Technical Report R

Number 598

B UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Transition systems, link graphs and
Petr1 nets

James J. Leifer, Robin Milner

August 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2004 James J. Leifer, Robin Milner

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Transition systems, link graphs
and Petri nets

James J. Leifér Robin Milner

Abstract: A framework is defined within which reactive systems can be
studied formally. The framework is based up®categoriesa new va-
riety of categories, within which reactive systems can heugein such

a way thatlabelled transition systentsan be uniformly extracted. These
lead in turn to behavioural preorders and equivalences) asdhe fail-
ures preorder (treated elsewhere) and bisimilarity, wiaich guaranteed
to be congruential. The theory rests upon the notioretstive pushout
previously introduced by the authors.

The framework is applied to a particular graphical modelma@slink

graphs which encompasses a variety of calculi for mobile distelupro-
cesses. The specific theory of link graphs is developed.tiites applied
to an established calculus, namebndition-event Petri nets

In particular, a labelled transition system is derived fondition-event
nets, corresponding to a natural notion of observable rgtio Petri net
theory. The transition system yields a congruential bisinty coinciding

with one derived directly from the observable actions. Tdds a cal-
ibration of the general theory of reactive systems and lirdphs against
known specific theories.

1INRIA, Domaine de Voluceau, BP105, 78153 Le Chesnay, France
2University of Cambridge, Computer Laboratory, JJ Thomson AeeCambridge CB3 OFD, UK

Contents:

PART |

PART Il

PART Il

APPENDIX

Introduction

5

Reactive systems and transition systems

Link graphs and their dynamics
Sorting and condition-event nets
Related and future research
References

Proofs

23

43

57

58

63

v

Figure 1. An example of a bigraph

1 Introduction

Process calculi have made progress in modelling inteeaoncurrent systems [6,
2, 22, 32], systems with mobile connectivity [39, 17] andtegss with mobile local-
ity [3, 10]. There is some agreement among all these appesadioth in their basic
notions and in their theories; perhaps the strongest feasua good understanding
of behavioural specification and equivalence. At the same the space of possi-
ble calculi is large, we lack a uniform development of théedries, and in particu-
lar there is no settled way to combine their various kinds obitity. As shown by
Castellani’s [11] comprehensive survey, widely varyingioms of locality have been
explored, and this implies a similar variety in treating niop

There is therefore a dual challenge: first to find a larger comtheoretical basis
for process calculi, and second to find a common treatmenbbility. The two chal-
lenges may appear to be independent, and it would be sinfgleatiwere so; but it
appears that mobility is becoming essential to a huge rahgppdications, so that the
search for a common theoretical basis should attend to ityodilthe outset if it is not
to risk irrelevancy.

The authors’ response [30, 29] to the first aspect has beerofmge a uniform
treatment of transition systems for process calculi, aneréat upon it a uniform be-
havioural theory. In parallel, the response to the secopdag37, 25] has been to
propose and apply a (topo)graphical process model, knowrigaaphs which not
only unifies a variety of treatments of mobility, but also arlgés process calculi that
are not obviously ‘mobile’. In other words, it unifies mobylivith other computational
notions (such as scope and control) that appear separata atght. A typical bigraph
is shown in Figure 1; it shows how the nesting of nodes flaeeg is independent of

the connectivity (thdéinks) among them. Further details are deferred to Section 5.

These twin proposals have been combined in applicatiorete-ttalculus [25, 26],
the ambient calculus [26, 24] and Petri nets [34], yieldiegdvioural theory agreeing
well with those proposed independently. The theory dewdp this point is rather
rich; it is therefore appropriate to publish a paper prasgnust those parts needed
to support one particular case study. The study of Petri [3dfsis a good choice,
since it requires just one of the two constituents of bigsapink graphs The other
constituentplace graphsis not needed since Petri nets involve no nested locaditids
no notion of the scope of names.

Thus the present paper can serve both as an introductioa thebry and as a test of
its value to applications. We present notions indepengertterever possible, allowing
the effect of different choices to be assessed. One choichave made deserves
special mention; we have adopted an approach based updagsqas, which are a
well-behaved class of precategories. Treating bigraplleaarrows in an s-category
Is especially convenient for analysing the notiomoturrenceof an entity in a bigraph.
In Section 11 we compare this with two alternative approacbee uses a category of
graph embeddings and the other uses a 2-category.

Synopsis The rest of this paper is divided into three parts, followgdlzoncluding
section on related and future work.

Part | begins with a view of the theoretical challenge, amahtbresents a category-
theoretic framework for deriving transition systems. Thamstructural topics are the
notion of s-category and the properties of relative push(RPOs) and idem pushouts
(IPOs). Reactive systems are introduced by adding reaaties to the s-categories.
Transition systems based upon IPOs are then derived unyférom these rules, using
RPOs. It is proved that, when enough RPOs exist, bisimyigsia congruence. Part |
ends with a study of how a reactive system may be equippeddiffdrent transition
systems, and how these may be related to one another.

Part Il begins with a view of the challenge from mobile apations, including a
summary of the bigraphical model of which link graphs are astituent. It continues
with a mathematical formulation of link graphs, including@nstruction of RPOs and
IPOs for them. A central feature is the characterisatiorheffamily of IPOs for any
consistent pair of link graphs. Link-graphical reactiveteyns (LRSs) are then defined,
as reactive systems over link graphs. The theory of Partdpéied to derive transition
systems for LRSs, for which a congruential bisimilarity isaganteed. A particular
class, thesimpleLRSs, is shown to admit especially simple transition system

Part Il begins with the concept abrting disciplinedor LRSs. A certain class of
sorting disciplines allows the transition theory of wetHed LRSs to be transferred
from the unsorted ones, by pulling RPOs back along a forg&thctor. In particu-
lar, many-onesorting is shown to enjoy this property; it also allows caiati-event
nets to be represented accurately as an LRS, for which thk @fdPart Il yields a
tractable transition system. It is then shown that the spoading congruential bisim-
ilarity coincides with one that arises from a natural expemtal equivalence defined
independently of link graphs.

The concluding section, Section 11, discusses relatedwncefresearch.

Part |
Reactive systems and transition systems

2 The challenge from process theory

In process calculi it is common to present ftthegnamicsof processes by means of
reactions(typically known as rewriting rules) of the forma—-> a’, wherea anda’
are agents. This treatment is often accompaniethbglled transitionsof the form

a—t+a’, where the label is drawn from some vocabulary expressing the possible
interactions between an agent and its environment. Tygjdhkre is a distinguished
labelr such that the labelled transition relatieh-> concides with the reaction relation
—=. The full family of labelled transitions has the great adege that it supports the
definition of behavioural preorders and equivalences, agthaces, failures and bisim-
ilarity, and these often turn out to be congruences. Buthiththe labelled transitions
have been tailored for each calculus.

We therefore ask whether these labels caddré/eduniformly from any given set
of reaction rules of the formm—-r’, where theredexr is an agent that may change
its state to thaeactums’. A natural approach is to take the labels to be a certain

class of (environmentatontextsif L is such a context, the transitian— o’ implies
that a reaction can occur ihoa leading to a new stat&. In fact we shall represent
agents and contexts as arrows in a category, or more ggnarpliecategory, where
the composition. o a represents the insertion of agenin context.. Moreover, we
would like to be sure that the behavioural relations —suchisismbarity— that are
determined by the transitions are indeed congruentialpreserved by insertion into
any surrounding environment.

But we do not wanall contexts as labels; as Sewell [49] points out, the beha&iour
equivalences that result from this choice are unsatisfactdow to find a satisfactory
—and suitably minimal— set of labels, and to do it uniformbgrained an open prob-
lem for many years. As a first step, Sewell [49] was able toveecontext-labelled
transitions uniformly for parametric term-rewriting sgsts with parallel composition
and blocking, and showed bisimilarity to be a congruence. &giproach did not han-
dle reactive systems with “connectivity”, the (potentyallon-linear) sharing of names
which arises in many process calculi.

Recently the authors [30] were able to define minimal labelerms of the cat-
egorical notion ofrelative pushou{RPO), and moreover to ensure that behavioural
equivalence is a congruence for a wide class of reactivemssst These results were
extended and refined in Leifer's PhD Dissertation [29], amdt&hi et al [12] applied
this theory to action graphs with rich connectivity. MeanehMilner developed the
bigraph model [36, 37] from action graphs, with inspiratfoom the mobile ambients
of Cardelli and Gordon. The development was driven by thekaity that comes
from treating locality and connectivity independentlydamas also inspired by Gard-
ner’s development [19] adymmetricaction graphs (i.e. with undirected edges).

These applications have motivated the effort to formulate RPO theory more
succinctly [26], in a way that eases both the theory itsetf tie characterisation of
the transition systems to which it gives rise. This is theaab Part | of our paper. It
turns out that these two tasks can be addressed well usinggatvaf category which
we call asupported precategoyyr s-category

A precategory is a category in which composition is not alvdgfined. It isup-
portedif both of the following conditions hold: (a) each arrgfvhas asupport|f|, a
finite set, and (b) the compositigmn f is defined if and only ifg|N|f| = (). This struc-
ture makes s-categories remarkably well-behaved. Theyitthany notions from cat-
egories with no change, and most work is unaffected by thigatigr of composition.
They also admit direct treatment of the notioroocturrencde.g. of a node in a graph),
which in Part Il we find essential to the characterisationatfdviour.

In Section 3 we introduce our categorical framework; we tbefine RPOs and
IPOs and derive their properties. This leads in Sectionrddotive systemsnd thence
to the derivation ofransition systembased upon IPOs. The central theorem is proved
that bisimilarity for these transition systems is a congageprovided enough RPOs
exist. The remainder of the section deals with useful retesthips among transition
systems, in preparation for Part Il where we need to refin@athyevarying their agents
or transitions or both.

3 S-categories and relative pushouts

In this section and Section 4 we develop a mathematical frarefor the static and
dynamic properties of mobile interactive systems. Thougstract, it is developed
with a view to underpinning the bigraphical model [37, 25¢ai$ applications. More
specifically, to keep the paper well-focussed, the abstiaatlopment is only taken far
enough to underpin link graphs, which are constituentsgrfdphs. These two sections
are an adaptation and extension of work started by LeifeMifreer [30], then further
developed by Leifer in his PhD Dissertation [29] and by Mil{&7].

The reader can perfectly well study Parts Il and Il indepeatity of Part I, provided
he or she is willing to take the main results of Part | on trusdl #o refer back to
important definitions from time to time.

The present section is concerned with the categorical frameand the important
concepts, especially relative pushouts, that will unddhie treatment of dynamics in
Section 4.

Notation We shall always accent the name of a precategory, &.inNe use o',
‘id" and ‘®’ for composition, identity and tensor product. We denotdbmain/ and
codomainJ of an arrowf: I — J by dom(f) andcod(f); the set of arrows frond to
J, called ahomsetwill be denoted byC(I — J) or justl — J.

Ids will denote the identity function on a st and()s the empty function fronf
to S. We shall use5 w T for union of setsS and7" known or assumed to be disjoint,
and f W g for union of functions whose domains are known or assumee tigjoint.
This use ofs on sets should not be confused with the disjoint su) Which disjoins

setsbeforetaking their union. We assume a fixed representation of idisgpums; for
example X +Y meang{0} x X)U({1} xY),and}_ .., P, meang], ., ({v} x P,).

We write f | .S for the restriction of a functiorf to the domainS. If R is a binary
relation we writeR | S for R N S?; also if= is an equivalence then we defiRE to be
the closure of? under= i.e. the relational compositiorE R= .

A natural numbern is often interpreted as a finite ordinal = {0,1,...,m — 1}.
We often use to range overn; whenm = 2 we use; for the complement — i of i.
We uset to denote a sequenge; | i € m}; whenm = 2 this is an ordered pair. =

Definition 3.1 (precategory, functor) A precategory C is defined exactly as a cat-
egory, except that the composition of arrows is not alwaysdd. Composition with
the identities is always defined, aith f = f = foid. In the equatiorho(go f) =
(hog)o f, the two sides are either equal or both undefined.

A subprecategoryD of “C is defined like a subcategory, withv f defined in"D
exactly when defined inC. A functor 7 : ‘D — "C between precategories is a total
function on objects and on arrows that preserves identtres composition, in the
sense that ifo f is defined inD, thenF(g) o F(f) = F(go f) in"C. "

In general we shall usg, J, K, ... to stand for objects and, g, h, ... for arrows.
We shall extend category-theoretic concepts to precatgaithout comment when
they are unambiguous. One concept which we now extend ékplis that of a
monoidal category:

Definition 3.2 (tensor product, monoidal precategory, monalal functor) A (strict,
symmetric) monoidgbrecategory has a partisgnsor productz both on objects and
on arrows. It has a unit objeet called theorigin, such thal ® e = e ® I = I for all
I. GivenI ® J andJ ® I it also has symmetrysomorphismy; ; : [® J —J ® I.
The tensor and symmetries satisfy the following equationsmboth sides exist:

1) fe@eh)=(fwg®handid.® f=f

(2) (fi®g1)o(fo®go) = (fiofo) @ (g10°90)

(3) ’YI,e:id]

(4) vsrovr,g =idigy

B) vro(f®g) =@®floyays (forf:H—I g:J—K).

A monoidalfunctor is one that preserves tensor product and origin.]

Note that the symmetric identity law ® id. = f is provable from (1), (3) and (5).
‘Strict’ means that associativity holds exactly, as stated merely up to isomorphism;
‘symmetric’ refers to the symmetry isomorphisms satisfyequations (3)—(5). We
shall omit ‘strict’ and ‘symmetric’ from now on, as we shalhvays assume these prop-
erties.

Why do we wish to work in precategories? In the introductionpeeted out that
the dynamic theory of bigraphs will require the existenceetditive pushouts (RPOS).
This means that we need to develop the theory firstctmicretebigraphs, those in
which nodes have identity; then we can transfer the resolébstractgraphs by the

quotient functor that forgets this identity. Precategoadow a direct presentation of
concrete bigraphs; for we can stipulate that two bigraplasdG may be composed to
form H = G o F only if their node sets are disjoint. We can think of this casigion
as askeeping traclof nodes; we can see i exactly which nodes come froifi and
which fromG.

More generally, we are interested in monoidal precategavigere the definedness
of composition and of tensor product depends upso@portset associated with each
arrow. In bigraphs the support of an arrow will be its node segeneral we assume
support to be drawn from some unspecified infinite set. We nge @ general defi-
nition of precategoriesC with support; we continue to use this accented notation for
them, dropping the accent only when we have a category.

Definition 3.3 ((monoidal) s-category) We say that a precategof¢ is supported
or an s-categoryif it has:

e for each arrowf, a finite set|f| called itssupport such thatid;| = 0. The
compositiory o f is defined ifflg|N| f| = @ anddom(g) = cod(f); then|go f| =
gl W]

e for any arrowf : I — J and any injective map whose domain includeg|, an
arrowp: f : I — J called asupport translatiorof f such that

(1) prid; =idy

(2) p(gof)=p-gopf
) Idyf=1f
(4) (propo)f=p
B) pf=(pl
6) |p=f|=p(]

If “C is monoidal as a precategory, it isn@onoidals-category if, forf: H — I and
g: J — K, their tensor producf ® g is defined exactly whe# ® J andl @ K exist
and|f| N |g| = 0, and then the product satisfigb® g| = | f| W |¢g| and

(7) pr(f®g)=pf@pg.
Each of these seven equations is required to hold only whiéndides are defined.m

Exercises Deduce condition (1) from conditions (5) and (3). Prove thadry isomor-
phism has empty support. Show that in conditions (2) and i(fAgeboth sides are
defined or both are undefined.

We now consider functors between s-categories.

Definition 3.4 (support equivalence, supported functor) Let ‘A be an s-category.
Two arrowsf,g : I —J in "A aresupport-equivalentwritten f = g, if p+f = g

3Leifer's development [29] (see Chapter 7) made use of a speaiatjoryTrack('C) to keep track of
nodes in a precategof. This allowed the theory of RPOs to be developed for categaather than for
precategories. However, it can be developed more succiigily stay with the latter.

10

for some support translatign By Definition 3.3 this is an equivalence relation.” &
is another supported precategory, then a fungiorA — "B is calledsupportedif it
preserves support equivalence, jfex= g implies 7 (f) = F(g). m

When we no longer need to keep track of support we may use aeqticdtegory(not
just s-category). To define such quotients, we need theAoilpnotion?

Definition 3.5 (static congruence) Let = be an equivalence defined on every homset
of a supported precategor€. We call= astatic(monoida) congruence onC if it is
preserved by composition (and by tensor product), namely:= f/ andg = ¢’ then
fog = f"og" whenever the latter are defined (and likewise for tensorymt)d n

As an example of a simple static congruence on link graphsneyedefinef = f’ to
mean thatf and f” are identical when alK -nodes are discarded, for some particular
control K. (See Section 6 for the definitions of controls and link geaph

The most important example of a static congruence will bgsttpequivalence
(=). But the following definition shows that any static congroe at least as coarse as
support equivalence will yield a well-defined quotient gatey:

Definition 3.6 (quotient categories) Let "C be an s-category, and let be a static
(monoidal) congruence OI€ that includes support equivalence, ke C =. Then the

quotientof "C by = is a categonC £ 'C /=, whose objects are the objects &f and
whose arrows are equivalence classes of arroiS:in

C(I,J) Z {[fl=| fe'CU,J)}.

In C, identities and composition (and tensor product wi@ihas it) are given by

idy, = [idm]=
[fl=olg]= ::d [fogl=
ef
flz®glz = [f®g=.
By assigning empty support to every arrow we may also re§aad an s-category, so
that[-]=: "C — C is a special supported functor called thequotient functorfor 'C. m

Note that the quotient does not affect objects; thus anyotem®duct onC may still

be partial on objects. B is indeed a category; composition is always well-defined
becausef = g implies f = ¢, and so also is tensor product provided it is defined on
the domains and codomains.

We often abbreviaté¢].. to [-]; we call it thesupport quotient functor From the
definition, clearly a coarser quotiepl= exists whenever= is a congruence that in-
cludes support equivalence. In Part Il we shall define a eoapsotient functor by this
means.

We now turn to the notion of relative pushout (RPO), whichfisracial importance
in defining labelled transitions in the following section.

“We use the terrstaticcongruence to emphasize that these congruences depenchasibtio structure,
in contrast withdynamiccongruences such as bisimilarity, which depend upon tiansit

11

Notation In what follows we shall frequently usﬁto denote a palfy, f1 of arrows
in a precategory. If, for example, the two arrows share a dofzand have codomains
Iy, Iy we write f : H— 1.

Definition 3.7 (bound, consistent) If two arrows f : H — I share domairf, the
pairg : I — K share codomaik” andgo o fo = g1 o f1, then we say thaj is abound
for f. If f has any bound, then it is said to bensistent]

Definition 3.8 (relative pushout) In a precategory, lef : [—K be a bound for
f H—1I. A bound forf relative tog is a trlple(h h) of arrows such that is a
bound forf andhoh; = g; (i = 0,1). We may call the triple aelative boundvheng
Is understood.

A relative pushou{RPO for frelative tog is a relative bountﬂﬁ, h) such that for
any other relative boun@?, k) there is a unique arroyfor whichjoh; = k; (i = 0, 1)

andkoj = h.
We say that a precategomas RPOsf, wheneverf has a bound, it also has an RPO
relative to that bound.]

We shall often omit the word ‘relative’; for example we mayi ((ai, h) a bound (or
RPO) forfto g.

The more familiar notion, a pushout, is a boufdor fsuch thatfor any bound
g there exists a which makes the left-hand diagram commute. Thus a pushaut is
leastbound, while an RPO providesmainimal bound relative to a given boung In
Section 6 we find that RPOs exist for link graphs in cases witene is no pushout.

Now suppose that we can create an R(Fho‘z) for f to g; what happens if we try
to iterate the construction? More precisely, is there an IRP@ to h? The answer lies
in the following important concept:

Definition 3.9 (idem pushout) In a precategory, |f H—Tisa pair of arrows with
common domain, then a paﬂr I — J is anidem pushoufIPO) for f if (,idy) isan

RPO forf to h. n

Then it turns out that the attempt to iterate the RPO construevill yield the same
bound (up to isomorphism); intuitively, the minimal bourat ffto any boundg is
reached in just one step. This is a consequence of the firgbaws of the following
proposition, which summarises the essential propertieRR®s and IPOs on which

12

our work relies. They are proved for categories in Leiferisdertation [29] (see also
Leifer and Milner [30]), and the proofs can be routinely agalfor precategories.

Proposition 3.10 (properties of RPOs)In any precategoryA:

1. Ifan RPO forftogexists, then it is unique up to isomorphism.
2. If (ﬁ, h) is an RPO forfto g, then/ is an IPO forf.

3. Ifﬁ is an IPO forﬁ and an RPO exists fofto hohg, hohy, then the triple
(h, h) is such an RPO.

4. (IPO pasting) Suppose that the diagram below commutestheat f, go has an
RPO to the paithy o hg, foog1. Then
e if the two squares are IPOs, so is the big rectangle;

e if the big rectangle and the left square are IPOs, so is thatrggjuare.
ho h1

A b

90 g1

5. (IPO sliding) If'A is an s-category then IPOs are preserved by support trans-
lation; that is, if g is an IPO for f and p is any injective map whose domain
includes the supports g‘fandg, thenp-gis an IPO forp- f

We now consider a property of RPOs which may not be preselitpnegcategories,
but will be enjoyed by link graphs. We know that the RPO stafustriple is preserved
by isomorphism at its mediating interface, i.e(/if) is an RPO then so I8 o h,hoj)
wherei, j is an iso. But can RPO status be retained by keepifiged and varying:?
If not we say that the RPO is rigid. Formally:

Definition 3.11 (rigid RPO) An RPO(E, h) for f'to g isrigid if, Whenever(ﬁ, k) is
another RPO fofto g, thenk = h.]

Exercises Prove that iff has a rigid RPO relative tg, then all its RPOs relative to
g are rigid. More difficult: find a category in which there is anaagid RPO. (These
exercises are not needed for what follows.)

In Section 6 we shall show that every link graph RPO is rigikisTin useful, since
we can then deduce from the following proposition that, mk lgraphs, a unique IPO
IS a pushout.

Proposition 3.12 (unique IPOs are pushouts).et f have a rigid RPO relative to
some bound. Then an IPO fgrthat is unique up to isomorphism is a pushout.

5This adaptation works for the definition of precategory irfiBigon 3.1, which is satisfied by our sup-
ported precategories.

13

Proof Letk be an IPO fof, and letg be any bound. Under the assumptions we must
find a unique mediatat such thatco k; = g; (¢ = 0, 1).

Take a rigid RPO{E, h) for fto it Thenk is an IPO by Proposition 3.10(2); hence
by assumption there is an isomorphisms shown such that k; = h; (i = 0,1).
Thenh o satisfies the required property of the mediator

Now let k£ be any such mediator, and létbe the inverse of. Then(kot)oh; =
kot otok; = kok; = g; (1 = 0,1). It follows from Proposition 3.10(3) thaﬁ, kol)
is an RPO forfto g. But (E, h) is rigid by assumption, hende..’ = h. So finally
k = hot, showing that the mediatdro ¢ is unique as required.]

4 Reactive and transition systems

We now introduce a kind of dynamical system, of which linkmra will be an instance.
In previous work [30, 29] a notion of reactive system was dfin In our present
terms, this consists first of a monoidal s-category whosewarrare calleccontexts
The objectd, J, . .. will be calledinterfaces We adopt a change of notation from the
preceding section: we shall now use upper cds&, C, ... for arbitrary arrows. A
compositionC' o A represents placing in the context’.

ContextsC' : e — I with the origin as domain are in a sense trivial, since in this
case we havé'o A = C'® A. We shall call a contexgroundif its domain is the origin,
and use lower case, b, ¢, ... for ground arrows. We write. : [fora : e— I, and
Gr(I) for the homset — 1.

The second ingredient of a reactive system in [30, 29] wad afsground pairs
(r,r") calledreaction rules and a subprecategory of so-calkttivecontexts. The re-
action relation—> between agents was taken to be the smallest sucthat—-> D o 7’/
for every active contexb and reaction rulér, r’).

For such systems we uniformly derived labelled transitioased upon IPOs. Sev-
eral behavioural preorders and equivalences based upsa trensitions, including
bisimilarity, were shown to be congruences, subject to taaddions: first, that suf-
ficient RPOs exist in the s-category; second, that decoripogireserves activity —
i.e. Do C active implies bothC' and D active. In subsequent work, sufficient RPOs
were found in interesting cases (Leifer [29], Cattani etla]]].

The present section is essentially a reformulation of thekwo[30, 29]. However,
we omit the notion of ‘active’ context since it does not apfiylink graphs (where
everycontext is active); we also simplify the treatment of fumstbetween reactive
systems.

We are now ready to define reactive systems:

14

Definition 4.2 (reactive system) A reactive system (R®) a supported monoidal pre-
categoryA equipped with a séfR of reaction rulesof the form(r : I, " : I), in which
r is theredexandr’ thereactum We require R to be closed under support equiva-
lence, i.e. if(r,r") is a rule then so i§s, s’) whenever = s andr’ = '.

The reaction relation——-> over ground arrows is the smallest closed both sides
under support equivalence, and such that- — D o/ whenever(r, ') is a reaction
rule andD a context.]

We denote this RS bA("R), or just’/A when R is understood. Closing the reaction
rules under support equivalence allows us in Definition d.8itide ‘A by =, forming
a quotient RS.

To close R under support equivalence is a significant decision. Rebatl we
have adopted the notion of support in concrete link graphbjgraphs, so that nodes
have identity; this enables us to construct RPOs (which evatherwise not exist)
and thence to derive transitions, as we shall see shortlythiderivation it was not
necessary that node-identity should persist through diogacOur closure condition
prevents this persistent identity; we adopt it order to @eptn bigraphs the standard
behavioural equivalences in process calculi, where tter®inotion of tracking the
identity of components through reaction.

An alternative decision merits close attention. It wouldlage the closure condi-
tion by a more modest one: that(if, ') is a reaction rule then so {@+r, p=7’). It
therefore respects the transmission of the identity of adaben» to »’. One important
use of this is to admit logical analysis in the style of Caiaesl Cardelli [8], using
spatio-temporal assertions like “here there will alwaysaki€-node”. We leave this
promising avenue of research to the future.

We extend the notion of functgF: ‘A — "B to RSs, requiring it to preserve reac-
tion. Recall from Definition 3.4 that a supported functor iedhat preserves support
equivalence.

Definition 4.3 (RS functor, sub-RS) A supported monoidal functafF: ‘A — "B of
monoidal s-categories is &S functoiif it preserves reaction rules, i.e. (if,) is a
rule of ‘A then (F(r), F(r")) is a rule of B. If F is injective on objects and arrows
then we callA asub-RSf "B. n

Proposition 4.4 (RS functors preserve reaction)An RS functofF: ‘A — "B preserves
reaction, i.e. ifg—> ¢’ in ‘A thenF (g) —> F(¢’) in "B.

Clearly RSs and their functors form a category. An imporexa@mple of a functor is
the support quotient functor, extended to RSs as follows:

Definition 4.5 (quotient RS) Let ‘A be a reactive system equipped witR. Then
its support quotienteactive system is based upon the support quofieat ‘A /=. Its
reaction rules ar¢([r], [r']) | (r,7") € "R}. n

Proposition 4.6 (quotient reflects reaction) The support quotient functdf: ‘A — A
both preserves and reflects reaction, [@——> [¢'] in A iff g—> ¢ In"A.

15

The quotient functor takes @ncreteRS, based on an s-category, toastractRS
based upon a category. Later we show how to obtain a behavicomgruence for an
arbitrary concrete R\ with sufficient RPOs. The support quotiehtof ‘A may not
possess RPOs, but nevertheless the quotient functor aliswes derive a behavioural
congruence foA also. This use of a concrete RS with RPOs to supply a behaliour
congruence for the corresponding abstract RS was firstgepted by théunctorial
reactive systemaf Leifer’s thesis [29].

We now consider how to equip an RS with labelled transitiddgnventionally, a

labelled transition takes the fora-— o/, wherea, o’ are agents and the labletomes
from some explicitly defined set. Here we shall statytextuakransitions, in which
the labels are contexts into which agents may be insertedetare in contrast with
raw transitions where the label set is defined by other means.

Traditionally (for example in CCS) transitions were rawdaefined independently
of, or even in preference to, reaction rules. But the latteicanceptually simpler, so it
is natural to take them —rather than transitions— as prisitwiven a reactive system,
we have previously [30] defined a labelled transition to béprbetwrittenai> a’ for
which there is a reaction rule:, ") and an ‘active’ contexD such thatf(L, D) is an
idem pushout (IPO) fofa,r) anda’ = Dor’. We shall adopt this, except that we do
not always require an IPO, nor do we impose an activenesstmond

|,

%

Definition 4.7 (transition) A (contextual) transitioris a triple writtena —=» a’, where
a anda’ are ground/ is a context, and there exist a reaction risle~’) and a context
D such that the diagram commutes arid~ D or’. We say that the reaction rule and
the diagranunderliethe transition. A transition isminimalif the underlying diagram
is an IPO.]

For a fixed reactive system many different sets of transtioay be considered,
according to the agents that we wish to observe, and theiexpais —represented by
labels— that we wish to perform upon them. This leads to tHeviing:

Definition 4.8 (transition system) Given an RSA, a(labelled) transition systend
for ‘A is a pair (nt.z, Trans.), where

e Int, is a set of interfaces called tlagent interfaceshe agentsof £ are defined
asAg, = {a:I|1I¢€lntz}.

e Trans. is a set of transitions whose sources and targets are agefitthelabels
of £ are those that appear in some transitiod s .

Thefull (resp.standarg transition system for an RS consists of all interfacesgtiogr
with all (resp. all minimal) transitions. When the RS is ursdeod we shall denote
these two transition systems respectivelyrryandsT.

16

We abbreviate ‘(labelled) transition system’ to TS. Anettnansition systero\ is
asub-TSof £, written M < L, if Intyq C Int, andTransy, C Trans,. =

Whether transitions are derived from reactions or definedmesother way, we
may use them to define behavioural equivalences and prsoiMerare also interested
conditions under which these behavioural relations argential, i.e. preserved by
context. Here we shall limit attention to strong bisimitar Throughout this paper we
shall omit ‘strong’ since we do not define or use weak bisintilg

Definition 4.9 (bisimilarity, congruence) Let’A be a reactive system equipped with
a TS L. A simulation on. is a binary relationS between agents with equal inter-
face such that ifiSh anda -’ in £, then wheneveL. o b is defined there exists
such thath-=—= ' in £ anda’Sb. A bisimulationis a symmetric simulation. Then
bisimilarity on £, denoted by~ , is the largest bisimulation of.

We say that bisimilarity orf is acongruencef

a~,b=Coan~,Cob
foralla,b: I andC : I — J, wherel,J € Int.. n

We shall often omit ‘onC’, and write~ for ~ ., when/£ is understood from the context.
This will usually be wherC is sT.

Note the slight departure from the usual definition of bidation of Park [41];
since we are in an s-category we must requireb to be defined. This is merely a
technical detail, provided that the TS respects suppanstation; for then, whenever
Loa is defined there will always exist’ = L for which both L' oa and L' o b are
defined. If we are working in a category, in particular if inisupport quotient category,
then the side-condition holds automatically and the dédimivf bisimilarity reduces to
the standard one.

We define bisimilarity only for ground link graphs. As a coggence, if bisimilar-
ity is a congruence then it is also preserved by tensor ptothat is, ifa ~, b then
a® c~,b® c. To see this, note that® ¢ = (id ® ¢) o a.

Definition 4.10 (respect) Let = be a static congruence (Definition 3.5) in an RS

equipped withZ. Suppose that for every transitier™—sa’ in £, if « = bandL = M
for another label of £ with M o b defined, then there exist an agéhand a transition

b2Lo ¥ in £ such that’ = b'. Then= and /£ are said taespectone another.]

Note that ‘respect’ is mutual between an equivalence and, &d $hat L respects=’
means the same as respectsL’; we shall use them interchangeably.

It is well known [32] that if= is included in (strong) bisimilarity, then to establish
bisimilarity it is enough exhibit disimulation up to=; that is, a symmetric relation
S such that wheneverSb then each transition of is matched by in S=. We now
deduce from Proposition 3.10(5) that support equivaleacebe used in this way:

Proposition 4.11 (support translation of transitions) In a reactive syster the full
and standard transition systems respect support equicaleiHence in each caseis
a bisimulation, and a bisimulation up te suffices to establish bisimilarity.

17

We may now prove our main congruence theorem for RSs, asgénatsT ensures
bisimulation congruence. The reader can deduce the (matieustd) result thatrT
ensures the same; simply replace the word ‘IPO’ by‘comngusiuare’ in the proof.

Theorem 4.12 (congruence of bisimilarity) In a reactive system with RPOs, equipped
with the standard transition system, bisimilarity of ageigt a congruence; that is, if
ap ~ aq thenC’oaO ~ Coay.

(@) by M (c) d M
M Ey Ey
— C FE C FE
L L L
C oan EO — —_— [
To ao Dy G1T DlT ay D,
—_——
To ™ ™
—_—— —_— —_—

Proof The proof is along the lines of Theorem 3.9 in Leifer [29]. Vablish the
following as a bisimulation up te-:

S = {(CoaO,C’oal) ‘ ag ~ al} .

Suppose thaiy ~ a1, and thatCo ag M, b;,, for some labelM such thatM o C'oay

is defined. It is enough to fink| such that® o a; 2o b, and (b}, b)) € S=.

There exist a reaction rulg-, () and a context, such that diagram (a) is an
IPO; moreoven = Eyor(. Then because consistent pairs have RPOs, there exists
an RPO for(ag, o) relative to the given bound, and using Proposition 3.10(xan
complete diagram (b) so that each square is an IPO.

So the lower square of (b) underlies a transitign=— a/,, wherea), = Dg o}
Now Lo a; is defined (sincé/ o C o a; is defined and/ o C' = E o L) andag ~ ay, SO
there is a transition; = a/, with a/, ~ a/. But support translation of, preserves
both of these properties; so we may assume a(mle~]) and contextD; such that
diagram (c) is an IPQy}, = Dy o7} and|E| N |a}| = 0.

Now replace the lower square of (b) by diagram (c), obtaidiiagram (d) in which,
by Proposition 3.10(4), the large square is an IPO. Hendénges; = Eo D, we
haveCoa; 2o b whereb, £ Eyor). Finally (b),b,) € S= as required, because

o = Eoayandb) = Eoad) with aj ~ af. n

We should remark that we are taking (strong) bisimilaritypagpresentative of many
preorders and equivalences; Leifer [29] has proved comgei¢heorems for several
others, and we expect that those results can be transfertkd present setting.

Now, if an RS is equipped with a TS we wish to define transititorsvarious
quotient RSs. For this purpose, it is useful to extend a famict the obvious way

to sets and tuples of objects and arrows. Thus, for examplésamsitions we have

FlaLsd) = Fla)LE F(a)).

18

Definition 4.13 (functors respecting, inducing transitiors) Let 7: ‘A — B be an
RS functor, and IeA be equipped with a T&. We say thatF respectsL if the static
congruence it induces 0A respectsC. We call 7(£) the TSinducedon ' Bby 7. =

This definition always makes sense, but it will not always enhisimilarity a congru-
ence in'B, even if it is so iN/A. However, the next theorem shows that congruence
of bisimilarity is preserved when we quotient by any stabagruence that includes
support equivalence. Recall thatudl functor is surjective for each homset.

Theorem 4.14 (functors on bisimilarity) Let’A be equipped with a T8. LetF be
a full RS functor fromA to "B that is the identity on objects and respegtsand such
thata = b impliesF(a) = F(b). Then the following hold fofF (L):

1. a~;bin"Alff F(a) ~r,,) F(b)in B.
2. If ~, is a congruence ifA then~ . ., is a congruence inB.
Proof (1) (=) We establish inB the bisimulation
R ={(F(a), 7 (b)) [a ~, b} .

Leta ~. bin A, and letp = F(a), ¢ = F(b) andpLe p’ in "B, with M o ¢ defined.
Then by definition of the induced TS we can fihdanda’ such that\/ = F(L) and
P = F(d'), anda—=a’ in ‘A with Lob defined. So for som& we haveb—L— i/
with o/ ~. b'. It follows thatg2+ ¢’ in "B, whereg’ = F(V') and(p’, ¢') € R, so we
are done.

(1) («=) We establish inA the bisimulation

S ={(a,b) | F(a) ~rw F(b)}.

Let F(a) ~»., F(b)in B, and letp = F(a), ¢ = F(b) wherea——>a’ in ‘A with
Lob defined. Thep2Lsp in ‘B, whereM = F(L) andp’ = F(d'). So for some
q we haveq£> ¢ with p" ~,, ¢'. This transition must arise from a transition
by 2o b in ‘A, whereq = F(by), M = F(Ly) andg’ = F(b,). But thenb, = b and
L, = L, where= is the equivalence induced by ; we also havd. o b defined, andC
respects=, so we can find’ for which b2’ andb;, = ¥'. But also(a’,b’) € S SO
we are done.

(2) Assume that- . is a congruence. IfB, letp ~, ¢ and letG be a context
with G op andG o g defined. Then there exist b, C' in ‘A with p = F(a), ¢ = F(b)
andG = F(C), and withCoa andC ob defined. From (1)) we havea ~. b,
hence by assumptioffca ~, Cob. Applying the functorF we have from (1)}&)
thatGop ~ -, Gogqin’B, as required. n

In a later section we shall set up link-graphical reactiveteyms as RSs. Then using

the theorems we have just proved, or close analogues of twershall derive TS and
deduce behavioural congruences for them.

19

We now turn to a question that arises strongly in applicatiour standard TS,
containing only the minimal transitions, is of course muataBer than the full TS.
But it turns out that in particular cases we can reduce thedsta TS still further,
without affecting bisimilarity. We introduce here the mmsoncepts to make this idea
precise, since they do not depend on the domain of applicafiour theory.

Definition 4.15 (relative bisimulation, adequacy) Assume given a TS, with a
sub-TSM. A relative bisimulation forM on £ is a symmetric relatios such that

wheneveusSh, then for every transition -2 a’ in M, with L o b defined, there exists

v such thab b’ in £ anda’SH'. Definerelative bisimilarity for M on £, denoted
by ~%*, to be the largest relative bisimulation 81 on L.

We call M adequate (forl) if ~2* coincides with~ . on the agents ofM; we
write this as~7" = ~. [Int . .

When L is understood we may omit ‘of’; equally we may write~* for ~4*.
Note that, fora ~%* b, we requireb only to match the transitions of that lie in M,
andb’s matching transition need not lie itvf. This means that relative bisimilarity is
in general not transitive, so it is not in itself a behavid@guivalence.

Relative bisimilarity is valuable whe is adequate foiZ, for then the proof
technique of relative bisimulation can lighten the task béaking a large class of
transitions. Indeed fewer labels may occuifrtransitions than irC-transitions; then
we only need consider transitions involving this smallerasdabels.

An important example of adequacy arises from the intuiti@t the transitions that
really matter are those where the agent ‘contributes’ tautigerlying reaction, i.ez
supplies a ‘part’ of the redex leaving the labeL to supply the rest. We can make this
precise in terms of support: we are interested in trangtiowhose underlying redex
ris such thata| N |r| # (). We call such transitionsngaged

Intuitively, we may conjecture that the engaged trans#tiare adequate, for the
standard TS. We shall later prove this for a particular ctddsk-graphical reactive
systems, and indeed in [25] the result is shown to extend tlass ofbigraphical
reactive systems (BRSs) broad enough to includertiealculus [39] and the ambient
calculus [10]. It is pleasant when the conjecture holds,itfaneans that the only
significant labeld. are such thattZ| C |r| for some redex.

We now look at a well-behaved kind of sub-TS whose transstiare determined
by a set of labels.

Definition 4.16 (definite, full sub-TS) Let M < L. Then we callM definitefor £
if, for some subseLs of the labels of_,

Transy = {a—+d’ € Trans; | L € Ls} .
We call M full for £ if Ls contains all labeld. : I — J of £ suchthatl € Inty;. =

To clarify these ideas, suppose that— o’ is a transition ofC. If M is definite forc,
then the transition’s presence . is determined entirely by. : 7 — J, i.e. whether
L € Ls. For this, it is clearlynecessaryhat/ € Int 4. If furthermoreM is full for L,
then the latter condition is alsufficientfor the transition’s presence .

20

Thus a definite sub-TS of is obtained by cutting down thieansitions possibly
leaving the interfaces unchanged; on the other hand a fodlTSuis obtained by reduc-
ing to a smaller set ahterfacesbut keeping all transitions at those interfaces. We now
show that both definiteness and fullness yield congruermgapties that will be useful
in Section 9. For a definite sub-TS (hence also for a full s&)wWe immediately find
that a relative bisimilarity is an absolute one:

Proposition 4.17 (definite sub-TS)If M is definite forl then~,, = ~X'.

Corollary 4.18 (adequate sub-congruence).et M be definite and adequate fda.
Then

1. The bisimilarities onM and £ coincide atint o4, i.€.~,, = ~, [Intaq.

2. If ~, is a congruence, then-,, is a congruence; that is, for an¢': I — J
wherel, J € Inty, ifa ~,, bthenCoa ~,, Cob.

Finally, we discover that fullness implies not only definiéss, but also adequacy:

Proposition 4.19 (full sub-congruence)lf M is full for £ then it is also adequate for
L, and hence the results of Corollary 4.18 hold.

Proof Itis enough to prove that ., = ~, [Inta4; for this, we show that,, is an
L-bisimulation and that-, [Inta, is anM-bisimulation. n

000

21

22

Part lI
Link graphs and their dynamics

5 Introduction to link graphs

Bigraphical reactive systems [36, 37, 38, 25, 26] are a gcapmodel of computation
in which bothlocality and connectivityare prominent. Recognising the increasingly
topographical quality of global computing, they take up thallenge to base all dis-
tributed computation on graphical structure. A typicalrbjgh was shown in Figure 1.
Such a graph is reconfigurable, and its nodes (the ovals aclds)i may represent a
great variety of computational objects: a physical logaten administrative region, a
data constructor, a-calculus input guard, an ambient, a cryptographic key, ssage,
a replicator, and so on. We discussed several applicatidngm@phs in Section 1.

Bigraphs are a development of action calculi [33]. They wkmas from many
sources: the Chemical Abstract machine (Cham) of Berry aoddBl [3], ther-
calculus of Milner, Parrow and Walker [39], the interactioets of Lafont [27], the
mobile ambients of Cardelli and Gordon [10], the explicgifins of Gardner and Wis-
chik [20] developed from the fusion calculus of Parrow anct®fi [44], Nomadic Pict
by Wojciechowski and Sewell [52]. They also use the thecatbasis set out in Part I.

The nesting of nodes in Figure 1 has many uses. A node maysesyra location;
it may limit or even prevent activity within its boundary;ntay represent the scope
of a link, i.e. forbid certain links to cross its boundarymty define what should be
replicated or discarded by certain reactions. When noneesktlare needed, then the
theory is simpler. But it has been set up [26] so that pifecing —i.e. the nesting
structure of nodes— is orthogonal to theking of nodes; this means that the theory
of bigraphs consists of two almost independent theorieg,is@asy to factor out the
theory of placing.

If the nesting structure of Figure 1 is forgotten, then wieahains is dink graph
a simple one is shown in Figure 2. These graphs are almostlexhose of stan-
dard graph theory, except that we enrich them with inner andronterfaces to allow
categorical composition.

In Sections 6 and 7 we set out respectively the structuretendytnamic theory of
link graphs, in preparation for their application in Patt I

6 Link graphs

In this section we define the notion ik graph formally. In Section 7 we define a
link-graphical reactive systelfLRS) and study its dynamic behaviour; then we apply
the results on RSs to derive labelled transitions and camges for LRSs.

The family of link graphs in any LRS is determined by the kimdsiodes it has,
and these are specified as follows:

23

outer names .. Y2

Vo

U1

inner names

Figure 2: Alink graphG : {zo, 21} —{y0,v1,y2}

Definition 6.1 (pure signature) A pure signaturelC provides a set whose elements
are calledcontrols For each controK the signature also provides a finite ordinal
ar(K), its arity. We write K : n for a control K” with arity n. n

In refinements of the theory a signature may carry furthesrmftion, such as sort
for each arity member. Thesertedsignatures will be defined in Section 8,

In developing link graphs and LRSs we shall use two runniragrgdes. Here first
are their signatures:

arithmeticnets Kin = {0:1, S:2, +:3, —:2}
These controls represemerg successqrplus andforwarding The associated
LRS will evaluate arithmetic expressions. It resemble®h#$ interaction nets,
but allows sharing of subevaluations.

condition-eventnets Kpeeri = {M:1, U:1, Epp: h+k}
These controls representnaarked conditionan unmarked conditionand an
eventwith h preconditions and postconditions. The associated LRS will repre-
sent the behaviour of condition-event Petri nets. We steald for it a labelled
transition system and an observational congruence relatiod compare them
with those in the literature.

We now proceed to define link graphs over a signattrdnformally, every node
in a link graph has an associated contfol: n, and has: ports; the graph consists
essentially of an arbitrary linking of these ports, togethizh an inner and outer inter-
face which provides access to some of these links. Thesdaogs will be the objects
of an s-category whose arrows are link graphs. To expresatiréace we presume an
infinite setX” of names Formally:

Definition 6.2 (interface) AninterfaceX,Y,... is a finite set of names drawn from
X. We refer to the empty interface as thigin.]

Definition 6.3 (link graph) A concrete link graph
A= (V,E, ctrl,link) : X =Y

24

has interfaceX andY’, called itsinner andouter namesand disjoint finite set¥” of

nodesand E' of edges It also has aontrol mapand alink map respectivelyctri :
def

V —Kandlink : X & P—EWY,whereP =} _,, ar(ctrl(v)) is the set oports
of A.

We shall call the inner names and portsP the pointsof A, and the edgeg&’ and
outer namey’ its links.]

The term ‘concrete’ means that nodes and edges have identigysupport of a con-
crete link graph consists of its nodes and edges; in ternteafefinition|A| = VWE.

If pis an injective map onA|, the support translatiop+ A is obtained by replacing
eachv € V by p(v) and eacle € E by p(e) in every component ofi.

Figure 2 shows a link grapfi : X — Y with X = {z¢,z1} andY = {yo,v1, 2},
over the signaturéK : 1,L : 2,M : 4). The figure shows both the nodés =
{vo,...,v3} and the edge€’ = {ep,e;1}; in future diagrams we omit these details
unless we need them. Note that the links corresponding,tg; andys have three,
one and three points respectively; one of these points imtie namer,.

By working in an s-category of link graphs, with explicit rednd edge identities,
we enable the construction of RPOs. Later we shall take tbéeqt by support equiv-
alence to obtaimbstractlink graphs, where RPOs do not exist in general. As is usual
in graph theory, we shall omit the adjectives ‘concrete’ aiustract’ when they are
unimportant or implied by the context.

Note that the names in an interface are identified alphadditiciot positionally.
Alphabetical names are convenient for link graphs just ag tre convenient in the
A-calculus, and they also lead naturally to forms of paradltelduct that are familiar
from process calculi, as we shall see below.

Let us now look at the elementary link graphs. The first kit €lementary
wirings, are shown in Figure 3; they have no nodes. Thker ¥/z : {Z} —{y}
has no edges, and its link map sends the nafhsl distinct) toy. The case when
7 is empty, writteny : () — g, is just a link graph with a single idle name (see Defini-
tion 6.8). Theclosure/z : {x} — () has just one edge, to which it maps the inner name
x. When we draw a link graph we put all its nodes in a dotted regtanvith the outer
names above and the inner names below, and links (usuallgdpjoining them.

The second kind of elementary link graph is ttem Kz :) —{z}, whereK : n
Is a control andr a vector ofn distinct names. It consists of a single node with a link
x; for each portt € n. Figures 4 and 5 show the node grafhsetc for arithmetic
nets, ande,; xyz etc for condition-event nets. We draw nodes with a varietshaipes;
the shape has no formal purpose except to determine therayaéports.

All link graphs can be expressed in terms of atoms and eleanemtirings, with
the help of composition and tensor product, which we now defin

Definition 6.4 (s-category of link graphs) The s-categoryL1G(K) over a signature
KC has name sets as objects and link graphs as arrows. The dtompos, o Ap :
Xo— X5 of two link graphSAi = (W,Ei, ctrli, lmkl) X —>X¢+1 (Z = 0, 1) is
defined when their supports are disjoint; then their conipasi

Al OA() d:a (VO (] Vl,EO (] El, CtTl, lmk) : X() —>X2

25

Figure 3: elementary wirings

Figure 5: atoms for condition-event nets

26

Figure 6: A ground link graph and its decomposition

wherectrl = ctrly W ctrly andlink = (Idg, W link1) o (linko W ldp,).
def

The identity link graph afX isidx = (0,0,0),ldx) : X — X. A groundlink
graphG :) — X is one whose inner interface is the origin.]

To clarify composition, here is another way to define the hmip of A; o Ay, consid-
ering all possible argumentse Xo W Py W Py

linko(p) 1If p € XoW Py andlinkq(p) € Ey
lmk(p) = lmkl(az) if pE XoW Py andlmko(p) =x € X,
lmkzl(p) if peP.

We often denote the link map of simply by A.

Note that the link map treats inner and outer names diffgreiitvo inner names
may be linked —indeed, this is the purpose of the elementakgii— but each outer
name constitutes (the target of) a distinct link. The efiscthat we do not allow
‘aliases’, i.e. synonymous outer names. A previous versidnigraphs [37] allowed
these; the effect was a much harder proof of the existenc®@<Rand then only under
certain conditions. The present version has wide apptinati

Figure 6 shows a ground link graghin "LI1G(K,,iwh). In such diagrams we often
omit the identities of nodes and edges. Also note that a lirtk several points is
represented by forking lines. The way the lines fork has mm& significance, but
may be suggestive of the intended application; for exantpdes it suggests that the
‘output’ of the successor node is ‘input’ by two plus nodes.

The figure also shows how may be composed from a smaller ground link gréph
and a contexti. Later we shall see thét is theredexof a reaction rule for arithmetic;
it is in fact part of the primitive-recursive definition ofsumation in terms of zero and
successor. The sharing of the successor node is achievemhiposition because its
‘output’ port belongs to a link of7 that is open (see Definition 6.8).

27

Definition 6.5 (tensor product) Thetensor product? in "L1G(K) is defined as fol-
lows: On objectsX ® Y is simply the unionX WY of sets required to be disjoint. For
two link graphsA; : X; —Y; (i = 0,1) we taked, ® A1 : Xg ® X1 — Yy ® Y; to be
defined when they have disjoint support and the interfacdymts are defined; its link
map is the union of those of, and A4, . m

The identityid is clearly a unit for tensor product, which also obeys th@waps for a
monoidal s-category. We therefore obtain the following:

Proposition 6.6 (link graphs are monoidal) The s-categorii 1G(K) is monoidal, with
origin e = 0.

We shall call a tensor product of linkerssabstitution and uses, T to range over
substitutions. A tensor product of linkers and closuresait @wiring; we usew to
range over wirings.

We can conveniently blur the distinction between substitigt as functions and
as link graphs; their composition and tensor product mela@same in either case.
Substitutions can be used to derive an important variamsdr product of link graphs
that merges outer names, i.e. does not require them to lwendis;

Definition 6.7 (parallel product) The parallel product | in "LI1G(K) is defined as

def

follows: On objects, X |Y = X UY. On link graphs4; : X; —Y; (i = 0,1) with
disjoint support we definely | 41 : Xo ® X7 — Y| Y1 wheneverX, and X; are
disjoint, by taking the union of link maps.]

In fact leto; : Y; — Z; (i = 0, 1) be bijective substitutions with disjoint codomains,
and letr : Zy ® Z; — Y, U Y] be the union of their inverses; then

Ao’Al = To((aovo) & (0‘10141)) .

Parallel product has fewer algebraic properties than thgote(categorically, it is not
a bifunctor), but will be important in modelling processadi such as ther-calculus
and the ambient calculus.

We now define some basic properties:

Definition 6.8 (idle, open, closed, peer, lean)A link with no preimage under the
link map isidle. An outer name is ampenlink, an edge is alosedlink. A point
(i.e. an inner name or port) Ipenif its link is open, otherwiselosed Two distinct
points arepeersif they are in the same link. A link graph with no idle edgeteign =

An idle nameis sometimes needed; for example we may want to consideritko |
graphs as members of the same homset, even if one of them usesea: and the
other does not. On the other hand an idi#ggeserves no useful purpose, but may
be created by composition. Sometimes we shall need to etisair¢he property of
leanness (no idle edges) is preserved by certain constngcti

Isomorphisms, epimorphisms and monomorphisms are eadyai@aterise, and
will play an important part:

28

Proposition 6.9 (isos, epis and monos in link graphsA link graph is an iso iff it is
a bijective substitution; it is epi iff no outer name is idiejs mono iff no two inner
names are peers.

For what follows we need some more notation:

Notation When considering a paif : W — X of link graphs with common domain
W, we shall adopt a convention for naming their nodes, portsetilyes. We denote
the node set ofl; (i = 0,1) by V;, and denoté;, NV, by V5. We shall usey;, v, ... to
range ovel; (i = 0, 1,2). Similarly we usep; € P; ande; € E; for ports and edges
(: = 0,1, 2). However, we shall sometimes usgalso for points, i.ep; € W W P;; the
context will resolve any ambiguity.]

We now turn to constructing RPOs for concrete link graphsimormal intuition
will help in understanding the construction. Supp@aes a bound ford, and we wish
to construct the RP(DB B). To form B, we first truncateD by removing its outer
names, and all nodes and edges not presem IGOf course, for this the identity of
nodes and edges is essential.) Then for the outer namBs we create a name for
each link severed by the truncation, equating these new samg when required to
ensure thaByo Ag = By o A;. Formally:

Construction 6.10 (RPOs in link graphs) AnRPO(B: X — X,B: X — Z), fora
pair A: W — X of link graphs relative to a bounf: X — Z, will be built in three
stages. We use the notational conventions introduced above

nodes and edges:If V; are the nodes ofi; (= 0, 1) then the nodes oD, are
(Vz—V3) W V5 for someVs. Define the nodes aB; and B to beV;—15 (i = 0, 1) and
V3 respectively. Edges are treated exactly analogously, artd mherit the analogous
treatment from nodes.

interface: Construct the outer ngme% of B as follows. First, define the names in
eachX; that must be mapped int:
X/ E{ze€X;|Di(x) € EswZ}.

Next, on the disjoint sunX/, + X, define= to be the smallest equivalence for which
(0,z0) = (1,21) WheneverAy(p) = z¢ and A, (p) = x; for some poinp € W & P».
Then defineX up to isomorphism as follows:

X= (Xo+X1)/=.

For eachr € X/ we denote by’, = the name inX corresponding to the-equivalence
class of(i, x).

links: Define B, to simulateD, as far as possibley; is similar):
0,2 ifzeX]
Dy(z) ifz ¢ X

1/,; if Al(p>:a’f€X1
Do(p) if Ai(p) € X1 .

Forz € Xy : Bo(z) = {

Forpe PL—Ps : Bo(p): {

Finally defineB, to simulate bothDy and Dy :

Fori € X : B(2)Z D,(z) wherez € X; andi, z = &
de

Forp€P3: B(p):Dz(p) []

=

To prove this definition sound we have to show that the rigitehsides in the clauses
defining link mapsB; and B are well-defined links iB; and B respectively:

Lemma 6.11 The definition in Construction 6.10 is sound.

Proof The second clause definidg) (=) is sound, since it ¢ X, then by definition
Dy(z) € E1— E5, which is indeed the port set &f,. Similar reasoning applies to the
second clause definingy(p).

The first clause defining,(p) is sound, since ifA;(p) = =z withp € P, — Py
then we haver € X7; for if not, thenD,(z) € Ey— Es, which is impossible since
D1 OAl == DQOAQ.

Finally, the clauses defining are sound because the right-hand sides are indepen-
dent of the choice of and ofz; this is seen by appeal to the definition®fand the
equationD; o Ay = Dgo Ayp. m

The full justification of our construction lies in the follemg lemma and theorem, both
of which are proved in the Appendix:

Lemma 6.12 (B, B) is a candidate RPO foA relative toD.

Theorem 6.13 (RPOs in link graphs) LiG(K) has RPOs; that is, whenever a pair
A of link graphs has a bound, there exists an RPQB, B) for B to D. Moreover
Construction 6.10 yields such an RPO.

It is clear that the identity of nodes and edges plays an itapbrole in our RPO
construction. Indeed, the categorydLof abstract link graphs does not possess RPOs in
general. A counter-example appears as Example 10 (Figyie 126]; it is presented
in terms of bigraphs, but involves only their link graph campnts.

Now, to prepare for the derivation of labelled transitiorsteyns, we proceed to
characterise all the IPOs for a given pdit W — X of link graphs. Recall thaB is
an IPO forA iff (B, B) is an RPO for somé.

How does a link graph RPO§, B) vary, when we keepl fixed but vary the given
boundD? The answer is that il are both epi, the® remains fixed and only varies,
so that in this cas& is a pushout. But we need to treat the general case. The &pst st
Is to establish consistency conditions.

Definition 6.14 (consistency conditions for link graphs) We define threeonsistency
conditions on a pa|r4 W — X of place graphs. We useto range over arbitrary
points andps, p5, . . . to range oveiV W Ps, the shared points.

cLO Ifv e VynVithenctriy(v) = ctriy(v) .

cLl If A;(p) € Exthenp € W W Py andAz(p) = Ai(p) -

cL2 |If A;(p2) € E;—E> thenA;(p2) € X7, and if alsoAz(p) = Az(p2)
thenp eWuwh, andAz(p) = Al(p2> . [|

30

BOOAO

Figure 7: A consistent paif of link graphs, with bound3

Let us expressL1 andcL?2 in words. Ifi = 0, cL1 says that if the link of any point
in Ay is closed and shared with,, thenp is also shared and has the same linldin
CL2 says, on the other hand, that if the link of a shared peirit A is closed and
unsharedthen its link inA; must be open, and further that any peep#fn A; must
also be its peer inly.

We shall find that the consistency conditions are necessargutficient for at least
one IPO to exist. Necessity is straightforward:

Proposition 6.15 (consistency in link graphs)If the pair A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple exampl

Example 1 (consistent link graphs) Consider the paivéfz 0 — X of link graphs in

Figure 7, whereXy = {zo,y0, 20} andX; = {z1,y:}. Nodes and edges with sub-
script 2 are shared; circular nodes are unshared. (Comtrelsot shown). The pair is
consistent, with bounds as shown. It is worth checking the consistency conditians.

Now, assuming the consistency conditions of Definition 6\4d shall construct
a non-empty family of IPOs for arbitraryi'. Informally, the construction works as
follows: We choose an arbitrary subset of the idle outer ranfed which will be
given special treatment. If there are no idle outer names there will be a unique

31

IPO which is also a pushout. We have a degree of freedom fdr ®ach outer name
xinA; (i =0,1). Inan IPOC we may choos€’;(x) either to be a new open link, or
to be any closed link ilt;. We call the latter case adisionof the idle namer; in the
following construction the sdl; represents the set of idle names to be elided.

Construction 6.16 (IPOs in link graphs) Assume the consistency conditions for the
pair of link graphsA : W — X. We define a family of IPOg': X —Y for A as
follows.

nodes and edgesTake the nodes and edges(@fto bel;—V; and E;— Es.

interface: Fori = 0,1 choose any subsét; of the namesX; such that all members
of L; are idle. SetX; = X, —L,. DefineK C K;, the names to be mapped to the
codomainy’, by

Kz/ & {.’171 c K; | \V/p e bs. Al(p) =T, = A;(p) c X;} .

Next, on the disjoint sunk’) + K7, define~ to be the smallest equivalence such that
(0,z9) ~ (1,21) wheneverd,(p) = xo and A, (p) = x; for somep € W & P,. Then
define the codomain up to isomorphism:

def

Y = (K\+ K})/~.

For eachr € K/ we denote the--equivalence class df, z) by i, z.

links: Choose two arbitrary mapg : L; — E;— E5 (i = 0, 1), calledelisionmaps,
and define the link maps; : X; — Y as follows (we give’y; C is similar):

Forz € X :
0,z if z € K|
Co(z) = Ai(p) ifxe Kog—K), forp e W P, with Ay(p) =«
no(x) ifz e Ly
Forp ebP—-P:
def 1,z if Al(p):JfEXl
W= { i 1a 7 x..

Thus there is a distinct IPO for each choice of detand elision mapg;. However the
IPO will be unique ifL; =) is forced. This can happen for one of two reasons: either,
as previously mentioned}; has no idle names (i.e. it is epi); &k — E5 is empty (i.e.

all edges of4; are shared), so no elision can exist.

A particular case off with no elisive IPOs is when one membet; say, has no
idle names and no edges (closed links). This is because thef@revents elisions
from Ay, while the latter entails that, has no edges and so prevents elisions frigm
Now our principle application of IPOs is to derive trangigofor A, when A; is the
redex of a reaction rule, and in many reactive systems thexesddo indeed have this
desirable property. We shall see later that this yieldserathmple transition systems.

Lemma 6.17 The definition of” is sound and yields a bound.

32

Proof In the second clause fa@r,(x) we must ensure that € W @ P, exists such
thatAq(p) = x, and that each sughyields the same valué (p) in P;—P5; in the first
clause forCy(p) we must ensure that € K. The consistency conditions do indeed
ensure this, and they also ensure gt Ag = C1 0 A;. n

We can now prove the essential theorem that underlies tinatien of labelled tran-
sition systems. It states that our construction createandllonly IPOs forA.

Theorem 6.18 (characterising IPOs for link graphs) A pair C:X—YisanlPO
for A: W — X iffitis generated (up to isomorphism) by Construction 6.16

Proof (outline)

(=) Recall that a bound3 for A is an IPO iff it is the legs of an RPO for some
boundD. So assume suchA : X — X built by Construction 6.10, and recall the
subsetsX! C X, and the equivalence over: X + X defined there. Now apply
Construction 6.16 to create a pﬁ XY, by choosing the seté and elision
mapsij as follows:

L; & {xeX@|x|dle|nA1,Dz(x)ePg}
mi:Li—P, = D;|L;.

Then indeedC coincides withB. To prove this, first show thak), K| and~ in
the IPO construction coincide witR), X1 and= in the RPO construction; hence the
codomainy” of €' coincides with the codomaiX of B. Then show that the link maps
C; coincide withB;. Thus every IPO is a bound built by Construction 6.16.

(«=) To prove the converse, consider any bodhd X — Y built by Construction 6.16,
for some setd, and elision mapsg;. Now apply Construction 6.10 to yield an RPO
(B, B) for Ato C.

Then indeedB coincides withC up to isomorphism. To prove this, first show that
X, X1 and= in the RPO construction coincide withi), K1 and~ in the IPO con-
struction; hence the codomaln of 5 coincides with the codomaii of C'. Then show
that the link maps3; coincide withC';. Thus every bound built by Construction 6.16
is an IPO.]

The reader may like to check the IPO construction by configntiivat the bound illus-
trated in Figure 7 is in fact an IPO.

We continue with properties of IPOs that we shall need. Fiestsor product pre-
serves IPOs with disjoint support:

Proposition 6.19 (tensor IPO) In "LiG(K), let €' be an IPO for4 and D be an IPO
for B, where the supports of the two IPOs are disjoint. Then, piedithe tensor
products existC ® D is an IPO forA @ B.

An important corollary is:

33

(@) id® B ©) e

XQY — = XQVY X —= XQ®Y
A®idT TA@id aT Ta@id
id® B b

X' QY ——— X'®Y e — =Y

Corollary 6.20 (tensor IPOs with identities) LetA : X’ — X andB : Y’ — Y have
disjoint support, and leX’U X be disjoint fromY”UY . Then the paif A®idy, idx' ®
B) has an IPO(idx ® B, A ® idy). See diagranfa).

In particular if X’ = Y’ = ethen A = a and B = b are ground link graphs, and the
IPO is as in diagram (b).
Our next proposition shows exactly when an IPO becomes aopitish

Proposition 6.21 (unique IPOs are pushouts)in link graphs, an IPO is unique up
to isomorphism iff it is a pushout.

Proof For the forward implication, we claim first that the RR@, B) built by
Construction 6.10 is rigid, in the sense Definition 3.11, ite last componenB is
determined by the first tw&. This follows from the fact that the equations definig
in that construction are necessary to ensurethaiB; = D; (i = 0, 1), It follows that
in link graphs a pail%f has a rigid RPO relative to any bound. Proposition 3.12 then
yields the required result.

For the reverse implication, it is easy to check that a pusfmuff provides an
RPO relative to any bound, and is therefore an IPO by Praposit10(2).]

Recall that a link graph ikeanif it has no idle edges. In Section 7 we shall need
to transform IPOs by the addition or subtraction of idle eddest us writed” for the
result of adding a selt of fresh idle edges tel. The following is easy to prove from
the IPO construction for link graphs:

Proposition 6.22 (IPOs, idle edges and leannes$pr any two pairs4 and B:
1. If Bis an IPO forA, and 4; is lean, thenB, is lean.

2. For any fresh sef of edges,B is an IPO for A iff (By, BE) is an IPO for
(Agjv Al)

We now turn to abstract link graphs. To get them from condoegeaphs, we wish
to factor out the identity of nodes and edges; we also wisbriget any idle edges. So
we define an equivalence that is a little coarser than support equivalencg (

Definition 6.23 (abstract link graphs and their category) Two concrete link graphs
A andB arelean-support equivalenwritten A < B, if after discarding any idle edges
they are support equivalent. The categorg () of abstract link graphdas the same
objects asL1G(K), and its arrows are lean-support equivalence classesiofe link
graphs. Lean-support equivalence is clearly a static camgre (Definition 3.5). The
associated quotient functor, as defined in Definition 3.6, is

[-]: 'Lic(K)—LIG(K) . m

34

The reason for studying concrete, rather than abstra&tgliaphs is that they possess
RPOs. This will allow us Section 7 to derive a behaviouralgraence forL1G, and
then to show how to transfer it, under certain assumptiank|a.

To see why we cannot work directly in&, we point out that it lacks structure that
is present inL1G. For example, the functdr | does not preserve epis. More seriously,
LiG lacks RPOs in general; this arises because it lacks anymaetitheoccurrenceof
a node or edge. A counter-example appears as Example 10€Figyin [26] (It is
presented in terms of bigraphs, but involves only their inkph components.)

7 Reactions and transitions for link graphs

We are now ready to specialise the definitions and theoryefactive systems (RSs) in
Section 4, to obtain link-graphical reactive systems (DR&&ich form the objects of
a category whose arrows are RS functors.

Definition 7.1 (link-graphical reactive system) A (concrete) link-graphical reac-
tive system (LRS)ver a signaturéC consists of a monoidal reactive system over
"LIG(K), with a rule-set’R in which every redex in lean. We denote it by

"LIGIK, " R) . n

As an example, Figure 8 shows a likely set of rules for thewatadn of arithmetic
nets, whose atoms appeared in Figure 4. The left-hand tves represent the primi-
tive recursive definition of-, while the right-hand two rules deal with the forwarder,
—. In each case we consider the nanmiesdy to represent inputs and outputs respec-
tively. (In Section 8 we shall capture this distinction bypiosing a sort-discipline on
link graphs.) The upper left-hand rule introduces a forwambde. The upper right-
hand rule creates a bypass around a forwarder; it is realiynalyf of rules, since?
represents any of the three contr¢fs +, .} and the dotted link represents any extra
inputs to the node with that control. The lower right-hank reliminates a forwarder
that has finished its work.

Figure 6 shows how a redex, denoted@ymay occur within a ground arithmetic
net F'; the occurrence is represented by the contéxtThe reader may like to draw
compositions that represent two other redex occurrencdsnnd’. This example is
close to Hasegawa’s sharing graphs [21], which enrich Liafanteraction nets [27]
by permitting shared subevaluations .

We now proceed to consider the derivation of labelled ttaors for LRSs. This
derivation instantiates the derivation for arbitrary R$dransitionsa L+ a4 based
upon IPOs, leading to the standard transition sysgam LRSs thereby inherit the
definition of bisimilarity, so we have the following corafiaof Theorem 4.12:

Corollary 7.2 (congruence of bisimilarity) In any concrete LRS equipped with the
standard transition systesr, bisimilarity of agents is a congruence.

A natural question arises about identity transitiané— «’; do they differ from
reactionsus —> a’? The two clearly coincide in the full transition system but even

35

Ty

P

Figure 8: Reaction rules for arithmetic

in ST we would expect them to coincide, since both appear to reptélse occurrence
of a reaction without external assistance. In fact we hagddhowing:

Proposition 7.3 (identity transitions are reactions) In a concrete LRS equipped with
standard transitions, if no redex has idle names thel+ o’ iff « — a’.

Proof The forward implication is immediate. For the reversea#—>a’ then
a = Doranda’ = Dor’ for some rulg(r,r’). Butr has no idle names, so by Propo-
sition 6.9 it is epi. But then it can be shown (by purely catezd means) that the pair

(Dor,r) has(id, D) as a pushout, and hence as an IPO; it follows th&t>a’. m

This result is valuable, since we see little value in a redék wile names. The
reader may agree that it would be strange to have a rule whieriglle in the redex but
not in the reactum, and if it is idle in both it makes good seons#elete it.

We shall later examine the transition systsmtarefully, with the help of a detailed
example of condition-event Petri nets. For now, we condisy ST and its induced
bisimilarity congruence are transferred to the abstrac® LR (C,R), where LG(K)
is defined by the quotient functdr- | of Definition 6.23, andr is obtained from R
also by[- .

Now recall that this functor, the quotient by lean-suppaotiealence £), is a little
coarser than the quotient by support equivalereg because it discards idle edges.
To transfer the congruence result we must prove thagspectsT. For this purpose,
we have required all redexes’iR to be lean (which is no limitation in practice). We
then deduce the crucial property of lean-support equicaen

Proposition 7.4 (transitions respect equivalence)n a concrete LRS equipped with
standard transitons:

1. Every transition labeL is lean.

36

2. Transitions respect lean-support equivalenc ih the sense of Definition 4.8.
That is, for every transitioa -+ a’, if « < b and L < M whereM is another

label with M o b defined, then there exists a transitibds o’ for someb’ such
thata' < b'.

Proof For the first part, use Proposition 6.22(1). For the secomt] pse Proposi-
tion 6.22(2); the assumption that each redex is lean entheeg cannot share an idle
edge with the agent.]

We are now ready to transfer transition systems, bisinigésrand congruence re-
sults from concrete to abstract LRSs. The following is imragdby invoking Theo-
rem 4.14 and Proposition 7.4, followed by Corollary 7.2:

Corollary 7.5 (behavioural congruence in abstract LRSs)Let’A be a concrete LRS
equipped with a TE that respects lean-support equivalence. Denotélifie lean-
support quotient ofA, and denote by . the bisimilarity induced by in both’A and
A. Then

2. If ~, is a congruence ifA then it is a congruence iA.

3. The bisimilarity induced bgTin A is a congruence.

This concludes the elementary theory of LRSs. We shall n@eigpse it by defining
the simple LRSs, whose redexes have certain structural propertiesprédicted in
Section 4, working inL1G we then show that engaged transitions are adequate for the
standard transition systesT. This yields a more tractable TS, which we can again
transfer to abstract LRSs overd, yielding a bisimilarity that is a congruence.

Recall from Section 6 that a link penif it an outer name, otherwisdosed and
that these properties are inherited by the points of the link

Definition 7.6 (simple) A link graph issimpleif it has no idle names and all its links
are open. An LRS isimpleif all its redexes are simple.]

We have already argued that the first condition is easy tgpaicee the main constraint
IS openness. It remains to be seen how far we can relax it wétiégning our results;
meanwhile, many simple LRSs appear to arise naturally.

Simpleness has important consequences:

Proposition 7.7 (simpleness properties)
1. Every simple link graph is lean.
2. If Bisan IPOforA and 4 is simple, ther is simple and the IPO is a pushout.

3. In asimple LRS equipped widiT, every label is simple and the IPO underlying
every transition is a pushout.

37

Proof (1) Itis enough to note that a simple link graph has no edges.

(2) To proveB, simple involves a routine check of the RPO construction.tNe®
show that the IPO can contain no elisions. Siftehas no closed links there can be
no elisions fromAy; and there can be no elisions fraf since it has no idle names.
It follows that up to isomorphism there is a unique IPO forso by Proposition 6.21
it is a pushout.

(3) Apply (2) to the IPO underlying each transition, sincergdex is simple. =

These results make it easy to verify an important propertylef names. If we
encode (say) a version of thecalculus in link graphs, then a process tékirs repre-
sented in every ground homget(X) whereX includes all the free names @f; this
allows the possibility of bisimilaritie§” ~ 7" where the free names @fand7” differ.
But we do not want the truth of this equation to depend on tleseh name-seX. We
now show that this is avoided, at least in a simple LRS:

Proposition 7.8 (idle names and bisimilarity) In a concrete LRS that is simple and
equipped with standard transitions,~ b iff t ® a ~ = ® b.

Proof For the forward implication, use congruence. For the ca®/ane shall verify
thatS = {(a,b) | ® a ~ x ® b} is a bisimulation up te=.

(a) id; ® L (b) .ol (C) id; ® L
r ®id r®id r®id F
L M
- = @b G - =
a D 5 b E
_ 5

Let aSh, and leta—— a’. We seek a transitioh—— b with (a’, V') € S=.

The IPO underlying the transition afis the bottom square of diagram (a), based
on arule(r,r") with ' = Dor’. By Corollary 6.20 the upper square of (a) is also an
IPO, hence so is the large square, and it represents a ibansit

id,®L
m®a'dA>x®a’.

Sincex ® a ~ x ® b, there is a rulés, s') and a transition

x@bidz;@LDGosl ~zr®ad
with underlying IPO as in diagram (b). Now® b = (z ® id)ob, so by taking an
RPO (M, E, F) for (b, s) we obtain a pair of IPOs as in (c). By Proposition 7.7(1)
M is simple, and by Proposition 7.7(3) the upper square ofY@ pushout. But
by Corollary 6.20 the paifxr ® id, M) has a tensorial IPQid, ® M,z ® id); up to
iIsomorphism this must coincide with the pushout, so withoss of generality we may

/ def

assume\/ = L andF = id. We then find from the lower square that— b £ Eo s/,
and sincgs = x ® F'we haveGos' =z ®b'. So(d’,b’') € S as required. "

We now turn to engaged transitions; recall the discussidheh in Section 4.

38

Definition 7.9 (engaged transitions) A standard transition aof is said to beengaged
if it can be based on a reaction with redesuch thata| N || # (. We denote bygT
the transition system of engaged transitions. We witefor ~=7, bisimilarity for T

sT?

relative tosT. -

Now we would like to prove that-*" is adequate for standard bisimilarity (Defini-
tion 4.15), i.e. that-*" = ~; for then to establisla ~ b we need only match each
engagedtransition ofa (resp.b) by an arbitrary transition ob (resp.a). This is a
lighter task than matchingll transitions.

In proving thata ~*" b impliesa ~ b we have to show how can matchall transi-
tions ofa, and the antecedent only tells us how to matcrethgagednes. However, it
turns out that a non-engaged transitiomafan be suitably matched lanyb (whether
or nota ~ b). This is intuitively not surprising, becauseontributes nothing to such
a transition, so replacing it yshould not prevent the transition occurring.

Theorem 7.10 (adequacy of engaged transitiondn a concrete LRS that is simple
and equipped witls T, the engaged transitions are adequate; that is, engageathbis
larity ~*" coincides with bisimilarity~.

Proof Itis immediate that C ~F". For the converse we shall show that
S = {(C’oao,Coal) | ap ~FT al}

is a standard bisimulation. Then, taki6g= id, we deduce-*" C ~.

Suppose thaty ~" a;. LetCoag M, b, be any standard transition, witll o C' o a;
is defined. We must fintt, such thatC o a; <L+ b, and (b)), b,) € S.

There exist a reaction rule, ;) and an underlying IPO as in diagram (a) below;
moreoverb, = Epor,. Then by taking RPOs we can complete diagram (b) so that
every square is an IPO.

M
—_—
() (b) g, ©
M C E
—_— _—
C o a() EO a/() DO al T T D1
To To T1

%

_— =

Henceao - a, whereaj, = Dgor). Moreover, by Proposition 7.7(3), the lower
square in diagram (b) is a pushout. Algp= FEoay,.

Since M o C oay is defined we deduce thdtoa; is defined, and we proceed to
show in two separate cases the existence of a transitieh- a’y, with underlying IPO
as shown in diagram (c). (Note that we cannot immediatelritifis fromag ~" aq,
since the transition ofy may not lie inET.) Substituting this diagram for the lower
squares in (b), we can infer a transitiéh a; 2> b, wherel|, = Eoa/. In each of the
three cases we then argue tfidt v) € S, thus completing the proof of the theorem.

39

Case 1 Suppose the transition, - a, is not engaged, i.éao| N |ro| = 0. The lower
square of (b) is a pushout; hence it is the unique IPO (up tmasphism) fora, and
o, Which by Corollary 6.20 must be a tensor IPGo up to isomorphism we have
L =id®rgandDy = ap ® id . Then we calculate

ag, = Dgory = ag®r

= FE'oagwhereE =id®r| .
So in this case we takB, = a; ® id andr; = rg to form the IPO (c); hence
aliuai L Foay.

Then for the context€”’ £ Eo E’ we haveb, = C'oap andb] = C’oaq; butag ~
a1, SO we havéb(,b}) € S as required.

Case 2 Suppose the transitiam, —— a/, is engaged, i.dag| N |ro| # 0. Then it lies in
ET. Butag ~* ay, SO there is a transitiom, —— o/, for somea/ such thatz, ~ a/;
henceC oa; 2> b, £ Eoa), and thugb), ;) € S as required. =

We now wish to transfeeT to abstract LRSs, via the functor
[-]: "Lic(K)—LiG(K) .

To do this, we would like to know thaT is definitefor ST (see Definition 4.16), for
then by Proposition 4.17 we can equate the relative bisiityila-5. with the absolute
one ~.,. For this, we need to know that, from the labelalone, we can determine
whether or not a transition—=—+ o’ is engaged.

It turns out that this holds in a wide range of LRSs. This isduse they all satisfy
a simple structural condition, which we now define.

Definition 7.11 (proper LRS) Define ctrl(G), the control of a link graphG, to be
the multiset of controls of its nodes. A LRSpgoperif for any two redexes ands, if
ctrl(r) C ctri(s) thenctri(r) = ctrl(s). n

Note that this property applies equally to concrete andrabist RSs, and is indeed
preserved and reflected by the quotient fungtof. Moreover with the help of Corol-
laries 4.18 and 7.2, we deduce

Corollary 7.12 (engaged congruence)n a concrete LRS that is both proper and sim-
ple:

1. The engaged transition syst&@mnis definite forsT.
2. Engaged bisimilarity~,, coincides with standard bisimilarity.

3. ~,, iIsacongruence, i.e. ~., bimpliesCoa ~,, Cob

6A forerunner of this phenomenon, that a non-engaged transitiust be based upon a tensor IPO,
appears in Leifer's PhD Dissertation [29], Theorem 3.33.

40

Now recall from Proposition 7.7 that every simple link graplean. We therefore
specialise Corollary 7.5 teT under appropriate assumptions:

Corollary 7.13 (engaged congruence in abstract LRSs).et ‘A be a concrete LRS
that is proper and simple, and |ét be its lean-support quotient. Let., denote bisim-
ilarity both for ET in "A and for the induced transition syste@at] in A. Then

1. a ~ bin Aiff [a] ~. [b] In A.
2. Engaged bisimilarity~,, is a congruence im\.

Proof The quotient functor satisfies the conditions of Theorem 4ld particular, by
Proposition 7.4 it respectsT, since this is a sub-TS &T. So the theorem yields (1)
immediately. It also yields (2) with the help of Corollaryi2.]

Thus we have ensured congruence of engaged bisimilaritpilastract LRS LG (K)
satisfying reasonable assumptions.

000

41

42

Part Il
Sorting and condition-event nets

8 Sorted link graphs

Part Il is devoted to the application of link graph theory.e \Wegin in the present
section with the topic o$orting which is likely to be needed in any significant appli-
cation. Then in Sections 9 and 10 we apply it, together withtbeory of transitions
systems, to deriving a behavioural congruence for a claBewf nets.

Our sorting discipline for link graphs, first proposed fogiaiphs in [37], is akin
to many-sorted algebra and has a similar purpose: givenatsige we wish to limit
the entities that can be built with it. In algebra, these dtenathe algebraic terms that
are meaningful for a particular interpretation; here, thms is true of link graphs. For
example, in Petri nets it is not meaningful to connect twagion-nodes without an
intervening place-node. Using a more sophisticated gpdiscipline we can introduce
a notion ofname-bindingnto bigraphs [26]; this delimits the scope of a name, so that
it cannot be linked to a port outside that scope.

In the following ® will denote a non-empty set gbrts andé will range overo©.

Definition 8.1 (sorted link graphs) A signaturelC is ©-sortedif it is enriched by an
assignment of a soft € © to eachi € ar(K) for each control. An interfaceX is
O-sortedif it is enriched by ascribing a sort to each name X.

A link graph is©-sorted ovell if its interfaces ar®-sorted, and for each, i the
sort assigned by to i € ar(K) is ascribed to thé'™ port of everyK-node.

We denote byLI1G(©, K) the monoidal precategory of sorted link graphs whose
identities, composition and tensor product are definedenotbvious way in terms of
the underlying (unsorted) link graphs.]

Note that sorts are ascribed to points and open links of agliagh, but not to its edges.
We saysortedinstead of©-sorted wher® is understood.
We may wish to consider only those sorted link graphs thay sbene condition:

Definition 8.2 (sorting) A sorting (discipline)is a tripleX = (0, K, ®) whereK is
O-sorted, andb is a condition orD-sorted link graphs ove€. The conditiond must
be satisfied by the identities and preserved by both composind tensor product.
Alink graphinLI1G(0, K) is said to beé:-sortedif it satisfies®. TheX-sorted link
graphs form a monoidal sub-precategory lofG (©, K) denoted byLIG(X). Further,
if “R is a set oft-sorted reaction rules théh1G (X, “R) is aX-sortedLRS. m

We shall often sayvell-sortedinstead of>-sorted wherk is understood.

Even with only a single sort there are important exampleg, eample iundi-
rected linearlink graphs, where every open link contains exactly one tpaind every
closed link exactly two points. (The reader may like to confihat this sorting satisfies

43

the required conditions.) With two sorts, this conditiom te refined to yieldlirected
linear link graphs, where each port of each control has a polarityaalink must join
ports only when their polarities are opposite. More getgrtde purpose of a sorting
is to dictate how nodes of a given (sorted) signature mayrbedi.

What constraints must we place on the sorttig= (0, K, ®) in order that we
may apply our transition theory? These constraints arelretdrstood in terms of the
obvious forgetful functor which discards sorts:

U: LIGE,R)—"LicUK),U('R))
We shall call{/ asortingfunctor. Such functors have certain properties:

Proposition 8.3 (sorting is faithful) On interfaces a sorting functor is surjective (but
not in general injective); it is als@aithful, i.e. injective (though not in general surjec-
tive) on each homset of link graphs.

We need more structure than this if we wish to apply our ttaorstheory to a well-
sorted LRS. Consider two properties that a functor of pegraies may have:

Definition 8.4 (creating RPOs, reflecting pushouts) Let 7 be any functor on a pre-
categoryA ThenF creates RPO, wheneverD boundsA in A, then any RPO for
F(A) relative toF (D) has a uniqueF- prelmage that is an RPO fof relative toD.

F reflects pushouts, wheneverD boundsA in ‘A and F(B) is a pushout for
F(A), thenB is a pushout ford. »

Corollary 8.5 (creation ensures RPOs)If 7 : ‘A — B creates RPOs an® has
RPOs, thenB has RPOs.

We shall often confus® with its functor; for example we say reflects ...’ etc.

It turns out that if a sorting satisfies the two conditions efiiDition 8.4 (which ap-
pear to be independent, but we need not settle that quesrehthen we get sufficient
structure for our transition theory:

Theorem 8.6 (useful sortings)

1. If X creates RPOs then bisimilarity for the standard transitgystemsT over
"Lig(X, “R) is a congruence.

2. If in additionX reflects pushouts an@ is simple, then the engaged transitions
are adequate fosT.

Note thatsimplenessf a well-sorted link graph is just as for a pure one. (Indestsg
functors both preserve and reflect simpleness.) We omit tbef pf the theorem; it
follows closely the lines of Theorems 4.12 and 7.10; for tgel, the reflection of
pushouts enables Proposition 7.7 to be lifted to the wetkesld RS.

We are now ready to define the sorting discipline we shall nsthe remainder
of the paper. It may be motivated by our arithmetic nets, inctvlwe want to each
link to contain any number of ‘input’ ports, but at most onetjout’ port. The formal
definition must also constrain the sorting of interfaces.cdlethat in a link graph
G : X — Y apointis either an inner inX or a port, while aclosed linkis an edge and
anopen linkis an outer name .

44

Figure 9: A well-sorted arithmetic net and its decompoaitio

Definition 8.7 (many-one sorting) In a many-one sorting = (0, K, ®) the sorts
are® = {s,t}, the signatureC is arbitrary with an arbitrary assignment of sorts to
control arities, and the conditioh is as follows:

e aclosed link has exactly orepoint;
e an opers-link has exactly one-point;
e an open-link has nos-points.

There is no constraint on the numbertgdoints in a link.]

It is helpful to think ofs andt as standing for ‘source’ and ‘target’.

Let us illustrate by considering arithmetic nets. In thise#he sorted signature
Is K.rith @s defined at the beginning of Section 6, enriched by the rasggt ofs to
to output ports and to input ports; for examplet is assigned the sort-sequence
Figure 9 shows the net of Figure 6, but now with sort ascn@jdhe reader may like
to check that it obeys the many-one sorting discipline.

A many-one sorted LRS has a nice property not shared by aihger

H
PN

X—=Y----=>=Z7
u$: :
: . el

Proposition 8.8 (many-one sorted decomposition).etl/ be a many-one sorting func-
tor, and let

UH: X —>2Z)=GoUF: X —Y).
Then there exist§' : Y — Z such that/(G) = G’ andH = Go F.

45

Note that, sincé/ is faithful, G exists uniquely. (Thus, in category-theoretic terms, the
proposition says that every arrawis opcartesian.) With the help of this proposition
is not hard to show that many-one sorting has the structuneesd:

Theorem 8.9 (many-sorting structure) Every many-one sorting discipline creates
RPOs and reflects pushouts.

Proof (outline) For the first property, it can be shown that if we Iggpponstruc-
tion 6.10 to a well-sorted pait with a well-sorted bound, then the resulting RPO is
itself well-sorted; also, the existence of a mediator to ater well-sorted candidate
Is assured by Proposition 8.8.

The second property can be proved &ory functor of precategories that is faithful
and enjoys the property in Proposition 8.8.]

We are now ready to induce a behavioural congruence for tonekvent Petri
nets, since they can be modelled as a many-one sorted LRS.

9 Condition-event nets as link graphs

We begin this section with a digression from link graphs, lidev to discuss the be-
haviour of Petri nets in their own terms. First we consideneaecent papers on
behavioural equivalences on Petri nets.

Pomello, Rozenberg and Simone [42] give a comprehensivegwf such equiv-
alences and preorders. They cover those based on obseriatio of actions and of
states, and range from fine relations respecting causalitparser ones, for example
the failures preorder from CSP, the coarsest which resgdeeisiock. The study of con-
gruence of these relations, i.e. whether they are preséwedntexts, and which con-
textsshouldpreserve them, is reported as being rather incomplete ed&ta (1992).

Nielsen, Priese and Sassone [40] characterise some batavimngruences on
nets. Given a semantic functidhthat assigns an abstract behaviour to each net, they
consider the congrueneeit induces upon nets; this is defined by

No~ N, & B(C[Ny]) = B(C[N,]) for every context' .

An important contribution of their paper is to define a preamtion of context, by
means of a set afombinatorsupon nets. They are then able to characterise the con-
gruences, for each of four semantic functidhy showing that for each paivy, /Vy
there is a single easily identified context that is suffictendetermine whether or not
NO ~ Nl.

Priese and Wimmel [43] continue this programme; they erthiemet combinators,
and consider a wider range of semantic functions.

The Petri Box calculus of Best, Devillers and Hall [4], likeetprevious two ap-
proaches, emphasises combinators and algebra. By idegtifgrtain net-patterns as
operators, it presents a modular semantics of nets in tefraquivalence classes of
Boxes (a special class of nets). A main result of the papegriseament between this
denotational semantics and a structured operational ders@h Box expressions.

46

Ty

Figure 10: A condition-event net with two observable coodis

Baldan, Corradini, Ehrig and Heckel [1] define a classénPetri nets, having in-
put and output places where tokens may be respectively aadbiemoved at any time.
They define a form of composition of two such nets which allawsraction at these
places, and define a semantics of a net in terms gqfrdsessesi.e. the deterministic
nets representing its possible behaviours. The semastst®ivn to be compositional,
I.e. the composition of two open nets respects their unohgylgrocesses.

This brief summary does not do justice to the five papers, hviepresent well the
progress towards a modular treatment of Petri nets. Butlfishés to identify differ-
ences with the theory of bigraphs (or link graphs), whichgasg contributions that can
be made by the latter. The first difference is that, sincedpigs and their contexts are
the arrows of a (pre)category, whenever a class of agents.-Petig nets— is encoded
in bigraphs the contexts and combinators are thereby detedythey need not be de-
fined specifically for each class. The second differenceasttie semantic function
on bigraphical agents is defined not by specific means, bieaguotient by a generic
equivalence relation that pertainsalb bigraphical systems. Finally, many such equiv-
alences —including bisimulation (which we use in this pajer) also others— are
guaranteed by bigraphical theory to be congruences.

After this brief review, let us now consideondition-evenPetri nets, as illustrated
in Figure 10. These are nets in which each place, or conditi@y be either marked
(i.e. holding a single token) or unmarked. The usual firirlg far condition-event nets
is as follows:

an event with all pre-conditions and no post-conditionskadmay ‘fire’,
unmarking its pre-conditions and marking its post-comodis.

The firing rule describes what can happen inside a net, bt dokindicate how this
net behaviour may be observed or controlled from outsidevé&shall set up a simple
observational discipline, yielding a labelled transiti®ystem and hence inducing a
bisimilarity equivalence. This discipline is one of manyspible, and it differs from
those in the above-cited papers, but is nevertheless gaiteat. It provides a good

47

Figure 11: A condition-event net represented as a link graph

case study in link graphs, since we can compare an equivaxmressible in Petri net
terms with one induced by link graph theory.

How may we conduct experiments, or observations, on a doneiivent net? One
way, akin to the approach of Baldan et al [1], is to make certainditions externally
accessible, allowing the observer both to detect and togehtre state (marked or un-
marked) of the place. For example, the net in Figure 10 hasiteessible conditions,
namedx andy. In general, given a stalg i.e. a net together with a marking of its
conditions, the transitiop %> g or g =%+ 7 represents the addition or subtraction of a
token atr. Since we are dealing with condition-event nets, in anygs&te exactly
one of these experiments is possible for each accessiblitiom A third kind of
transition,g —> g, represents (the firing of) an internal event and involvesxternal
participation. These three kinds of transition are thesataraw TS £, with which
we shall equip our LRS of Petri nets, in order to compare ibwanother TSC; which
we shall derive from reaction rules by the methods discuss&arts | and Il of this
paper.

We now set up condition-event nets as link graphs. There arg/mways to do it;
we choose one that gives a smooth treatment. Figure 11 shewet of Figure 10 as
a link graph, using the signatufg,..; defined at the start of Section 6 and illustrated
in Figure 5. Recall the three kinds of contrd#t (‘marked’) andU (‘'unmarked’) for
conditions, anck,; for events. The shape and shading of nodes will save us from
writing controls in diagrams. A condition-node has a singdet, which we site in
its centre. AnE;; event-node has + k ports; h for pre-conditions, and for post-
conditions. You may check that the above net has two opentaed tlosed links.

Now we enrichC,.i by assigning the sokt to all condition ports and to event
ports. This leads us to the sorting discipline

def
Epetri - <@petri7K:petri7(I)petri)

whereO,.i = {s,t} and®,. is the many-one sorting condition of Definition 8.7.

48

z1 Yy Y2 1 Yy Y2

Figure 12: A link-graph reaction rule for condition-eveets

Then the concrete precategory of many-one sorted conebtrent nets is
‘CE = "LIG(Zpetri)

and we denote its lean-support quotient@y. Although these nets share many-one
sorting with arithmetic nets, there is a considerable tiifiee; this arises from the fact
that in arithmetic nets every node possesses exactlg-poet, while in”CE the event
nodes have none. This illustrates the versatility of mamg-gorting.

In general an interface may contain bethames and-names. But in the example
bothx andy ares-names, because each is a link containing a condition. $s léd¢fine
ans-interfaceto be one containing only-names; then we can model condition-event
nets in"CE andCE as link graphs witi-interfaces, and call themnets

Without further ado we now set up I€E a raw transition systeni,, whose inter-

faces are-interfaces and whose transitions— b are those we have already described
with ¢ = +x, —x or 7. We also close the transitions under support equivalenbis. T
induces a TYL,] in CE. Let us usev, for the associated bisimilarity in both cases.
Since no RPO theory is involved, we readily find

Proposition 9.1 (raw bisimilarity)
1. a—t-+a' in "CE iff [a] <> [a'] in CE.
2. a ~p bin"CEff [a] ~, [b] in CE.

To compare this raw TS and bisimilarity with a contextual ome must add reac-
tion rules to’CE, to make it an LRS. To match the firing rule, for each gaikt we
introduce a reaction rule fdt;,, as illustrated in Figure 12 fas = 1,k = 2. As re-
quired by Definitions 4.2 and 7.1, we close this set undersudp@nslation and make
each rule lean (no idle edges). Having thus establisSki#tlas a concrete LRS, we
equip it with the standard transition systesm. We can then apply Corollary 7.2 to
establish that the associated bisimilarity, is a congruence.

Now we wish to refine the transition system in two steps. Tis¢ $tiep is to reduce
its transitions to the engaged ones.

Proposition 9.2 (adequacy for nets)The engaged transition systezm over CE is
definite and adequate f@T; therefore its bisimilarity coincides witkg.

49

Proof It is easy to show thaiCE is simple, as defined in Definition 7.6. It is also
proper, according to Definition 7.11. Therefore by Corgllarl2 we may reduceT
to ET without affecting the induced bisimilarity.]

The second refinement step is to reduce the agesiséts. We define the TS5, to
consist ofs-interfaces together with all engaged transition betwepats. Now, since

every redex and reactum is smet, we find that in any standard transitior™— o’ if
a is ans-net then so aré anda’. It follows that L, is a full sub-TS ofeT. Therefore
by Proposition 4.19 and Corollary 4.18 we have the following

Corollary 9.3 (bisimulation congruence for concretes-nets) Bisimilarity for the tran-
sition systent, coincides with~, ons-nets and is a congruence.

We have now taken the theory 6f for concretes-nets as far as we need, except
for characterising its transitions. We leave that task tctiSe 10. Here, noting that
L, respects lean-support equivalence, we relate it to th¢ L$ induced on abstract
s-nets, using Corollaries 9.3 and 7.5:

Corollary 9.4 (bisimulation congruence for abstracts-nets) Denote by~ the bisim-
ilarity induced onCE by the abstract T$L,[. Then

1. a ~g bin"CEff [a] ~g [b] in CE.

2. The bisimilarity~ is a congruence iiCE.

10 Coincidence of bisimilarities

We are now ready to examine the behavious-ofets. In"CE this is given both by
araw TSL, with associated bisimilarity-, and by a contextual T&, with associ-
ated bisimilarity~,. These induce ilCE the TSs[L,] and[L,], whose associated
bisimilarities are again denoted by, and~y.

Our main concern is to compare these @stractbisimilarities, but we shall do
the work mainly inconcretes-nets since it involves a little RPO theory. At the end the
comparison is transported easily to abstsacets.

Our first task is to characterise the labels@@f We omit the detailed analysis; it
uses the fact that transitions are engaged (Propositigre@@®that labels are simple
(Proposition 7.7) and haweinterfaces. It turns out that, up to isomorphism, a label
takes two forms: either it is an identity, or it is an openet with exactly ond-node,
linked to zero or morél-nodes as preconditions abidnodes as post-conditions.

For the identity labels, we recall from Proposition 6.21tthad%s o’ iff a—> a';
anid label signifies a transition with no help from the context.

Figure 13 shows a non-identity label; the dashed link ine€an identity on zero or
more names. A label can be thought of as a redex-fragmekinasome conditions;
in the example it requires its client agent to provide onekadupre-condition and one

unmarked post-condition. Figure 14 shows the anatomy ddresitiona - a’ with
this label. Note that’ takes the formLoa. In what follows we shall often use the

50

Figure 13: A typical label inCq

Figure 14: Anatomy of a transitian—=—> o’ in £,

51

PROBE SPENT PROBE TWIG

INPUT

OUTPUT

x out

Figure 15: Probes for observing conditions israet

notationa to denote a-net that differs fronu only by the marking of some conditions;
we call it aresidualof a.

We see that a single transition may change the marking ofalav@med conditions
of a, however far apart they may lie in Any other agenb with the same interface as
a Will have a similar transition, provided only that it has geme initial marking of its
named conditions.

The two TSsC, and L, are significantly different, so it is not clear that they will
induce the same bisimilarity. We shall now prove that thegaoo

We shall first show that~, C ~, in "CE. This asserts that if we can distinguish
two s-netsa and b by using ‘experiments? of the form+x, —z or 7, then we can
also do so using ‘experimentg#’ that are link graph contexts. So, among the laliels
generated by our theory (see Figure 13), we need to find tihasean do the job of
the experiments-z, —z andr.

It turns out that labels to mimic an experimept or —z need only involvek
events, those with one pre- and one post-condition; they ttaé formP ® id, where
P is respectively aimput or output probe The probes are denoted by, andout,.,
and are shown in the first column of Figure 15. The second colsinows thespent
probesP, residuals of the probes. The third column shows the spetgsrwith their
conditions closed; they are defined by = /zoin,. andout] £ /zoout,.. We
shall call themwigsbecause, up to the equivaleneg, they can be ‘broken off’. The
intuition is simply that a twig occurring anywhere in a nehceever fire. We express
this formally as follows:

Lemma 10.1 For anys-agentf havingz in its outer face,in_ ca ~, out;oa ~z a.

Here we have abbreviatéd, ® id to in,; we shall use such abbreviations in what

52

follows, but only in a composition which determines the ikynd.

Now to prove that~,; C ~, itis enough to show that, is anL,-bisimulation.
For this, suppose that~, b, and leta—— in £,,. We must findb such tha ——b
anda ~g b. If £ = 7 this is easy, because then our assumption impliesathat> @,
and hence:—%-+@ in L; but then by bisimilarity inC, we haveb—"-b ~, @, and by
reversing the reasoning farwe get thab —- b and we are done.

Now let¢ = +z (the case for-z is dual), so that =% ga. This means that has
an unmarked condition named so that in, we have

a ing.®id >al T a.

Hence by bisimilarity inl, we have

pne=®id 4 ing,ob

wherea’ ~, b andb is the residual ob under the transition. This residualdiffers
from b only in having a marked condition namedhat was unmarked i, and hence
we also havé s b in L. It remains only to show that ~, b. We deduce this using
the congruence of, and Lemma 10.1:

a g ingoa = /Zoj]xzo_a = /Zo(z’
~g [2obl = [zoingob = injob
~ b

Therefore we have proved what we wished:
Lemma 10.2 ~; C ~,in "CE.

To complete our theorem we must prove the convergeC ~; . It will be enough
to prove that

S = {(Coa,Cob)|a~pb}

Is a bisimulation up te=. We get the required result by considering the dése id.

We shall make use of the close correspondence betweenitvassn the concrete
and abstract LRSs, respectivelyE andCE. Further we shall use the convenient fact
that, in"CE, every IPO is actually a pushout by Proposition 7.7(3).

So let us assume that~, b, and thatCoa2+a” in L,. (This covers the case
that M = id.) Then there is a reaction ruteand contextD such that M, D) forms a
pushout forC o a,), as shown in the left-hand diagram of Figure 16, aticd= D or’.
We now take the pushoyf, F') for (a,r), and properties of pushouts yield the right-
hand diagram, in which the upper square is also a pushouthee ts a transition
a-ta', wherea’ = For'; note also that” = C’oa’. Up to isomorphismL is
either an identity or a non-identity label.

If L = id thena—>a/, hencea—>a’ in L,. Sincea ~, a’ we haveb—> 1/
with o’ ~, b’. Then alsd—L— ¥’, with underlying pushout as in the left-hand diagram
of Figure 17. We then proceed, as in the non-identity casewpdb construct the

right-hand diagram and to fin with C o b2+ " and(a”, ") € S=.

53

M _—=
_— [
L C , Cl
Cof D — D
[
" f F
_r

Figure 16: Pushouts underlying transition6§ « anda

M
%
L
C C’
L L >
—_— = —_— =
L L
gT TG g G
S S
—_— = —_— =

Figure 17: Pushouts underlying transition®@ndC o b

If L is a non-identity label we consider the anatomy of the ttasic—— o/,
as exemplified in Figure 14. We know that the residuaiffers froma only in the
changed marking of zero or more named conditions. It folltesefore that inC,
there is a sequence of transitions

afva ... Loa,=a (n>0)

wherel; € {+z;, —z;}; each transition marks or unmarks a single named condition.
Moreovera’ = Loa. Sincea ~, b there exists a similar sequence

bé—lbbl... e—”bbn =b

with @ ~, b. This implies that) has the same initial marking asfor the named
conditions involved in the transitions. But we know that b is defined (since we
assumed\/ o C'ob = C’ o Lob to be defined), so i, there is a transitioh——> b’ =
Lob. Its underlying pushout is shown in the left-hand diagranfigiure 17. Also it
has an underlying reaction rule, s’), with b’ = Go s'.

Now we form the right-hand diagram of Figure 17 by replacihig ppushout for
the lower square in right-hand diagram of Figure 16. Since lsmall squares are
pushouts, so is the large square; therefore it underlied; éransition

CobMop' ©Eos .

54

To complete our proof we need only show that the pal; v”’) lies inS=. We already
know thata” = C’oa’ = C’ o Loa. We can now compute

V' =FEos' =C'0Gos =C'obl =C'oLob,

and hencéa”, ") € S sincea ~, b. It follows that~, C ~.
So we have proved the coincidence of our two bisimilarities:

Theorem 10.3 (coincidence of concrete bisimilarities)n “CE the two bisimilarities
~g and~, for concretes-nets coincide. Hence, sinee, is a congruence, so also is
~p IS @ congruence.

It remains to transfer this to abstrachets. But this is immediate by Proposition 9.1
and Corollary 9.4, and finally we have the result we set outdvg

Corollary 10.4 (coincidence of abstract bisimilarities) In CE the two bisimilarities
~g and ~,, for abstracts-nets coincide. Hence, sinee, is a congruence, so also is
~p IS @ congruence.

It is worth noting that since, and ~, were defined without reference to link
graphs, it was not clear which contexts would presevygi.e. in what sense-, would
be a congruence. Thus link graph theory can claim to haveigegdva convincing
answer to these questions, by means of an alternative ¢cbasation of~ .

000

55

56

11 Related and future research

We conclude by commenting on related work that has not ajrbaén mentioned in
the text; at the same time we point to some future directionsdir own research.

In this paper we have limited our attention to link graphsichfare one constituent
of bigraphs, and have applied them to Petri nets where ther otinstituent —place
graphs— is not needed. The technical report by Jensen aneMR6] pursues a
similar programme for full bigraphs, giving a full analy$ a finite asynchronous
m-calculus as reported earlier at a conference [25]. In hihéoming PhD Disserta-
tion [24] Jensen will carry out this analysis not only for faé 7-calculus but also for
the ambient calculus.

Leifer, in his Dissertation [29], extended the present coagce results for strong
bisimilarity to many other behavioural relations, inclougiweak bisimilarity and the
failures preorder; these results will be published sepbralensen in his Dissertation
Is also extending Leifer’s treatment of weak transitions.

The long tradition of graph-rewriting is based upon doeible pushouWfDPO) con-
struction originated by Ehrig [14]. Our use of (relative spouts to derive transitions is
quite distinct from the DPO construction, whose purpose ixplain the anatomy of
graph-rewriting rules (not labelled transitions) workinga category of graph embed-
dings where the objects are graphs and the arrows are emigeddihis contrasts with
our contextual s-categories, where the objects are imtesfand arrows are graphs.
But there are links between these formulations, both vigp&oes [18] and via a cat-
egorical isomorphism between graph embeddings and a easker our contextual
s-categories [12]. Ehrig [15] has investigated these lfokher. This has led to paper
by Ehrig and Konig [16] in which the RPO technique is transferred to grapibedding
categories.

Sassone and Sobocinski [48] have generalised RP@sotgoid RPOs, in a 2-
category whose 2-cells (i.e. arrows between arrows) areagohisms. They advocate
treating graphical and other dynamic entities as arrowach & 2-category; the 2-cells
keep track of the identity of nodes (which is essential foORRo exist) and have the
potential to serve as witnesses for rich structural congres. An advantage of their
approach over s-categories is that composition is totaygh this comes at the cost of
a more complicated notion of “2-RPQO”. Our s-categories aed-behaved, and lend
themselves easily to the detailed analysis of transitioiisd particular case of bigraphs
and link graphs, e.g. the characterisation of all IPOs foivargspan (Theorem 6.18).
Thus for our own work the motivation to pass to 2-categosdstherto weak; however,
the 2-categorical approach clearly deserves further tigagn for these and other
non-trivial applications.

The ‘dualism’ of graphs-as-arrows versus graphs-as-thgserves further com-
ment. From the graph-rewriting perspective the latter issadered basic, and indeed
embeddings as arrows are a natural way to distinguish diftenccurrences of one
entity within another. From the process calculus perspecti is normal to represent
processes as terms of an algebra; one reason is the corapasisuch terms aligns
well with the composition of programs, and indeed there aedgexamples of pro-
gramming languages derived from process calculi. ‘Bigsapérarrows’ can be seen
as an instance (or an enrichment) of Lawvere’s algebraioribe [28], the standard

57

categorical treatment of algebra. In this spirit, Milnes[Bas completely axiomatised
the algebra of pure bigraphs.

The case-studies on deriving transitions from reactioas;uh both ther-calculus
and Petri nets, have shown an interesting mismatch withiegig¢or putative) tran-
sitions defined ab initio for these calculi, even when thentilarities agree. One
phenomenon, seen here for Petri nets, is that the derivesiticms have redundancy.
This is because we derive transitions for each reactionseparately; no advantage is
gained from treating a whole rule-set. An interesting fatstudy would be to somehow
detect and eliminate redundancies, arriving at simplesiten systems.

We have discussed a way of deriving a non-trivial transéldheories for graph-
ical models of mobile systems, and this has served to cadilsach a model against
process calculi. But for many applications it will be impaort to look beyond theories
of an algebraic character, and pursue the kind of spatigdeah logic proposed by
Cardelli and Caires [8, 9]. Such logics admit a partial —rathan holistic— analysis
of complex systems, and they also lend themselves to polwadahanical assistance
(model-checking). The present work will then be useful udging the extent to which
the algebraic and logical theories agree.

References

[1] Baldan, P., Corradini, A., Ehrig, H. and Heckel, R. (2D0@ompositional model-
ing of reactive systems using open nets. Proc. CONCUR 2@k, |dternational
Conference on Concurrency theory, LNCS 2154, Springelagepp502-518.

[2] Bergstra, J.A. and Klop, J.W. (1985), Algebra for comnuaiting processes with
abstraction. Theoretical Computer Science 37, pp77-121.

[3] Berry, G. and Boudol, G. (1992), The chemical abstractimrge. Journal of The-
oretical Computer Science, Vol 96, pp217-248.

[4] Best, E., Devillers, R. and Hall, J.G. (1999), The boxeddta: a model of nets and
process expressions. 20th International Conference oho&tipn and Theory of
Petri Nets, LNCS 1639, Springer-Verlag, pp344—-363.

[5] Boudol, G. (1992), Asynchrony and thecalculus. Rapport de Recherche RR—
1702, INRIA Sophia Antipolis.

[6] Brookes, S.D., Hoare, C.A.R. and Roscoe, A.W. (1984)h&ory of communi-
cating sequential processes. J. ACM 31, pp560-599.

[7] Cardelli, L. (2003) Bioware languages. In Computer 8ys$: Papers for Roger
Needham, Springer Monographs in Computer Science, to gjga

[8] Caires, L. and Cardelli, L. (2001), A spatial logic for reurrency (Part 1).
Proc. 4th International Symposium on Theoretical Aspett€amputer Soft-
ware, LNCS 2215, Springer Verlag, ppl1-37.

58

[9] Caires, L. (2004), Behavioural and spatial observatiam a logic for ther-
calculus. Proc. FOSSACS 2004, LNCS 2987, pp72-89.

[10] Cardelli, L. and Gordon, A.D. (2000), Mobile ambienaundations of System
Specification and Computational Structures, LNCS 13784pp155.

[11] Castellani, I. (2001), Process algebras with loasitHandbook of Process Al-
gebraeds Bergstra, Ponse and Smolka, Elsevier, pp947-1045.

[12] Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Cexis and Embeddings
for closed shallow action graphs. University of Cambridgenfputer Labora-
tory, Technical Report 496. [Submitted for publicationya#lable athttp:
/Ipauillac.inria.fr/"leifer :

[13] Drewes, F., Hoffmann, B. and Plump, D. (2000) Hieracahigraph transforma-
tion. In: Foundations of Software Science and ComputatimacBires, LNCS
1784, Springer Verlag.

[14] Ehrig, H. (1979) Introduction to the theory of graph gmaars. Graph Grammars
and their Application to Computer Science and Biology, LNG3S Springer Ver-
lag, ppl-69.

[15] Ehrig, H. (2002) Bigraphs meet double pushouts. EATG8d8in 78, October
2002, pp72-85.

[16] Ehrig, H. and Kinig, B. (2004), Deriving bisimulation congruences in the@®
approach to graph-rewriting. Proc. FOSSACS 2004, LNCS 298751-156.

[17] Fournet, C. and Gonthier, G. (1996), The reflexive Chauth the join calculus.
Proc. 23rd Annual ACM Symposium on Principles of Prograngrianguages,
Florida, pp372-385.

[18] Gadducci, F., Heckel, R. and Lla® Segura, M. (1999), A bi-categorical axioma-
tisation of concurrent graph rewriting. Proc. 8th Confeeenn Category Theory
in Computer Science (CTCS'99), Vol 29 of Electronic NotesI@sS, Elsevier
Science.

[19] Gardner, P.A. (2000), From process calculi to proceaséworks. Proc. CON-
CUR 2000, 11th International Conference on Concurrencyih@p69—-88.

[20] Gardner, P.A. and Wischik, L. (2000), Explicit fusiofoc. MFCS 2000. LNCS
1893, pp373-383.

[21] Hasegawa, M. (1999), Models of sharing graphs (A caiegbsemantics of Let
and Letrec). PhD Dissertation, Report ECS-LFCS-97-360isi2in of Informat-
ics, Edinburgh University. Springer Series of Disting@diDissertations in Com-
puter Science.

[22] Hoare. C.A.R. (1985)Communicating Sequential Procesdeentice Hall.

59

[23] Honda, K. and Tokoro, M. (1991). An object calculus fesiyachronous commu-
nications. In ECOOP’91, Workshop on Object-based Conatiffeogramming,
LNCS 512.

[24] Jensen, O.H, (2004), Forthcoming PhD Dissertation.

[25] Jensen, O.H. and Milner, R. (2003), Bigraphs and ttaoms. In 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

[26] Jensen, O.H. and Milner, R. (2004), Bigraphs and mopilecesses (revised).
Technical Report 580, University of Cambridge Computerdrabory. Available
from http://www.cl.cam.ac.uk/users/rm135

[27] Lafont, Y. (1990) Interaction nets. Proc. 17th ACM Sywmspum on Principles of
Programming Languages (POPL90), pp95-108.

[28] Lawvere, F.W. (1963), Functorial semantics of alg@btheories. Dissertation,
Columbia University. Announcement in Proc. Nat. Acad. S6i. 1963, pp869—
873.

[29] Leifer, J.J. (2001), Operational congruences for tieacsystems. PhD Disserta-
tion, University of Cambridge Computer Laboratory. Distiied in revised form
as Technical Report 521. Available frohitp://pauillac.inria.fr/

“leifer

[30] Leifer, J.J. and Milner, R. (2000), Deriving bisimutat congruences for reactive
systems. Proc. CONCUR 2000, 11th International Conferemc€oncurrency
theory, pp243-258. Available http://pauillac.inria.fr/"leifer

[31] Merro, M. and Hennessy, M. (2002), Bisimulation Corgmaes in Safe Ambi-
ents. Proc. 29th International Symposium on Principles rogfRamming Lan-
guages, Oregon, pp71-80.

[32] Milner, R. (1980)A Calculus of Communicating SystemsNCS 92, Springer
Verlag.

[33] Milner, R. (1996), Calculi for interaction. Acta Inforatica 33, pp707—-737.

[34] Milner, R. (2004), Bigraphs for Petri nets. In Proc. Adaved Course on Petri
Nets, Eichsitt 2003, LNCS 3098.

[35] Milner, R. (2004), Axioms for bigraphical structureedhnical Report 581, Uni-
versity of Cambridge Computer Laboratory. (Submitted fablpcation.)

[36] Milner, R. (2001) Computational flux. Proc 28th ACM SIGA-SIGPLAN Sym-
posium on Principles of Programming Languages, pp220-221.

[37] Milner, R. Bigraphical reactive systems: basic thedFgchnical Report 503,
University of Cambridge Computer Laboratory (2001). Aable fromhttp:
Ilwww.cl.cam.ac.uk/users/rm135

60

[38] Milner, R. (2001) Bigraphical reactive systems. Prb2th International Confer-
ence on Concurrency Theory, LNCS2154, pp16-35.

[39] Milner, R., Parrow, J. and Walker D. (1992), A calculdsrmbile processes, Parts
I and II. Journal of Information and Computation, Vol 100,1pg0 and pp41-77.

[40] Nielsen, M., Priese, L. and Sassone, V., Charactegibehavioural congruences
for Petri nets. Proc. CONCUR’95, LNCS 962 (1995) 175-189.

[41] Park, D.M.R. (1980), Concurrency and automata on itdisequences. LNCS
104, Springer Verlag.

[42] Pomello, L., Rozenberg, G. and Simone, C., A survey oifiveence notions for
net-based systems. Advances in Petri Nets '92, LNCS 602)14080—-472.

[43] Priese, L. and Wimmel, H., A uniform approach to truexcarrency and inter-
leaving semantics for Petri nets. Theoretical Computeer@a 206 (1998) 219—
206.

[44] Parrow, J. and Victor, B. (1998), The fusion calculugpressiveness and sym-
metry in mobile processes. Proc. LICS’98, IEEE Computei&p®ress.

[45] Priami, C. (1995), Stochastie-calculus. Computer Journal, Vol 38 (7), pp578—
589.

[46] Priami, C., Regev, A., Silverman, W. and Shapiro, E.OP0 Application of
stochastic process algebras to bioinformatics of molegutacesses. Information
Processing Letters, Vol 80, pp 25-31.

[47] Rounds, W.H. and Song, H. (2003), Tikecalculus - a language for distributed
control of reconfigurable embedded systems. In Hybrid ®ysteComputation
and control, LNCS 2263, Springer-Verlag, pp435-449.

[48] Sassone, V. and Sobocinski, P. (2002), Deriving bisathon congruences: a 2-
categorical approach. Electronic Notes in Theoretical Qater Science, Vol 68

).

[49] Sewell, P. (1998), From rewrite rules to bisimulatiaomngruences. Proc CON-
CUR’98, LNCS 1466, pp269-284. Full version to appear in Tegcal Com-
puter Science, Vol 272/1-2.

[50] Regev, A., Silverman, W. and Shapiro, E. (2001), Regméstion and simula-
tion of biochemical processes using thealculus process algebra. Proc. Pacific
Symposium of Biocomputing 2001 (PSB2001), Vol 6, pp459-470

[51] Smith, H. and Fingar, P. (2002), Business Process Mamagt: the third wave.
Amazon.com.

[52] Wojciechowski, P.T. and Sewell, P. (1999), NomadictPi@nguage and infras-
tructure design for mobile agents. Proc. ASA/MA '99, Palmi&gs, California.

61

62

Appendix

A Proofs

Lemma 6.12 (B, B) is a candidate RPO fox relative toD.

Proof To proveBgo Ay = B1o A1, by symmetry it will be enough to consider cases
forp € W w Py, and for the value ofi((p).

Case p € Py— P, Ao(p) = e € Eo. Then(BioA1)(p) = Bi(p) = Di(p) =
(D10A1)(p) = (Do Ao)(p) = Ao(p) = (Boo Ao)(p).

Casep € P()—PQ, Ao(p) =g € X(). Then(31 0A1>(p) = Bl(p) = ﬁ = Bo(x()) =
(BooAo)(p)

Casep € WuW P, Ag(p) = e € Ey—Es. Then(ByoAp)(p) = Ap(p) = e. Also
(D10A1)(p) = (DgoAp)(p) = e, so for somer; € X; we haveA,(p) = z; and
D1(£I§'1> = e, hencel'l ¢ X{ Then(Bl OA1>(p) = Bl(ilj'l) = Dl(.fL’l) = e.

Casep e W Py, Ag(p) = e € Ey. Then(D10A;)(p) = (DgoAp)(p) = e, so also
A1 (p) = e. Hence(By 0 A1) (p) = e = (Bopo Ap)(p).

Casep € WW Py, Ag(p) = 29 € X{;. ThenDy(xg) € EswWZ,and sq Do Aq)(p) =
(DgoAp)(p) € E3 W Z; hence for some; € X; we haveA;(p) = x; andDy(z,) =
D()(Z‘Q). Hence(Bovo)(p) = Bo(l‘o) = D()(I()) = Dl(l'l) = Bl(l‘l) = (Bl oAl)(p).

Case p € W W Py, Ag(p) = x9 € Xo—X|). ThenDy(xo) = e € E; — E»; hence
(D10A1)(p) = (DgoAp)(p) =e,S041(p) =e. SO(B1oA1)(p) = e = Dy(rg) =
Bo(wo) = (Boo Ao)(p)-

We now proveB o By = D, by case analysis.
Case z € X). Then(Bo By)(z) = B(0,z) = Do(z).
Case z € Xo—X|,. ThenBy(z) = Dy(x) € Ey— E», hence(Bo By)(z) = Dy(x).

Casep € P—Ps, D()(p) € F1—FEs. SinceDooAO = DioA; we haV&Al(p) ¢ X1,
S0 By(p) = Do(p) € E1—E»; hence(Bo By)(p) = Bo(p) = Do(p)-

Casep € PL— P, Do(p) € E3s W Z. SinceDyo Ay = Dy0 A there exists € X,
with 4;(p) = z; moreover we readily deduce € X/, soBy(p) = 1,z. Hence
(BoBo)(p) = B(1,2) = Di(z) = (D10 A1)(p) = (Do Ao)(p) = Do(p).

Case p € P;. Then(Bo By)(p) = B(p) = Do(p). n

Theorem 6.13 (RPOs in link graphs) In“LiG, Whenever a pairﬁf of link graphs
has a bound), there exists an RPQB, B) for B relative toD, and Construction 6.10
yields such an RPO.

Proof We have already proved that the tripjlé, B) built in Construction 6.10 is an
RPO candidate. Now consider any other candidéteC) with intervening interface

63

Y. C; has node$;—V> WV, (i = 0,1) andC has noded’;, whereV, W Vs = V3. We
have to construct a unique mediating arroyas shown in the diagram.

We defineC with nodesV as follows:

A~

forizz‘/,}eX:
forpe Py:

(@) £ Ci(a)
(p) = Ci(p) .

Q) Q)

Note that the equatior(g'oBi =C; (1 =0,1) determineC uniquely, since they force
the above definition. We now prove the equations (considéria 0):

Case z € X. Then(C o By)(z) = C(0,z) = Co(x).

Casex € Xo—X|). ThenDy(z) € E1—F>, S0By(x) = Dy(x), hence(C o By)(z) =
Dy(z). Also sinceC' o Cy = Dy € Eq— E5 we haveCy(z) = Dy(x).

Casep € PL—P», Dy(p) € E1—E,. SinceDyo Ay = D10 A; we haveAd (p) ¢ X;,
s0By(p) = Do(p), hence(C o By)(p) = Do(p). Also Co(p) = (C'oCo)(p) = Do(p).

Case p € P,— P, Dy(p) € Es W Z. ThenA;(v) = x € X{ with Dy (x) = Dy(p),
andBy(p) = 1,z. So(Co By)(p) = C(1,z) = C1(x) = (Coo Ao)(p) = Co(p).

Case p € P;. Then(C o Bo)(p) = C(p) = Co(p).
It remains to prove that' o C = B. The following cases sulffice:

Case # = 0,z € X, B(2) € Ey. Then(CoC)(2) = C(2) = Cy(z) = Do(z) =
B(%).

Case # = 0,z € X, B(2) € Es ¥ Z. ThenDy(z) = B(2) € E; W Z, so for
somey € Y we haveCy(x) = y andC(y) = B(&). But by definitionC(z) = y, so
(CoC)(2) = Cy) = (CoCo)(x) = Do(x) = B(%).

)

Casep € Py, B(v) € Ey. Then(C'oC)(p) = C(p) = Co(p) = Do(p) = B(p).

Casep € P4, B(p) € E5 W Z. ThenB(p) = Do(p) = C(y), whereCy(p) =y € Y,
and by definitionC'(p) = Cy(p), s0(C o C)(p) = C(y) = B(p).

Case p € Ps. Then(CoC)(p) = C(p) = Do(p) = B(p).
HenceC is the required unique mediator; 6B, B) is an RPO. n

64

