. It remains to be seen how far we can relax it whileretaining our results;
meanwhile, many simple LRSs appear to arise naturally.

Simpleness has important consequences:

Proposition 7.7 (simpleness properties)

1. Every simple link graph is lean.

2. If ~B is an IPO for ~A andA1 is simple, thenB0 is simple and the IPO is a pushout.

3. In a simple LRS equipped withST, every label is simple and the IPO underlying
every transition is a pushout.

37

Proof (1) It is enough to note that a simple link graph has no edges.
(2) To proveB0 simple involves a routine check of the RPO construction. Next, we

show that the IPO can contain no elisions. SinceB0 has no closed links there can be
no elisions fromA0; and there can be no elisions fromA1 since it has no idle names.
It follows that up to isomorphism there is a unique IPO for~A, so by Proposition 6.21
it is a pushout.

(3) Apply (2) to the IPO underlying each transition, since its redex is simple.

These results make it easy to verify an important property ofidle names. If we
encode (say) a version of theπ-calculus in link graphs, then a process termT is repre-
sented in every ground homsetGr(X) whereX includes all the free names ofT ; this
allows the possibility of bisimilaritiesT ∼ T ′ where the free names ofT andT ′ differ.
But we do not want the truth of this equation to depend on the chosen name-setX. We
now show that this is avoided, at least in a simple LRS:

Proposition 7.8 (idle names and bisimilarity) In a concrete LRS that is simple and
equipped with standard transitions,a ∼ b iff x ⊗ a ∼ x ⊗ b.

Proof For the forward implication, use congruence. For the converse, we shall verify
thatS = {(a, b) | x ⊗ a ∼ x ⊗ b} is a bisimulation up to≏.

(b)(a) (c)

s

G

idx ⊗ L

L

r
a D

idx ⊗ L

M

b
s

idx ⊗ L

E

x ⊗ b

x ⊗ id x ⊗ id x ⊗ id F

Let aSb, and leta L
⊲ a′. We seek a transitionb L

⊲ b′ with (a′, b′) ∈ S≏.
The IPO underlying the transition ofa is the bottom square of diagram (a), based

on a rule(r, r′) with a′ ≏ D ◦ r′. By Corollary 6.20 the upper square of (a) is also an
IPO, hence so is the large square, and it represents a transition

x ⊗ a idx⊗L
⊲ x ⊗ a′ .

Sincex ⊗ a ∼ x ⊗ b, there is a rule(s, s′) and a transition

x ⊗ b idx⊗L
⊲ G ◦ s′ ∼ x ⊗ a′

with underlying IPO as in diagram (b). Nowx ⊗ b = (x ⊗ id) ◦ b, so by taking an
RPO (M,E,F) for (b, s) we obtain a pair of IPOs as in (c). By Proposition 7.7(1)
M is simple, and by Proposition 7.7(3) the upper square of (c) is a pushout. But
by Corollary 6.20 the pair(x ⊗ id,M) has a tensorial IPO(idx ⊗ M,x ⊗ id); up to
isomorphism this must coincide with the pushout, so withoutloss of generality we may
assumeM = L andF = id. We then find from the lower square thatb L

⊲ b′
def
= E ◦ s′,

and sinceG = x ⊗ E we haveG ◦ s′ = x ⊗ b′. So(a′, b′) ∈ S≏ as required.

We now turn to engaged transitions; recall the discussion ofthem in Section 4.

38

Definition 7.9 (engaged transitions) A standard transition ofa is said to beengaged
if it can be based on a reaction with redexr such that|a| ∩ |r| 6= ∅. We denote byET

the transition system of engaged transitions. We write∼ET for ∼ET

ST
, bisimilarity for ET

relative toST.

Now we would like to prove that∼ET is adequate for standard bisimilarity (Defini-
tion 4.15), i.e. that∼ET = ∼; for then to establisha ∼ b we need only match each
engagedtransition ofa (resp.b) by an arbitrary transition ofb (resp.a). This is a
lighter task than matchingall transitions.

In proving thata ∼ET b impliesa ∼ b we have to show howb can matchall transi-
tions ofa, and the antecedent only tells us how to match theengagedones. However, it
turns out that a non-engaged transition ofa can be suitably matched byanyb (whether
or nota ∼ET b). This is intuitively not surprising, becausea contributes nothing to such
a transition, so replacing it byb should not prevent the transition occurring.

Theorem 7.10 (adequacy of engaged transitions)In a concrete LRS that is simple
and equipped withST, the engaged transitions are adequate; that is, engaged bisimi-
larity ∼ET coincides with bisimilarity∼.

Proof It is immediate that∼ ⊆ ∼ET. For the converse we shall show that

S = {(C ◦a0, C ◦a1) | a0 ∼ET a1}

is a standard bisimulation. Then, takingC = id, we deduce∼ET ⊆ ∼.
Suppose thata0 ∼ET a1. LetC ◦a0

M
⊲ b′0 be any standard transition, withM ◦C ◦a1

is defined. We must findb′1 such thatC ◦a1
M

⊲ b′1 and(b′0, b
′
1) ∈ S.

There exist a reaction rule(r0, r
′
0) and an underlying IPO as in diagram (a) below;

moreoverb′0 = E0 ◦ r′0. Then by taking RPOs we can complete diagram (b) so that
every square is an IPO.

(a) (c)(b)
EM

M

L

D1
r0 r1

L

r0

a0 a1D0
E0C ◦a0

E0
C

Hencea0
L

⊲ a′
0 wherea′

0 = D0 ◦ r′0. Moreover, by Proposition 7.7(3), the lower
square in diagram (b) is a pushout. Alsob′0 = E ◦a′

0.
SinceM ◦C ◦a1 is defined we deduce thatL ◦a1 is defined, and we proceed to

show in two separate cases the existence of a transitiona1
L

⊲ a′
1, with underlying IPO

as shown in diagram (c). (Note that we cannot immediately infer this froma0 ∼ET a1,
since the transition ofa0 may not lie inET.) Substituting this diagram for the lower
squares in (b), we can infer a transitionC ◦a1

M
⊲ b′1 whereb′1 = E ◦a′

1. In each of the
three cases we then argue that(b′0, b

′
1) ∈ S, thus completing the proof of the theorem.

39

Case 1Suppose the transitiona0
L

⊲ a′
0 is not engaged, i.e.|a0|∩ |r0| = ∅. The lower

square of (b) is a pushout; hence it is the unique IPO (up to isomorphism) fora0 and
r0, which by Corollary 6.20 must be a tensor IPO.6 So up to isomorphism we have
L = id ⊗ r0 andD0 = a0 ⊗ id . Then we calculate

a′
0 = D0 ◦ r′0 = a0 ⊗ r′0

= E′
◦a0 whereE′ = id ⊗ r′0 .

So in this case we takeD1 = a1 ⊗ id andr1 = r0 to form the IPO (c); hence

a1
L

⊲ a′
1

def
= E′

◦a1 .

Then for the contextC ′ def
= E ◦E′ we haveb′0 = C ′

◦a0 andb′1 = C ′
◦a1; but a0 ∼ET

a1, so we have(b′0, b
′
1) ∈ S as required.

Case 2Suppose the transitiona0
L

⊲ a′
0 is engaged, i.e.|a0|∩ |r0| 6= ∅. Then it lies in

ET. But a0 ∼ET a1, so there is a transitiona1
L

⊲ a′
1 for somea′

1 such thata′
0 ∼ET a′

1;

henceC ◦a1
M

⊲ b′1
def
= E ◦a′

1, and thus(b′0, b
′
1) ∈ S as required.

We now wish to transferET to abstract LRSs, via the functor

[[·]] : ´L IG(K)→ L IG(K) .

To do this, we would like to know thatET is definitefor ST (see Definition 4.16), for
then by Proposition 4.17 we can equate the relative bisimilarity ∼ET

ST
with the absolute

one∼ET. For this, we need to know that, from the labelL alone, we can determine
whether or not a transitiona L

⊲ a′ is engaged.
It turns out that this holds in a wide range of LRSs. This is because they all satisfy

a simple structural condition, which we now define.

Definition 7.11 (proper LRS) Definectrl(G), thecontrol of a link graphG, to be
the multiset of controls of its nodes. A LRS isproper if for any two redexesr ands, if
ctrl(r) ⊆ ctrl(s) thenctrl(r) = ctrl(s).

Note that this property applies equally to concrete and abstract LRSs, and is indeed
preserved and reflected by the quotient functor[[·]]. Moreover with the help of Corol-
laries 4.18 and 7.2, we deduce

Corollary 7.12 (engaged congruence)In a concrete LRS that is both proper and sim-
ple:

1. The engaged transition systemET is definite forST.

2. Engaged bisimilarity∼ET coincides with standard bisimilarity.

3. ∼ET is a congruence, i.e.a ∼ET b impliesC ◦a ∼ET C ◦ b

6A forerunner of this phenomenon, that a non-engaged transition must be based upon a tensor IPO,
appears in Leifer’s PhD Dissertation [29], Theorem 3.33.

40

Now recall from Proposition 7.7 that every simple link graphis lean. We therefore
specialise Corollary 7.5 toET under appropriate assumptions:

Corollary 7.13 (engaged congruence in abstract LRSs)Let Á be a concrete LRS
that is proper and simple, and letA be its lean-support quotient. Let∼ET denote bisim-
ilarity both for ET in Á and for the induced transition system[[ET]] in A. Then

1. a ∼ET b in Á iff [[a]] ∼ET [[b]] in A.

2. Engaged bisimilarity∼ET is a congruence inA.

Proof The quotient functor satisfies the conditions of Theorem 4.14. In particular, by
Proposition 7.4 it respectsET, since this is a sub-TS ofST. So the theorem yields (1)
immediately. It also yields (2) with the help of Corollary 7.12.

Thus we have ensured congruence of engaged bisimilarity in any abstract LRS LIG(K)
satisfying reasonable assumptions.

oOo

41

42

Part III
Sorting and condition-event nets

8 Sorted link graphs

Part III is devoted to the application of link graph theory. We begin in the present
section with the topic ofsorting, which is likely to be needed in any significant appli-
cation. Then in Sections 9 and 10 we apply it, together with our theory of transitions
systems, to deriving a behavioural congruence for a class ofPetri nets.

Our sorting discipline for link graphs, first proposed for bigraphs in [37], is akin
to many-sorted algebra and has a similar purpose: given a signature we wish to limit
the entities that can be built with it. In algebra, these are often the algebraic terms that
are meaningful for a particular interpretation; here, the same is true of link graphs. For
example, in Petri nets it is not meaningful to connect two transition-nodes without an
intervening place-node. Using a more sophisticated sorting discipline we can introduce
a notion ofname-bindinginto bigraphs [26]; this delimits the scope of a name, so that
it cannot be linked to a port outside that scope.

In the followingΘ will denote a non-empty set ofsorts, andθ will range overΘ.

Definition 8.1 (sorted link graphs) A signatureK is Θ-sortedif it is enriched by an
assignment of a sortθ ∈ Θ to eachi ∈ ar(K) for each controlK. An interfaceX is
Θ-sortedif it is enriched by ascribing a sort to each namex ∈ X.

A link graph isΘ-sorted overK if its interfaces areΘ-sorted, and for eachK, i the
sort assigned byK to i ∈ ar(K) is ascribed to theith port of everyK-node.

We denote býL IG(Θ, K) the monoidal precategory of sorted link graphs whose
identities, composition and tensor product are defined in the obvious way in terms of
the underlying (unsorted) link graphs.

Note that sorts are ascribed to points and open links of a linkgraph, but not to its edges.
We saysortedinstead ofΘ-sorted whenΘ is understood.

We may wish to consider only those sorted link graphs that obey some condition:

Definition 8.2 (sorting) A sorting (discipline)is a tripleΣ = (Θ,K,Φ) whereK is
Θ-sorted, andΦ is a condition onΘ-sorted link graphs overK. The conditionΦ must
be satisfied by the identities and preserved by both composition and tensor product.

A link graph in´L IG(Θ,K) is said to beΣ-sortedif it satisfiesΦ. TheΣ-sorted link
graphs form a monoidal sub-precategory of´L IG(Θ, K) denoted býL IG(Σ). Further,
if ´R is a set ofΣ-sorted reaction rules then´L IG(Σ, ´R) is aΣ-sortedLRS.

We shall often saywell-sortedinstead ofΣ-sorted whenΣ is understood.
Even with only a single sort there are important examples; one example isundi-

rected linearlink graphs, where every open link contains exactly one point, and every
closed link exactly two points. (The reader may like to confirm that this sorting satisfies

43

the required conditions.) With two sorts, this condition can be refined to yielddirected
linear link graphs, where each port of each control has a polarity and a link must join
ports only when their polarities are opposite. More generally, the purpose of a sorting
is to dictate how nodes of a given (sorted) signature may be linked.

What constraints must we place on the sortingΣ = (Θ,K,Φ) in order that we
may apply our transition theory? These constraints are bestunderstood in terms of the
obvious forgetful functor which discards sorts:

U : ´L IG(Σ, ´R)→ ´L IG(U(K),U(´R))

We shall callU asortingfunctor. Such functors have certain properties:

Proposition 8.3 (sorting is faithful) On interfaces a sorting functor is surjective (but
not in general injective); it is alsofaithful, i.e. injective (though not in general surjec-
tive) on each homset of link graphs.

We need more structure than this if we wish to apply our transition theory to a well-
sorted LRS. Consider two properties that a functor of precategories may have:

Definition 8.4 (creating RPOs, reflecting pushouts)LetF be any functor on a pre-
categorýA. ThenF creates RPOsif, whenever~D bounds~A in Á, then any RPO for
F(~A) relative toF(~D) has a uniqueF-preimage that is an RPO for~A relative to~D.

F reflects pushoutsif, whenever ~D bounds ~A in Á andF(~B) is a pushout for
F(~A), then ~B is a pushout for~A.

Corollary 8.5 (creation ensures RPOs)If F : Á → ´B creates RPOs and́A has
RPOs, theńB has RPOs.

We shall often confuseΣ with its functor; for example we say ‘Σ reflects . . . ’ etc.
It turns out that if a sorting satisfies the two conditions of Definition 8.4 (which ap-

pear to be independent, but we need not settle that question here) then we get sufficient
structure for our transition theory:

Theorem 8.6 (useful sortings)

1. If Σ creates RPOs then bisimilarity for the standard transitionsystemST over
´L IG(Σ, ´R) is a congruence.

2. If in additionΣ reflects pushouts and́R is simple, then the engaged transitions
are adequate forST.

Note thatsimplenessof a well-sorted link graph is just as for a pure one. (Indeed sorting
functors both preserve and reflect simpleness.) We omit the proof of the theorem; it
follows closely the lines of Theorems 4.12 and 7.10; for the latter, the reflection of
pushouts enables Proposition 7.7 to be lifted to the well-sorted LRS.

We are now ready to define the sorting discipline we shall use in the remainder
of the paper. It may be motivated by our arithmetic nets, in which we want to each
link to contain any number of ‘input’ ports, but at most one ‘output’ port. The formal
definition must also constrain the sorting of interfaces. Recall that in a link graph
G : X →Y a point is either an inner inX or a port, while aclosed linkis an edge and
anopen linkis an outer name inY .

44

0

+

+

x : t z : sy : s

t

t

t

t

s

s

s

t t s s

H

S

G

+

t t s s

s s
t

t

t

0

S
+

+

F

+

x : t y : s z : s

t

t

t

t

t

t

t
s

s

s

s

s

F = H ◦G

Figure 9: A well-sorted arithmetic net and its decomposition

Definition 8.7 (many-one sorting) In a many-one sortingΣ = (Θ,K,Φ) the sorts
areΘ = {s, t}, the signatureK is arbitrary with an arbitrary assignment of sorts to
control arities, and the conditionΦ is as follows:

• a closed link has exactly ones-point;
• an opens-link has exactly ones-point;
• an opent-link has nos-points.

There is no constraint on the number oft-points in a link.

It is helpful to think ofs andt as standing for ‘source’ and ‘target’.
Let us illustrate by considering arithmetic nets. In this case the sorted signature

is Karith as defined at the beginning of Section 6, enriched by the assignment ofs to
to output ports andt to input ports; for example,+ is assigned the sort-sequencetts.
Figure 9 shows the net of Figure 6, but now with sort ascriptions; the reader may like
to check that it obeys the many-one sorting discipline.

A many-one sorted LRS has a nice property not shared by all sortings:

F

G′

H

∃G
X Y Z

U

Proposition 8.8 (many-one sorted decomposition)LetU be a many-one sorting func-
tor, and let

U(H : X →Z) = G′
◦ U(F : X →Y) .

Then there existsG : Y →Z such thatU(G) = G′ andH = G ◦F .

45

Note that, sinceU is faithful,G exists uniquely. (Thus, in category-theoretic terms, the
proposition says that every arrowF is opcartesian.) With the help of this proposition
is not hard to show that many-one sorting has the structure weneed:

Theorem 8.9 (many-sorting structure) Every many-one sorting discipline creates
RPOs and reflects pushouts.

Proof (outline) For the first property, it can be shown that if we apply Construc-
tion 6.10 to a well-sorted pair~A with a well-sorted bound~D, then the resulting RPO is
itself well-sorted; also, the existence of a mediator to anyother well-sorted candidate
is assured by Proposition 8.8.

The second property can be proved forany functor of precategories that is faithful
and enjoys the property in Proposition 8.8.

We are now ready to induce a behavioural congruence for condition-event Petri
nets, since they can be modelled as a many-one sorted LRS.

9 Condition-event nets as link graphs

We begin this section with a digression from link graphs, in order to discuss the be-
haviour of Petri nets in their own terms. First we consider some recent papers on
behavioural equivalences on Petri nets.

Pomello, Rozenberg and Simone [42] give a comprehensive survey of such equiv-
alences and preorders. They cover those based on observation both of actions and of
states, and range from fine relations respecting causality to coarser ones, for example
the failures preorder from CSP, the coarsest which respectsdeadlock. The study of con-
gruence of these relations, i.e. whether they are preservedby contexts, and which con-
textsshouldpreserve them, is reported as being rather incomplete at that date (1992).

Nielsen, Priese and Sassone [40] characterise some behavioural congruences on
nets. Given a semantic functionB that assigns an abstract behaviour to each net, they
consider the congruence≈ it induces upon nets; this is defined by

N0 ≈ N1
def
⇔ B(C[N0]) = B(C[N1]) for every contextC .

An important contribution of their paper is to define a precise notion of context, by
means of a set ofcombinatorsupon nets. They are then able to characterise the con-
gruences, for each of four semantic functionsB, by showing that for each pairN0, N1

there is a single easily identified context that is sufficientto determine whether or not
N0 ≈ N1.

Priese and Wimmel [43] continue this programme; they enrichthe net combinators,
and consider a wider range of semantic functions.

The Petri Box calculus of Best, Devillers and Hall [4], like the previous two ap-
proaches, emphasises combinators and algebra. By identifying certain net-patterns as
operators, it presents a modular semantics of nets in terms of equivalence classes of
Boxes (a special class of nets). A main result of the paper is agreement between this
denotational semantics and a structured operational semantics of Box expressions.

46

x y

Figure 10: A condition-event net with two observable conditions

Baldan, Corradini, Ehrig and Heckel [1] define a class ofopenPetri nets, having in-
put and output places where tokens may be respectively addedand removed at any time.
They define a form of composition of two such nets which allowsinteraction at these
places, and define a semantics of a net in terms of itsprocesses, i.e. the deterministic
nets representing its possible behaviours. The semantics is shown to be compositional,
i.e. the composition of two open nets respects their underlying processes.

This brief summary does not do justice to the five papers, which represent well the
progress towards a modular treatment of Petri nets. But it helps us to identify differ-
ences with the theory of bigraphs (or link graphs), which suggest contributions that can
be made by the latter. The first difference is that, since bigraphs and their contexts are
the arrows of a (pre)category, whenever a class of agents —e.g. Petri nets— is encoded
in bigraphs the contexts and combinators are thereby determined; they need not be de-
fined specifically for each class. The second difference is that the semantic function
on bigraphical agents is defined not by specific means, but as the quotient by a generic
equivalence relation that pertains toall bigraphical systems. Finally, many such equiv-
alences —including bisimulation (which we use in this paper)but also others— are
guaranteed by bigraphical theory to be congruences.

After this brief review, let us now considercondition-eventPetri nets, as illustrated
in Figure 10. These are nets in which each place, or condition, may be either marked
(i.e. holding a single token) or unmarked. The usual firing rule for condition-event nets
is as follows:

an event with all pre-conditions and no post-conditions marked may ‘fire’,
unmarking its pre-conditions and marking its post-conditions.

The firing rule describes what can happen inside a net, but does not indicate how this
net behaviour may be observed or controlled from outside. Sowe shall set up a simple
observational discipline, yielding a labelled transitionsystem and hence inducing a
bisimilarity equivalence. This discipline is one of many possible, and it differs from
those in the above-cited papers, but is nevertheless quite natural. It provides a good

47

x y

U UU

M

U

E21 E12

E11

E11

Figure 11: A condition-event net represented as a link graph

case study in link graphs, since we can compare an equivalence expressible in Petri net
terms with one induced by link graph theory.

How may we conduct experiments, or observations, on a condition-event net? One
way, akin to the approach of Baldan et al [1], is to make certain conditions externally
accessible, allowing the observer both to detect and to change the state (marked or un-
marked) of the place. For example, the net in Figure 10 has twoaccessible conditions,
namedx andy. In general, given a stateg, i.e. a net together with a marking of its
conditions, the transitiong +x

⊲ g or g −x
⊲ g represents the addition or subtraction of a

token atx. Since we are dealing with condition-event nets, in any given state exactly
one of these experiments is possible for each accessible condition. A third kind of
transition,g τ

⊲ g, represents (the firing of) an internal event and involves noexternal
participation. These three kinds of transition are the basis of araw TSLp, with which
we shall equip our LRS of Petri nets, in order to compare it with another TSLg which
we shall derive from reaction rules by the methods discussedin Parts I and II of this
paper.

We now set up condition-event nets as link graphs. There are many ways to do it;
we choose one that gives a smooth treatment. Figure 11 shows the net of Figure 10 as
a link graph, using the signatureKpetri defined at the start of Section 6 and illustrated
in Figure 5. Recall the three kinds of control:M (‘marked’) andU (‘unmarked’) for
conditions, andEhk for events. The shape and shading of nodes will save us from
writing controls in diagrams. A condition-node has a singleport, which we site in
its centre. AnEhk event-node hash + k ports;h for pre-conditions, andk for post-
conditions. You may check that the above net has two open and three closed links.

Now we enrichKpetri by assigning the sorts to all condition ports andt to event
ports. This leads us to the sorting discipline

Σpetri
def
= (Θpetri,Kpetri,Φpetri)

whereΘpetri = {s, t} andΦpetri is the many-one sorting condition of Definition 8.7.

48

r

x1 y2 x1 y1 y2y1

r′

Figure 12: A link-graph reaction rule for condition-event nets

Then the concrete precategory of many-one sorted condition-event nets is

´CE def
= ´L IG(Σpetri)

and we denote its lean-support quotient byCE. Although these nets share many-one
sorting with arithmetic nets, there is a considerable difference; this arises from the fact
that in arithmetic nets every node possesses exactly ones-port, while in´CE the event
nodes have none. This illustrates the versatility of many-one sorting.

In general an interface may contain boths-names andt-names. But in the example
bothx andy ares-names, because each is a link containing a condition. So letus define
an s-interfaceto be one containing onlys-names; then we can model condition-event
nets in´CE andCE as link graphs withs-interfaces, and call thems-nets.

Without further ado we now set up in´CE a raw transition systemLp, whose inter-

faces ares-interfaces and whose transitionsa ℓ
⊲ b are those we have already described

with ℓ = +x,−x or τ . We also close the transitions under support equivalence. This
induces a TS[[Lp]] in CE. Let us use∼p for the associated bisimilarity in both cases.
Since no RPO theory is involved, we readily find

Proposition 9.1 (raw bisimilarity)

1. a ℓ
⊲ a′ in ´CE iff [[a]] ℓ

⊲ [[a′]] in CE.

2. a ∼p b in ´CE iff [[a]] ∼p [[b]] in CE.

To compare this raw TS and bisimilarity with a contextual one, we must add reac-
tion rules to´CE, to make it an LRS. To match the firing rule, for each pairh, k we
introduce a reaction rule forEhk as illustrated in Figure 12 forh = 1, k = 2. As re-
quired by Definitions 4.2 and 7.1, we close this set under support translation and make
each rule lean (no idle edges). Having thus established´CE as a concrete LRS, we
equip it with the standard transition systemST. We can then apply Corollary 7.2 to
establish that the associated bisimilarity∼g, is a congruence.

Now we wish to refine the transition system in two steps. The first step is to reduce
its transitions to the engaged ones.

Proposition 9.2 (adequacy for nets)The engaged transition systemET over ´CE is
definite and adequate forST; therefore its bisimilarity coincides with∼g.

49

Proof It is easy to show that́CE is simple, as defined in Definition 7.6. It is also
proper, according to Definition 7.11. Therefore by Corollary 7.12 we may reduceST

to ET without affecting the induced bisimilarity∼g.

The second refinement step is to reduce the agents tos-nets. We define the TSLg to
consist ofs-interfaces together with all engaged transition betweens-nets. Now, since
every redex and reactum is ans-net, we find that in any standard transitiona L

⊲ a′, if
a is ans-net then so areL anda′. It follows thatLg is a full sub-TS ofET. Therefore
by Proposition 4.19 and Corollary 4.18 we have the following:

Corollary 9.3 (bisimulation congruence for concretes-nets) Bisimilarity for the tran-
sition systemLg coincides with∼g on s-nets and is a congruence.

We have now taken the theory ofLg for concretes-nets as far as we need, except
for characterising its transitions. We leave that task to Section 10. Here, noting that
Lg respects lean-support equivalence, we relate it to the TS[[Lg]] induced on abstract
s-nets, using Corollaries 9.3 and 7.5:

Corollary 9.4 (bisimulation congruence for abstracts-nets) Denote by∼g the bisim-
ilarity induced onCE by the abstract TS[[Lg]]. Then

1. a ∼g b in ´CE iff [[a]] ∼g [[b]] in CE.

2. The bisimilarity∼g is a congruence inCE.

10 Coincidence of bisimilarities

We are now ready to examine the behaviour ofs-nets. In´CE this is given both by
a raw TSLp with associated bisimilarity∼p and by a contextual TSLg with associ-
ated bisimilarity∼g. These induce inCE the TSs[[Lp]] and [[Lg]], whose associated
bisimilarities are again denoted by∼p and∼g.

Our main concern is to compare these twoabstractbisimilarities, but we shall do
the work mainly inconcretes-nets since it involves a little RPO theory. At the end the
comparison is transported easily to abstracts-nets.

Our first task is to characterise the labels ofLg. We omit the detailed analysis; it
uses the fact that transitions are engaged (Proposition 9.2) and that labels are simple
(Proposition 7.7) and haves-interfaces. It turns out that, up to isomorphism, a label
takes two forms: either it is an identity, or it is an opens-net with exactly oneE-node,
linked to zero or moreM-nodes as preconditions andU-nodes as post-conditions.

For the identity labels, we recall from Proposition 6.21 that a id
⊲ a′ iff a ⊲ a′;

an id label signifies a transition with no help from the context.
Figure 13 shows a non-identity label; the dashed link indicates an identity on zero or

more names. A label can be thought of as a redex-fragment, lacking some conditions;
in the example it requires its client agent to provide one marked pre-condition and one
unmarked post-condition. Figure 14 shows the anatomy of a transitiona L

⊲ a′ with
this label. Note thata′ takes the formL ◦a. In what follows we shall often use the

50

L

Figure 13: A typical label inLg

x1 x1 a
′

L

aa

L

x2x2

Figure 14: Anatomy of a transitiona L
⊲ a′ in Lg

51

OUTPUT

out¬xoutxz

inxz inxz in¬x

PROBE SPENT PROBE TWIG

INPUT

x

x z

x

x z

x

x

x

x

x

zx

x

x z

outxz

Figure 15: Probes for observing conditions in as-net

notationa to denote as-net that differs froma only by the marking of some conditions;
we call it aresidualof a.

We see that a single transition may change the marking of several named conditions
of a, however far apart they may lie ina. Any other agentb with the same interface as
a will have a similar transition, provided only that it has thesame initial marking of its
named conditions.

The two TSsLp andLg are significantly different, so it is not clear that they will
induce the same bisimilarity. We shall now prove that they doso.

We shall first show that∼g ⊆ ∼p in ´CE. This asserts that if we can distinguish
two s-netsa andb by using ‘experiments’ℓ of the form+x, −x or τ , then we can
also do so using ‘experiments’L that are link graph contexts. So, among the labelsL
generated by our theory (see Figure 13), we need to find those that can do the job of
the experiments+x, −x andτ .

It turns out that labels to mimic an experiment+x or −x need only involveE11

events, those with one pre- and one post-condition; they take the formP ⊗ id, where
P is respectively aninput or output probe. The probes are denoted byinxz andoutxz,
and are shown in the first column of Figure 15. The second column shows thespent
probesP , residuals of the probes. The third column shows the spent probes with their
conditions closed; they are defined byin¬x

def
= /z ◦ inxz and out¬x

def
= /z ◦outxz. We

shall call themtwigsbecause, up to the equivalence∼g, they can be ‘broken off’. The
intuition is simply that a twig occurring anywhere in a net can never fire. We express
this formally as follows:

Lemma 10.1 For anys-agentf havingx in its outer face,in¬x ◦a ∼g out¬x ◦a ∼g a .

Here we have abbreviatedin¬x ⊗ id to in¬x; we shall use such abbreviations in what

52

follows, but only in a composition which determines the identity id.
Now to prove that∼g ⊆ ∼p it is enough to show that∼g is anLp-bisimulation.

For this, suppose thata ∼g b, and leta ℓ
⊲ a in Lp. We must findb such thatb ℓ

⊲ b
anda ∼g b. If ℓ = τ this is easy, because then our assumption implies thata ⊲ a,

and hencea id
⊲ a in Lg; but then by bisimilarity inLg we haveb id

⊲ b ∼g a, and by
reversing the reasoning fora we get thatb τ

⊲ b and we are done.
Now let ℓ = +x (the case for−x is dual), so thata +x

⊲ a. This means thata has
an unmarked condition namedx, so that inLg we have

a inxz⊗id
⊲ a′ = inxz ◦a .

Hence by bisimilarity inLg we have

b inxz⊗id
⊲ b′ = inxz ◦ b

wherea′ ∼g b′ andb is the residual ofb under the transition. This residualb differs
from b only in having a marked condition namedx that was unmarked inb, and hence
we also haveb +x

⊲ b in Lp. It remains only to show thata ∼g b. We deduce this using
the congruence of∼g and Lemma 10.1:

a ∼g in¬x ◦a = /z ◦ inxz ◦a = /z ◦a′

∼g /z ◦ b′ = /z ◦ inxz ◦ b = in¬x ◦ b

∼g b .

Therefore we have proved what we wished:

Lemma 10.2 ∼g ⊆ ∼p in ´CE.

To complete our theorem we must prove the converse,∼p ⊆ ∼g . It will be enough
to prove that

S
def
= { (C ◦a,C ◦ b) | a ∼p b }

is a bisimulation up to≏. We get the required result by considering the caseC = id.
We shall make use of the close correspondence between transitions in the concrete

and abstract LRSs, respectively´CE andCE. Further we shall use the convenient fact
that, in´CE, every IPO is actually a pushout by Proposition 7.7(3).

So let us assume thata ∼p b, and thatC ◦a M
⊲ a′′ in Lg. (This covers the case

thatM = id.) Then there is a reaction ruler and contextD such that(M,D) forms a
pushout for(C ◦a, r), as shown in the left-hand diagram of Figure 16, anda′′ ≏ D ◦ r′.
We now take the pushout(L,F) for (a, r), and properties of pushouts yield the right-
hand diagram, in which the upper square is also a pushout. So there is a transition
a L

⊲ a′, wherea′ ≏ F ◦ r′; note also thata′′ ≏ C ′
◦a′. Up to isomorphism,L is

either an identity or a non-identity label.
If L = id thena ⊲ a′, hencea τ

⊲ a′ in Lp. Sincea ∼p a′ we haveb τ
⊲ b′

with a′ ∼p b′. Then alsob L
⊲ b′, with underlying pushout as in the left-hand diagram

of Figure 17. We then proceed, as in the non-identity case below, to construct the
right-hand diagram and to findb′′ with C ◦ b M

⊲ b′′ and(a′′, b′′) ∈ S≏.

53

C

f

L

r

M

r

D

F

C ′

M

DC ◦f

Figure 16: Pushouts underlying transitions ofC ◦a anda

C

g

L

s

M

s

L

g G

E

C ′

G

Figure 17: Pushouts underlying transitions ofb andC ◦ b

If L is a non-identity label we consider the anatomy of the transition a L
⊲ a′,

as exemplified in Figure 14. We know that the residuala differs from a only in the
changed marking of zero or more named conditions. It followstherefore that inLp

there is a sequence of transitions

a ℓ1 ⊲ a1 . . . ℓn ⊲ an = a (n ≥ 0)

whereℓi ∈ {+xi,−xi}; each transition marks or unmarks a single named condition.
Moreovera′ = L ◦a. Sincea ∼p b there exists a similar sequence

b ℓ1 ⊲ b1 . . . ℓn ⊲ bn = b

with a ∼p b. This implies thatb has the same initial marking asa for the named
conditions involved in the transitions. But we know thatL ◦ b is defined (since we
assumedM ◦C ◦ b = C ′

◦L ◦ b to be defined), so inLg there is a transitionb L
⊲ b′ =

L ◦ b. Its underlying pushout is shown in the left-hand diagram ofFigure 17. Also it
has an underlying reaction rule(s, s′), with b′ ≏ G ◦ s′.

Now we form the right-hand diagram of Figure 17 by replacing this pushout for
the lower square in right-hand diagram of Figure 16. Since both small squares are
pushouts, so is the large square; therefore it underlies anLg-transition

C ◦ b M
⊲ b′′

def
= E ◦ s′ .

54

To complete our proof we need only show that the pair(a′′, b′′) lies inS≏. We already
know thata′′ ≏ C ′

◦a′ = C ′
◦L ◦a. We can now compute

b′′ = E ◦ s′ = C ′
◦G ◦ s′ ≏ C ′

◦ b′ = C ′
◦L ◦ b ,

and hence(a′′, b′′) ∈ S≏ sincea ∼p b. It follows that∼p ⊆ ∼g.
So we have proved the coincidence of our two bisimilarities:

Theorem 10.3 (coincidence of concrete bisimilarities)In ´CE the two bisimilarities
∼g and∼p for concretes-nets coincide. Hence, since∼g is a congruence, so also is
∼p is a congruence.

It remains to transfer this to abstracts-nets. But this is immediate by Proposition 9.1
and Corollary 9.4, and finally we have the result we set out to prove:

Corollary 10.4 (coincidence of abstract bisimilarities) In CE the two bisimilarities
∼g and∼p for abstracts-nets coincide. Hence, since∼g is a congruence, so also is
∼p is a congruence.

It is worth noting that sinceLp and∼p were defined without reference to link
graphs, it was not clear which contexts would preserve∼p, i.e. in what sense∼p would
be a congruence. Thus link graph theory can claim to have provided a convincing
answer to these questions, by means of an alternative characterisation of∼p.

oOo

55

56

11 Related and future research

We conclude by commenting on related work that has not already been mentioned in
the text; at the same time we point to some future directions for our own research.

In this paper we have limited our attention to link graphs, which are one constituent
of bigraphs, and have applied them to Petri nets where the other constituent —place
graphs— is not needed. The technical report by Jensen and Milner [26] pursues a
similar programme for full bigraphs, giving a full analysisof a finite asynchronous
π-calculus as reported earlier at a conference [25]. In his forthcoming PhD Disserta-
tion [24] Jensen will carry out this analysis not only for thefull π-calculus but also for
the ambient calculus.

Leifer, in his Dissertation [29], extended the present congruence results for strong
bisimilarity to many other behavioural relations, including weak bisimilarity and the
failures preorder; these results will be published separately. Jensen in his Dissertation
is also extending Leifer’s treatment of weak transitions.

The long tradition of graph-rewriting is based upon thedouble pushout(DPO) con-
struction originated by Ehrig [14]. Our use of (relative) pushouts to derive transitions is
quite distinct from the DPO construction, whose purpose is to explain the anatomy of
graph-rewriting rules (not labelled transitions) workingin a category of graph embed-
dings where the objects are graphs and the arrows are embeddings. This contrasts with
our contextual s-categories, where the objects are interfaces and arrows are graphs.
But there are links between these formulations, both via cospans [18] and via a cat-
egorical isomorphism between graph embeddings and a coslice over our contextual
s-categories [12]. Ehrig [15] has investigated these linksfurther. This has led to paper
by Ehrig and K̈onig [16] in which the RPO technique is transferred to graph-embedding
categories.

Sassone and Sobocinski [48] have generalised RPOs togroupoid RPOs, in a 2-
category whose 2-cells (i.e. arrows between arrows) are isomorphisms. They advocate
treating graphical and other dynamic entities as arrows in such a 2-category; the 2-cells
keep track of the identity of nodes (which is essential for RPOs to exist) and have the
potential to serve as witnesses for rich structural congruences. An advantage of their
approach over s-categories is that composition is total, though this comes at the cost of
a more complicated notion of “2-RPO”. Our s-categories are well-behaved, and lend
themselves easily to the detailed analysis of transitions in the particular case of bigraphs
and link graphs, e.g. the characterisation of all IPOs for a given span (Theorem 6.18).
Thus for our own work the motivation to pass to 2-categories is hitherto weak; however,
the 2-categorical approach clearly deserves further investigation for these and other
non-trivial applications.

The ‘dualism’ of graphs-as-arrows versus graphs-as-objects deserves further com-
ment. From the graph-rewriting perspective the latter is considered basic, and indeed
embeddings as arrows are a natural way to distinguish different occurrences of one
entity within another. From the process calculus perspective, it is normal to represent
processes as terms of an algebra; one reason is the composition of such terms aligns
well with the composition of programs, and indeed there are good examples of pro-
gramming languages derived from process calculi. ‘Bigraphs-as-arrows’ can be seen
as an instance (or an enrichment) of Lawvere’s algebraic theories [28], the standard

57

categorical treatment of algebra. In this spirit, Milner [35] has completely axiomatised
the algebra of pure bigraphs.

The case-studies on deriving transitions from reaction rules, in both theπ-calculus
and Petri nets, have shown an interesting mismatch with existing (or putative) tran-
sitions defined ab initio for these calculi, even when the bisimilarities agree. One
phenomenon, seen here for Petri nets, is that the derived transitions have redundancy.
This is because we derive transitions for each reaction ruleseparately; no advantage is
gained from treating a whole rule-set. An interesting future study would be to somehow
detect and eliminate redundancies, arriving at simpler transition systems.

We have discussed a way of deriving a non-trivial transitional theories for graph-
ical models of mobile systems, and this has served to calibrate such a model against
process calculi. But for many applications it will be important to look beyond theories
of an algebraic character, and pursue the kind of spatio-temporal logic proposed by
Cardelli and Caires [8, 9]. Such logics admit a partial —rather than holistic— analysis
of complex systems, and they also lend themselves to powerful mechanical assistance
(model-checking). The present work will then be useful in studying the extent to which
the algebraic and logical theories agree.

References

[1] Baldan, P., Corradini, A., Ehrig, H. and Heckel, R. (2001), Compositional model-
ing of reactive systems using open nets. Proc. CONCUR 2001, 12th International
Conference on Concurrency theory, LNCS 2154, Springer-Verlag, pp502–518.

[2] Bergstra, J.A. and Klop, J.W. (1985), Algebra for communicating processes with
abstraction. Theoretical Computer Science 37, pp77–121.

[3] Berry, G. and Boudol, G. (1992), The chemical abstract machine. Journal of The-
oretical Computer Science, Vol 96, pp217–248.

[4] Best, E., Devillers, R. and Hall, J.G. (1999), The box algebra: a model of nets and
process expressions. 20th International Conference on Application and Theory of
Petri Nets, LNCS 1639, Springer-Verlag, pp344–363.

[5] Boudol, G. (1992), Asynchrony and theπ-calculus. Rapport de Recherche RR–
1702, INRIA Sophia Antipolis.

[6] Brookes, S.D., Hoare, C.A.R. and Roscoe, A.W. (1984), A theory of communi-
cating sequential processes. J. ACM 31, pp560–599.

[7] Cardelli, L. (2003) Bioware languages. In Computer Systems: Papers for Roger
Needham, Springer Monographs in Computer Science, to appear, 6pp.

[8] Caires, L. and Cardelli, L. (2001), A spatial logic for concurrency (Part I).
Proc. 4th International Symposium on Theoretical Aspects of Computer Soft-
ware, LNCS 2215, Springer Verlag, pp1–37.

58

[9] Caires, L. (2004), Behavioural and spatial observations in a logic for theπ-
calculus. Proc. FOSSACS 2004, LNCS 2987, pp72–89.

[10] Cardelli, L. and Gordon, A.D. (2000), Mobile ambients.Foundations of System
Specification and Computational Structures, LNCS 1378, pp140–155.

[11] Castellani, I. (2001), Process algebras with localities.Handbook of Process Al-
gebra, eds Bergstra, Ponse and Smolka, Elsevier, pp947–1045.

[12] Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Contexts and Embeddings
for closed shallow action graphs. University of Cambridge Computer Labora-
tory, Technical Report 496. [Submitted for publication.] Available athttp:
//pauillac.inria.fr/˜leifer .

[13] Drewes, F., Hoffmann, B. and Plump, D. (2000) Hierarchical graph transforma-
tion. In: Foundations of Software Science and Computation Structures, LNCS
1784, Springer Verlag.

[14] Ehrig, H. (1979) Introduction to the theory of graph grammars. Graph Grammars
and their Application to Computer Science and Biology, LNCS73, Springer Ver-
lag, pp1–69.

[15] Ehrig, H. (2002) Bigraphs meet double pushouts. EATCS Bulletin 78, October
2002, pp72–85.

[16] Ehrig, H. and K̈onig, B. (2004), Deriving bisimulation congruences in the DPO
approach to graph-rewriting. Proc. FOSSACS 2004, LNCS 2987, pp151–156.

[17] Fournet, C. and Gonthier, G. (1996), The reflexive Cham and the join calculus.
Proc. 23rd Annual ACM Symposium on Principles of Programming Languages,
Florida, pp372–385.

[18] Gadducci, F., Heckel, R. and Llabrés Segura, M. (1999), A bi-categorical axioma-
tisation of concurrent graph rewriting. Proc. 8th Conference on Category Theory
in Computer Science (CTCS’99), Vol 29 of Electronic Notes inTCS, Elsevier
Science.

[19] Gardner, P.A. (2000), From process calculi to process frameworks. Proc. CON-
CUR 2000, 11th International Conference on Concurrency Theory, pp69–88.

[20] Gardner, P.A. and Wischik, L. (2000), Explicit fusions. Proc. MFCS 2000. LNCS
1893, pp373–383.

[21] Hasegawa, M. (1999), Models of sharing graphs (A categorical semantics of Let
and Letrec). PhD Dissertation, Report ECS-LFCS-97-360, Division of Informat-
ics, Edinburgh University. Springer Series of Distinguished Dissertations in Com-
puter Science.

[22] Hoare. C.A.R. (1985),Communicating Sequential Processes. Prentice Hall.

59

[23] Honda, K. and Tokoro, M. (1991). An object calculus for asynchronous commu-
nications. In ECOOP’91, Workshop on Object-based Concurrent Programming,
LNCS 512.

[24] Jensen, O.H, (2004), Forthcoming PhD Dissertation.

[25] Jensen, O.H. and Milner, R. (2003), Bigraphs and transitions. In 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

[26] Jensen, O.H. and Milner, R. (2004), Bigraphs and mobileprocesses (revised).
Technical Report 580, University of Cambridge Computer Laboratory. Available
from http://www.cl.cam.ac.uk/users/rm135 .

[27] Lafont, Y. (1990) Interaction nets. Proc. 17th ACM Symposium on Principles of
Programming Languages (POPL’90), pp95–108.

[28] Lawvere, F.W. (1963), Functorial semantics of algebraic theories. Dissertation,
Columbia University. Announcement in Proc. Nat. Acad. Sci.50, 1963, pp869–
873.

[29] Leifer, J.J. (2001), Operational congruences for reactive systems. PhD Disserta-
tion, University of Cambridge Computer Laboratory. Distributed in revised form
as Technical Report 521. Available fromhttp://pauillac.inria.fr/
˜leifer .

[30] Leifer, J.J. and Milner, R. (2000), Deriving bisimulation congruences for reactive
systems. Proc. CONCUR 2000, 11th International Conferenceon Concurrency
theory, pp243–258. Available athttp://pauillac.inria.fr/˜leifer .

[31] Merro, M. and Hennessy, M. (2002), Bisimulation Congruences in Safe Ambi-
ents. Proc. 29th International Symposium on Principles of Programming Lan-
guages, Oregon, pp71–80.

[32] Milner, R. (1980)A Calculus of Communicating Systems. LNCS 92, Springer
Verlag.

[33] Milner, R. (1996), Calculi for interaction. Acta Informatica 33, pp707–737.

[34] Milner, R. (2004), Bigraphs for Petri nets. In Proc. Advanced Course on Petri
Nets, Eichsẗatt 2003, LNCS 3098.

[35] Milner, R. (2004), Axioms for bigraphical structure. Technical Report 581, Uni-
versity of Cambridge Computer Laboratory. (Submitted for publication.)

[36] Milner, R. (2001) Computational flux. Proc 28th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, pp220-221.

[37] Milner, R. Bigraphical reactive systems: basic theory. Technical Report 503,
University of Cambridge Computer Laboratory (2001). Available fromhttp:
//www.cl.cam.ac.uk/users/rm135 .

60

[38] Milner, R. (2001) Bigraphical reactive systems. Proc.12th International Confer-
ence on Concurrency Theory, LNCS2154, pp16–35.

[39] Milner, R., Parrow, J. and Walker D. (1992), A calculus of mobile processes, Parts
I and II. Journal of Information and Computation, Vol 100, pp1–40 and pp41–77.

[40] Nielsen, M., Priese, L. and Sassone, V., Characterizing behavioural congruences
for Petri nets. Proc. CONCUR’95, LNCS 962 (1995) 175–189.

[41] Park, D.M.R. (1980), Concurrency and automata on infinite sequences. LNCS
104, Springer Verlag.

[42] Pomello, L., Rozenberg, G. and Simone, C., A survey of equivalence notions for
net-based systems. Advances in Petri Nets ’92, LNCS 609 (1992) 410–472.

[43] Priese, L. and Wimmel, H., A uniform approach to true-concurrency and inter-
leaving semantics for Petri nets. Theoretical Computer Science 206 (1998) 219–
206.

[44] Parrow, J. and Victor, B. (1998), The fusion calculus: expressiveness and sym-
metry in mobile processes. Proc. LICS’98, IEEE Computer Society Press.

[45] Priami, C. (1995), Stochasticπ-calculus. Computer Journal, Vol 38 (7), pp578–
589.

[46] Priami, C., Regev, A., Silverman, W. and Shapiro, E. (2001), Application of
stochastic process algebras to bioinformatics of molecular processes. Information
Processing Letters, Vol 80, pp 25–31.

[47] Rounds, W.H. and Song, H. (2003), TheΦ-calculus - a language for distributed
control of reconfigurable embedded systems. In Hybrid Systems: Computation
and control, LNCS 2263, Springer-Verlag, pp435–449.

[48] Sassone, V. and Sobocinski, P. (2002), Deriving bisimulation congruences: a 2-
categorical approach. Electronic Notes in Theoretical Computer Science, Vol 68
(2).

[49] Sewell, P. (1998), From rewrite rules to bisimulation congruences. Proc CON-
CUR’98, LNCS 1466, pp269–284. Full version to appear in Theoretical Com-
puter Science, Vol 272/1–2.

[50] Regev, A., Silverman, W. and Shapiro, E. (2001), Representation and simula-
tion of biochemical processes using theπ-calculus process algebra. Proc. Pacific
Symposium of Biocomputing 2001 (PSB2001), Vol 6, pp459–470.

[51] Smith, H. and Fingar, P. (2002), Business Process Management: the third wave.
Amazon.com.

[52] Wojciechowski, P.T. and Sewell, P. (1999), Nomadic Pict: Language and infras-
tructure design for mobile agents. Proc. ASA/MA ’99, Palm Springs, California.

61

62

Appendix

A Proofs

Lemma 6.12 (~B,B) is a candidate RPO for~A relative to ~D.

Proof To proveB0 ◦A0 = B1 ◦A1, by symmetry it will be enough to consider cases
for p ∈ W ⊎ P0, and for the value ofA0(p).

Case p ∈ P0−P2, A0(p) = e ∈ E0. Then(B1 ◦A1)(p) = B1(p) = D1(p) =
(D1 ◦A1)(p) = (D0 ◦A0)(p) = A0(p) = (B0 ◦A0)(p).

Case p ∈ P0−P2, A0(p) = x0 ∈ X0. Then(B1 ◦A1)(p) = B1(p) = x̂0 = B0(x0) =
(B0 ◦A0)(p).

Case p ∈ W ⊎ P2, A0(p) = e ∈ E0−E2. Then(B0 ◦A0)(p) = A0(p) = e. Also
(D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so for somex1 ∈ X1 we haveA1(p) = x1 and
D1(x1) = e, hencex1 /∈ X ′

1. Then(B1 ◦A1)(p) = B1(x1) = D1(x1) = e.

Case p ∈ W ⊎ P2, A0(p) = e ∈ E2. Then(D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so also
A1(p) = e. Hence(B1 ◦A1)(p) = e = (B0 ◦A0)(p).

Case p ∈ W ⊎P2, A0(p) = x0 ∈ X ′
0. ThenD0(x0) ∈ E3⊎Z, and so(D1 ◦A1)(p) =

(D0 ◦A0)(p) ∈ E3 ⊎Z; hence for somex1 ∈ X ′
1 we haveA1(p) = x1 andD1(x1) =

D0(x0). Hence(B0 ◦A0)(p) = B0(x0) = D0(x0) = D1(x1) = B1(x1) = (B1 ◦A1)(p).

Case p ∈ W ⊎ P2, A0(p) = x0 ∈ X0−X ′
0. ThenD0(x0) = e ∈ E1−E2; hence

(D1 ◦A1)(p) = (D0 ◦A0)(p) = e, soA1(p) = e. So(B1 ◦A1)(p) = e = D0(r0) =
B0(x0) = (B0 ◦A0)(p).

We now proveB ◦B0 = D0 by case analysis.

Case x ∈ X ′
0. Then(B ◦B0)(x) = B(0̂, x) = D0(x).

Case x ∈ X0−X ′
0. ThenB0(x) = D0(x) ∈ E0−E2, hence(B ◦B0)(x) = D0(x).

Case p ∈ P1−P2, D0(p) ∈ E1−E2. SinceD0 ◦A0 = D1 ◦A1 we haveA1(p) /∈ X1,
soB0(p) = D0(p) ∈ E1−E2; hence(B ◦B0)(p) = B0(p) = D0(p).

Case p ∈ P1−P2, D0(p) ∈ E3 ⊎ Z. SinceD0 ◦A0 = D1 ◦A1 there existsx ∈ X1

with A1(p) = x; moreover we readily deducex ∈ X ′
1, so B0(p) = 1̂, x. Hence

(B ◦B0)(p) = B(1̂, x) = D1(x) = (D1 ◦A1)(p) = (D0 ◦A0)(p) = D0(p).

Case p ∈ P3. Then(B ◦B0)(p) = B(p) = D0(p).

Theorem 6.13 (RPOs in link graphs) In ´L IG, Whenever a pair~A of link graphs
has a bound~D, there exists an RPO(~B,B) for ~B relative to ~D, and Construction 6.10
yields such an RPO.

Proof We have already proved that the triple(~B,B) built in Construction 6.10 is an
RPO candidate. Now consider any other candidate(~C,C) with intervening interface

63

Y . Ci has nodesVı−V2 ⊎ V4 (i = 0, 1) andC has nodesV5, whereV4 ⊎ V5 = V3. We
have to construct a unique mediating arrowĈ, as shown in the diagram.

C0

Ĉ
X1X0

C1

B

B1

D0 D1

A1

Z

B0

A0

X̂

C

Y

We defineĈ with nodesV4 as follows:

for x̂ = î, x ∈ X̂ : Ĉ(x̂)
def
= Ci(x)

for p ∈ P4 : Ĉ(p)
def
= Ci(p) .

Note that the equationŝC ◦Bi = Ci (i = 0, 1) determineĈ uniquely, since they force
the above definition. We now prove the equations (considering i = 0):

Case x ∈ X ′
0. Then(Ĉ ◦B0)(x) = Ĉ(0̂, x) = C0(x).

Case x ∈ X0−X ′
0. ThenD0(x) ∈ E1−E2, soB0(x) = D0(x), hence(Ĉ ◦B0)(x) =

D0(x). Also sinceC ◦C0 = D0 ∈ E1−E2 we haveC0(x) = D0(x).

Case p ∈ P1−P2, D0(p) ∈ E1−E2. SinceD0 ◦A0 = D1 ◦A1 we haveA1(p) /∈ X1,
soB0(p) = D0(p), hence(Ĉ ◦B0)(p) = D0(p). AlsoC0(p) = (C ◦C0)(p) = D0(p).

Case p ∈ P1−P2, D0(p) ∈ E3 ⊎ Z. ThenA1(v) = x ∈ X ′
1 with D1(x) = D0(p),

andB0(p) = 1̂, x. So(Ĉ ◦B0)(p) = Ĉ(1̂, x) = C1(x) = (C0 ◦A0)(p) = C0(p).

Case p ∈ P4. Then(Ĉ ◦B0)(p) = Ĉ(p) = C0(p).

It remains to prove thatC ◦ Ĉ = B. The following cases suffice:

Case x̂ = 0̂, x ∈ X, B(x̂) ∈ E4. Then(C ◦ Ĉ)(x̂) = Ĉ(x̂) = C0(x) = D0(x) =
B(x̂).

Case x̂ = 0̂, x ∈ X, B(x̂) ∈ E5 ⊎ Z. ThenD0(x) = B(x̂) ∈ E5 ⊎ Z, so for
somey ∈ Y we haveC0(x) = y andC(y) = B(x̂). But by definitionĈ(x̂) = y, so
(C ◦ Ĉ)(x̂) = C(y) = (C ◦C0)(x) = D0(x) = B(x̂).

Case p ∈ P4, B(v) ∈ E4. Then(C ◦ Ĉ)(p) = Ĉ(p) = C0(p) = D0(p) = B(p).

Case p ∈ P4, B(p) ∈ E5 ⊎ Z. ThenB(p) = D0(p) = C(y), whereC0(p) = y ∈ Y ,
and by definitionĈ(p) = C0(p), so(C ◦ Ĉ)(p) = C(y) = B(p).

Case p ∈ P5. Then(C ◦ Ĉ)(p) = C(p) = D0(p) = B(p).

HenceĈ is the required unique mediator; so(~B,B) is an RPO.

64

