
Operational congruences for reactive systems

James Judi Leifer

University of Cambridge Computer Laboratory

and

Trinity College

5 September 2001

This document consists of a slightly revised and corrected version of a dissertation
submitted for the degree of Doctor of Philosophy

Declaration

Except where otherwise stated in the text, this dissertation is the result of my own work
and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any work that I have submitted for
a degree, diploma, or other qualification at any other university.

No part of this dissertation has already been or is being concurrently submitted for
any such degree, diploma, or other qualification.

This dissertation does not exceed sixty-thousand words, including tables, footnotes,
and bibliography.

iii

iv

Abstract

The dynamics of process calculi, e.g. CCS, have often been defined using a labelled tran-
sition system (LTS). More recently it has become common when defining dynamics to use
reaction rules —i.e. unlabelled transition rules— together with a structural congruence.
This form, which I call a reactive system, is highly expressive but is limited in an important
way: LTSs lead more naturally to operational equivalences and preorders.

So one would like to derive from reaction rules a suitable LTS. This dissertation shows
how to derive an LTS for a wide range of reactive systems. A label for an agent (process)
a is defined to be any context F which intuitively is just large enough so that the agent
Fa (“a in context F”) is able to perform a reaction. The key contribution of my work
is the precise definition of “just large enough”, in terms of the categorical notion of rel-
ative pushout (RPO), which ensures that several operational equivalences and preorders
(strong bisimulation, weak bisimulation, the traces preorder, and the failures preorder)
are congruences when sufficient RPOs exist.

I present a substantial example of a family of reactive systems based on closed, shallow
action calculi (those with no free names and no nesting). I prove that sufficient RPOs exist
for a category of such contexts. The proof is carried out indirectly in terms of a category
of action graphs and embeddings and gives precise (necessary and sufficient) conditions
for the existence of RPOs. I conclude by arguing that these conditions are satisfied for a
wide class of reaction rules. The thrust of this dissertation is, therefore, towards easing
the burden of exploring new models of computation by providing a general method for
achieving useful operational congruences.

v

vi

Acknowledgements

I thank my supervisor Robin Milner for his inspiration, his support, and his warmth. I
learned more about the ways of doing research and the style of presenting it from him
than anyone else.

I discussed almost every idea in this dissertation with my friends Luca Cattani and
Peter Sewell. Peter was unwavering in his clear-sightedness, forcing me to account for
my tacitly held assumptions at every turn, dissecting every idea, and setting me straight.
Luca opened the world of category theory for me, revealing its beauty and simplicity and
its use as a discipline for abstraction.

I talked with many colleagues and learned much from their ideas. Here is a partial list:
Marcelo Fiore, Philippa Gardner, Georges Gonthier, Andy Gordon, Tony Hoare, Martin
Hyland, Alan Jeffrey, Ole Jensen, Jean-Jacques Lévy, Michael Norrish, Andy Pitts, John
Power, Edmund Robinson, Glynn Winskel, Lucian Wischik

My office-mate David Richerby kept me sane in the final act of writing up with his
wonderful humour.

C.T. Morley (my Tutor at Trinity College) was always welcoming and ready to advise.
Hazel Felton (Side F Secretary at Trinity College) watched over me with great warmth
and helped me with great efficiency.

I am indebted to John Roberts for his lucid and consistent thinking.

Natalie Tchernetska’s influence touches all parts of this dissertation.

While carrying out this research I was supported by the following funding sources:
EPSRC Research Grant GR/L62290; Trinity College Senior Rouse Ball Studentship; NSF
Graduate Research Fellowship; Trinity College External Research Studentship; British
Overseas Research Studentship; and Cambridge Overseas Trust Studentship.

vii

viii

Contents

Declaration iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Overview . 1

1.2 Historical background and motivation . 2

1.3 Contexts as labels . 8

1.4 Relative pushouts . 9

1.5 Other work . 14

1.6 Outline . 16

2 Operational congruences for reactive systems 19

2.1 Formalisation of reactive systems . 19

2.2 Categorical basis for contextual labels . 23

2.3 Labelled transitions and congruence for strong bisimulation 30

3 Further congruence results 35

3.1 Introduction . 35

3.2 Functorial reactive systems . 37

3.3 Cutting and pasting portable IPO squares 38

3.4 Strong bisimulation . 40

3.5 Weak bisimulation . 44

3.6 Traces preorder . 47

3.7 Failures preorder . 50

3.8 Multi-hole contexts . 54

ix

Contents x

4 Sliding IPO squares 61

4.1 Introduction and motivation . 61

4.2 Properties of A . 63

4.3 Construction of Ĉ . 64

4.4 Operations on Ĉ . 64

4.5 Construction of C . 66

4.6 Construction of F . 67

5 Action graph contexts 73

5.1 Introduction . 73

5.2 Action calculi reviewed . 74

5.3 Examples and a problem . 76

5.4 Closed shallow action graphs . 81

5.5 The well-supported precategory A-Ixt of arities and raw contexts 84

5.6 Constructing a functorial reactive system 89

6 RPOs for action graph contexts 91

6.1 Introduction . 91

6.2 The category G-Inc of action graphs and inclusion embeddings 92

6.3 Relative coproducts . 96

6.4 Existence of relative coproducts . 98

6.5 Construction of a candidate from a scaffold 103

6.6 Construction of a mediating inclusion embedding 105

6.7 Construction of a relative coproduct . 107

6.8 Existence of RPOs . 110

7 Expected properties of redexes 113

8 Conclusions and future work 123

A Review of category theory 131

B Labelled transitions via retractions 135

Bibliography 139

Chapter 1

Introduction

1.1 Overview

This dissertation is concerned with process calculi, which are mathematical models of

computation. Process calculi come in many forms, but share several common features.

Much as the λ-calculus isolated the canonical features of sequential computation, process

calculi do the same for concurrent phenomena, such as non-determinism, synchronisation,

and communication. By concentrating on a few core syntactic primitives, process calculi

provide a setting in which to reason about these phenomena without the added baggage

associated with a full programming language.

There are three critical ingredients beyond syntax that a process calculus may possess.

I summarise these now and discuss each in greater detail later.

The first consists of unlabelled transitions, or reactions as I call them in this disserta-

tion, which characterise only the internal state changes of an agent (a process). Reactions

do not require interaction with the surrounding environment.

The second consists of labelled transitions, which characterise the state changes that

an agent may undergo in concert with the environment. Each transition is associated with

a label, which records the interaction with the environment (for example an output on a

channel) that enables the transition. A label is thus an observation about the behaviour

of an agent. Normally, the reactions of an agent are special labelled transitions for which

the interaction with the environment is vacuous (so-called τ -transitions).

The third consists of operational preorders and equivalences, which characterise when

one computation is respectively behaviourally replaceable by, and behaviourally equal to,

another. An equivalence is most useful when it is a congruence, i.e. is preserved by the

syntactic constructions of the calculus; in this case, proving the equivalence of two large

agents can be reduced to proving the equivalence of components. Thus congruence is one

of the most desirable properties an equivalence may possess. These remarks apply as well

to operational preorders.

1

Chapter 1. Introduction 2

As I will describe later, much research has concentrated on finding general definitions

of operational preorders and equivalences in terms of labelled transitions. For any specific

process calculus, it is then a challenge to prove that the preorder or equivalence in question

is a congruence. But what happens when there are no labelled transitions, only reactions?

The latter situation has become common since reactions provide a clean way of specifying

allowable state changes without commitment to particular observables. Reactions are

highly expressive but limited in an important way: they do not lead as naturally as

labelled transitions do to congruential operational equivalences and preorders.

The central problem addressed by this dissertation is as follows: From a process cal-

culus with only a reaction relation —called a reactive system— can we derive a tractable

labelled transition relation? By tractable, I mean two things: the labels come from some

small set; the labelled transitions readily yield operational preorders and equivalences that

are congruences.

My approach is to take a label to be a context (an agent with a hole in it). For any

agent a, a label is any context F which intuitively is just large enough so that the agent

Fa (“a in context F”) is able to perform a reaction. The key contribution of my work is

to make precise the definition of “just large enough” in terms of the categorical notion of

relative pushout (RPO) and to show that several operational equivalences and preorders

(strong bisimulation, weak bisimulation, the traces preorder, and the failures preorder)

are congruences when sufficient RPOs exist.

I also present a substantial example of a family of reactive systems based on closed,

shallow action calculi (those with no free names and no nesting). I prove that sufficient

RPOs exist for a category of such contexts. The proof is carried out indirectly in terms of

a category of action graphs and embeddings and gives necessary and sufficient conditions

for the existence of RPOs. I conclude by arguing that these conditions are satisfied for a

wide class of reaction rules. The thrust of this dissertation is, therefore, towards easing

the burden of exploring new models of computation by providing a general method for

achieving useful operational congruences.

In the rest of this chapter, I discuss some of the history of operational congruences

and offer some background as to why reactions have become prominent. I then sketch

the solution strategy presented in this dissertation. I relate my approach to work by

other researchers and to material I have jointly published. I conclude with an overview of

structure of the chapters.

1.2 Historical background and motivation

It may seem strange at first to investigate the “derivation of operational congruences”

since congruence is usually a postulated notion in mathematics: to define a model, one

chooses which elements are equivalent. But choosing has become difficult for many models

1.2. Historical background and motivation 3

of computation, creating a gap between the properties such as reaction that are easy to

postulate and those such as equivalence that are useful to have.

To illustrate how this gap opened, let us look at some strands in the history of process

calculi. Starting with the seminal work by E.F. Moore [Moo56] which examined “finite

automata from the experimental point of view”, theoretical computer scientists have pur-

sued the notion that the observable behaviour of a computation is more fundamental than

the form in which the computation is written; in this view, two programs are equivalent

when they are indistinguishable by an outside observer. In the case of automata, an ob-

servation consists of a labelled transition of the form a x a′: automaton a can input the

label x and become a′. (This is a slight simplification of Moore’s original notion, which

distinguished input from output labels.)

One automaton refines another if the former has a subset of the labelled transitions of

the latter, whether or not the two have different syntactic forms. For example, a =̂ x.(y+z)

and b =̂ x.y + x.z both can input the same strings of labels, 〈〉, 〈x〉, 〈xy〉, 〈xz〉, so are

equal (refine each other) despite their syntactic differences. This notion of comparing

computations based on their labelled transitions is now known as the traces preorder ; the

interpretation of computations in terms of their traces is the traces model (see [Ros98]).

The traces preorder is attractive for its simplicity but is not faithful in comparing

exactly when one automata’s labelled transitions are “no worse” than another’s. Some of

its inadequacies with respect to particular applications were overcome in the late 1970s by

Hoare and Milner in ways that I describe below. Different applications for process calculi

have different informal requirements for when the patterns of labelled transitions for two

agents are the same (in the case of equivalences) or refine one another (in the case of

preorders). No one definition can be faithful to all possible requirements. Given that, we

can consider schemas parameterised by a labelled transition relation for defining different

equivalences and preorders — and thus take labelled transitions to be the postulated part

of a process calculus from which equivalences and preorders are derived. This difference

lends labelled transitions their power: a labelled transition relation captures the important

interactions between a computation and its environment without making a commitment

to a specific equivalence or preorder. As I will discuss later, many new process calculi

for modelling distributed computation do not include axioms for labelled transitions but

instead rest on an even simpler base.

The primary weakness of the traces preorder is its inability to handle the subtleties

of non-determinism. This is evident if we consider the pair a, b defined earlier. After

inputting x, a is in a state that can input either y or z; but b takes a “silent” choice (an

internal choice not controllable by external influence) when inputting x and enters one

of two states: either a state in which only y can be input or a state in which only z can

be input. Even though a and b have identical traces, their non-deterministic behaviour is

different.

Chapter 1. Introduction 4

The problem of handling non-determinism together with causality (the dependence of

one transition upon an earlier one) was first addressed by Petri nets (see, for example,

[Rei85]). In its simplest form, a Petri net consists of a directed hypergraph whose nodes

are called conditions and whose hyperedges are called events. A token may reside at

a condition. When the preconditions of an event hold (i.e. there is a token on every

condition that is a source of the event hyperedge), then the event fires: the tokens are

removed from the source conditions and places on the target conditions. Non-determinism

comes from the possibility that a token may enable several events to fire; causality of

events is determined by the graph structure, which constrains the allowable flow of tokens

and thus enables certain event firings only after others have occurred. Researchers on

Petri nets did not originally consider equivalences or preorders for them. However, event

structures, which are similar to traces but account for the causality and non-determinism of

events, are a setting for modelling Petri nets and other causal systems and yield notions of

equivalence [WN95]. Because Petri nets do not have a compositional syntax, it is difficult

to understand what it means for an equivalence to be a congruence. For this reason, I do

not discuss them further and confine my attention to process calculi with compositional

syntax.

Hoare’s work on Communicating Sequential Processes (CSP) [Hoa78, Hoa85] and Mil-

ner’s on Communicating Concurrent Systems (CCS) [Mil80, Mil88] addressed the problem

of comparing computations in a way that is sensitive to non-determinism, and hence dis-

tinguishes a from b (the examples I gave earlier).

Hoare’s approach in CSP was to present every agent as an explicit set-theoretic con-

struction including, amongst other data, failures; the latter are traces, each of which is

enriched with a set of refusals indicating which labels may be refused by the agent after

inputting the trace. For example, after inputing x, b can refuse y and can refuse z but

a cannot refuse either. Each constructor in CSP (prefixing, parallel composition, choice,

etc.) is defined in terms of the manipulation of failures (as a continuous function on the

complete partial order of agents). The explicit set-theoretic representation of agents in

CSP supports the design of model checkers [Ros94, Ros98] which are, for example, effective

in detecting bugs in protocols [Low96]. This explicitness is also an obligation: experimen-

tation with new constructors for combining agents requires the creation of a continuous

function that manipulates failures; new preorders other than quotients of the failures pre-

order are not easily catered for. I concentrate in this dissertation, therefore, on the strand

of research originating with CCS, but return to the failures preorder in Section 3.7 when

proving that it is a congruence. To be fair, though, the heaviness involved in adding

new constructors in CSP is not eliminated in CCS-like languages, but instead replaced by

different obligations, as described below.

In Milner’s CCS, agents have a free syntax and the labelled transition relation is

generated by inference rules in the style of Plotkin’s structured operational semantics

1.2. Historical background and motivation 5

[Plo81], e.g.

x.a x a
a α a′

a+ b α a′

Remark: Throughout this dissertation a, b, c, . . . are used to denote agents even when

this contradicts historical conventions. The labels (ranged over by α . . .) comprise input

channels x, y, z, . . . and output channels x̄, ȳ, z̄, . . . and a special distinguished element τ .

This terminology is somewhat misleading because no data is actually input or output; they

are just complementary flavours. In the π-calculus, which I describe later, the differences

are significant.

The key idea in CCS is that of synchronisation. If one agent can output x and the

other can input x then their parallel composition can synchronise on x. The result is a

τ -transition which records the synchronisation but leaves the name on which it occurs

anonymous:

a x̄ a′ b x b′

a | b τ a′ | b′

Milner considered several equivalences for CCS; the main ones were strong and weak bisim-

ulation. Both kinds employ a coinductive form of definition which gives a powerful proof

technique for comparing agents (an idea that originates with Park [Par81]) and provide

a general way of defining an equivalence parameterised by a labelled transition system.

Strong bisimulation relies on no assumptions about the underlying structure of the labels;

weak bisimulation requires a distinguished τ -transition. I will discuss both in detail later

(Section 2.3 and Section 3.5) but summarise the two now.

Both strong and weak bisimulation are sensitive to non-determinism and are able to

distinguish the pair a, b described earlier in the discussion of the traces preorder. A strong

bisimulation S is a relation on agents satisfying the following coinductive property: for

all (a, b) ∈ S and all labelled transitions a α a′, there exists b′ such that b α b′ and

(a′, b′) ∈ S (and vice versa). Informally, “if a and b are S-related then whatever a can do,

b can do too, and they both end up in S-related states; likewise for whatever b can do”.

The largest strong bisimulation relation (which is the union of all strong bisimulations) is

denoted by ∼. The largest weak bisimulation, denoted by ≈, is coarser because it is flexible

in allowing τ -transitions to be collapsed and expanded when comparing two agents. For

example, a agent that inputs x and then immediately outputs y would be related by weak

bisimulation to one that inputs x, then has several τ -steps (internal computations), and

finally outputs y.

Milner proved that both kinds of bisimulation are congruences (though not with respect

to sum for weak bisimulation — see Section 3.5 for further discussion). Such proofs require

Chapter 1. Introduction 6

care in CCS and are more difficult in later calculi. This is the price of avoiding CSP-

style explicit representations of agents and agent constructors. It is a central theme of

this dissertation to provide mathematical tools for easing the burden of proving that

operationally defined equivalences (such as bisimulation) are congruences.

The idea of using a τ -like transition to record a primitive computational step plays a

central role in later calculi. These transitions are variously called reaction rules, reduction

rules, firing rules, etc.; I shall use reaction rules throughout. In CCS, the τ transition

relation requires the entire collection of labelled transition rules to generate it. A dramatic

simplification was proposed in the Chemical Abstract Machine (CHAM) of Berry and

Boudol [BB90, BB92] and used in work [Mil90] on the π-calculus of Milner, Parrow, and

Walker [MPW89, MPW92]. These calculi were the first to employ a lightweight quotient

of the agent terms, called a structural congruence, in order to make their reaction rules

easy to define. I shall confine the discussion to the π-calculus. (CHAM treats the quotient

more explicitly with “heating and cooling” rules, though the idea is similar.)

Structural congruence is an equivalence relation ≡ on agents that allows the parts of

an agent to rearrange themselves, e.g.

a | b ≡ b | a a | (b | c) ≡ (a | b) | c · · ·

The reaction relation , which characterises the primitive computational step (namely

communication of a name over a channel), is simple to define; it is the smallest relation

satisfying the rule

x̄〈y〉.a | x(z).b a | {y/z}b

that respects structural congruence

a ≡ a′ a′ b′ b′ ≡ b

a b

and is closed under all non-guarding contexts C (e.g. c | −; see Section 2.1 for further

discussion)

a b

C[a] C[b]
.

Thus the agent x̄〈y〉 | (c | x(z).b) has a reaction even though the parts needed to enable

the reaction — namely x̄〈y〉 and x(z).b — are not adjacent:

x̄〈y〉 | (c | x(z).b) ≡ (x̄〈y〉 | x(z).b) | c {y/z}b | c .

The ease with which reaction rules are defined in this style facilitated an outpouring of

new process calculi for modelling encrypted communication [AG97], secure encapsulation

1.2. Historical background and motivation 7

[SV99], agent migration [CG98, Sew98, FGL+96] and so on. Each isolates a computational

phenomenon and presents it via a reaction rule together with a structural congruence over

some syntax. Here are two examples of reaction rules:

• In Cardelli and Gordon’s ambient calculus, one ambient may move inside another

(like a packet through a firewall):

y[in x.a | b] | x[c] x[y[a | b] | c] .

• In Sewell and Vitek’s Box-π calculus, a message may move from inside to outside a

wrapper and is decorated with the wrapper’s name while doing so:

y[x̄↑v | b] x̄ȳv | y[b] .

In the π-calculus the communication of names along channels presented subtleties in

the design of a labelled transitions system and of equivalences (of which several are now

studied [SW01]); the proofs of congruence for these equivalences require care. For many of

the newer calculi, such as those listed above, the problem of choosing appropriate labelled

transitions and proving that bisimulation is a congruence is difficult, and, in many cases,

not attempted. In all these cases, experimentation is costly: a slight modification of the

syntax or reaction rules often causes the labelled transition relation to change and breaks

congruence proofs, forcing them to be reconstructed.

So the gap first described at the beginning of this section has widened as the data defin-

ing a typical process calculus have changed. Labelled transitions are no longer postulated

primitives of a calculus but instead are teased out from the four fundamental components:

• syntax (agents and agent contexts);

• structural congruence;

• set of reactive (non-guarding) contexts;

• reaction rules.

I call a process calculus containing these components a reactive system.

In this way, a reactive system closely resembles instances of the λ-calculus [Bar84].

The latter consist of a simple syntax, a structural congruence based on α-conversion, a

set of reactive contexts (known as “evaluation contexts” [FF86]) chosen to force strategies

such as call-by-name or call-by-value, and a reaction rule based on β-reduction.

There is however an important difference which renders the problem of finding useful

equivalences for process calculi more difficult: their reaction relations are usually neither

confluent nor normalising. As a result, equivalences for λ-calculi, such as those based on

Chapter 1. Introduction 8

normal forms or on termination properties [Bar84, Lév78], do not provide viable routes

to follow. Therefore we need to consider equivalences based on bisimulation or other

techniques that make no assumptions about confluence or normalisation properties. Yet

bisimulation requires labelled transitions, which are not provided in a reactive system,

and proofs of congruence, which can be difficult and fragile, as already discussed. The

next section outlines the strategy for deriving labelled transitions which is the basis for

the work in this dissertation.

1.3 Contexts as labels

We wish to answer two questions about an arbitrary reactive system consisting of agents

(whose syntax may be quotiented by a structural congruence) and a reaction relation

(generated by reaction rules):

1. Can we derive a labelled transition relation λ where λ comes from a small set of

labels that intuitively reflect how an agent interacts with its environment?

2. Under what general conditions is strong bisimulation over λ a congruence?

We can begin to address question 1 by considering CCS. Let a, b range over agents, C,D,F

range over contexts (agents with a hole), and x range over names. The usual labelled

transitions λ for λ ::= x̄
∣

∣ x
∣

∣ τ reflect an agent’s capability to engage in some behaviour,

e.g. x̄.a | b has the labelled transition x̄ because x̄.a | b can perform an output on x.

However, if we shift our emphasis from characterising the capabilities of an agent to the

contexts that enable the agent to react, then we gain an approximate answer to question 1

by choosing the contexts themselves as labels; namely we define

a F a′ iff Fa a′ (1.1)

for all contexts F . (We denote context composition and application by juxtaposition

throughout. We regard a context with a trivial hole as an agent, so application is a special

case of composition.) Instead of observing that x̄.a | b “can do an x̄” we might instead see

that it “interacts with an environment that offers to input on x, i.e. reacts when placed

in the context − | x”. Thus, x̄.a | b
−|x

a | b.

The definition of labelled transition in (1.1) is attractive when applied to an arbitrary

reactive system because it in no way depends upon the presence or absence of structural

congruence. Furthermore, it is generated entirely from the reaction relation (ques-

tion 1); and, strong bisimulation over the derived labelled transition relation · is a

congruence, (question 2). The proof of the latter is straightforward: let C be an arbitrary

context and suppose a ∼ b; we show that Ca ∼ Cb. Suppose Ca F a′; by definition,

1.4. Relative pushouts 9

FCa a′, hence a FC a′. Since a ∼ b, there exists b′ such that b FC b′ and a′ ∼ b′.

Hence Cb F b′, as desired. The other direction follows by symmetry.

Nonetheless, the definition in (1.1) is unsatisfactory: the label F comes from the set

of all contexts — not the “small set” asked for in question 1 — thus making strong

bisimulation proofs intolerably heavy. Also, the definition fails to capture its intended

meaning, namely that a F a′ holds when a requires the context F in order that a

reaction is enabled in Fa: there is nothing about the reaction Fa a′ that forces all of

F — or indeed any of F — to be used. In particular, if a a′ then for all contexts F

that preserve reaction, Fa Fa′, hence a F Fa′; thus a has many labelled transitions

that reflect nothing about the interactions of a itself.

Let us unpack (1.1) to understand in detail where it goes wrong. Consider an arbitrary

reactive system equipped with a set Reacts of reaction rules; the reaction relation

contains Reacts and is preserved by all contexts, as formalised by the following axiom and

inference rule:

l r if (l, r) ∈ Reacts
a a′

Ca Ca′
.

Expanding (1.1) according to this definition of we have:

a F a′ iff Fa a′

iff ∃(l, r) ∈ Reacts, D. Fa = Dl & a′ = Dr . (1.2)

¨

§

¥

¦
a

l F

D 1.1

The requirement Fa = Dl in (1.2) is rendered by a commuting square

(as shown in Figure 1.1) in some category whose arrows are the agents and

contexts of the reactive system. This requirement reveals the flaw described

earlier: nothing in (1.2) forces F and D to be a “small upper bound” on a and l. The

next section explores the challenges involved in making precise what “small upper bound”

means.

1.4 Relative pushouts

For several years I tried to make precise what “small” means. I was mired in detailed

arguments about specific examples of contexts for which I would search for a “dissection

lemma”, having roughly the following form: given Fa = Dl, there exists a “maximum”

C, such that for some F ′ and D′ we have F ′a = D′l, F = CF ′ and D = CD′. In other

words, dissection peels off as much as possible from the outside of F and D, decomposing

Fa = Dl as CF ′a = CD′l. If the dissection of Fa = Dl peels off nothing, i.e. produces

the decomposition idFa = idDl, where id is the identity context, then F and D are “a

Chapter 1. Introduction 10

small upper bound”. But the problem then remains: when is C the “maximum” possible

context that can be peeled off?

In this section I look at some examples of dissection in order to illustrate just how

subtle the problem is. These examples motivate a solution that I introduce here and

present in detail later in this dissertation.

For some particular classes of contexts, it is easy to understand what to do. Consider

this example of two compositions Fa = Dl in a free term algebra:
(

α〈α′〈β〈−〉〉〉
)

◦ γ =
(

α〈α′〈−〉〉
)

◦
(

β〈γ〉
)

= α〈α′〈β〈γ〉〉〉 .

(For the sake of clarity, I use ◦ for composition in this example.) The maximum context

C that can be peeled off is α〈α′〈−〉〉. Nothing more can be peeled off because C = D.

The only other possibilities are − and α〈−〉, neither of which is as big as C. So C it is! Of

course I am arguing informally here, but it is straightforward to make this line of thinking

precise.

Free term algebras are the simplest setting in which to consider dissection exactly

because they are free. When passing to a syntax quotiented by a non-trivial struc-

tural congruence, the question becomes difficult, especially when compounded with nam-

ing structure such as in the π-calculus. Consider a typical π-calculus agent such as

a =̂ (νu)(x̄〈u〉 | x(z).ȳ〈z〉). Notice that a contains a parallel constructor |, which is

associative and commutative and has identity 0; also, u and z are bound, so are sub-

ject to α-conversion. Furthermore, the name x is used twice (which requires attention

when substituting another name for it) and is discarded after the reaction a a′, where

a′ =̂ (νu)(ȳ〈u〉).

This structure demands careful treatment and makes dissection for the π-calculus

difficult: for term algebra, one can incrementally peel off a top-level function symbol,

but for the π-calculus, there is no notion of a “top-level” constructor. The structural

congruence of the π-calculus equates so many different syntactic representations of the

same agent that it is difficult to understand where to begin. Without any naming structure,

parallel composition becomes easier to handle, as shown by Sewell [Sew01]. As I explain

in Section 1.5, it is the treatment of names that distinguishes the dissection results in this

dissertation from his.

A possible approach is to abandon tree-like syntax and to think in terms of graph-like

syntax that automatically quotients out many ignorable differences. Even if a dissection

result could be proved for some graph-theoretic representation of the π-calculus, it would

not necessarily generalise smoothly to other calculi. As a result, I studied dissection for

Milner’s action calculi [Mil96], which are a family of reactive systems. The syntax of action

calculi is sufficiently rich to embrace process calculi such as π-calculus, the λ-calculus, and

the ambient calculus. Action calculi are introduced in Section 5.2; here I confine my

attention to a few salient features of their graphical form.

1.4. Relative pushouts 11

out
out

outnu

nu

in

x

yx

y

Figure 1.2: A graphical representation of a π-calculus reaction (νu)(x̄〈u〉 | x(z).ȳ〈z〉)
(νu)(ȳ〈u〉)

Consider the example shown in Figure 1.2; it illustrates a pair of action graphs —

agents in an action calculus— that represent the π-calculus reaction a a′ given earlier.

An action graph consists of nodes (rectangles with two blunt corners) and arcs:

• Nodes are labelled with controls from a control signature of primitives. Each action

calculus may have a different control signature, such as {nu, in, out} for a simple π-

calculus without replication or choice, or {ap, lam} (application and λ-abstraction)

for the λ-calculus.

• Arcs represent names. They connect source ports to target ports. The source ports

are arrayed on the left interface of an action graph (such as is shown for the action

graph nested inside in) and on the right side of nodes (e.g. nu); they also include free

names (e.g. y). The target ports are arrayed on the right interface of action graphs

and the left side of nodes. Arcs may be forked from a source port (such as the arcs

from x in the LHS) and may be discarded (such as the arc from x in the RHS).

How can we perform dissection on action graphs? It is the wiring structure (the arcs) of

an action graph that makes dissection so difficult. Consider the example of a composition

Fa = Dl shown in Figure 1.3. (This example is based on one first suggested by Philippa

Gardner.) The contexts F and D are just action graphs with a hole (shown as a shaded

rectangle). The composition Fa is formed by placing a inside the hole of F and joining up

the corresponding arcs. By reasoning about the controls it is possible to see which ones

can be peeled off: F has N,M and D has N,L, so C might have N (the intersection of

the controls in F and D). Indeed, the C shown does have just one control. But what arcs

should C have? Does the loop shown in C make C “maximal” in some sense? Should C

have other forked and discarded arcs? How can we choose?

Chapter 1. Introduction 12

M

N
L

K(0, 0)

L

K

KL N

(0, 0) (0, 0)

(0, 0)
(1, 1)

(0, 2)

(2, 0)M

M

a

l D′

F ′

C

N

M

D

F

L

N

K

Figure 1.3: A surprising dissection involving reflexion

The example in Figure 1.4 is even more curious: F and D have no nodes at all — they

are pure wiring contexts. Since F = D and a = l, one might expect that the “maximal”

common part that can be peeled off of Fa = Dl is F = D itself. This is not true! The

triple F ′, D′, C provides a better dissection in a way that I will make precise below.

The point of these examples is to demonstrate that informal reasoning about dissection

is difficult when dealing with contexts containing wiring: There is almost no way to decide

just by looking at the arcs themselves whether one dissection is better than another.

Out of this murkiness finally emerged a clearer way. I came upon an abstract charac-

terisation, called a relative pushout, of which dissections are “best”. By abstract, I mean

that the characterisation makes no use of any specific properties of contexts except their

composability, thus can be instantly cast as a category theoretic property.

Consider the outside commuting square in Figure 1.5 which shows Fa = Dl. A relative

pushout (RPO) for this square is a triple F ′, D′, C satisfying two properties: first, the triple

is a candidate, i.e. F ′a = D′l and CF ′ = F and CD′ = D; second, for any other candidate

F̂ ′, D̂′, Ĉ, there exists a unique mediating J making all the triangles commute (as shown).

RPOs are the key contribution of this dissertation. It is by working with them, rather

than trying to come up with ad hoc ways of dissecting contexts in specific examples, that

we gain two important advantages:

• RPOs are abstract: as I said before they do not rely on any specific properties of

contexts except composability. By defining labelled transitions in terms of RPO

constructions, it is possible carry out proofs of congruence (see Chapter 2 and

Chapter 3) for several operational equivalences and preorders (strong bisimulation,

1.4. Relative pushouts 13

(0, 2)

(0, 2)

(0, 2)
(0, 0)

F

F ′

D′
(0, 0) (0, 2)

a t0
t1

l
t2
t3

D

K

K

K

K

(t1,t3)
(t1,t2)
(t0,t3)
(t0,t2)

C

(0, 4)

Figure 1.4: A surprising dissection involving forking

m

a

l F

D

F ′

D′
C

Ĉ

F̂ ′

D̂′

JJ

Figure 1.5: A relative pushout

weak bisimulation, the traces preorder, and the failures preorder), for which the

proofs do not depend on any specific properties of contexts except the existence of

RPOs. Thus these results are applicable to any reactive system which possesses

sufficient RPOs.

• RPOs provide a unifying discipline for analysing contexts in specific examples. The

fuzziness about which dissection is “best” in the examples of action graphs shown

earlier disappears: we want the candidate triple F ′, D′, C ′ from which there is a

unique mediator to any other candidate. By this requirement, the candidates shown

in Figure 1.3 and Figure 1.4 are “best”. (I put quotation marks around best because

there may be many best candidates, but all of them are isomorphic to each other

by standard categorical reasoning.) The problem of finding RPOs for graphs is non-

trivial, as shown in Chapter 6, but one is sustained by the unambiguity of the task:

there is no vagueness about the properties required of an RPO.

Chapter 1. Introduction 14

Thus, the notion of an RPO does not solve the problem of finding a dissection, but it makes

the problem well-defined and provides a reward for the effort by virtue of the congruence

proofs that rely on the existence of sufficient RPOs.

1.5 Other work

This section brings together some of the important related work. There is a large collection

of literature about process calculi, some of which I referred to in previous sections. I will

concentrate on those pieces of research that most closely impinge on the specific problems

that I address in this dissertation.

The idea of finding conditions under which a labelled transition relation yields an

operational congruence has been thoroughly studied in work on structural operational

semantics (SOS) [GV92, TP97]. The principle is to postulate rule formats, conditions

on an inductive presentation of a labelled transition relation that ensure that operational

equivalences (e.g. weak bisimulation [Blo93]) are congruences. There is a fundamental

difference between this problem and the one I am looking at. The work on SOS presumes

that a labelled transition relation is already given: the problem is to show that if it

satisfies a particular format then the congruences follow. My work takes reaction rules as

primitive, not labelled transitions: I aim to derive a labelled transition relation from the

reaction rules for which operational equivalences (and preorders) are congruences. In my

case, the derived labelled transition relation is not inductively presented. It is an open

question whether it can be inductively presented and, further, whether this presentation

satisfies some well-known rule format from SOS theory: this possibility is not explored in

the dissertation but is discussed in greater detail in Chapter 8, which covers future work.

The problem of deriving operational congruences for process calculi from a reaction

relation and not from a labelled transition relation is studied in the work on barbed bisimu-

lation [MS92], insensitivity observation [HY95], and testing equivalence [DH84]. The first

two construct equivalences by augmenting bisimulation over the reaction relation with

observations about related states. For example, in the former, the observations are barbs

which detect the ability of an agent to perform an output on a channel. The last (testing)

compares two agents by their ability to satisfy the same “may” and “must” tests.

Thus all three depend on primitive observations (not just reactions) though these can

be simpler than labelled transitions. The main obstacle to their use is the fact that they

do not yield congruences but instead need to be “closed up” by all contexts. For example,

it is straightforward to prove barbed equivalence in particular cases but difficult to show

barbed congruence because of the heavy quantification over all contexts. Work by Fournet

[Fou98] and by Fournet and Gonthier [FG98] ease this burden with techniques that allow

a proof of barbed congruence to be broken into pieces, each of which may be carried out

using other congruence relations.

1.5. Other work 15

Jeffrey and Rathke [JR99] used contexts as the basis for the labels of an LTS in the

case of the ν-calculus (a variant of the λ-calculus with fresh name creation). They did

not derive uniformly these labels from a reaction relation but they were guided by the

intuition that the labels are small contexts that enable a reaction. These labels give them

the right observational power to obtain useful congruences based on bisimulation.

Sewell’s work [Sew01] is the closest to mine of all the material I have cited here.

He studied the problem of deriving contextual labels for a family of reactive systems

(parameterised by arbitrary reaction rules) whose syntax consists of free terms quotiented

by a structural congruence for parallel composition. He defined labelled transitions by

explicitly reasoning about how a label overlaps with a redex. From this definition, he

proved that bisimulation is a congruence by appealing to his specific dissection results

(not motivated by RPOs). There are three important differences in approach:

• He dealt with multi-hole redexes which capture the full uniformity of metavariables,

thus leading to lighter labelled transitions than I can derive with my present RPO

technology. I discuss possible remedies for this in Chapter 8.

• He invented explicitly his definition of labelled transition and his statement of dis-

section, both of which are complex, without employing RPOs (which I worked with

later). As as result, his proof of congruence is not easily generalisable to other syn-

tactic families and other operational equivalences. It seems likely, however, that his

dissection results imply the existence of RPOs for the class of reactive systems he

considered, and it would be worth trying to recast them so as to make this precise.

• He confined his attention to free term algebras with parallel composition and did

not handle wiring structure such as is shown in Figure 1.4. I do handle wiring in

Chapter 6 where the discipline of seeking RPOs guides the dissection involved. Given

the complexity of Sewell’s definition of labelled transition and of his statement of

dissection, it is difficult to see how these could be generalised to embrace wiring

without the benefit of the notion of RPOs or other universal constructions.

In this dissertation, I have made no use of the double pushout techniques developed

in graph rewriting [Ehr79]. These are a way to describe the occurrence of a subgraph

—especially a redex— in a graph. To avoid confusion, I should emphasise that relative

pushouts play quite a different role. In my work, subgraph occurrences are handled by

embeddings and contexts; the nature of the graphs (with forked wiring) seems to require

a specific approach. But it would be useful to examine in the future how the embeddings

relate to the double pushout construction, and how graph-theoretic representations of the

syntax of the π-calculus and other calculi formed by quotienting out structural congruence

compare to similar work in graph rewriting [CM91, Kön99].

Chapter 1. Introduction 16

Some of my work has been done in collaboration with Milner and all of it under his

supervision. I wish to draw attention to two relevant pieces of published work for which

I am a joint author. All other work presented in this dissertation that is not mentioned

here is my own.

• Leifer and Milner: “Deriving bisimulation congruences for reactive systems”

[LM00a]. This paper introduces RPOs and gives a proof of congruence for strong

bisimulation, thus overlapping with some of the material in Chapter 2. Milner

collaborated with me on the categorical manipulations, which are critical to the

proof of congruence.

• Cattani, Leifer, and Milner: “Contexts and embeddings for closed shallow action

graphs” [CLM00]. This technical report demonstrates the existence of RPOs for

a category of action graph contexts by relating RPOs to relative coproducts in a

category of action graph embeddings, thus overlapping with some of the material

in Chapter 5 and Chapter 6. Cattani’s contribution was to recast the opfibration

(originally investigated by Milner and me) between the embeddings category and the

contexts category in terms of the coslice of the latter. Milner and I worked jointly

on the definition of context composition and of embedding. I am responsible for the

proof of the existence of relative coproducts (given in full detail in Chapter 6).

1.6 Outline

The subsequent chapters of this dissertation are organised in the following way:

Chapter 2: I make precise the notion of a reactive system and give a definition of labelled

transition in terms of idem pushouts (IPO), a sister notion of RPOs. I then prove

a series of results using simple categorical reasoning that shows how to manipulate

IPOs and RPOs. The main theorem then follows by direct use of the categorical

results from the chapter: if sufficient RPOs exist then strong bisimulation is a con-

gruence. I conclude by reproving the same theorem in a cleaner way by isolating

two lemmas which give derived inference rules for labelled transitions.

Chapter 3: I generalise the definition of reactive system by enriching it so as to com-

prise two categories with a functor F between them. The idea is that the downstairs

category is the one in which one wishes to consider agents and contexts, but for

which enough RPOs might not exist. The upstairs category does have RPOs but at

the cost of extra intensional information in the arrows and objects. By refining the

definition of labelled transition so that it relates arrows downstairs in terms of IPO

properties of their preimages upstairs, I obtain congruence results for strong bisim-

ulation, weak bisimulation, the traces preorder, and the failures preorder. Finally, I

1.6. Outline 17

propose added structure needed in a functorial reactive system to cater explicitly for

RPOs that yield multi-hole contexts. I conclude by proving that strong bisimulation

is a congruence here as well.

Chapter 4: The proofs of congruence for the preceding chapter rest on some hypotheses

about the functor F . The most important one of these is that F allows an IPO

square upstairs to “slide” so as to leave the F-image of the square invariant. This

chapter eases the burden of showing that these hypotheses are satisfied by giving

an abstract way of generating a functor satisfying them from simpler data. The

chapter started by assuming the existence of a well-supported precategory A, which

is like a category but lacks some arrow compositions and has extra structure for

extracting and renaming the support of an arrow. The motivation for this comes

from the raw contexts in Chapter 5 for which composition of two contexts is not

defined unless their node sets (supports) intersect trivially. I derive from A two

categories and a functor between them. The upstairs category is formed from A

by adding extra information to the objects, so as to make composition total. The

downstairs category is formed by quotienting away the supports. The functor F

maps arrows to their quotient equivalence classes. By reasoning abstractly, I show

that F allows IPO sliding and has all of the other properties required of functorial

reactive systems in Chapter 3. By instantiating these results, as in Chapter 5 for

example, one gets “for free” a functorial reactive system provided that one starts

with a well-supported precategory, a light burden.

Chapter 5: This chapter gives a significant example of a family of functorial reactive

systems. The contexts are derived from closed, shallow action graphs, those with

no nesting and no free names. Their graph structure includes forked and discarded

wiring connecting interfaces on each node and on the inside and outside of each

context. By instantiating the results of the preceding chapter, we construct a func-

torial reactive system with the following properties: the downstairs category does

not distinguishes the occurrences of controls, as desired when modelling agents of

a process calculus; the upstairs one does distinguish them, thus providing sufficient

RPOs as shown in Chapter 6.

Chapter 6: I take up the task of proving that sufficient RPOs exist in a category of

action graph contexts. My strategy is to follow an indirect route: rather than try

to construct RPOs directly in a category of contexts, I shift the problem to that of

looking for a related construction called a relative coproduct in a category of action

graphs and embeddings. The motivation for this choice is to avoid some of the

heaviness inherent in manipulating contexts: the equality of two decompositions,

such as in C0a0 = C1a1, contains much redundant information about the nodes and

arcs of the component contexts. The important data is how a0 and a1 overlap in the

Chapter 1. Introduction 18

common action graph C0a0 = C1a1. The embeddings category is the right setting

for analysing this: each embedding is a tuple of functions mapping the nodes and

ports of one action graph into another. Thus, given two embeddings ηi : ai b into

the same action graph b =̂ C0a0 = C1a1, it is clear how the nodes and arcs of a0

and a1 overlap. The chapter defines embeddings and gives necessary and sufficient

conditions for the existence of relative coproducts. A simple corollary then shows

that sufficient RPOs exist in the contexts category provided that the redexes satisfy

a constraint on their wiring. As a result, all of the congruence proofs in Chapter 3

are applicable to the family of functorial reactive systems formed from action graphs.

Chapter 7: The preceding chapter showed that sufficient RPOs exist provided the wiring

present in redexes is constrained. This chapter argues that this constraint is rea-

sonable and shows an example of undesirable non-determinism in the pattern of

reactions when the constraint is not satisfied. It transpires that by confining redexes

so as to satisfy two further “reasonable” wiring requirements on redexes, a beautiful

categorical property holds, namely that the preimages of redexes are epis. The epi

property may be exploited abstractly (Chapter 3) to prove that id-labelled transi-

tions and reactions correspond exactly. The chapter concludes by speculating about

other possible concrete and abstract constraints on redexes and the benefits gained

when they are satisfied.

Chapter 8: This chapter first reviews some of the accomplishments of this dissertation

and then discusses future research. The latter includes two main lines. The first is

the extension of the action graph contexts handled in Chapter 5 to include richer

features such as nesting, free names, binding, and full reflexion. The second is the

extension of graphs and of functorial reactive systems to deal with multi-hole redexes

in order to capture the full uniformity of reaction rules with metavariables. The goal

of both of these is to create a shared theory that is sufficiently powerful to provide

lightweight labelled transitions and useful operational congruences for current and

future process calculi

Appendix A: This appendix reviews the category theory required in this dissertation.

Appendix B: The second appendix considers a variation based on retractions of the

labelled transitions defined in Chapter 3; the result is that id-labelled transitions

match the reaction relation exactly.

Chapter 2

Operational congruences for

reactive systems

2.1 Formalisation of reactive systems

In this section I investigate how to give reactive systems, which were introduced informally

in Section 1.2, a precise category-theoretic definition. The goal is to include appropriate

categorical structure so that it is possible to derive labelled transitions and prove that

several operational equivalences and preorders are congruences. To that end, I first study

relative pushouts (RPOs) and idem pushouts (IPOs), which are universal constructions

related to pushouts. I then show how to derive labelled transitions from a set of reaction

rules, with IPOs playing the central role. Finally I prove by categorical reasoning that if

sufficiently many RPOs exist then strong bisimulation is a congruence. The next chapter

considers richer notions of equivalences and reactive systems, proving that the former are

congruences.

This dissertation employs only basic category theory, such as simple universal con-

structions, slices (and coslices), monoidal structures, and functors. A summary of all the

required theory is given in Appendix A.

Throughout this chapter, I use lowercase roman letters a, b, . . . for agents (processes)

and uppercase roman letters C,D, . . . for agent contexts (process contexts). Both are

arrows in a category of contexts (as explained below). Juxtaposition is used for categorical

composition. Other notation is explained as it comes up.

How do we get at the essence of reactive systems, i.e. how do we find mathematical

structure that is simple enough to get general results about congruences and rich enough

to encompass significant examples? The key ingredients of a reactive system were shown

in Section 1.2 and are recalled here:

• syntax (agents and agent contexts);

19

Chapter 2. Operational congruences for reactive systems 20

• structural congruence;

• set of reactive (non-guarding) contexts;

• reaction rules.

For each, I outline the mathematical design space and explain the decisions I have taken.

syntax: Since contexts are composable, I take them to be the arrows of some category

C. This presents an immediate question. Are the objects of C agents or sorts?

Following the former route leads to a problem: If we think of a context C as an

embedding of an agent a into an agent a′, i.e. “ C : a a′ ”, then there is no easy

way to apply C to a different agent. For example, we cannot state the congruence

property of an equivalence ∼: if a ∼ b for agents a and b then C “applied to” a

and C “applied to” b are ∼-equivalent for all contexts C. In Chapter 6 I return to

embeddings (which are critical in proving the existence of universal constructions for

categories of graphs) but concentrate now on a category C of contexts and sorts. If

the objects are the sorts (or “types” or “arities”) of the contexts, then agents are a

special subclass of contexts. In particular, agents are contexts with a null hole, i.e.

contexts whose domain is some distinguished object 0. Now the congruence property

of ∼ is neatly rendered: if a ∼ b for all arrows a, b : 0 m, then Ca ∼ Cb for all

arrows C with domain m.

For concreteness, consider as an example a category of contexts for some Algol-like

programming language. The objects of the category could comprise the usual types:

bool , int , cmd . Then we have the following examples of arrows:

C0 =̂ if − then x := 0 else skip : bool cmd

C1 =̂ 14 < − : int bool

C0C1 = if 14 < − then x := 0 else skip : int cmd .

Another example is of a category of linear multi-hole term algebra contexts over some

signature Σ. These are considered in more detail in Section 3.8. The objects are

natural numbers. The arrows m n are n-tuples of terms over Σ ∪ {−1, . . . ,−m},

where each symbol −i is used exactly once. For example, if Σ = {α, α′, β, γ}, where

α and α′ are constants, β is a 1-place function symbol, and γ is a 2-place function

symbol, then:

C0 =̂ 〈γ〈−2, α
′〉, α, β〈−1〉〉 : 2 3

C1 =̂ 〈α, β〈α′〉〉 : 0 2

C0C1 = 〈γ〈β〈α′〉, α′〉, α, β〈α〉〉 : 0 3 .

2.1. Formalisation of reactive systems 21

structural congruence: The main decision here is whether to make structural congru-

ence explicit or implicit. The simplest solution (which is the one taken in this

dissertation) is leave it implicit in the definition of arrow equality — thus the arrows

are structural equivalence classes of contexts. Consequently, certain categories (such

as those of graph contexts, see Chapter 5) do not have enough universal construc-

tions to give the desired congruence results. In these cases, we are forced to look for

the universal constructions in less quotiented categories and then exhibit functors

with special properties back to the fully quotiented categories (see Section 3.2).

set of reactive contexts: This is modelled by a set D of arrows. Since reactive contexts

are composable and identity contexts are reactive, I takeD to be a subcategory of C.

Furthermore, decomposing reactive contexts yields reactive contexts, so D1D0 ∈ D

implies D1, D0 ∈ D.

For example, in the call-by-value λ-calculus [Plo75], the reactive contexts consist of

all compositions of the following contexts:

− ap(v,−) ap(−, a)

where v is any value (closed abstraction) and a is any term. In the π-calculus (see

[Mil90]), the reactive contexts consist of all compositions of following contexts (closed

under structural congruence):

− (νx)(−) − | a

where x is any name and a is any process. Reactive contexts correspond to evaluation

contexts of Felleisen and Friedman [FF86].

reaction rules: These are given by a set Reacts of redex-contractum pairs of agents (l, r)

with common codomain, i.e. (l, r) ∈ Reacts implies that there is an object m of

C such that l, r : 0 m. For simplicity, I consider redexes and contractums that

are pure agents, not agents with meta-variables (i.e. contexts). Thus, to define the

reactions of CCS, we let

Reacts =̂
{(

x̄.a | x.b , a | b
)

/ x is a name and a, b are agents
}

rather than:

Reacts =̂
{(

x̄.−1 | x.−2 , −1 | −2

)

/ x is a name
}

.

I use / throughout this dissertation for set comprehensions. The latter approach

maintains the maximum uniformity present in rules and is considered in detail by

Sewell in [Sew01]; however, that approach is complex and would require future work

to adapt it to the categorical setting of this dissertation (see Chapter 8).

Chapter 2. Operational congruences for reactive systems 22

Distilling the structures described in the past paragraphs yields the following definition

of a reactive system and a reaction relation:

Definition 2.1 (reactive system) A reactive system consists of a category C with

added structure. We let m,n range over objects. C has the following extra components:

• a distinguished object 0 (not necessarily initial);

• a set of reaction rules called Reacts ⊆
⋃

m∈objCC(0,m)2, a relation containing pairs

of agents with common codomain;

• a subcategory D of C, whose arrows are the reactive contexts, with the property

that D1D0 ∈ D implies D1, D0 ∈ D. ¥

Definition 2.2 (reaction relation) Given a reactive system C, the reaction relation

⊆
⋃

m∈objCC(0,m)2 contains pairs of agents with common codomain and is defined

by lifting the reaction rules through all reactive contexts:

a a′ iff ∃(l, r) ∈ Reacts, D ∈ D. a = Dl & a′ = Dr . ¥

We now have enough definitions to make precise the first approximation for labelled

transitions given in (1.1). The only change is that we think of composing arrows rather

than “applying contexts” and we are careful about which contexts are reactive (by writing

D ∈ D below):

Definition 2.3 (labelled transition — first approximation)

a F a′ iff Fa a′

iff ∃(l, r) ∈ Reacts, D ∈ D. Fa = Dl & a′ = Dr . ¥

¨

§

¥

¦
0 a

l F

D 2.1

The commuting square to the right renders the equality Fa = Dl. As

I argued in Section 1.2, there may be “junk” in F and D, i.e. parts of F

and D that do not contribute to the reaction. For example, in a category of

CCS contexts, the outside square in Figure 2.2 commutes. So, by the naive definition of

labelled transitions given above,

x̄.a
−|x.b|y

a | b | y (2.1)

But the y in the label is superfluous. Is there a general condition on Figure 2.1 that

prevents this labelled transition, but still allows the following:

x̄.a
−|x.b

a | b ?

2.2. Categorical basis for contextual labels 23

¨

§

¥

¦

0 x̄.a

x̄.a|x.b −|x.b|y

−|y

−|x.b

−
−|y

2.2

Informally, the condition would state that there is

no lesser upper bound in Figure 2.1 for a, l than F,D.

In Figure 2.2 there clearly is a lesser upper bound, as

illustrated by the triple of arrows inside the square.

In the following sections I render this condition in

terms of categorical constructions and incorporate it

in a new definition of labelled transitions. I then show that strong bisimulation is a

congruence with respect to this labelled transition relation. A variety of preorders and

other operational equivalences are discussed in the next chapter.

2.2 Categorical basis for contextual labels

The goal of this section is to find a tractable definition of a labelled transition relation, one

which readily leads to congruential equivalences and preorders and moreover facilitates

proofs concerning these relations. Intuitively, the labels represent just the information

exchanged between an agent and its environment in order to make a reaction.¨

§

¥

¦

a

l F
F ′

D

D′

GG

2.3

Following the intuitions of the previous sections concerning

Figure 2.1, the natural question is as follows. How can F,D be

forced to contain no “junk”? A possible solution is to require that

F and D are a “least upper bound” for a and l. The typical way to

formulate this is to state that the square in Figure 2.3 is a pushout,

i.e. has the property: Fa = Dl, and for every F ′ and D′ satisfying F ′a = D′l there exists

a unique G such that GF = F ′ and GD = D′, as shown here.

Unfortunately, pushouts rarely exist in the categories that interest us. Consider, for

example, a category of term contexts over a signature Σ; its objects consist of 0 and 1;

its arrows 0 1 are terms over Σ; its arrows 1 1 are one-hole contexts over Σ; there

are no arrows 1 0 and exactly one arrow id0 : 0 0. Now, if Σ contains only constant

symbols, say Σ = {α, α′}, then there is no pushout completing Figure 2.4(1) because there

are no contexts other than the identity. If we introduce a 2-place function symbol β into

Σ, we can construct an upper bound for α and α′ but still no pushout (Figure 2.4(2)).

A more refined approach is to assert that F and D are a “minimal upper bound” —

informally, an upper bound for which there are no lesser upper bounds. Before defining

this notion in terms of idem pushouts (IPOs), I give a more basic construction, namely

that of relative pushouts (RPOs). The latter, unlike pushouts, exist in many categories of

agent contexts.

The plan for the rest of this section is to develop a sequence of propositions that will

serve as a basis for the proofs of congruence by categorical reasoning given in a later

section of this chapter and in subsequent chapters of the dissertation.

Chapter 2. Operational congruences for reactive systems 24

0 1

1 1

α

α′ @

@

2.4(1)

0 1

1

1 1

α

α′ β〈−,α′〉

β〈α,−〉

β〈α′,−〉

β〈−,α〉

@

@

2.4(2)

Figure 2.4: Non-existence of pushouts

m

f0

f1 g0

g1

2.5(1)

m

f0

f1 g0

g1

h0

h1 h

2.5(2)

m

f0

f1 g0

g1

h0

h1
h

h′

h′0

h′1

kk

2.5(3)

Figure 2.5: Construction of an RPO

Because RPOs and IPOs are categorical constructions independent of reactive systems,

I shall work in this section with an arbitrary category C whose arrows and objects I denote

by f, g, h, k, x, y, z and m,n; in pictures I omit labels on the objects when possible.

Definition 2.4 (RPO) In any category C, consider a commuting square (Figure 2.5(1))

consisting of g0f0 = g1f1. An RPO is a triple h0, h1, h satisfying two properties:

commutation: h0f0 = h1f1 and hhi = gi for i = 0, 1 (Figure 2.5(2));

universality: for any h′0, h
′
1, h

′ satisfying h′0f0 = h′1f1 and h
′h′i = gi for i = 0, 1, there exists

a unique mediating arrow k such that h′k = h and khi = h′i (Figure 2.5(3)). ¥

A triple, such as h′0, h
′
1, h

′ given above, that satisfies the commutation property, i.e.

h′0f0 = h′1f1 and h′h′i = gi for i = 0, 1, is often called a candidate. Thus an RPO triple is

a candidate for which there is a unique mediating arrow from it to any other candidate.

An RPO for Figure 2.5(1) is just a pushout in the slice category of C over m. Thus an

RPO is a standard combination of categorical constructions — though it is not commonly

used in category theory and its application to reactive systems is novel.

In later chapters, I illustrate the existence of RPOs for categories of graphs. For

concreteness, though, it is worth examining now the example of an RPO and another

2.2. Categorical basis for contextual labels 25

β〈α〉

α δ〈γ〈−〉〉

−

δ〈γ〈β〈−〉〉〉

β〈−〉

δ〈γ〈−〉〉

δ〈−〉

γ〈−〉

γ〈β〈−〉〉

γ〈−〉

Figure 2.6: An example of an RPO and another candidate

candidate shown in Figure 2.6. The arrows are in a category of term algebra contexts over

the signature {α, β, γ, δ}, where α is a constant and β, γ, δ are 1-place function symbols.

The RPO triple −, β〈−〉, δ〈γ〈−〉〉 adds just the minimal extra bit of context β〈−〉 to α

in order to get an upper bound for β〈α〉 and α; the arrow δ〈γ〈−〉〉 then provides the

extra junk necessary to recover the upper bound provided by the surrounding square. The

reader may enjoy checking that the candidate triple γ〈−〉, γ〈β〈−〉〉, δ〈−〉 is the only other

non-trivial one possible and that the mediating dotted arrow γ〈−〉 is unique.

A square is called an IPO if it has an RPO of a special kind:

Definition 2.5 (IPO) The commuting square in Figure 2.5(1) is an IPO if the triple

g0, g1, idm is an RPO. ¥

The difference between a pushout and an IPO is clearest in a partial order category:

a pushout is a least upper bound (i.e. less than any other upper bound) and an IPO is

a minimal upper bound (i.e. not greater than any other upper bound). IPOs form the

basis of our abstract definition of labelled transition and their existence follows from that

of RPOs as shown by the proposition immediately after the following lemma:

¨

§

¥

¦
n

m

f0

f1 g0

g1

h0

h1 h

2.7

Lemma 2.6 If Figure 2.7 is an RPO diagram and j : n n satisfies

hj = h

jhi = hi (i = 0, 1)

then j = idn.

Proof If we think of the triple h0, h1, h as a candidate itself, then by the RPO property

Chapter 2. Operational congruences for reactive systems 26

there exists a unique j ′ : n n such that:

hj′ = h

j′hi = hi (i = 0, 1)

Therefore j = j ′ = idn. ¥

¨

§

¥

¦
n

m

f0

f1 g0

g1

h0

h1 h

2.8 n

f0

f1 h0

h1
2.9

Proposition 2.7 (IPOs from RPOs) If Figure 2.8

is an RPO diagram then the square in Figure 2.9 is

an IPO.

Proof Consider any candidate triple h′0, h
′
1, h

′ in-

side Figure 2.9; the components satisfy the following

equations:

h′0f0 = h′1f1

h′h′i = hi (i = 0, 1) (2.2)

We can therefore shift this candidate over to Figure 2.8 by considering the triple h′0, h
′
1, hh

′.

Since Figure 2.8 is an RPO, there exists a unique k such that:

hh′k = h (2.3)

khi = h′i (i = 0, 1) (2.4)

Therefore, h′khi =
(2.4) h′h′i =

(2.2) hi. By Lemma 2.6, h′k = idm. Uniqueness: suppose k′

satisfies: h′k′ = idm and k′hi = h′i. Then k
′ has the same property as k in (2.3) and (2.4),

therefore k′ = k as desired. ¥

The next result provides a partial converse to the previous proposition. It serves as a

key part of the proof of IPO pasting which comes afterwards:

¨

§

¥

¦m

f0

f1 h0

h1
2.10

f0

f1 hh0

hh1
2.11

m

f0

f1 hh0

hh1

h0

h1

h

2.12

Proposition 2.8 (RPOs from

IPOs) If Figure 2.10 is an IPO

and Figure 2.11 has an RPO then

Figure 2.12 is an RPO.

Proof Let g0, g1, g be an RPO for

Figure 2.11 and suppose Cod g0 = Cod g1 = Dom g = m′. Then h0, h1, h is a candidate,

hence there exists a unique k : m′ m such that:

hk = g (2.5)

kgi = hi (i = 0, 1) (2.6)

2.2. Categorical basis for contextual labels 27

m′ m

f0

f1 hh0

g0
h0

k

g
h

j

hh1

g1
h1

Therefore, g0, g1, k is a candidate for Figure 2.10, hence there exists a unique j : m

m′ such that:

kj = idm (2.7)

jhi = gi (i = 0, 1) (2.8)

Now

gjk =(2.5) hkjk =(2.7) hk =(2.5) g

jkgi =
(2.6) jhi =

(2.8) gi

Therefore by Lemma 2.6, jk = idm′ , which in conjunction with (2.7), implies that j and

k are isos. Thus Figure 2.12 is an RPO, as desired. ¥

IPOs can be pasted together as shown by the following proposition, which is analogous

to the standard pasting result for pushouts.

¨

§

¥

¦n m

f0

x y

g0

z

f1
g1 2.13 n m

f0

x
g0

f1

z

g1 2.14

Proposition 2.9 (IPO pasting) Suppose that

both squares in Figure 2.13 commute and that

Figure 2.14 has an RPO. Then the following

properties hold of Figure 2.13:

1. If the two squares are IPOs then so is the big rectangle.

2. If the big rectangle and the left square are IPOs then so is the right square.

Proof

Chapter 2. Operational congruences for reactive systems 28

¨

§

¥

¦
n′

n m

f0

x

g0

h0

z
hh1

f1
g1 2.15

1. Let h0, h1, h be a candidate for the big rectangle of Figure 2.13,

i.e. h0g0f0 = h1x, hh0 = z, and hh1 = g1f1, as shown in

Figure 2.15.

By hypothesis, the left square of Figure 2.13 is an IPO and

Figure 2.14 has RPOs; therefore by Proposition 2.8, y, f1, g1 is

an RPO for Figure 2.14. By construction, h0g0, h1, h is a candidate, hence there

exists a unique k : n n′ such that:

hk = g1

ky = h0g0

kf1 = h1 (2.9)

Therefore h0, k, h is a candidate for the right square of Figure 2.13. Hence there

exists a unique j : m n′ such that

hj = idm (2.10)

jg1 = k (2.11)

jz = h0 (2.12)

n n′

n m

f0

x

y
g0

g0

k

g1 h

h0

z
f1

h1

f1
g1

j

Now

jg1f1 =
(2.11) kf1 =

(2.9) h1 (2.13)

By (2.10), (2.12), and (2.13) j is a mediating arrow. Uniqueness: suppose j ′ : m n′

satisfies the same specification:

hj′ = idm (2.14)

j′g1f1 = h1 (2.15)

j′z = h0 (2.16)

2.2. Categorical basis for contextual labels 29

Then j′g1 satisfies k ’s universal property because of (2.15) and

hj′g1 =
(2.14) g1

j′g1y =Figure 2.13 j′zg0 =
(2.16) h0g0

Hence j′g1 = k by the uniqueness of k. Therefore j ′ satisfies the universal property

of j, and hence j ′ = j as desired. ¨

§

¥

¦
n′

n m

g0

y z

g1

h0

h1

h

2.16

2. Let h0, h1, h be a candidate for the right square of Figure 2.13,

i.e. h0g0 = h1y, hh0 = z, and hh1 = g1, as shown in

Figure 2.16. Then h0, h1f1, h is a candidate for the big rect-

angle of Figure 2.13 therefore there exists a unique j : m n′

such that

hj = idm (2.17)

jz = h0 (2.18)

jg1f1 = h1f1 (2.19)

By hypothesis, the left square of Figure 2.13 is an IPO and Figure 2.14 has an RPO;

therefore by Proposition 2.8, y, f1, g1 is an RPO for Figure 2.14. By construction,

h0g0, h1f1, h is a candidate. Therefore there exists a unique k : n n′ such that:

hk = g1

ky = h0g0

kf1 = h1f1

Then h1 satisfies the universal property of k, therefore k = h1. Now, jg1 satisfies

the same universal property because of (2.19) and

hjg1 =
(2.17) g1

jg1y =Figure 2.13 jzg0 =
(2.18) h0g0

Therefore jg1 = k = h1 and hence by (2.17) and (2.18), j is the required mediating

arrow. Uniqueness: suppose j ′ is also a mediating arrow. Then hj ′ = idm, j′z = h0,

and j′g1 = h1; the first two are analogues of (2.17) and (2.18); postmultiplying the

last equation by f1 gives the an analogue of (2.19). Therefore j ′ = j as desired. ¥

Finally, I conclude this collection of categorical results with three concerning IPOs;

they are not immediately relevant to this chapter, but play an important role later in the

dissertation.

The first asserts that if the left-leg of an IPO is an iso then so is the right-leg.

Chapter 2. Operational congruences for reactive systems 30

¨

§

¥

¦

m

m

n

g0

f0 f1

idm

g1

g0f
−1
0

f1

2.17

Proposition 2.10 If the outside square in Figure 2.17 is an IPO

and f0 is an iso then f1 is an iso.

Proof Let f−10 be the inverse of f0. Then all the triangles in

Figure 2.17 commute. Therefore, there exists (a unique) k : n

m such that f1k = idn, kf1 = idm, and kg1 = g0f
−1
0 . The first two

conditions imply that f1 is an iso. ¥

The second asserts that IPOs can arise from epis.

¨

§

¥

¦

f0

f1 id

g1

x0

x1
x

x0x0 2.18

Proposition 2.11 Suppose f1 is an epi. Then the outer square

in Figure 2.18 is an IPO.

Proof Consider any candidate x0, x1, x for Figure 2.18, i.e.

x0f0 = x1f1 (2.20)

xx0 = id (2.21)

xx1 = g1 (2.22)

Then x0g1f1 =
Figure 2.18 x0f0 =

(2.20) x1f1. Since f1 is an epi, x0g1 = x1. This last equation

plus (2.21) imply that x0 is a mediating arrow. It is unique because any mediating arrow

k must satisfy k id = x0, i.e. k = x0. ¥

The final result asserts that only a subcategory of C plays any

role in characterising that a particular square is an IPO.

¨

§

¥

¦
m

m′

f0

f1 g0

g1 2.19

Proposition 2.12 Let m,m′ be objects of C and let C′ be a full sub-

category of C satisfying the following property:

objC′ ⊇ {n ∈ objC / ∃h ∈ C(m,n) & ∃h′ ∈ C(n,m′)} .

Suppose the square in Figure 2.19 commutes, where fi, gi ∈ C
′ for i = 0, 1. Then the

square is an IPO in C iff it is an IPO in C′.

Proof The only arrows relevant to the square being an IPO inC are contained inC′. ¥

2.3 Labelled transitions and congruence for strong bisimu-

lation

The category theory developed in the previous section provides the machinery needed in

this section to accomplish two aims. The first is to improve the unsatisfactory definition

of labelled transition given earlier (Definition 2.3). The second is to prove that strong

bisimulation over the new labelled transitions is a congruence. I return to the notations of

Section 2.1, using C for a reactive system, with a, b ∈ C ranging over arrows with domain

0 (agents) and C,D,F ∈ C ranging over arbitrary arrows (contexts).

2.3. Labelled transitions and congruence for strong bisimulation 31

¨

§

¥

¦
0 a

l F

D 2.20

The new version of labelled transitions is a modification of the approxi-

mation given by Definition 2.3, where the condition Fa = Dl is strengthened

to require that the square in Figure 2.20 is an IPO:

Definition 2.13 (labelled transition) a F a′ iff there exists (l, r) ∈ Reacts and

D ∈ D such that Figure 2.20 is an IPO and a′ = Dr. ¥

This definition assures that F,D provides a minimal upper bound on a and l, as

required in Section 2.1. For suppose there is another upper bound F ′, D′, i.e. F ′a = D′l,

and also F = RF ′ and D = RD′ for some R. Then the IPO property for Figure 2.20

ensures that for some R′ (with RR′ = id) we have F ′ = R′F and D′ = R′D — so F,D

provides a “lesser” upper bound than F ′, D′ after all.

Proposition 2.14 For all contexts F we have that a F a′ implies Fa a′. ¥

The converse fails in general (which is good, given the remarks made after Definition 2.3

about the first approximation for labelled transitions). I return to the converse property

later in Section 3.4 in the special case that F is an iso. Strong bisimulation over ·

follows its usual scheme [Par81]:

Definition 2.15 (strong bisimulation over ·) Let S ⊆
⋃

m∈objCC(0,m)2 be a

relation that contains pairs of agents with common codomain. S is a simulation over ·

iff S satisfies the following property for all (a, b) ∈ S: if a F a′ then there exists b′

such that b F b′ and (a′, b′) ∈ S. S is a strong bisimulation iff S and S−1 are strong

simulations. Let ∼ be the largest strong bisimulation over · . ¥

I now state and prove the congruence result for strong bisimulation, one of the central

results of this dissertation: if C has a sufficiently rich collection of RPOs then ∼ is a

congruence.

Definition 2.16 (C has all redex-RPOs) Say that C has all redex-RPOs if for all

(l, r) ∈ Reacts and arrows a, F,D such that D ∈ D and Fa = Dl, the square in Figure 2.20

has an RPO. ¥

Theorem 2.17 (congruence for ∼) Let C be a reactive system which has all redex-

RPOs. Then ∼ is a congruence, i.e. a ∼ b implies Ca ∼ Cb for all C ∈ C with required

domain.

Proof By symmetry, it is sufficient to show that the following relation is a strong sim-

ulation:

S =̂ {(Ca,Cb) / a ∼ b and C ∈ C} .

The proof falls into three parts, each of which is an implication as illustrated in

Figure 2.21(1). Dashed lines connect pairs of points contained within the relation an-

notating the line. Each arrow “ ⇓ ” is tagged by the part of the proof below that justifies

the implication. Suppose that a ∼ b and C ∈ C, and thus (Ca,Cb) ∈ S.

Chapter 2. Operational congruences for reactive systems 32

Ca a′=C′D′r

⇓(i)

a D′r

⇓(ii)

b b′′=E′r′

⇓(iii)

Cb C′b′′=C′E′r′

F

S S

F

F ′

∼

F ′

∼

2.21(1)

0 a

l

C

F ′
F

D

D′ C′

2.21(2)

0 a

l F ′

D′

2.21(3)

C

F ′ F

C′

2.21(4)

0 b

l′ F ′

E′

2.21(5)

0 b

l′

C

F

E′ C′

2.21(6)

Figure 2.21: Congruence proof for strong bisimulation

(i): If Ca F a′ then, by definition, there exists (l, r) ∈ Reacts and D ∈ D such that

the big rectangle in Figure 2.21(2) is an IPO and a′ = Dr. Because C has all

redex-RPOs, there exists F ′, D′, C ′ forming an RPO as in Figure 2.21(2); moreover,

D′, C ′ ∈ D since C ′D′ = D ∈ D. By Proposition 2.7, Figure 2.21(3) is an IPO.

Because C has all redex-RPOs, Proposition 2.9 implies that Figure 2.21(4) is an

IPO too. By definition, a F ′ D′r and a′ = C ′D′r.

(ii): Since a ∼ b, there exists b′′ such that b F ′ b′′ and D′r ∼ b′′. By definition there

exists (l′, r′) ∈ Reacts and E ′ ∈ D such that Figure 2.21(5) is an IPO and b′′ = E′r′.

(iii): Because C has all redex-RPOs, Proposition 2.9 implies that we can paste

Figure 2.21(5) with Figure 2.21(4) (both IPOs) along F ′ and conclude that

Figure 2.21(6) is an IPO. Hence Cb F C ′E′r′ and (C ′D′r, C ′E′r′) ∈ S because

D′r ∼ E′r′, as desired. ¥

The crux of the above proof is that Figure 2.21(4), which mediates between an F ′-

labelled transition of a and an F -labelled transition of Ca, is “portable”, i.e. can be

pasted onto a new diagram, serving the same function for b and Cb. This essential idea

appears to be robust under variation both of the definition of labelled transition and of

the congruence being established. Many examples are shown in Chapter 3.

We can isolate precisely in two lemmas how such portable IPO squares are cut and

then pasted. These lemmas are just pieces of the congruence proof above, but their

2.3. Labelled transitions and congruence for strong bisimulation 33

factorisation from the main proof greatly simplifies the latter and lays the ground for

tractable presentations of more difficult congruences results in the next chapter.

The first lemma shows that portable IPO squares arise when a composite agent has a

labelled transition:

Lemma 2.18 (portable IPO cutting) If C has all redex-RPOs then the following

inference rule holds:

Ca F a′

∃ a′′ and an IPO
C

F ′ F

C′
. a F ′ a′′ a′ = C ′a′′ C ′ ∈ D

.

¥

The second shows how to “paste” a portable square to gain a labelled transition of a

composite agent:

Lemma 2.19 (portable IPO pasting) If C has all redex-RPOs then the following

inference rule holds:

C

F ′ F

C′
is an IPO a F ′ a′′ C ′ ∈ D

Ca F C ′a′′
.

¥

We can now replay the proof of Theorem 2.17 in a more concise form by employing

these lemmas: ¨

§

¥

¦
C

F ′ F

C′ 2.22
(i): If Ca F a′ then by Lemma 2.18, there exists a′′ and an IPO square

shown in Figure 2.22 such that

a F ′ a′′ a′ = C ′a′′ C ′ ∈ D .

(ii): Since a ∼ b, there exists b′′ such that b F ′ b′′ and a′′ ∼ b′′.

(iii): Since Figure 2.22 is an IPO and C ′ ∈ D, Lemma 2.19 implies that Cb F C ′b′′.

Also, a′′ ∼ b′′ implies (C ′a′′, C ′b′′) ∈ S, as desired.

Let us return to Lemma 2.18 in order to expose an odd property. The Lemma contra-

dicts the situation in many process calculi: normally, Ca F does not necessarily imply

that a has any labelled transitions. In CCS, for example, 0 | x x (using the tradi-

tional CCS non-contextual labels) but 0 has no transitions. As a result, in typical proofs

of congruence for strong bisimulation, two cases are distinguished when considering the

transition Ca F (using the notation of this chapter):

Chapter 2. Operational congruences for reactive systems 34

• C and F together conspire to create the transition without reference to a. In this

case Cb F holds without using the assumption that a ∼ b. (For example, see “Case

2” on p. 98 of [Mil88].)

• Or, a, C, and F together conspire to create the transition, as in part (i) above.

Recasting the CCS example in terms of contextual labels, we have that 0 | x
−|x̄

. But

then there is a contextual transition for 0, namely 0
−|x|x̄

, though not a satisfactory one:

the label provides the entire redex, without any contribution from 0. This is attributable

to a defect in the definition of contextual labelled transitions: if a F , the IPO property

requires that F contain parts of the relevant redex and no extra junk, but does not prevent

F from containing all of the redex.

It is by enriching the categorical structure to express multi-hole contexts (see

Section 3.8) that we eliminate this defect of transitions. When we do, exactly the same

case analysis (shown above) is carried out when proving congruence.

Chapter 3

Further congruence results

3.1 Introduction

This chapter generalises the definition of labelled transition given in the previous chapter

and provides congruence proofs for additional equivalences and preorders. These include

weak bisimulation, the traces preorder, and the failures preorder. I will describe them in

turn as each congruence proof is presented.

The more important step, though, is the generalisation of reactive systems and la-

belled transitions. In the previous chapter, the central hypothesis required in the proof

of congruence for strong bisimulation is that the reactive system C has all redex-RPOs.

This chapter addresses the problem of what to do if C does not possess sufficient RPOs.

Such a situation arises when considering, for example, a category of graph contexts (see

Section 5.3). Roughly, the lack of RPOs is attributable to the absence of enough in-

tensional information about the occurrence of nodes: it is ambiguous which node in a

context corresponds to a node in the composition of the context with another. Thus if

C0B0 = C1B1, it is ambiguous which nodes are common to both C0 and C1 and thus

impossible to choose the context to be factored off when constructing an RPO.

What can be done when there are not enough RPOs in a reactive system? In general,

it is not a good solution simply to enrich the reactive system to force it to have enough

RPOs. The enrichment could yield a category with too much intensional information. For

example, the enrichment considered for graph contexts (Section 5.6) forces arrows with

the same domain and codomain to have the same number of nodes. Since the definition

of strong bisimulation requires that a ∼ b implies that a, b : 0 m for some object m,

the strong bisimulation relation could only compare arrows of the same number of nodes.

Such a restriction is unacceptable because strong bisimulation should include pairs of

agents with widely differing static structure.

The solution presented in this chapter is to accommodate two categories Ĉ and C

35

Chapter 3. Further congruence results 36

related by a functor:

Ĉ

C

F

.

The idea is that C is a reactive system, whose arrows correspond to the agents and agent

contexts; C does not necessarily have enough RPOs. Sitting “above” C is Ĉ, a category

with sufficient RPOs. The definition of the labelled transition relates arrows in C, just

as in the previous chapter: i.e. a F a′ is defined for a, a′ agents in C and F an agent

context of C. But, by contrast with the previous chapter, the definition is given in terms

of the existence of an IPO “upstairs” in Ĉ. (If Ĉ = C and F is the identity functor, then

the new definition of this chapter collapses into the old one given in the previous.)

Thus we get the best of both worlds: the agents whose labelled transition behaviour

we consider need not contain any superfluous intensional data; as long as we can construct

a more intensional category above containing sufficient RPOs and a suitable functor, then

we can get congruence results downstairs. ¨

§

¥

¦
C

F′ F

C′ 3.1

C0

F′0 F0

C′0 3.2

These congruence results require the functor F : Ĉ C to

satisfy certain properties. Most are trivial but one is interesting,

namely that F allows IPO sliding. Recall from the previous

chapter that the crux of the congruence proof for strong bisimulation was the portability

of the IPO square that related F ′-transitions of an agent to F -transitions of C applied to

the agent. This square was cut off when passing from Ca F to a F ′ and then pasted

back on when passing from b F ′ to Cb F . In the new definition of labelled transition

considered in this chapter, the pasting operation is more complex. The portable square,

e.g. Figure 3.1, now lives in Ĉ (the upstairs category) and its left leg is F′, some arrow for

which F(F′) = F ′. (Teletype font is used for arrows in Ĉ.) However, the transition b F ′

is justified by an IPO square upstairs whose right-leg is F′0, an arrow in the preimage of F ′

not necessarily equal to F′. Thus Figure 3.1 cannot be pasted without first sliding it to a

new IPO square, e.g. Figure 3.2, whose left-leg is F′0 and whose F-image is kept invariant.

The present chapter assumes that F allows IPO sliding; the next chapter proves that this

is the case when F is of a certain general form.

The outline of this chapter is as follows. In the next section, I define the notion of a

functorial reactive system, giving precise requirements for F . Then I define the reaction

and labelled transition relations. In the following section, I prove some results about

portable IPO squares that are direct analogies to those (Lemma 2.18 and Lemma 2.19)

at the end of the previous chapter. The main sections are concerned with a series of

congruence proofs for strong bisimulation, weak bisimulation, the traces preorder, and the

failures preorder. The final section treats a richer notion of functorial reactive system with

arrows corresponding to multi-hole contexts and shows that strong bisimulation is indeed

a congruence here as well.

3.2. Functorial reactive systems 37

3.2 Functorial reactive systems

The first part of the setup is to define precisely the notion of functorial reactive system,

which was introduced informally above. Its definition rests on that of a reactive system,

given in the previous chapter, which we recall here first for ease of reference:

Definition (reactive system recalled; see Definition 2.1) A reactive system consists

of a category C with added structure. We let m,n range over objects. C has the following

extra components:

• a distinguished object 0 (not necessarily initial);

• a set of reaction rules called Reacts ⊆
⋃

m∈objCC(0,m)2, a relation containing pairs

of agents with common codomain;

• a subcategory D of C, whose arrows are the reactive contexts, with the property

that D1D0 ∈ D implies D1, D0 ∈ D. ¥

Definition 3.1 (functorial reactive system) Let C be a reactive system. A functorial

reactive system over C consists of a functor F : Ĉ C which maps a distinguished object

ε ∈ obj Ĉ to 0 (the distinguished object of C) and which satisfies the following properties.

F lifts agents: for any a : 0 m there exists a : ε m such that F(a) = a.

F creates isos: if F(C) is an iso then C is an iso.

F creates compositions: if F(C) = C1C0, there exist C0, C1 ∈ Ĉ such that C = C1C0 and

F(Ci) = Ci for i = 0, 1. ¨

§

¥

¦
C

F′ F

C′ 3.3

C0

F′0 F0

C′0 3.4

F allows IPO sliding: for any IPO square as in Figure 3.3 and

any arrow F′0 with F(F
′
0) = F(F

′) there exist C0, C
′
0, F0 form-

ing an IPO square as in Figure 3.4 with

F(C0) = F(C) F(C′0) = F(C
′) F(F0) = F(F) . ¥

Throughout this chapter, I use uppercase teletype characters to denote arrows in Ĉ

and lowercase teletype characters (a, l, . . .) to denote arrows with domain ε in Ĉ.

The F images of these are agents in C. The special domain requirement of a, l, . . . is

left tacit throughout this chapter: thus (∃l ∈ Ĉ. . . .) means (∃l ∈ Ĉ. Dom l = ε & . . .).

The definition of the reaction relation is identical to the one given earlier:

Definition (reaction relation () recalled; cf. Definition 2.2) Given a functorial

reactive system F : Ĉ C, the reaction relation ⊆
⋃

m∈objCC(0,m)2 contains pairs

of agents with common codomain and is defined by lifting the reaction rules through all

reactive contexts: a a′ iff there exists D ∈ D and (l, r) ∈ Reacts such that a = Dl and

a′ = Dr. ¥

Chapter 3. Further congruence results 38

This definition has an alternative characterisation given by the following result:

Proposition 3.2 (characterisation of) a a′ iff there exist a, l, D ∈ Ĉ and

r ∈ C such that a = Dl and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a .

Proof Follows immediately because F lifts agents and creates compositions. ¥

We now turn to the definition of labelled transition. As stated earlier, · is a ternary

relation whose arguments are all arrows in C. The original requirement that a particular

square be an IPO in C (see Definition 2.13) is replaced here by requiring that there exist

a preimage of this square that is an IPO in Ĉ:

¨
§

¥
¦

a

l F

D 3.5

Definition 3.3 (labelled transition (·); cf. Definition 2.13) a F a′

iff there exist a, l, F, D ∈ Ĉ and r ∈ C such that Figure 3.5 is an IPO in Ĉ

and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a F(F) = F . ¥

Notice that a′, the RHS of the transition, is required to be F(D)r, and not F(Dr) for some

r with F(r) = r. This is important since it allows the reaction rules Reacts to contain

pairs (l, r) for which F-preimages of l and r might not have common codomains.

By analogy with Definition 2.16, we can define when a functorial reactive system F

has all redex-RPOs; the primary difference is that here the RPOs exist upstairs in Ĉ, not

downstairs in C: ¨
§

¥
¦

a

l F

D 3.6

Definition 3.4 (F has all redex-RPOs; cf. Definition 2.16) A functorial

reactive system F : Ĉ C has all redex-RPOs if any square, such as in

Figure 3.6, has an RPO, provided that F(D) ∈ D and that there exists r ∈ C

such that (F(l), r) ∈ Reacts. ¥

Note that we do not demand that all RPOs exist, just ones for which the left-leg of the

enclosing square is a preimage of a redex and the bottom leg is a preimage of an arrow in

D. (This narrowing of the definition is exactly analogous to what happens in the previous

chapter.)

3.3 Cutting and pasting portable IPO squares

This section replays the results at the end of the previous chapter which show how to cut

and paste portable IPO squares. The main difference lies in the proof of pasting: here we

make explicit use of the assumption that F allows IPO sliding.

3.3. Cutting and pasting portable IPO squares 39

The first result shows how the transitions of composite agents yield IPO squares:

Lemma 3.5 (portable IPO cutting; cf. Lemma 2.18) Suppose F : Ĉ C is a

functorial reactive system and has all redex-RPOs. The following inference rule holds:

Ca F a′

∃ a′′ ∈ C and an IPO square
C

F′ F

C′
.

(

a
F(F′)

a′′ a′ = F(C′)a′′ F(C′) ∈ D
F(C) = C F(F) = F

)

.

¨

§

¥

¦

a

l

C

F′
F

D

D′ C′

3.7

Proof By the definition of F and the hypothesis that F creates

compositions, there exists a, C, l, F, D ∈ Ĉ and r ∈ C such that the big

rectangle in Figure 3.7 is an IPO and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a F(C) = C F(F) = F .

Because F has all redex-RPOs, there exist F′, D′, C′ forming an RPO in Ĉ, as in Figure 3.7.

Then F(C′) ∈ D since F(C′)F(D′) = F(D) ∈ D. By Proposition 2.7, the small left-hand

square of Figure 3.7 is an IPO. Because F has all redex-RPOs, Proposition 2.9 implies that

the small right-hand square is an IPO too. By definition, a
F(F′)

a′′ and a′ = F(C′)a′′

where a′′ =̂ F(D′)r. ¥

The next result shows how the reactions of composite agents can be decomposed. There

is no analogue of this result the previous chapter since it is not needed in the congruence

proof for strong bisimulation.

Lemma 3.6 (portable IPO cutting for reactions) Suppose F : Ĉ C is a functorial

reactive system and has all redex-RPOs. The following inference rule holds:

Ca a′

∃ a′′ ∈ C and C′, F′ ∈ Ĉ.

(

a
F(F′)

a′′ a′ = F(C′)a′′ F(C′) ∈ D
F(C′F′) = C

)

.

Moreover, if F′ is an iso in the conclusion then it is equal to id. ¨

§

¥

¦

a

l

C

F′
id

D

D′ C′

3.8

Proof By Proposition 3.2 and the hypothesis that F creates compo-

sitions, there exist a, l, C, D ∈ Ĉ and r ∈ C such that the big rectangle

in Figure 3.8 commutes and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a F(C) = C .

Because F has all redex-RPOs, there exist F′, D′, C′ forming an RPO in Ĉ, as in Figure 3.8.

Because RPOs are a universal construction, we can assume without loss of generality that

Chapter 3. Further congruence results 40

if F′ is an iso, it is equal to id. Then F(C′) ∈ D since since F(C′)F(D′) = F(D) ∈ D.

By Proposition 2.7, the small left-hand square of Figure 3.8 is an IPO. By definition,

a
F(F′)

a′′ and a′ = F(C′)a′′ where a′′ =̂ F(D′)r. Finally, since the small right-hand

square commutes, C′F′ = C as desired. ¥

The final result shows how to paste a portable IPO square in order to gain a transition

for a composite agent. As stated above, this is where IPO sliding is used:

Lemma 3.7 (portable IPO pasting; cf. Lemma 2.19) Suppose F : Ĉ C is a

functorial reactive system and has all redex-RPOs. The following inference rule holds:

C

F′ F

C′
is an IPO a

F(F′)
a′ F(C′) ∈ D

F(C)a
F(F)

F(C′)a′
.

¨

§

¥

¦
a

l F′0

D 3.9

C0

F′0 F0

C′0 3.10

Proof Since a
F(F′)

a′ there exist a, l, F′0, D ∈ Ĉ and r ∈ C

such that Figure 3.9 is an IPO and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a F(F′0) = F(F
′) .

Since F allows IPO sliding, there exist C0, F0, C
′
0 ∈ Ĉ such that Figure 3.10 is an IPO and

F(C0) = F(C) F(F0) = F(F) F(C′0) = F(C
′) .

¨

§

¥

¦
a

l

D

C0

F0

C′0 3.11

Because F has all redex-RPOs, Proposition 2.9 implies that we can

paste Figure 3.9 with Figure 3.10 (both IPOs) along F′0 and conclude

that Figure 3.11 is an IPO. Thus F(C)a
F(F)

F(C′)F(D)r = F(C′)a′, as

desired. ¥

That concludes the setup for functorial reactive systems. The rest of the chapter is

devoted to a sequence of congruence proofs.

3.4 Strong bisimulation

This section proves that strong bisimulation is a congruence for a functorial reactive sys-

tem. The definition is straightforward:

Definition 3.8 (strong bisimulation over · ; cf. Definition 2.15) Let ∼ be the

largest strong bisimulation over · . ¥

The proof of congruence is almost identical to the one presented at the end of the

previous chapter: the only difference is that the updated IPO cutting and pasting results

for functorial reactive systems are substituted for the old ones.

3.4. Strong bisimulation 41

Ca a′=F(C′)a′′

⇓(i)

a a′′

⇓(ii)

b b′′

⇓(iii)

Cb F(C′)b′′

F

S S

F

F(F′)

∼

F(F′)

∼

Figure 3.12: Schema of the congruence proof for ∼

Theorem 3.9 (congruence for ∼) Let F : Ĉ C be a functorial reactive system

which has all redex-RPOs. Then ∼ is a congruence, i.e. a ∼ b implies Ca ∼ Cb for all

C ∈ C of the required domain.

Proof By symmetry, it is sufficient to show that the following relation is a strong sim-

ulation:

S =̂ {(Ca,Cb) / a ∼ b and C ∈ C} .

The proof falls into three parts, each of which is an implication as illustrated in Figure 3.12.

Dashed lines connect pairs of points contained within the relation annotating the line. Each

arrow “⇓” is tagged by the part of the proof below that justifies the implication. Suppose

that a ∼ b and C ∈ C, and thus (Ca,Cb) ∈ S. ¨

§

¥

¦
C

F′ F

C′ 3.13
(i): If Ca F a′ then by Lemma 3.5, there exist a′′ ∈ C and an IPO square

shown in Figure 3.13 such that a
F(F′)

a′′ and

a′ = F(C′)a′′ F(C′) ∈ D

F(C) = C F(F) = F .

(ii): Since a ∼ b, there exists b′′ such that b
F(F′)

b′′ and a′′ ∼ b′′.

(iii): Since Figure 3.13 is an IPO and F(C′) ∈ D, Lemma 3.7 implies that Cb F F(C′)b′′.

Also, a′′ ∼ b′′ implies (F(C′)a′′,F(C′)b′′) ∈ S, as desired. ¥

In most process calculi the reaction relation and the τ -labelled transition relation

coincide. See, for example Proposition 5.2 in [Mil92] and Theorem 2 in [Sew00]. A τ

Chapter 3. Further congruence results 42

transition is a “silent move”: a transition that takes place without interacting with the

external environment. Intuitively, a τ -labelled transition corresponds to an id-labelled

transition when using contexts as labels, i.e. a id a′ iff the environment need only supply

a vacuous identity context in order to enable a to react. However, if we look carefully

at the definition of labelled transition given in Definition 3.3 and the characterisation of

reaction in Proposition 3.2, we see that id and are not necessarily identical. There

is an implication in one direction, namely id ⊆ , since every IPO square is also a

commuting square, but not necessarily the converse. Indeed, Example 5.2 (p. 77) contains

a non-IPO commuting square whose bottom- and right-legs are both identity arrows.

In the special situation when all preimages of redexes are epis, id and do coin-

cide, thanks to Proposition 2.11. This situation is explored at the end of this section in

Proposition 3.15.

Before taking the epi hypothesis on board let us a consider an alternate definition of

labelled transition for which we do recover the reaction relation:

Definition 3.10 (labelled transition by cases (·c))

a F
c a′ iff

{

Fa a′ if F is an iso

a F a′ if F is not an iso .

¥

It follows immediately from the definition that a id
c a′ iff a a′. Furthermore,

the induced strong bisimulation (defined next) is a congruence, as shown below. It is

worth considering whether there are other definitions that recover the reaction relation

but do not involve case analysis. This point is taken up in Appendix B where I present

a definition of labelled transition that satisfies this requirement; I show furthermore that

this definition induces a congruence which includes ∼c. Let us return to the main flow of

the argument now and consider ∼c in detail.

Definition 3.11 (strong bisimulation over ·
c) Let ∼c be the largest strong bisim-

ulation over ·
c . ¥

Theorem 3.12 (congruence for ∼c) Let F : Ĉ C be a functorial reactive system

which has all redex-RPOs. Then ∼c is a congruence, i.e. a ∼c b implies Ca ∼c Cb for all

C ∈ C of the required domain.

Proof By symmetry, it is sufficient to show that the following relation is a strong simulation:

S =̂ {(Ca,Cb) / a ∼c b and C ∈ C} .

Suppose that a ∼c b and C ∈ C, and thus (Ca,Cb) ∈ S. Suppose Ca
F

c a′.

Case F is an iso: Then Ca F−1a′. By Lemma 3.6, there exist C′, F′ ∈ Ĉ and a′′ ∈ C such
that a

F(F′)
a′′, thus a

F(F′)
c a′′, and

a′ = FF(C′)a′′ F(C′) ∈ D F(C′F′) = C .

3.4. Strong bisimulation 43

Since a ∼c b, there exists b
′′ such that b

F(F′)
c b′′ and a′′ ∼c b

′′. Since F(C′) ∈ D, we have
that FCb = FF(C′)F(F′)b FF(C′)b′′. Thus Cb F

c FF(C′)b′′. Since a′′ ∼c b
′′, we have

(FF(C′)a′′, FF(C′)b′′) ∈ S, as desired. ¨
§

¥
¦

C

F
′ F

C
′ 3.14

Case F is not an iso: By definition Ca F a′. By Lemma 3.5, there exist a′′ ∈ C
and an IPO square shown in Figure 3.14 such that a

F(F′)
a′′ and

a′ = F(C′)a′′ F(C′) ∈ D F(C) = C F(F) = F .

Thus a
F(F′)

c a′′. Since a ∼c b, there exists b
′′ such that b

F(F′)
c b′′ and a′′ ∼c b

′′. Since
F is not an iso, F is not an iso; Proposition 2.10 implies that F′ is also not an iso; since
F creates isos, F(F′) is not an iso, thus b

F(F′)
b′′. Since Figure 3.14 is an IPO and

F(C′) ∈ D, Lemma 3.7 implies that Cb F F(C′)b′′, so Cb F
c F(C′)b′′. Since a′′ ∼c b

′′, we
have (F(C′)a′′,F(C′)b′′) ∈ S, as desired. ¥

Because · and ·
c are so closely related, it is not surprising that the induced congru-

ences are also related. Indeed the following result shows that ∼c is a coarser equivalence

than ∼. It is an open question whether there exists a functorial reactive system for which

the inequality is strict.

Proposition 3.13 (∼ ⊆ ∼c) Let F : Ĉ C be a functorial reactive system which has

all redex-RPOs. Then ∼ ⊆ ∼c.

Proof We show that ∼ is a strong bisimulation with respect to the labelled transition relation
·
c . By symmetry, it is enough to shown that ∼ is a strong simulation over

·
c . Consider any

a, b for which a ∼ b. Suppose a F
c a′.

Case F is an iso: Then Fa a′. By Lemma 3.6, there exist C′, F′ ∈ Ĉ and a′′ ∈ C such that
a

F(F′)
a′′ and

a′ = F(C′)a′′ F(C′) ∈ D F(C′F′) = F .

Since a ∼ b, there exists b′′ such that b
F(F′)

b′′ and a′′ ∼ b′′. Since F(C′) ∈ D, we have
that Fb = F(C′F′)b F(C′)b′′, so, b F

c F(C′)b′′; also a′ = F(C′)a′′ ∼ F(C′)b′′ since ∼ is
a congruence.

Case F is not an iso: Then a F a′. Since a ∼ b, there exists b′ such that b F b′ and a′ ∼ b′.
Also b F

c b′, as desired. ¥

I now return to the epi hypothesis discussed earlier and show that if it is satisfied then
· = . A corollary is that · = ·

c and thus ∼ = ∼c. In Chapter 7, I show exact

conditions on redexes of a functorial reactive system of graph contexts which hold iff the

epi hypothesis is satisfied.

Definition 3.14 (redexes have epi preimages) Let F : Ĉ C be a functorial

reactive system. Say that redexes have epi preimages iff for all l ∈ Ĉ, if there exists r ∈ C

such that (F(l), r) ∈ Reacts, then l is an epi. (Recall that lowercase teletype letters stand

for arrows in Ĉ with domain ε.) ¥

Chapter 3. Further congruence results 44

¨
§

¥
¦

a

l id

D 3.15

Proposition 3.15 Let F : Ĉ C be a functorial reactive system. Suppose

that redexes have epi preimages. Then id = .

Proof As discussed earlier, we know that id ⊆ . So we consider the

converse. Let a a′. By Proposition 3.2 there exist a, l, D ∈ Ĉ and r ∈ C such that

a = Dl, i.e. Figure 3.15 commutes, and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a .

By the epi hypothesis, l is an epi. By Proposition 2.11, Figure 3.15 is an IPO. By defini-

tion, a id a′, as desired. ¥

Corollary 3.16 Let F : Ĉ C be a functorial reactive system which has all redex-

RPOs. Suppose the epi hypothesis of Proposition 3.15 is satisfied, namely, the preimage

of every redex is an epi. Then · = ·
c and thus ∼ = ∼c. ¨

§
¥
¦

Fa

l H

D 3.16

a

l HF

D 3.17

Proof The only interesting part is to show that F
c ⊆ F

for F an iso. Suppose a F
c a′. By definition, Fa a′. By

Proposition 3.15, Fa id a′. By definition, and since F creates

compositions, there exist a, l, F, D, H ∈ Ĉ and r ∈ C such that Figure 3.16 is an IPO in Ĉ

and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a F(F) = F F(H) = id .

Since F creates isos and F is an iso, then F is an iso. Thus Figure 3.17 is also an IPO,

whence a F a′ as desired.

Finally, since · = ·
c the strong bisimulation relations induced by both are equal, thus

∼ = ∼c. ¥

3.5 Weak bisimulation

Weak bisimulation [Mil88] is a coarser equivalence than strong bisimulation and is less

sensitive to the number of silent steps made by the agents it compares. A single labelled

transition by one agent may be matched by a weak labelled transition of another, namely

a sequence of reactions, followed by a like transition, followed by further reactions.

Definition 3.17 (weak labelled transition (·)) The weak labelled transition relation

is defined as follows:

a F a′ iff a
∗ F ∗

a′ . ¥

The definition of weak bisimulation follows exactly the form set out by Milner:

3.5. Weak bisimulation 45

Definition 3.18 (weak bisimulation over · ; cf. Definition 5 on p. 108 in

[Mil88]) Let S ⊆
⋃

m∈objCC(0,m)2 be a relation that contains pairs of agents with

common codomain. S is a weak simulation over · iff it satisfies the following properties

for all (a, b) ∈ S:

1. If a a′, then there exists b′ such that b
∗
b′ and (a′, b′) ∈ S.

2. If a F a′ where F is not an iso, then there exists b′ such that b F b′ and

(a′, b′) ∈ S.

S is a weak bisimulation iff S and S−1 are weak simulations. Let ≈ be the largest weak

bisimulation over · . ¥

In the second clause of the definition of weak simulation, the label F is required to

be not an iso. Without this requirement, the definition would force a F to be matched

by b F , for F an iso. By the definition of IPOs, iso-labelled transitions are essentially

like id labelled transitions. As argued in the previous section id ⊆ , and moreover

the converse holds in certain cases. So allowing F to be an iso in clause 2 would override

clause 1. But clause 1 embodies a basic principle, namely that a silent transitions is

matched by zero or more silent transitions and not by one or more.

The congruence property of weak bisimulation is more limited than that of strong

bisimulation: ≈ is a congruence with respect to arrows only in D, a subcategory of C.

Recall that D consists of the “reactive contexts”, i.e. the contexts that allow reaction

under them: a a′ implies Da Da′ for D ∈ D. (See Definition 2.) This limitation

is not surprising. In CCS, for example, weak bisimulation is not a congruence with respect

to summation contexts, which are not reactive, i.e. we do not have that a a′ implies

a + b a′ + b. (I am using a, b for agents and not for names in order to maintain

consistency with the notation of the rest of this dissertation.) Use of the hypothesis

C ∈ D occurs twice in the proof: see (3.1) and (3.2) below.

In CCS, weak bisimulation is a congruence with respect to some non-reactive contexts,

namely the prefixing contexts x.− and x̄.−. We would require richer structure than is

contained in Chapter 5 in order to have a category of CCS contexts, namely the nesting

of graphs to represent prefixing, some added data (not yet well understood) to represent

summation, and the inclusion of free names to represent the naming structure of CCS.

If we could construct such a category then it is likely that proving explicitly that weak

bisimulation is preserved by prefixing would be easy since the only initial labelled transition

of a prefixed agent is based on the prefix itself. Nonetheless, it is worth considering whether

we could get a better general congruence result for weak bisimulation by dividing the set

of reactive contexts in two, with one set containing prefixing-like contexts and another

containing sum-like contexts. I am not sure how this would work, but something similar

Chapter 3. Further congruence results 46

is done in work on rule formats for structural operational semantics by Bloom in [Blo93]

who distinguishes “tame” from “wild” contexts.

Theorem 3.19 (congruence for ≈ w.r.t. D) Let F : Ĉ C be a functorial reactive

system which has all redex-RPOs. Then ≈ is a congruence with respect to all contexts in

D, i.e. a ≈ b implies Ca ≈ Cb for all C ∈ D of the required domain.

Proof By symmetry, it is sufficient to show that the following relation is a weak simu-

lation:

S =̂ {(Ca,Cb) / a ≈ b and C ∈ D} .

The proof falls into two cases corresponding to those of Definition 3.18. Suppose that

a ≈ b and C ∈ D, and thus (Ca,Cb) ∈ S,

Case Ca a′: By Lemma 3.6, there exist a′′ ∈ C and C′, F′ ∈ Ĉ such that a
F(F′)

a′′

and

a′ = F(C′)a′′ F(C′) ∈ D F(C′F′) = C .

Moreover, if F′ is an iso then it is equal to id. We distinguish between two cases.

Case F′ is an iso: By definition a a′′. Since a ≈ b, there exists b′′ such that

b
∗
b′′ and a′′ ≈ b′′. Since F(C′) ∈ D, we have that Cb = F(C′)b

∗
F(C′)b′′.

Case F′ is not an iso: Since F creates isos, F(F′) is not an iso. Since a ≈ b, there

exist b0, b1, b
′′ such that b

∗
b0

F(F′)
b1

∗
b′′ with a′′ ≈ b′′. By hypothesis,

C ∈ D, therefore:

Cb
∗
Cb0 . (3.1)

Since F(C′) ∈ D we have that Cb0 = F(C
′)F(F′)b0 F(C′)b1

∗
F(C′)b′′.

In both cases, a′′ ≈ b′′, so (F(C′)a′′,F(C′)b′′) ∈ S as desired. ¨

§

¥

¦
C

F′ F

C′ 3.18

Case Ca F a′ for F not an iso: By Lemma 3.5, there exist a′′ ∈ C and

an IPO square shown in Figure 3.18 such that a
F(F′)

a′′ and

a′ = F(C′)a′′ F(C′) ∈ D F(C) = C F(F) = F .

Since F is not an iso, F is not an iso; Proposition 2.10 implies that F′ is also not

an iso; since F creates isos, F(F′) is not an iso, thus a ≈ b implies that there exist

b0, b1, b
′′ such that b

∗
b0

F(F′)
b1

∗
b′′ with a′′ ≈ b′′. By hypothesis, C ∈ D,

therefore:

Cb
∗
Cb0 . (3.2)

Since Figure 3.18 is an IPO and F(C′) ∈ D, Lemma 3.7 implies that Cb0
F F(C′)b1.

Since F(C′) ∈ D, F(C′)b1
∗
F(C′)b′′. Moreover, (F(C′)a′′,F(C′)b′′) ∈ S, as desired.

¥

3.6. Traces preorder 47

How can we get a congruence with respect to C, not just D? One possibility is to

replace the F of clause 2 in Definition 3.18 with F ∗
. The largest symmetric relation

satisfying this new definition is a congruence with respect to all of C. A second possibility

is to make this change for the first step only of the weak bisimulation relation and then

revert to the normal definition in Definition 3.18:

Definition 3.20 (greedy weak bisimulation (≈gr)) Let ≈gr ⊆
⋃

m∈objCC(0,m)2 be

the largest symmetric relation that contains pairs of agents with common codomain and

which satisfies the following properties:

1. If a a′, then there exists b′ such that b
∗
b′ and a′ ≈ b′.

2. If a F a′ where F is not an iso, then there exists b′ such that b F ∗
b′ and

a′ ≈ b′.

We call ≈gr greedy weak bisimulation. ¥

Notice that this definition requires that a′ ≈ b′, not the stronger condition that a′ ≈gr b
′.

The relation ≈gr is also a congruence with respect to C. The proof is almost identical to

that of Theorem 3.19.

The idea of having a special requirement for the first step of a weak bisimulation

followed by the use of standard weak bisimulation to compare the continuations is well-

established. See, for example, the definition of observational congruence (Definition 2 on

p. 153 in [Mil88]), also known as rooted weak bisimulation in the literature. Experience

with CCS suggests that a congruence in ensured by changing clause 1 (to require b
∗
b′) and not clause 2 in Definition 3.18 — exactly the opposite of what is done in

Definition 3.20. This anomaly requires further research, both to find categorical theory to

model different kinds of non-reactive contexts and to show that RPOs exist for categories

of graph-like contexts that contain summation.

3.6 Traces preorder

This section addresses the traces preorder, a simple preorder that compares agents based

on their finite traces. A trace (see p. 41 in [Hoa85]) is a sequence of labelled transitions.

The traces preorder is insensitive to non-determinism and deadlock so is of limited use.

Nonetheless, traces are good for specifying security properties since it is easy to formulate

that an agent does not possess certain “bad” traces (see, for example, [Pau98, SV00]).

The main motivation for this section is to provide a warmup for the next one, which

looks at the failures preorder. As a result, the traces considered here are all strong (not

interspersed with reaction steps) since the way to handle the weak case is subsumed by

the results presented in the next section.

Chapter 3. Further congruence results 48

C0a0 ···
F1

Cnan

Fn

⇓(i)

a0 ···
F(F′1)

an

F(F′n)

⇓(ii)

b0 ···
F(F′1)

bn

F(F′n)

⇓(iii)

C0b0 ···
F1

Cnbn

Fn

&tr &tr

Figure 3.19: Schema of the congruence proof for &tr

Definition 3.21 (traces preorder (&tr); cf. p. 45 in [Ros98]) A pair of agents b and

a with common codomain are related by the traces preorder, written a &tr b, iff all the

traces of a are traces of b: for every trace 〈F1, . . . , Fn〉,

a
F1 · · ·

Fn implies b
F1 · · ·

Fn . ¥

(In this section and the next, n,m are natural numbers and not objects of a category.)

The proof of congruence is more complicated that that of strong bisimulation

(Theorem 3.9) because we need to consider traces, not just individual labelled transi-

tions. The heart of the argument is an inductive construction of a trace of a from a trace

of Ca. Each inductive step cuts off a portable IPO square (see Lemma 3.5) which is sub-

sequently pasted back on (Lemma 3.7) when constructing a trace of Cb from a trace of

b.

Theorem 3.22 (congruence for &tr) Let F : Ĉ C be a functorial reactive system

which has all redex-RPOs. Then &tr is a congruence, i.e. a &tr b implies Ca &tr Cb for all

C ∈ C of the required domain.

Proof Suppose that a &tr b. Let C be any context of appropriate domain. We wish to

prove that Ca &tr Cb. The proof is divided into three parts, which are shown schematically

in Figure 3.19.

3.6. Traces preorder 49

¨

§

¥

¦
Ci

F′i Fi

C′i 3.20

(i): Let ā0 =̂ Ca and consider any trace ā0
F1 · · ·

Fn ān, where n ≥ 0.

We construct (a0, C0) . . . (an, Cn) and the square shown in Figure 3.20

for 1 < i ≤ n such that the following conditions hold for 0 ≤ i ≤ n:

āi = Ciai Tr-a

ai−1
F(F′i) ai for i 6= 0 Tr-lab

Ci ∈ D for i 6= 0 Tr-D

F(Ci) = Ci−1 for i 6= 0 Tr-C

F(C′i) = Ci for i 6= 0 Tr-Cprime

F(Fi) = Fi for i 6= 0 Tr-F

Figure 3.20 is an IPO for i 6= 0 . Tr-IPO

base: Let a0 =̂ a and C0 =̂ C. Then Tr-a holds and the other conditions are

vacuous. ¨

§

¥

¦
Ci+1

F′i+1 Fi+1

C′i+1 3.21

step: We construct ai+1, Ci+1 and the square in Figure 3.21 from

ai, Ci as follows, assuming 0 ≤ i < n. By the inductive

hypothesis Tr-a holds for i, thus āi = Ciai. Since āi
Fi

āi+1, Lemma 3.5 implies that there exist ai+1 ∈ C and an IPO square shown

in Figure 3.21 such that ai
F(F′i+1) ai+1 and

āi+1 = Ci+1ai+1 Ci+1 ∈ D F(Ci+1) = Ci F(Fi+1) = Fi+1 .

where we let Ci+1 =̂ F(C
′
i+1). Then all of the inductive properties are satisfied

for i+ 1.

Thus by Tr-lab a = a0
F(F′1) · · ·

F(F′n) an.

(ii): Since a &tr b there exist b0 . . . bn such that b = b0
F(F′1) · · ·

F(F′n) bn.

(iii): We now claim that Cibi
Fi+1 Ci+1bi+1 for 0 ≤ i < n.

Since bi
F(F′i+1) bi+1 and Figure 3.21 is an IPO (by Tr-IPO), with

F(C′i+1) =
Tr-Cprime Ci+1 ∈ D by Tr-D, then Lemma 3.7 implies

Cibi =Tr-C F(Ci+1)bi
F(Fi+1) F(C′i+1)bi+1 =Tr-Cprime Ci+1bi+1 ,

and thus by Tr-F, Cibi
Fi+1 Ci+1bi+1. So

Cb = C0b0
F1 · · ·

Fn

as desired. ¥

Chapter 3. Further congruence results 50

3.7 Failures preorder

This section looks at the failures preorder, which is a fundamental part of the failures and

divergences model of CSP [Hoa85]. I do not consider divergences here, so the definition

I use only employs failures. The failures preorder is sensitive to non-determinism and

deadlock (see Section 3.3 in [Ros98]). The failures of an agent provide a domain-theoretic

interpretation, assigning a meaning to each agent independently of the others (unlike

for bisimulation). This makes failures properties well-suited to model checking [Ros94,

Low96].

In order to define a failure of an agent, I first extend the notion of a weak labelled

transition to allow for sequences of labels (not just single labels):

Definition 3.23 (weak labelled transition extended; cf. Definition 3.17)

a
〈 〉

a′ iff a
∗
a′

a
〈F 〉ˆt

a′ iff a F t a′ ,

where t is a sequence of arrows of appropriate domain and ˆ is the concatenation operator.

¥

A failure of a consists of a sequence of weak labelled transitions t and a set of labels

X such that a evolves by t to a stable state (one for which no reactions are possible)

which refuses X, i.e. cannot engage in a transition labelled by any of the arrows in X.

To prevent reactions from masquerading as labelled transitions, every arrow in t and X is

not an iso (cf. the discussion immediately following Definition 3.18).

Definition 3.24 (failure; cf. p. 171 in [Ros98]) A failure of a is a pair (t,X) where

t is a finite sequence of arrows (each not an iso) and X is a set of arrows (each not an iso)

for which there exists a′ such that the following conditions hold:

a t a′ a has a weak trace t;

a′ / a′ is stable;

∀F ∈ X. a′ F/ a′ refuses X. ¥

Definition 3.25 (failures preorder ('f); cf. p. 193 in [Ros98]) A pair of agents b

and a with common codomain are related by the failures preorder, written a 'f b, iff all

the failures of a are possessed by b. ¥

The relation 'f is only a congruence with respect D, the subcategory of C consisting

of reactive contexts (cf. Theorem 3.19). The only use of the hypothesis C ∈ D occurs in

the base case of the induction.

The proof is similar to that of the traces preorder however there are two aspects that

require care: the cutting and pasting of portable IPO squares for weak labelled transitions

and the propagation of refusal sets.

3.7. Failures preorder 51

C0a0 ā0= ām
t

|F

|

(F∈X)

⇓(i)

a0 am
s

|F ′

|

(F ′∈Y ∪Z)

⇓(ii)

b0 bm+1
s

|F ′

|

(F ′∈Y ∪Z)

⇓(iii)

C0b0 Cmbm+1
t

|F

|

(F∈X)

'f 'f

Figure 3.22: Schema of the congruence proof for 'f

Theorem 3.26 (congruence for 'f w.r.t. D) Let F : Ĉ C be a functorial reactive

system which has all redex-RPOs. Then 'f is a congruence with respect to all contexts

in D, i.e. a 'f b implies Ca 'f Cb for all C ∈ D of the required domain.

Proof Suppose that a 'f b. Let C ∈ D be any (reactive) context of appropriate domain.

We wish to prove that Ca 'f Cb. The proof is divided into three parts, which are shown

schematically in Figure 3.22.

(i): Let ā0 =̂ Ca and consider any failure (t,X) of ā0, where t = 〈F1, . . . , Fn〉, for n ≥ 0.

By Definition 3.24 and Definition 3.23, there exist natural numbers 0 ≤ m and

0 < p1 < · · · < pn ≤ m and a sequence ā0, . . . , ām such that for 0 < i ≤ m:

āi−1 āi if i /∈ {p1, . . . , pn};

āi−1
Fj

āi if i = pj for some j, where 1 ≤ j ≤ n.

Moreover, ām is stable and refuses X. ¨

§

¥

¦
Ci

F′i Fj

C′i 3.23

We construct inductively (ai, Ci) for 0 ≤ i ≤ m, and (F′i, C
′
i, Ci) for

1 ≤ i ≤ m, and Fj , for 1 ≤ j ≤ n such that the following conditions

Chapter 3. Further congruence results 52

hold for 0 ≤ i ≤ m:

āi = Ciai Fail-a

Ci ∈ D Fail-d

ai−1
F(F′i) ai for i 6= 0 and F′i 6= id Fail-lab

F′i is not an iso for i 6= 0 and F′i 6= id Fail-non-iso

ai−1 ai for i 6= 0 and F′i = id Fail-react

F(Ci) = Ci−1 for i 6= 0 Fail-C

F(C′i) = Ci for i 6= 0 Fail-Cprime

F(Fj) = Fj for i = pj , where 1 ≤ j ≤ n Fail-F

Figure 3.23 is an IPO for i = pj , where 1 ≤ j ≤ n Fail-ipo

Ci = C′iF
′
i for i 6= 0 and i /∈ {p1, . . . , pn} Fail-commute

base: Let a0 =̂ a and C0 =̂ C. Then Fail-a and Fail-d hold and the other condi-

tions are vacuously true.

step: Given ai, Ci for 0 ≤ i < m, we construct all the required data for i+ 1.¨

§

¥

¦
Ci+1

F′i+1 Fj

C′i+1 3.24

case i+ 1 = pj for some j, where 1 ≤ j ≤ n: In this case,

Fail-commute for i + 1 is vacuously true. By the in-

ductive hypothesis, Fail-a holds for i, thus āi = Ciai.

Since āi
Fj

āi+1, Lemma 3.5 implies that there exist ai+1 ∈ C and an

IPO square shown in Figure 3.24 such that ai
F(F′i+1) ai+1 and

āi+1 = Ci+1ai+1 Ci+1 ∈ D F(Ci+1) = Ci F(Fj) = Fj .

where we let Ci+1 =̂ F(C′i+1). Since Fj is not an iso, Fj is not an iso;

Proposition 2.10 implies that F′i+1 is also not an iso. Then all of the induc-

tive properties are satisfied for i+ 1.

case i+ 1 /∈ {p1, . . . , pn}: In this case, Fail-ipo and Fail-F for i+1 are vacu-

ously true. By the inductive hypothesis, Fail-a holds for i, thus āi = Ciai.

Since āi āi+1, Lemma 3.6 implies that there exist ai+1 ∈ C and

Ci+1, C
′
i+1, F

′
i+1 such that

ai
F(F′i+1) ai+1 C′i+1F

′
i+1 = Ci+1

āi+1 = Ci+1ai+1 Ci+1 ∈ D F(Ci+1) = Ci ,

where we let Ci+1 =̂ F(C′i+1); furthermore, F′i+1 = id if F′i+1 is an iso. All

the inductive properties are satisfied for i+ 1.

If we let s be the sequence 〈F(F′1), . . . ,F(F
′
m)〉 with all the id arrows removed, then

Fail-react, Fail-lab, and Fail-non-iso imply that a = a0
s am and that each

label in s is not an iso.

3.7. Failures preorder 53

Claim: am is stable. Suppose for contradiction am . Then ām = Cmam

because by Fail-d, Cm ∈ D. But, by hypothesis, ām is stable, a contradiction.

Now let

Y =̂

F(F′) /

F′ is not an iso

&

(

∃C, D, F.
F(C) = Cm & F(D) ∈ D & F(F) ∈ X

& Figure 3.25 is an IPO

)

Z =̂
{

F(F′) / F′ is not an iso & (∃D. F(D) ∈ D & Cm = F(DF′))
}

¨

§

¥

¦
C

F′ F

D 3.25

Claim: am refuses Y ∪Z. Suppose F′ is not an iso. Since F creates isos,

F(F′) is not an iso. Consider F(F′) ∈ Y , as witnessed by F(C) = Cm,

F(D) ∈ D, and F(F) ∈ X such that Figure 3.25 is an IPO. Suppose for

contradiction that am
F(F′)

. By Lemma 3.7, ām = Cmam
F(F)

, a contradiction

since ām refuses X 3 F(F).

Consider F(F′) ∈ Z, as witnessed by F(D) ∈ D such that Cm = F(DF′). Suppose

for contradiction that am
F(F′)

. Then ām = Cmam = F(D)F(F′)am since

F(D) ∈ D. This contradicts the assumption that ām is stable.

Thus a has failure (s, Y ∪ Z).

(ii): Since a 'f b, it follows that b has failure (s, Y ∪ Z). By Fail-lab, Fail-non-iso,

and Fail-react, there exist b = b0, . . . , bm+1 such that:

bi−1
F(F′i) bi if F′i 6= id and 0 < i ≤ m;

bi−1
∗
bi if F′i = id and 0 < i ≤ m;

bm
∗
bm+1.

Furthermore bm+1 is stable and refuses Y ∪ Z.

(iii): In the final part, we argue that Cb = C0b0 has failure (t,X). First we claim that for

0 < i ≤ m

Ci−1bi−1
Fj

Cibi if i = pj for some j, where 1 ≤ j ≤ n.

Ci−1bi−1
∗
Cibi if i /∈ {p1, . . . , pn};

We consider two cases: ¨

§

¥

¦
Ci

F′i Fj

C′i 3.26

case i = pj for some j, where 1 ≤ j ≤ n: By Fail-ipo,

Figure 3.26 is an IPO. By Fail-F, Fj is not an iso, so

Proposition 2.10 implies that F′i is also not an iso. By construc-

tion, bi−1
F(F′i) bi, so there exist b′, b′′ such that:

bi−1
∗
b′

F(F′i) b′′
∗
bi .

Chapter 3. Further congruence results 54

By Fail-d, Ci−1bi−1
∗
Ci−1b

′. Since Figure 3.26 is an IPO, Lemma 3.7 and

Fail-F imply that Ci−1b
′ =Fail-C F(Ci)b

′ Fj
F(C′i)b

′′ =Fail-Cprime Cib
′′. By

Fail-d, Cib
′′ ∗

Cibi. Thus Ci−1bi−1
Fj

Cibi, as desired.

case i /∈ {p1, . . . , pm}: This case falls into two subcases:

case F′i 6= id: By construction bi−1
F(F′i) bi, so there exist b′, b′′ such that:

bi−1
∗
b′

F(F′i) b′′
∗
bi .

By Fail-d, Ci−1bi−1
∗
Ci−1b

′. By definition, F(F′i)b
′ b′′. Hence

by Fail-d, Ci−1b
′ =Fail-C F(Ci)b

′ =Fail-commute F(C′i)F(F
′
i)b
′ =Fail-Cprime

CiF(F
′
i)b
′ Cib

′′ ∗
Cibi. Thus, Ci−1bi−1

∗
Cibi, as desired.

case F′i = id: By construction bi−1
∗
bi; by Fail-d, Ci ∈ D, so Ci−1bi−1

∗

Ci−1bi =
Fail-C F(Ci)bi =

Fail-commute F(C′i)bi =
Fail-Cprime Cibi.

Thus Cb = C0b0
t Cmbm. By Fail-d, Cm ∈ D, so Cb t Cmbm+1.

Claim: Cmbm+1 refuses X. Suppose for contradiction Cmbm+1
F for some F ∈ X.

By Lemma 3.5, there exists an IPO square, as in Figure 3.25, such that bm+1
F(F′)

and

F(D) ∈ D F(C) = Cm F(F) = F .

By hypothesis, F is not an iso. Hence F is not an iso; Proposition 2.10 implies that

F′ is also not an iso. Furthermore F(F′) ∈ Y , which contradicts the hypothesis that

bm+1 refuses Y .

Claim: Cmbm+1 is stable. Suppose for contradiction that Cmbm+1 . By

Lemma 3.6, there exists D, F′ such that bm+1
F(F′)

and

F(D) ∈ D F(DF′) = Cm .

Moreover, if F′ is an iso then it is equal to id. We consider two cases:

case F′ 6= id: Then F(F′) ∈ Z, which contradicts the hypothesis that bm+1 refuses

Z.

case F′ = id: Then bm+1 , which contradicts the hypothesis that bm+1 is stable.

Thus Cb has failure (t,X), as desired. ¥

3.8 Multi-hole contexts

As anticipated at the end of the previous chapter, this section enriches the definition of

functorial reactive systems to model explicitly multi-hole contexts. At first glance, there

3.8. Multi-hole contexts 55

is no obstacle in accommodating multi-hole contexts directly within the existing theory

of reactive systems. (For simplicity, let us ignore functorial reactive systems until later.)

However this does not work well as I illustrate in the next few paragraphs.

If we consider multi-hole term algebra contexts (as used in term rewriting), say, then

we can choose the objects of C to be natural numbers and the arrows to be tuples of

contexts (that use each hole exactly once) constructed from function symbols taken from

some signature Σ. Concretely, if Σ = {α, α′, β, γ}, where α and α′ are constants, β is a

1-place function symbol, and γ is a 2-place function symbol, then, we have the following

examples of arrows:

C0 =̂ 〈−1, β(α
′)〉 : 1 2

C1 =̂ 〈γ(−2, α
′), α, β(−1)〉 : 2 3

C1C0 = 〈γ(β(α
′), α′), α, β(−1)〉 : 1 3

¨

§

¥

¦

0 m

u

m′ n

a

l F

D

F ′

D′
C

3.27

But what is an agent? A natural choice is to take agents to be

pure terms, i.e. arrows 0 1 (a 1-tuple containing a term context

with 0 holes). But this is not supported by the definition of reactive

system, where agents consist of all arrows 0 m for m an arbitrary

object of C. This discrepancy is non trivial: if we try to confine the

definition of labelled transition and bisimulation to use only a limited set of agents, say

those arrows 0 m for m ∈ A, where A is some subset of the objects of C, then the proof

of congruence goes wrong. The problem is that even if m,m′, n ∈ A in Figure 3.27, it is

not necessarily the case that an RPO F ′, D′, C yields an object u ∈ A. Thus even though

F ′, D′ forms an IPO with respect to a, l, it is not the case that a F ′ since the codomain

of F ′ is not in A.

However, it is exactly the fact that RPOs sometimes do not produce an object in A

that gives multi-hole contexts their power and that makes them worth considering. To see

why, suppose that we take C to be a category of exclusively 0- and 1-hole contexts. Then

RPOs exist, as a corollary of Sewell’s dissection result for terms (Lemma 1 in [Sew01]).

Consequently, bisimulation is a congruence for term rewriting systems. The resulting

labels are unnecessarily heavy, though. For consider the reaction rule (β(α), α′); we have

α
β(−)

α′ which corresponds to our intuition that α needs β(−) to react. (When there

is no confusion I use − for −1.) Unfortunately, we also have a labelled transition where

the label contains a complete copy of the redex :

α′
γ(−,β(α))

γ(α′, α′) .

This was discussed at the end of the previous chapter. This heavy labelled transition is

absent when we look at multi-hole contexts, as illustrated with the help of the diagram

Chapter 3. Further congruence results 56

below. (Tuple brackets 〈 〉 are omitted from singletons.)

0 1

2

1 1

α′

β(α) γ(−,β(α))

γ(α′,−)

〈−,β(α)〉

〈α′,−〉 γ(−1,−2)

If we work in the category of 0- and 1-hole contexts then the outer square is an IPO, which

gives rise to the transition
γ(−,β(a))

mentioned earlier. By admitting multi-hole contexts

we have given the outer-square a simpler RPO.

It is now possible to make precise the motivation for the results developed in this

section. The goal is to reconcile two things: (i) we want to restrict of the collection of

agents of C to arrows 0 m for m ∈ A, where A can be a proper subset of the objects

of C (for example A = {1} in the case of multi-hole term contexts); (ii) we want to admit

RPOs that yield objects which are not contained in A.

The key idea is to consider the notion of a strict monoidal category (C,⊗, 0), a category

C equipped with a functor⊗ : C×C C and an object 0 such that⊗ is strictly associative

and has unit 0. The role of the tensor ⊗ is to “tuple” arrows and objects, e.g. recalling

the term contexts C0, C1 from above, we have that:

C0 =̂ 〈−1, β(α
′)〉 : 1 2

C1 =̂ 〈γ(−2, α
′), α, β(−1)〉 : 2 3

C0 ⊗ C1 = 〈−1, β(α
′), γ(−3, α

′), α, β(−2)〉 : 3 5

C1 ⊗ C0 = 〈γ(−2, α
′), α, β(−1),−3, β(α

′)〉 : 3 5

The following definition extends that of a functorial reactive system by postulating

that both the upstairs and downstairs categories are monoidal and requiring that the

functor between them respects the monoidal structure. The same enrichment could be

performed on a reactive system. There is, however, no reason not to take more general

approach shown here.

Definition 3.27 (functorial monoidal reactive system; cf. Definition 3.1) A

functorial monoidal reactive system consists of a functorial reactive system F : Ĉ C

with the following added structure:

• Both Ĉ and C are strict monoidal categories with unit objects ε and 0, respectively,

and tensor ⊗ (the same symbol being used for both categories).

• F preserves tensors, i.e. F(C1 ⊗ C0) = F(C1)⊗F(C0).

3.8. Multi-hole contexts 57

• F preserves and creates units, i.e. for all u ∈ obj Ĉ, F(u) = 0 iff u = ε.

• There is a subset A of C-objects and a subset A of Ĉ-objects, where A is the preimage

under F of A. We use m,m′, . . . to range over A and m, m′, . . . to range over A.

• Reacts ⊆
⋃

m∈AC(0,m)2.

• Pairing with an agent yields a reactive context: a⊗ idm′ ∈ D for a : 0 m. ¥

The agents are arrows 0 m wherem ∈ A and the agent contexts are arrowsm m′,

for m,m′ ∈ A. Thus the reaction rules of Reacts are only between agents. We overload

the terminology for Ĉ in a straightforward way: arrows ε m of Ĉ are also agents for

m ∈ A; arrows m m′ of Ĉ are also agent contexts for m, m′ ∈ A.

The definition of labelled transition confines the arguments to be agents:

Definition 3.28 (labelled transition for functorial monoidal reactive systems

(·m); cf. Definition 3.3) a F
m a′ iff a F a′ and a, a′ are agents (thus forcing F to

be an agent context). ¥

Two properties now replace the hypothesis that F has all redex-RPOs. The first asserts

that the RPO consists either of agent contexts or of pairing operations that place disjoint

instances of a and l into the composite Fa = Dl:

¨

§

¥

¦

ε m

u

m′ n

a

l F

D

F′

D′
C

3.28

Definition 3.29 (F has all monoidal-redex-RPOs; cf.

Definition 3.4) Suppose F : Ĉ C is a functorial monoidal

reactive system and that a, l are agents, F, D are agent contexts,

F(D) ∈ D, and there exists r ∈ C such that (F(l), r) ∈ Reacts. Then

F has all monoidal-redex-RPOs if any square, such as in Figure 3.28, has an RPO (as

shown) such that if u /∈ A then u = m⊗ m′, F′ = idm ⊗ l, and D′ = a⊗ idm′ . ¥

The second property asserts that pairing agent contexts yields an IPO:

¨

§

¥

¦

ε m

m′ m⊗m′

a

l idm⊗l

a⊗idm′ 3.29

Definition 3.30 (F has all monoidal-redex-IPOs) A functo-

rial monoidal reactive system F : Ĉ C has all monoidal-redex-

IPOs if any square, such as in Figure 3.29, is an IPO, provided a, l

are agents and there exists r ∈ C such that (F(l), r) ∈ Reacts. ¥

Just before giving a proof of congruence for strong bisimulation we need to consider a

corollary of Lemma 3.7 for functorial monoidal reactive systems:

Corollary 3.31 (portable IPO pasting for functorial monoidal reactive systems;

cf. Lemma 3.7) Suppose F : Ĉ C is a functorial monoidal reactive system and has

Chapter 3. Further congruence results 58

all monoidal-redex-RPOs. The following inference rule holds:

C

F′ F

C′
is an IPO consisting of agent contexts a

F(F′)
m a′ F(C′) ∈ D

F(C)a
F(F)

m F(C′)a′
.

¥

Strong bisimulation compares pairs of agents:

Definition 3.32 (strong bisimulation over ·
m ; cf. Definition 3.8) Let ∼m ⊆

⋃

m∈AC(0,m)2 be the largest strong bisimulation over ·
m such that ∼m contains only

pairs of agents with common codomain. ¥

Finally we prove congruence. As promised at the end of the previous chapter, the

argument mirrors closely congruence proofs in typical process calculi. In particular, two

cases are distinguished when analysing the transition Ca F
m : (i) a, C, and F all con-

tribute, in which case a itself has a labelled transition; (ii) only C and F contribute, in

which case Cb F
m without needing to consider the behaviour of a and b.

Theorem 3.33 (congruence for ∼m w.r.t. agent contexts) Let F : Ĉ C be

a functorial monoidal reactive system which has all monoidal-redex-RPOs and has all

monoidal-redex-IPOs. Then ∼m is a congruence with respect to agent contexts, i.e. a ∼m b

implies Ca ∼m Cb for any agent context C ∈ C of the required domain.

Proof By symmetry, it is sufficient to show that the following relation is a strong sim-

ulation:

S =̂ {(Ca,Cb) / a ∼m b and C ∈ C is an agent context} .

¨

§

¥

¦
ε m n

u

m′

a

l

C

F′
F

D

D′ C′

3.30

Suppose that a ∼m b and C ∈ C, and thus (Ca,Cb) ∈ S, where

a, b : 0 m and C : m n. Suppose Ca F
m a′. By the definition

of F
m and the hypothesis that F creates compositions, there exist Ĉ-

arrows a : ε m, C : m n, l : ε m′, F, D and a C-arrow r : 0

F(m′) such that the big rectangle in Figure 3.30 is an IPO and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a F(C) = C F(F) = F .

Because F has all monoidal-redex-RPOs, there exist F′, D′, C′ forming an RPO in Ĉ, as

in Figure 3.30. Note that F(C′) ∈ D since F(C′)F(D′) = F(D) ∈ D. By Proposition 2.7,

the small left-hand square of Figure 3.30 is an IPO; Proposition 2.9 implies that the small

right-hand square is an IPO too. Since F has all monoidal-redex-RPOs, we have additional

information depending on whether u ∈ A. We consider both cases.

3.8. Multi-hole contexts 59

Case u ∈ A: By definition, a
F(F′)

m a′′ and a′ = F(C′)a′′, where a′′ =̂ F(D′)r. Since a ∼m b,

there exists b′′ such that b
F(F′)

m b′′ and a′′ ∼m b
′′. Since the small right-hand square

in Figure 3.30 is an IPO and F(C′) ∈ D, Corollary 3.31 implies that Cb F
m F(C′)b′′.

Also, a′′ ∼m b
′′ implies (F(C′)a′′,F(C′)b′′) ∈ S, as desired.¨

§

¥

¦

ε m0

m′ m0⊗m′

b

l idm0⊗l

b⊗idm′

C0

F0

C′0 3.31

Case u /∈ A: We have that F′ = idm ⊗ l and D′ = a⊗ idm′ .

Since F lifts agents there exists b : ε m0 such that

F(b) = b, and thus F(m0) = m = F(m). Since F

preserves tensors, F(F′) = idF(m) ⊗F(l) = idF(m0) ⊗

F(l) = F(idm0 ⊗ l). Since F allows IPO sliding, the small right-hand IPO square

of Figure 3.30 can be slid to form the small right-hand IPO square in Figure 3.31,

where

F(C0) = F(C) F(F0) = F(F) F(C′0) = F(C
′) .

Since F has all monoidal-redex-IPOs, the small left-hand square of Figure 3.31 is

an IPO. Since F has all monoidal-redex-RPOs, Proposition 2.9 implies that the big

rectangle in Figure 3.31 is an IPO. Since F preserves tensors and since pairing with

an agent yields a reactive context, F(C′0(b⊗ idm′)) = F(C
′)(b⊗ idF(m′)) ∈ D so:

Cb F
m F(C′0(b⊗ idm′))r = F(C

′)(b⊗ r) = F(C′)(idm ⊗ r)b .

The last equality is a standard property of strict monoidal categories. Furthermore,

a′ = F(D)r = F(C′)F(D′)r = F(C′)F(a⊗ idm′)r = F(C
′)(a⊗ r) = F(C′)(idm ⊗ r)a .

Thus a ∼m b implies (F(C′)(idm ⊗ r)a,F(C
′)(idm ⊗ r)b) ∈ S as desired. ¥

To round out this section, let us look again at the example of multi-hole term contexts

over a signature Σ.

Definition 3.34 (multi-hole term contexts (T∗(Σ))) Given a signature Σ of function

symbols then the category of multi-hole term contexts T∗(Σ) over Σ is constructed as

follows: the objects are the natural numbers; an arrow j k is a k-tuple of terms over

the signature Σ ∪ {−1, . . . ,−j} containing exactly one use of each hole −i (1 ≤ i ≤ j).

(When j = 1, I often write −1 as −.) The identities are: idj =̂ 〈−1, . . . ,−j〉 : j j. For

C = 〈t1, . . . , tk〉 : j k and D : k m, their composition is the substitution

DC =̂ {t1/−1, · · · , tk/−k}D . ¥

In order to apply Theorem 3.33 to T∗(Σ), we let C = Ĉ = T∗(Σ) and F be the

identity functor. If we let A = {1} then

• an agent of T∗(Σ) is a term a : 0 1;

Chapter 3. Further congruence results 60

• agent context of T∗(Σ) is a term context C : 1 1, i.e. a term containing a single

hole.

We may choose any subcategory of T∗(Σ) to be the reactive contexts, subject to the

conditions in Definition 3.27. The labelled transitions of T∗(Σ) depend, of course, on the

reaction rules. Once these are specified, the labelled transition relation ·
m is determined

by Definition 3.28 and the induced strong bisimulation ∼m by Definition 3.32.

As a corollary of Sewell’s dissection result for terms (Lemma 1 in [Sew01]), F has all

monoidal-redex-RPOs and has all monoidal-redex-IPOs. Hence from Theorem 3.33 the

induced strong bisimulation ∼m is preserved by all term contexts. Let us now revisit the

reactive system whose only reaction rule is (β(α), α′). It contains exactly the following

labelled transitions:

D(β(α)) −
m D(α′) for all reactive term contexts D ∈ D

α
β(−)

m α′

These agree with the transitions found by Sewell in the case of ground-term rewriting.

I believe for any reaction rules specified by Reacts the derived labelled transitions for

T∗(Σ) coincide exactly with Sewell’s.

Chapter 4

Sliding IPO squares

4.1 Introduction and motivation

The previous chapter shows a series of congruence proofs, each one for a different opera-

tional equivalence. The theme throughout is the separation of “reactive system” into two

categories with a functor F between them: the domain of F , i.e. Ĉ, is a category in which

RPOs and IPOs exist; the codomain of F , i.e. C, is a category containing (i) the agents

that perform reactions and labelled transitions and (ii) the agent contexts that serve as the

labels and specify the closure condition for congruence. This separation is useful because

the category for which we prove a congruence result is typically not one in which RPOs

exist, as I show in the next chapter when considering categories of graph contexts. Thus

functorial reactive systems are a powerful generalisation of reactive systems.

This separation imposes a burden, though, in the form of the list of requirements given

in Definition 3.1, i.e.: F lifts agents, creates isos, creates compositions, and allows IPO

sliding. The motivation for the current chapter is to alleviate this burden by showing that

all of these properties follow directly if we construct Ĉ, C, and F from a precategory A in

a particular way. The assumption is that A is easier to construct than the others. (The

next chapter gives a concrete instance of A.)

Precategories are defined formally below. By way of motivation, though, let us look

informally at an example we have in mind when deriving F : Ĉ C from A. A precate-

gory is just like a category but has a composition operation that is partial, i.e. not always

defined. For example, consider a precategory A of “raw contexts”. For the purpose of this

example, take the objects to be natural numbers (representing the number of ports in an

interface). Take the arrows m n to be just like normal graphs but with some added

structure, namely an inner and outer interface. An arrow is thus a doughnut-shaped graph

consisting of a set of nodes (which we call the support) and an arc relation; the arcs link

nodes to one another and to the interface ports; m (ordered) interface ports sit on the

inside “hole” and n (ordered ones) on the outside. (These are simpler than the graph con-

61

Chapter 4. Sliding IPO squares 62

texts that appear in the next chapter.) Composition consists of placing one raw context

inside the hole of another and joining together common ports. To see how this works,

consider arrows A0 : 1 2 and A1 : 2 3:

A1 =

v1 v2

A0 =

v0

Then their composition, which we denote A1 ⊕A0 : 1 3, is as follows:

A1 ⊕A0 =

v2

v0

v1

This example reveals why composition is partial in A. If we form A′0 from A0 by renaming

the node v0 by v2 then the supports of A′0 and A1 are not disjoint. Thus the composition

A1 ⊕A
′
0 is undefined since there is no clear choice for the support of the composite.

There are several possible ways of building a true category (i.e. with a total composition

relation) from the data provided by A. Two possible ways are as follows:

• We can construct a category Ĉ whose objects are pairs (m,U) where m is an object

of A (in this case a natural number) and U is a set. An arrow (m0, U0) (m1, U1)

consists of an A-arrow A : m0 m1 for which U0 ⊆ U1 and U1 \ U0 is equal to

the support of A. Thus we can incorporate A1 (given above) into many possible

arrows in Ĉ, e.g. (2,∅)
A1 (3, {v1, v2}) and (2, {w})

A1 (3, {w, v1, v2}). As a result

composition is always well-defined: if (mi, Ui)
Ai (mi+1, Ui+1) are Ĉ-arrows for i =

0, 1 then the supports of A0 and A1 are disjoint.

• We can construct a category C, whose objects are the objects ofA and whose arrows

are l-equivalence classes of A-arrows. Two A-arrows are l-equivalent iff they are

graph-isomorphic, i.e. have (potentially) different supports but look like the same

graphs. Composition for this category is also well-defined since it is always possible

when composing arrows to find representatives of each equivalence class with disjoint

supports.

One might consider a third way, i.e. to use the arrows of A but rename the supports

so as to make them disjoint when composing arrows; but this yields a bicategory, since

composition is not associative. This approach is being investigated by Peter Sewell; I do

not consider this line of research in this dissertation.

What is the relationship between Ĉ and C? There is a simple functor F which discards

the set component of each Ĉ-object (i.e. F : (m,U) 7→ m) and maps each arrow to its

4.2. Properties of A 63

l-equivalence class. As we see later in this chapter, this functor has all of the desired

properties listed earlier, e.g. F allows IPO sliding.

The rest of this chapter repeats the above constructions in full formality.

4.2 Properties of A

First we formally define a precategory (see [MSS00]):

Definition 4.1 (precategory) A precategory A consists of similar data to that of a

category: a collection of objects m,n, . . .; a collection of arrows A(m,m′) between objects

m andm′; an identity arrow idm ∈ A(m,m) for allm; and a partial composition operation,

which we write here as ⊕ : A(m1,m2) × A(m0,m1) ⇀ A(m0,m2) on arrows. Identity:

composition with an identity arrow is always well-defined, i.e. for all A : m0 m1, we

have that idm1
⊕ A = A = A ⊕ idm0 and both compositions are defined. Associativity: if

A2 ⊕ A1 and A1 ⊕ A0 are defined then either both A2 ⊕ (A1 ⊕ A0) and (A2 ⊕ A1) ⊕ A0 are

undefined or both are defined and equal. ¥

Next we define some special properties of a precategory. These properties form a

specification (used in Chapter 5) which any precategory is required to satisfy in order to

make use of the constructions and propositions of this chapter.

Definition 4.2 (well-supported precategory) A is a well-supported precategory iff it

is a precategory and it satisfies the following properties:

• A has a support function |·| that maps an arrow to a set such that A1 ⊕A0 is defined

iff |A1|∩|A0| = ∅ and DomA1 = CodA0. The support function satisfies additionally

two axioms:

|A1 ⊕A0| = |A1|] |A0| (provided A1 ⊕A0 is defined) Supp-comp

|idm| = ∅ . Supp-id

• For any arrow A ∈ A(m0,m1) and any injective map ρ for which Dom ρ ⊇ |A|, there

exists an arrow ρ¦A ∈ A(m0,m1), which is called the support translation by ρ of A,

where:

ρ¦idm = idm Trans-id-r

ρ¦(A1 ⊕A0) = ρ¦A1 ⊕ ρ¦A0 Trans-comp-r

Id|A|¦A = A Trans-id-l

(ρ1 ◦ ρ0)¦A = ρ1¦(ρ0¦A) Trans-comp-l

ρ0 ¹ |A| = ρ1 ¹ |A| implies ρ0¦A = ρ1¦A Trans-res

|ρ¦A| = ρ|A| . Trans-supp

Chapter 4. Sliding IPO squares 64

A note about Trans-comp-r: Since ρ is injective, Trans-supp implies that the

LHS is defined iff the RHS is defined. (These axioms are similar to those of Honda’s

Rooted P-Sets [Hon00], though his application concerns free names and renaming.)

¥

4.3 Construction of Ĉ

We now turn to problem of building a genuine category from a well-supported precategory

A. The idea is to enrich the object structure with enough data so that composition is

always defined. This construction is captured in the following definition:

Definition 4.3 (track) Given a well-supported precategory A, the track of A is a

category Ĉ. An object of Ĉ is a profile: a pair (m,U) where m is an object of A and U

is a set. We let p range over profiles and adopt the firm convention that the components

of a profile p are always written (m,U) with suitable decoration, e.g. p′ = (m′, U ′) and

pi = (mi, Ui). An arrow p0
A p1 consists of an arrow A ∈ A(m0,m1) such that U0 ⊆ U1

and |A| = U1 \ U0. We always include the profiles when referring to an arrow of Ĉ since

different Ĉ-arrows can be constructed from the same A-arrow, each with different profiles.

The identities of Ĉ are defined by idp =̂ p
idm p. Composition is defined in terms of the

underlying composition in A:

p0
A0 p1

A1 p2 =̂ p0
A1⊕A0 p2 . ¥

Proposition 4.4 If Ĉ is the track of A then Ĉ is a category.

Proof

Composition is well-defined: if pi
Ai pi+1 are arrows for i = 0, 1, then |A1|∩ |A0| = (U2 \U1)∩

(U1 \ U0) = ∅, so A1 ⊕A0 is defined. Furthermore, U0 ⊆ U1 ⊆ U2 and

U2 \ U0 = (U2 \ U1)] (U1 \ U0) = |A1|] |A0| =
Supp-comp |A1 ⊕A0| ,

so p0
A1⊕A0 p2 is an arrow of Ĉ as desired.

The identity arrows are well-defined: By Supp-id, |idm| = ∅, so for any p = (m,U), p idm p

is an arrow of Ĉ.

Composition is associative and respects identities: Immediate because these same proper-
ties hold in A. ¥

4.4 Operations on Ĉ

In order to motivate the following results, let us recall the intuitions about the functor F

(defined formally later): F maps p0
A p1 to an isomorphism equivalence class of A and

throws away the set data contained in the profiles p0, p1. To prove that F allows IPO

sliding, we require two things. (i) We have to understand how two Ĉ-arrows are related

4.4. Operations on Ĉ 65

when they have the same F image, i.e. F(p0
A p1) = F(p

′
0

A′ p′1). (ii) From the first piece

of information, we have to slide similarly an IPO square whose left leg is p0
A p1 to one

whose left leg is p′0
A′ p′1.

For (i), it is clear that we can perform some profile translation (defined precisely later)

on p0
A p1 to replace the set components of p0 and p1 and then perform a support transla-

tion on the resulting arrow to arrive at p′0
A′ p′1. If these two operations (profile translation

and support translation) are iso functors (and thus preserve categorical constructions) then

we can accomplish (ii).

These two operations are not in fact iso functors on the whole of Ĉ but they are on

certain convex subcategories, as defined next. Fortunately, the subcategories in question

are rich enough to be proxies for Ĉ with respect to IPO squares, as shown in the result

immediately following the definition:

Definition 4.5 (convex subcategories of Ĉ) For any sets U0 ⊆ U1, we write ĈU0,U1

for the convex subcategory of Ĉ w.r.t. U0, U1, namely the full subcategory of Ĉ formed by

taking only those profiles (m,U) for which U0 ⊆ U ⊆ U1. ¥

¨

§

¥

¦
p p0

p1 p2

A0

A1 B0

B1
4.1

Proposition 4.6 Suppose that Figure 4.1 commutes in Ĉ. Then it is

an IPO in Ĉ iff it is an IPO in ĈU,U2
.

Proof For any pair of arrows p C p′ C′ p2, we have that U ⊆ U ′ ⊆ U2, so

p′ ∈ obj ĈU,U2
(Definition 4.5) hence ĈU,U2

satisfies the hypothesis of Proposition 2.12, whence the

result follows. ¥

Now we now define precisely profile translation and establish that it is an iso functor:

Proposition 4.7 (profile translation is an iso functor) If W1 =W0]W and W ′
1 =

W ′
0]W then the following operation, called profile translation, induces an isomorphism

of categories H : ĈW0,W1
ĈW ′

0,W
′
1
,

H : (m,W0] V) 7→ (m,W ′
0] V) for V ⊆W

H : (p0
A p1) 7→ H(p0)

A H(p1) .

Proof

H is well-defined on arrows: Suppose that (p0
A p1) ∈ ĈW0,W1

where Ui = W0] Vi, i = 0, 1
for some V0 ⊆ V1 ⊆W . Now, W ′

0] V0 ⊆W ′
0] V1 and

(W ′
0] V1) \ (W

′
0] V0) = V1 \ V0 = |A|

so (H(p0)
A H(p1)) ∈ ĈW ′

0,W
′
1
as desired.

H is a functor: Consider the action of H on identities:

H(idp) = H(p
idm p) = H(p)

idm H(p) = idH(p)

Chapter 4. Sliding IPO squares 66

and on compositions:

H(p0
A0 p1

A1 p2) = H(p0
A1⊕A0 p2)

= H(p0)
A1⊕A0 H(p2)

= H(p0)
A1 H(p1)

A0 H(p2)

H is an isomorphism of categories: By symmetry, the map H′ : ĈW ′
0,W

′
1

ĈW0,W1
defined

by

H′ : (m,W ′
0] V) 7→ (m,W0] V) for V ⊆W

H′ : (p0
A p1) 7→ H′(p0)

A H′(p1) .

is also a functor and clearly inverts H, as desired. ¥

Finally we lift the support translation operation from A to Ĉ in a straightforward way.

This definition induces a functor on convex subcategories of Ĉ

Proposition 4.8 (support translation is an iso functor) Given W0 ⊆ W1 and an

injection ρ with Dom ρ ⊇ W1, the following operation, called support translation, induces

an isomorphism of categories ρ¦(·) : ĈW0,W1
ĈρW0,ρW1

,

ρ¦(m,U) =̂ (m, ρU)

ρ¦(p0
A p1) =̂ ρ¦p0

ρ¦A
ρ¦p1 ,

where ρ¦A is the support translation by ρ of A in A.

Proof

ρ¦(·) is well-defined on arrows: Suppose that (p0
A p1) ∈ ĈW0,W1

. Then W0 ⊆ U0 ⊆ U1 ⊆
W1 ⊆ Dom ρ. Thus ρU0 ⊆ ρU1 and

ρU1 \ ρU0 =
ρ injective ρ(U1 \ U0) = ρ|A| =Trans-supp |ρ¦A| ,

so ρ¦(·) maps an arrow to an arrow.

ρ¦(·) is a functor: By Trans-id-r and Trans-comp-r, ρ¦(·) preserves identities and composi-
tions, so is a functor.

ρ¦(·) is an iso functor: Note that ρ has an inverse ρ−1 : Im ρ½ Dom ρ. Furthermore,

ρ−1¦(·) : ĈρW0,ρW1
ĈW0,W1

is a functor for the same reasons (given above) that ρ¦(·) is. By Trans-comp-l and Trans-

id-l, the functors ρ¦(·) and ρ−1¦(·) invert each other, so ρ¦(·) is an isomorphism of categories,
as required. ¥

4.5 Construction of C

We now turn to the construction of C, which was described informally in Section 4.1.

Recall that the arrows of C are equivalence classes of arrows of A. In this section we

make precise the underlying equivalence relation and the construction of C and verify

that C is a well-defined category.

4.6. Construction of F 67

Definition 4.9 (l-equivalence for A) Given two arrows A,A′ : m0 m1 inA, we say

that they are l-equivalent, written A l A′, iff there exists a bijection ρ : |A| ½³ |A′| such

that ρ¦A = A′. By Trans-id-l and Trans-comp-l, l is an equivalence relation. ¥

Now the construction of C is straightforward:

Definition 4.10 (support quotient) Given a well-supported precategory A, the sup-

port quotient of A is a category C. The objects of C are the objects of A. The arrows

m0 m1 of C are l-equivalence classes of arrows in A:

C(m0,m1) =̂ {[A]l / A ∈ A(m0,m1)} .

Identities: idm ∈ C(m,m) =̂ [idm]l. Composition: if A1 ⊕ A0 is defined in A then

[A1]l[A0]l =̂ [A1 ⊕A0]l. ¥

This definition yields a well-defined category:

Proposition 4.11 If C is the support quotient of A then C is a category.

Proof

Composition is total: Consider any two arrows in C such as [Ai]l : mi mi+1 for i = 0, 1.
Let W be a fresh set in bijection with |A1|, as witnessed by ρ : |A1| ½³W . Then ρ¦A1 ⊕A0

is defined since |ρ¦A1| ∩ |A0| =
Trans-supp W ∩ |A0| = ∅; thus

[A1]l[A0]l = [ρ¦A1]l[A0]l = [ρ¦A1 ⊕A0]l ,

as desired.

Composition is well-defined: Let [Ai]l = [A
′
i]l for i = 0, 1 with both A1 ⊕ A0 and A

′
1
⊕ A′

0

defined. Claim: [A1]l[A0]l = [A
′
1]l[A

′
0]l. By hypothesis, there exist bijections ρi : |Ai| ½³

|A′
i| such that A

′
i = ρi¦Ai for i = 0, 1. Since |A1| ∩ |A0| = ∅ and |A′

1| ∩ |A
′
0| = ∅, we can

define ρ =̂ ρ0] ρ1, a union of bijections with disjoint domains and disjoint codomains. Now,

ρ¦(A1 ⊕A0) =
Trans-comp-r ρ¦A1 ⊕ ρ¦A0 =

Trans-res ρ1¦A1 ⊕ ρ0¦A0 = A′
1
⊕A′

0

so

[A1]l[A0]l = [A1 ⊕A0]l = [A′
1
⊕A′

0]l = [A′
1]l[A

′
0]l ,

as desired.

Composition is associative: Follows from the associativity of the underlying composition in A.

Composition respects identities: Follows from the fact that composition respects identities in
A. ¥

4.6 Construction of F

In this final section we define a functor F from Ĉ (the track of A) to C (the support

quotient of A). We then verify that F has all the required properties, i.e.: F lifts agents,

creates isos, creates compositions, creates left inverses, and allows IPO sliding. Two

Chapter 4. Sliding IPO squares 68

comments are in order. (i) For the first we verify a stronger property defined below,

namely F lifts arrows by their domain. The reason for this choice is that there is no

postulated distinguished object in A or C corresponding to the 0 of a functorial reactive

system (see Definition 3.1), which is required when defining the property “F lifts agents”.

However, the stronger property “F lifts arrows by their domain” is well-defined. (ii) The

penultimate property, “F creates left inverses” does not appear in the definition of a

functorial reactive system but is used in Appendix B.

Definition 4.12 (support-quotienting functor) Let A be a well-supported precat-

egory and Ĉ and C be as in Definition 4.3 and Definition 4.10. Then we define a map

F : Ĉ C called the support-quotienting functor :

F : (m,U) 7→ m

F : (p0
A p1) 7→ F(p0)

[A]l
F(p1) . ¥

Lemma 4.13 F is a functor.

Proof Observe the action on identities:

F(idp) = F(p
idm p) = [idm]l = idm

and on compositions:

F(p0
A0 p1

A1 p2) = F(p0
A1⊕A0 p2)

= [A1 ⊕A0]l

= [A1]l[A0]l

= F(p1
A1 p2)F(p0

A0 p1) ¥

Now we prove all the easy properties of F :

Theorem 4.14 Let F : Ĉ C be the support-quotienting functor constructed from A.

Then:

• F lifts arrows by their domain: if F(p0) = Dom [A]l then there exists p0
B p1 such

that F(p0
B p1) = [A]l.

• F creates isos: if F(p0
A p1) is an iso then p0

A p1 is an iso.

• F creates compositions: if

F(p′0
B p′2) = [A1]l[A0]l

then there exist Ĉ-arrows p′i
Bi p′i+1 with

F(p′i
Bi p′i+1) = [Ai]l for i = 0, 1 (4.1)

p′0
B p′2 = p′0

B0 p′1
B1 p′2 (4.2)

4.6. Construction of F 69

• F creates left inverses: if idm0 = [A1]lF(p0
A0 p1) then there exists p1

A′1 p0 such

that idp0 = p0
A0 p1

A′1 p0 and F(p1
A′1 p0) = [A1]l.

Proof

F lifts arrows by their domain: Suppose [A]l : (m0, n0) (m1, n1), thus A : (m0, n0)
(m1, n1) in A. Let W be a fresh set in bijection with |A|, as witnessed by ρ : |A| ½³ W .

Then p0
ρ¦A

p1 is an arrow in Ĉ, where U1 =̂ U0]W . Furthermore F(p0
ρ¦A

p1) = [A]l as
desired.

F creates isos: Suppose F(p0
A p1) is an iso, i.e. there exists an A-arrow A′ : m1 m0 such

that:

[A′]l[A]l = idm0
= [idm0

]l

[A]l[A
′]l = idm1

= [idm1
]l

Without loss of generality, assume that |A| ∩ |A′| = ∅. Then A′
⊕ A l idm0

and A ⊕ A′ l
idm1

. By Supp-id and Trans-id-r, A′
⊕ A = idm0

and A ⊕ A′ = idm1
. By Supp-comp,

|A| = |A′| = ∅. Thus U1 = U0 and p1
A′ p0 is a Ĉ-arrow. Moreover,

p0
A p1

A′ p0 = p0
A′⊕A p0 = p0

idm0 p0 = idp0

and symmetrically. Thus p0
A p1 is an iso in Ĉ as desired.

F creates compositions: Without loss of generality, assume that |A1| ∩ |A0| = ∅. Then there
exist p0, p1, p2 such that pi

Ai pi+1 are arrows in Ĉ for i = 0, 1. By the definition of F ,
there exists a bijection ρ : |A1|] |A0| ½³ |B| such that ρ¦(A1 ⊕A0) = B; moreover m0 = m′

0

and m2 = m′
2. Let Bi =̂ ρ¦Ai for i = 0, 1. Let (m

′
1, U

′
1) =̂ (m1, U

′
0] |B0|), thus defining p

′
1.

We claim that p′
i
Bi p′

i+1 are arrows in Ĉ for i = 0, 1; there are three things that we need
to check:

U ′
0 ⊆ U ′

0] |B0| ⊆ U ′
0] |B| = U ′

2

U ′
1 \ U

′
0 = |B0|

U ′
2 \ U

′
1 = (U ′

0] |B|) \ (U
′
0] |B0|) = |B| \ |B0| = |B1| .

Now, B1 ⊕ B0 = B by Trans-comp-r, from which (4.2) follows. Also, by Trans-res,
Bi l Ai for i = 0, 1, from which (4.1) follows.

F creates left inverses: By hypothesis, idm0
= [A1]l[A0]l = [A′

1
⊕ A0]l for some A

′
1 : m1

m0 with A1 l A′
1, since composition in C is total. Thus idm0

l A′
1
⊕A0. By Supp-id, Supp-

comp, and Trans-id-l, idm0
= A′

1
⊕A0 and |A

′
1| = |A0| = ∅. Thus U0 = U1. Thus p1

A′1 p0

is an arrow in Ĉ and moreover F(p1
A′1 p0) = [A′

1]l = [A1]l and p0
A0 p1

A′1 p0 = idp0
,

as desired. ¥

An aside on the condition “F creates compositions”: This looks tantalisingly close

to the Conduché fibration property [Con72, Joh99, BF00], especially if one says that two

decompositions in Ĉ are equivalent if one is the result of a support translation of the other.

Perhaps there is some 2-category version of the Conduché property which works exactly

if one thinks of Ĉ as a 2-category with support translations as 2-cells. Let us now return

to the main flow of the argument.

Chapter 4. Sliding IPO squares 70

Finally, we prove the key property, namely that F allows IPO sliding. The proof

follows the outline given in Section 4.4. We start with two Ĉ-arrows with the same image

under F , namely F(p
A1 p1) = F(p′

A′1 p′1). The first arrow is the left leg of an IPO

square in Ĉ. This square is also an IPO in ĈU,U2
, the convex subcategory w.r.t. U,U2

(Definition 4.5), where U ⊆ U2 are the sets in, respectively, the upper-left and lower-right

profiles of the square. We isomorphically transform this subcategory by profile translation

and then support translation, gaining a new square that has three properties: it has the

same image under F as the original; its left leg is p′
A′1 p′1; it is an IPO in a convex

subcategory, so is an IPO in Ĉ.

Before looking at the technical details, it is useful to consider a concrete case of sliding.

Because we have not formally defined the graph contexts referred to at the beginning of

this chapter, it is impossible to be precise about which commuting squares are IPOs and

which are not. Nonetheless, the activity of “sliding” is relevant for all commuting squares,

whether or not they are IPOs.

Let us consider a category of graph contexts formed as the track (Definition 4.3) of the

precategory or raw contexts informally defined in Section 4.1. The arrows of this category

are just like the raw contexts (doughnut-shaped graphs with an inner and outer interface)

but with profiles (Definition 4.3) rather than just natural numbers as objects.

Consider the square in Figure 4.2(1). Its left leg has the same F image as the left leg

of the square in Figure 4.2(3): the two graph contexts look essentially the same, the only

difference being the supports. With a profile translation, we can replace the singleton set

{u} in the top-left corner of Figure 4.2(1) with a fresh 2-element set {u′′0, u
′′
1}, as shown in

Figure 4.2(2). The freshness is essential to prevent clashes with the other nodes present

in the square, namely v0, v1. Now, if ρ is defined as follows:

ρ : vi 7→ v′i i = 1, 2

ρ : u′′i 7→ u′i i = 1, 2

then the support translation by ρ of Figure 4.2(2) yields Figure 4.2(3), as desired. Since

the passage from Figure 4.2(1) to Figure 4.2(2) and then to Figure 4.2(3) was effected

by iso functors, all the universal properties of Figure 4.2(1) (e.g. being an IPO) hold of

Figure 4.2(3) too.

¨

§

¥

¦
p p0

p1 p2

A0

A1 B0

B1
4.3

Theorem 4.15 (F allows IPO sliding) Let F : Ĉ C be the

support-quotienting functor constructed from A. Then F allows IPO

sliding (Definition 3.1).

Proof Consider any IPO square in Ĉ, as in Figure 4.3, and any arrow p′
A′1 p′1 with

F(p′
A′1 p′1) = F(p

A1 p1); thus A
′
1 = α¦A1 for some bijection α : |A1| |A′1| and U

′
1 =

U ′] α|A1|.

4.6. Construction of F 71

v1

v0

v1

(2, {u})

(2, {v0, v1, u}) (0, {v0, v1, u})

(4, {v0, u})

v0

4.2(1) A commuting square before sliding

v1

v0

v1

(2, {u′′0 , u
′′
1})

(2, {v0, v1, u
′′
0 , u

′′
1}) (0, {v0, v1, u

′′
0 , u

′′
1})

(4, {v0, u
′′
0 , u

′′
1})

v0

4.2(2) First we apply profile translation . . .

v′0 v′1

v′0

v′1

(4, {v′0, u
′
0, u

′
1})(2, {u′0, u

′
1})

(2, {v′0, v
′
1, u

′
0, u

′
1}) (0, {v′0, v

′
1, u

′
0, u

′
1})

4.2(3) . . . and then support translation by ρ

Figure 4.2: Sliding

Chapter 4. Sliding IPO squares 72

¨

§

¥

¦

H(p) H(p0)

H(p1) H(p2)

A0

A1 B0

B1
4.4

By Proposition 4.6, Figure 4.3 is an IPO in ĈU,U2
. Let U ′′ be a

fresh set in bijection with U ′, as witnessed by µ : U ′′ ½³ U ′. Let

U ′′2 =̂ U ′′] (U2 \ U). Then U2 \ U = U ′′2 \ U
′′ so by Proposition 4.7,

there is a profile translation H : ĈU,U2
ĈU ′′,U ′′2

which is an iso

functor and whose action on profiles is:

H : (m,U] V) 7→ (m,U ′′] V) for V ⊆ U2 \ U

and whose action on arrows leaves the underlying A-arrow component unchanged. Since

isomorphisms of categories preserve universal constructions, Figure 4.4 is an IPO in

ĈU ′′,U ′′2
and has the same image under F as Figure 4.3 does.

¨

§

¥

¦

ρ¦H(p) ρ¦H(p0)

ρ¦H(p1) ρ¦H(p2)

ρ¦A0

ρ¦A1 ρ¦B0

ρ¦B1 4.5

Let W be a fresh set in bijection with |B1|, as witnessed by

β : |B1| ½³ W . Let ρ =̂ µ] α] β, a union of bijections with

mutually disjoint domains and codomains. Also Dom ρ = U ′′]

|A1|] |B1| = U ′′2 . Because ρ is bijective, Proposition 4.8 implies

that there is a support translation ρ¦(·) : ĈU ′′,U ′′2
ĈρU ′′,ρU ′′2

which is an iso functor. Iso functors preserve universal constructions, so Figure 4.5 is a

IPO in ĈρU ′′,ρU ′′2
and has the same image under F . By Proposition 4.6, this square is an

IPO in Ĉ. Moreover,

ρ¦(H(p)
A1 H(p1)) = µ¦H(p)

α¦A1 (µ] α)¦H(p1) = p′
A′1 p′1

as desired. ¥

Chapter 5

Action graph contexts

5.1 Introduction

As promised in the previous chapter, the present one gives a substantial example of a

precategory A-Ixt of raw contexts. (The “Ixt” in C-Ixt is for “insertion context”, a ter-

minology explained in Section 5.6.) The need to handle graphs was the original motivation

for functorial reactive systems: as we will see in Section 5.3, RPOs do not always exist for

C-Ixt, the support quotient (Definition 4.10) of A-Ixt, so it is necessary to consider an

upstairs category which does possess sufficient RPOs and a functor down to C-Ixt.

The precategory A-Ixt has all the extra structure required of A, namely a sup-

port function and a support translation operation, so is a well-supported precategory

(Definition 4.2). By direct instantiation of the results of the previous chapter, we can

construct three things: the track of A-Ixt, which we call Ĉ-Ixt; the support quotient of

A-Ixt, which we call C-Ixt; and a functor F : Ĉ-Ixt C-Ixt. These are related in the

following table to their counterparts from the Chapter 4:

well-supported precategory: A A-Ixt

track: Ĉ Ĉ-Ixt

support-quotienting functor: ↓ F ↓ F

support quotient: C C-Ixt

Thus by Theorem 4.14 and Theorem 4.15, F lifts arrows by their domain, creates isos,

creates compositions, and allows IPO sliding. Furthermore A-Ixt has a distinguished ob-

ject 0, hence there are distinguished objects 0 and ε of C-Ixt and Ĉ-Ixt, with F(ε) = 0,

whence F lifts agents. Thus, any choice of reaction rules Reacts for C-Ixt and reac-

tive context subcategory D of C-Ixt (Definition 2.1) yields a functorial reactive system

(Definition 3.1).

73

Chapter 5. Action graph contexts 74

The main hurdle then in using the congruence results of Chapter 3 is proving that F

has all redex-RPOs (Definition 3.4). It turns out that this property fails for some choices

of reaction rules, but that it does hold for a rich class of them.

As promised in Section 3.1, the category C-Ixt of graph contexts (the codomain of F)

does not admit enough RPOs for subtle reasons. Examples are shown in Section 5.3. The

cause is the lack of sufficient intensional information as to which node in contexts C0 or

C1, say, corresponds to a node in the composite C0C1. It is exactly Ĉ-Ixt, the domain of

F , that contains just enough structure to track how the nodes of two contexts are related

to the nodes of their composition. By the definition of “F has all redex-RPOs”, the proof

obligation is to show that sufficient RPOs exist in Ĉ-Ixt. It transpires that a frontal attack

on this is difficult (and not attempted in this dissertation): the combinatorial complexity

of context composition, for example, is daunting, and the manipulation of the compositions

required for verifying the existence of RPOs is too much to handle. However, an indirect

approach based on a category G-Inc of graphs and inclusion embeddings (a kind of graph

embedding) works smoothly. This is the subject of the next chapter, which shows that

RPOs in Ĉ-Ixt correspond to relative coproducts in G-Inc; gives a direct construction

of the latter subject to some conditions; and, finally, shows that these conditions are

necessary for the existence of relative coproducts. Thus F has all redex-RPOs for a wide

variety of reaction rules.

The development of the theory presented in this chapter and the next is adapted from

[CLM00] but differs from it in the following ways: I omit extraneous material (not relevant

to labelled transitions) and include full proofs of the existence of relative coproducts

(Theorem 6.27 and Theorem 6.26). I also have renamed some of the structures: in this

dissertation I write Ĉ-Ixt and C-Ixt; in [CLM00], these are denoted PIns0 and ACxt0

respectively.

5.2 Action calculi reviewed

I review a restricted class of the action calculi which were presented in [Mil96]. The rest

of this chapter and the next make no specific use of the algebra of action calculi shown

here since all of the work is done directly on graphs. Nonetheless, the design decisions

taken when defining graphs are guided by the algebraic presentation of action calculi, so

the latter provide valuable motivation.

A closed, shallow action calculus is a strict monoidal category whose objects are

natural numbers k,m, n, o . . ., and whose arrows are called action graphs and written

a : (k, o), b : (m,n). (I avoid the usual arrow notation a : k o, reserving it for the

context arrows of reactive systems.) The tensor product of these two action graphs is

a⊗ b : (k+m, o+n); the composition of a : (k, o) and b : (o,m) is a·b : (k,m); the identity

action graph of arity (m,m) is im. The order of composition is not conventional in category

5.2. Action calculi reviewed 75

theory: it connotes the orientation of the action graphs we work with. (Note that this

composition is the horizontal juxtaposition of action graphs and has nothing to do with

contextual composition which we consider later.) A pair of natural numbers (k, o) is an

arity ; let α, β, . . . range over arities. I deal only with closed, shallow action calculi and so

usually omit these adjectives from now on.

An action calculus has a control signature K = {K,L, . . .} consisting of controls, each of

which has an arity. There are constants p : (2, 2), c : (1, 2) and ω : (1, 0) for permutation,

copy and discard. These constants represent only the swapping, sharing and elimination

of arcs, not of nodes. They satisfy simple equations, e.g. c·p = c representing the com-

mutativity of copying. There is also an operator called reflexion [Mil94] (similar to the

“trace” of Joyal et al. [JSV96]) which we need not detail here.

Finally, each action calculus has a binary reaction relation , relating action graphs

of equal arity. This relation is preserved by all constructions, i.e. by composition, tensor

product and reflexion.

For examples of action graphs, let K : (0, 1),M : (1, 1) and L : (1, 0) be controls. Then

the following are action graphs, with their arities:

K ⊗M : (1, 2)

K·c·(M ⊗ L) : (0, 1)

(K·M)⊗ (M ·L) : (1, 1) .

Composition · binds tighter than tensor ⊗, so the last can be written K·M ⊗M ·L.

A context C is an action graph containing a single hole with arity α, written −α. I

omit the arity, writing −, if it is determined by the rest of the context or the surrounding

discussion. Thus a context C : α β is an action graph of arity β with a hole of arity α.

Here are two contexts along with their domain and codomain arities (the arity of the hole

being fully determined in the second case):

−1,1·c·(M ⊗M) : (1, 1) (1, 2)

K·−·L : (1, 1) (0, 0) .

Figure 5.1 shows an action graph and a context using a graphical notation. It uses

nodes (rectangles with two blunt corners) to represent occurrences of controls, and arcs

to represent composition. An action graph with arity (m,n) has m source ports on its

left side and n target ports on its right side. A control node or hole of arity (m,n) has m

target ports at its left side n source ports at its right side. At a source node, branching of

arcs represents c and absence of arcs represents ω.

Two contexts are equal if the algebraic theory equates them, treating the hole as

a control distinct from all others. The composition of two contexts C : α β and

Chapter 5. Action graph contexts 76

L

M

M

MK

Figure 5.1: The action graph K·c·(M ⊗ L) and the context −1,1·c·(M ⊗M)

D : β γ, written here DC (note the conventional order of composition), is formed

by replacing the hole in D by C and joining the arcs according to the common ports.

(This is context composition, not horizontal action graph composition described earlier.)

Composition is clearly associative, and there is an identity context idα = −α for each

arity. An action graph a : α can be considered as a context a : (0, 0) α whose hole has

minimum arity. We shall use lower case letters a, . . . for action graphs.

We have thus associated with an action calculus a reactive systemC-Ixt, whose objects

are arities, with distinguished null arity (0, 0), and whose arrows are contexts, including

action graphs.

5.3 Examples and a problem

In this section I give examples of specific RPOs in C-Ixt, illustrating several phenomena.

I end with an example showing cases in which RPOs fail to exist; this motivates the

strategy of defining a category “upstairs” (the domain of a functor with codomain C-Ixt)

for which enough RPOs do exist.

Remember that C-Ixt is really a family of reactive systems arising from action calculi;

each is determined by a control signature and a set of reaction rules.

Example 5.1 (arithmetic) I first illustrate how an RPO can determine a labelled

transition, using an action calculus for elementary arithmetic having controls 0 : (0, 1),

S : (1, 1), and + : (2, 1). The reactive system is shown in Figure 5.2; it is an example

of the sharing graphs of Hasegawa [Has99], which add sharing to the interaction nets of

Lafont [Laf90]. Nodes represent subexpressions, and the forking of arcs allows these to

be shared. The reaction rules are in the top diagram; the garbage collection rules allow

unattached expressions to be incrementally destroyed.

The middle diagram shows an action graph a occurring in a larger one b′, which also

contains an occurrence of the redex l1 of the rule for S. The contexts C ′ and D′ correspond

to the two occurrences, which overlap. Now what is the “just large enough” context C

which extends a to contain l1? It is not quite C ′, because C ′ has destroyed the possibility

of sharing S which is offered by l1. In fact it is C as shown in the lower diagram; it may

not seem “smaller” than C ′, but it is indeed a factor of C ′, as witnessed by the context

5.3. Examples and a problem 77

E. (C ′ cannot be a factor of C; no context F surrounding C ′ can cause its S-node to be

shared.) So our derived labelled transition system will admit the transition a C Dr1. We

would expect to add further controls, e.g. for subtraction, before obtaining an interesting

behavioural congruence.

Example 5.2 (wiring) The preceding example used the forking and deletion of arcs to

represent the sharing of components. This non-linearity is a pervasive feature in process

calculi. CCS and the π-calculus depend heavily on it; witness the double occurrence of

x in its reaction rule for CCS: x̄.a | x.b a | b (and similarly for the π-calculus). The

redex has no direct representation in the family of action calculi introduced in this section

because we confine our attention to shallow, closed action graphs, i.e. ones without nesting

of graphs (needed for prefixing) and free names. Without such limitations, the redex is

exactly modelled by an action graph with a forked arc (representing the sharing of x)

connected to two controls representing the output and input prefixes, containing inside a

and b respectively. See [Mil96] for many examples.

Non-linearity can give rise to RPOs which are more complex than one might expect.

Figure 5.3 shows two identical action graphs a = b = K·c, where K : (0, 1); using the

identity contexts C ′ = D′ = −0,2 they are embedded in K·c. But the RPO C,D,E does

not consist of identity contexts! A candidate might choose to identify t0 in a with either

t2 or t3 in b, and similarly for t1. To be the “best” candidate, the C,D,E must handle

all these pairings; to indicate this we have indexed its targets by pairs in the diagram. In

fact we have

Ca = Db = K·c·(c⊗ c) .

Example 5.3 (reflexion) A surprising phenomenon is how the presence of reflexion

can affect the RPO. Let K,N : (1, 1), L : (0, 2) and M : (2, 0), and recall that i1 is the

identity of arity (1, 1) for action graph composition. Figure 5.4 shows a = L·(i1 ⊗K) and

b = (i1 ⊗K)·M embedded in C ′a = D′b = L·(N ⊗K)·M . The contexts C ′ and D′ do not

involve reflexion. In the RPO C,D,E shown we have Ca = Db = (i1⊗L)·(p⊗K)·(i1⊗M);

this extends a by only one control (M) in order to create an occurrence of b. The contexts

C and D do not use reflexion, but E does use it. If reflexion is forbidden then the RPO

C+, D+, E+ is such that C+a = D+b contains N ; this would yield a more complex derived

labelled transition relation.

These examples do not exhaust the phenomena which arise in finding RPOs in C-Ixt,

but they indicate that the general construction will not be trivial. The reader may feel

that, having coped informally with a number of phenomena, we are well on the way to

finding RPOs in every case. However, they do not always exist in C-Ixt! Here is a

counter-example.

Chapter 5. Action graph contexts 78

+

Arithmetic rules

+

+

S

+

0

S

SS

0 0

Garbage collection rules

r1

l0 r0

l1

+

0

+

S

+

0

S

b′

(0, 0)
(1, 1)

(1, 1)

(2, 2)

a

l1
D′

C ′

C ′a = D′l1 = b′

S

0

An action graph a overlapping a redex l1

a

l1 D′

0

S

(0, 0)
(1, 2) (1, 1)

(2, 2)

(1, 1)

C ′

D

C

E

Ca = Dl1 = b

S
+

0

b

An RPO for a and l1 w.r.t. C ′ and D′

Figure 5.2: A reactive system for arithmetic (Example 5.1)

5.3. Examples and a problem 79

(0, 2)

(0, 2)

(0, 2)
(0, 0)

C ′

C

D
(0, 0) (0, 2)

a t0
t1

b
t2
t3

D′

K

K

K

K

(t1,t3)
(t1,t2)
(t0,t3)
(t0,t2)

E

(0, 4)

Figure 5.3: An RPO for copied wiring (Example 5.2)

M

N
L

K(0, 0)

L

K

KL N

(0, 0) (0, 0)

(0, 0)
(1, 1)

(0, 2)

(2, 0)M

M

a

b D

C

E

N

M

D′

C ′

L

N

K

Figure 5.4: An RPO using reflexion (Example 5.3)

Chapter 5. Action graph contexts 80

K

K

K L

L

K

K

K L

L

L

L

(0, 0)

(0, 0) (0, 0)

(0, 1)

(0, 1)

(0, 0)

b

a

D′

C ′

A context equation C ′a = D′b

−·(L⊗ L)

K·L⊗−·L

(0, 0)

−

K

K

K ⊗−

K·L⊗−·L

K·L⊗−·L

D

−⊗K

F0

−

F1

(0, 0)

(0, 0)

(0, 1)

(0, 1)

impossible!

(1, 1)

C

Figure 5.5: A missing RPO in C-Ixt (Example 5.4)

5.4. Closed shallow action graphs 81

Example 5.4 (missing RPO) Let K : (0, 1) and L : (1, 0). Let a = b = K and let

C ′ = D′ = K·L⊗−0,1·L with arity (0, 1) (0, 0). Then C ′a = D′b = K·L⊗K·L; this is

shown in the upper diagram of Figure 5.5. The lower diagram shows two candidate RPOs,

for which it is easy to verify commutation:

C0, D0, E0 = −, −, K·L⊗−·L

C1, D1, E1 = −⊗K, K ⊗−, −·(L⊗ L) .

But if there were an RPO, then contexts C,D,F0, F1 would exist as shown making the

diagram commute, yielding a contradiction as follows: Neither C nor D can contain any

control, since F0C = F0D = −. Hence from CK = DK we deduce C = D, using the

criterion for context equality stated above (since the control K appears in neither C nor

D). Hence −⊗K = F1C = F1D = K ⊗−, a contradiction.

This counter-example involves neither copying nor discard of arcs, so is applicable to

linear action calculi too [LM00b] — those in which all source ports bear exactly one arc.

Thus we cannot attribute the lack of RPOs to c and ω, even though they demand careful

treatment as shown in Example 5.1 and Example 5.2.

The counter-example also illustrates why RPOs do not always exist in C-Ixt. The

equations C0K = D0K = K and C1K = D1K = K ⊗ K hold respectively for the two

candidates; but if we “track” the two occurrences of a = K and b = K through these

equations, we find that they correspond to the same occurrence of K in the first case,

and to two different occurrences in the second case. This is a key to solving our problem;

we seek a suitable refinement of C-Ixt that possesses the RPOs we need. We expect its

contexts to track the occurrences of nodes. This is a similar idea to that of “colouring”,

which has been suggested by Sewell to replace his dissection based definitions [Sew01].

The strategy is as follows. The next two sections are devoted to the construction of

A-Ixt, a well-supported precategory of arities and raw contexts. Replaying the construc-

tions of Chapter 4, we derive two categories from A-Ixt and a functor between them

F : Ĉ-Ixt C-Ixt. The next chapter shows that sufficient RPOs exist in Ĉ-Ixt, as

desired.

5.4 Closed shallow action graphs

In this section, after introducing some notation, I define a class of action graphs. These

graphs are enriched in the next section to form raw contexts (graphs with a hole in them),

the arrows of the precategory A-Ixt. No attempt is made to verify formally that the

action graphs presented here correspond to action calculi terms quotiented by the action

calculi axioms (which are not presented here). Such an undertaking represents future work

and will be of more value when the tractable graph-theoretic features include free names

and nesting.

Chapter 5. Action graph contexts 82

Notation I write [m] for the ordinal number {0, 1, . . . ,m−1}. The disjoint sum
∑

i∈I Xi

of a family of sets is taken to be the set
⋃

i∈I({i}×Xi). A particular case is when I = [n];

then the disjoint sum may be written, without parentheses, as X0 + X1 + · · · + Xn−1.

Examples in this chapter take the form S =
∑

v∈V Sv + [m] + [n], a ternary disjoint sum,

the first summand of which is itself a disjoint sum; S has elements of the form (0, (v, s))

for each v ∈ V and s ∈ Sv, (1, i) for each i ∈ [m], and (2, j) for each j ∈ [n].

If the sets X and Y are disjoint, I often write their union as X]Y . This notation is to

be distinguished from a disjoint sum. In particular, (X1]X2)]X3 = X1](X2]X3) and will

often be written without parentheses; on the other hand, the disjoint sums X1+X2+X3,

(X1 +X2) +X3 and X1 + (X2 +X3) are all distinct but in bijective correspondence. If

f : X Z and g : Y Z are two functions withX disjoint from Y , then f]g : X]Y Z

is their union.

I use f : X ½ Y , f : X ³ Y and f : X ½³ Y for respectively injective, surjective

and bijective functions, and f : X ↪→ Y for an injection which is an inclusion. Finally, ◦

denotes function composition, IdX the identity function on the set X, and ∅X the empty

function from ∅ to X.

Definition 5.5 (control signature) We fix a control signature K, a set of controls,

equipped with an arity function called arity : K N2 and let K,L, . . . range over K. For

arity(K) = (m,n) we write K : (m,n); in this case, two functions extract the components

of the pair: arin(K) =̂ m and arout(K) =̂ n. ¥

Definition 5.6 (action graphs) A (closed, shallow) action graph G =

(m,n, V, contr , src) comprises an arity (m,n), a set V of nodes, called a support, a

control map contr : V K assigning a control in K to each node in V , and a source map

src : T S assigning a source (port) in S to each target (port) in T , where

• the source set S =̂
∑

v∈V [arout(contr(v))] + [m] comprises the binding sources for

each v ∈ V and the input sources indexed by [m];

• the target set T =̂
∑

v∈V [arin(contr(v))] + [n] comprises the argument targets for

each v ∈ V and the output targets indexed by [n]. ¥

Nomenclature We may write a graph as G = (V, contr , src) : (m,n), or just

G = (V, contr , src) when the arity is understood. We denote the empty graph

(∅,∅K,∅∅) : (0, 0) by 0. We shall abbreviate arin(contr(v)) to arin(v) etc., when there

is no ambiguity. We denote the injections induced by the disjoint sums S and T as

5.4. Closed shallow action graphs 83

Figure 5.6: A closed shallow action graph

follows:

bind(v) : [arout(v)]½ S for the binding sources of each v ∈ V ;

in : [m]½ S for the input sources;

arg(v) : [arin(v)]½ T for the argument targets of each v ∈ V ;

out : [n]½ T for the output targets. ¥

We shall write bind(v, i) and arg(v, j) for the ports bind(v)(i) and arg(v)(j). For any

injection f into a set A we write Af for the range of f ; thus for example S in is the set

of all input sources and T arg(v) the set of argument targets of v. We shall also write for

example Sbind for
⊎

v∈V S
bind(v). With this notation we can represent our partitions as

S = Sin] Sbind

T = T out] T arg .

An example of an action graph with arity (1, 3) is shown in Figure 5.6, with node names

and the control map omitted. The whole graph is in a rectangle, with input sources at

the left and output targets at the right. Nodes are drawn as rectangles with two corners

blunted to give orientation; we may want to tilt some of them, as here, or even turn them

upside down. The three nodes have arities (1, 1), (2, 1) and (1, 2). The arcs represent the

source map, with arrows pointing from source to target. Ports could be drawn as blobs,

but this is somewhat redundant; a target is always indicated by exactly one incoming arc,

and we indicate a source with no outgoing arcs by a little aborted arc.

Cycles are allowed. The graphs studied here are for action calculi which are closed,

meaning that free names such as x, y, . . . are not used as sources, and shallow, meaning

Chapter 5. Action graph contexts 84

that nodes do not contain action graphs nested inside. I study the closed, shallow action

graphs in this dissertation as a preliminary to future work on a full graphical presentation

of action calculi, since notions such as graph embedding and graph context are more clearly

handled in this simpler setting.

Convention Action graphs are almost always denoted by G suitably subscripted.

Rather than always explicitly list all their primary components V , contr , and src, or

their derived components S, T , bind , in etc., we shall follow a firm convention that the

names of these components are standard, decorated as necessary to connote the graph’s

name.

5.5 The well-supported precategory A-Ixt of arities and raw

contexts

I proceed now to construct the well-supported precategory A-Ixt of raw contexts with a

support function and support translation operation (Definition 4.2).

The intuition of “context” is well supplied by Figure 5.7; the graph G occurs inside

the dotted rectangle in G′, and we may think of the context in which G is placed as that

part of G′ lying outside the dotted rectangle. A context is therefore an action graph, but

with a little more structure since it has an internal as well as an external interface. The

internal interface is often called a hole. (I do not consider here contexts with more than

one hole.)

The lower diagram shows the context C which results when G is excised from G′;

in the notation of what follows, G′ = CG (C composed with G). Note the new targets

and sources on respectively the left and right sides of C’s internal interface; in particular,

the middle internal source lacks any targets and therefore represents the discard of the

corresponding output target of G — or of any other graph — when placed in the hole.

Definition 5.7 (raw context) A (closed, shallow, loose) raw context A = (V, contr , src)

of arity (m′, n′) to (m,n), written A : (m′, n′) (m,n), comprises a support V , which is

a set of nodes, a control map contr : V K assigning a control in K to each node in V ,

and a source map src : T S assigning a source (port) in S to each target (port) in T ,

where

• the source set S =̂
∑

v∈V [arout(v)] + [m] + [n′] comprises the binding sources for

each v ∈ V , the input sources indexed by [m], and the upput sources indexed by [n′];

• the target set T =̂
∑

v∈V [arin(v)] + [n] + [m′] comprises the argument targets for

each v ∈ V , the output targets indexed by [n], and the downput targets indexed by

[m′].

5.5. The well-supported precategory A-Ixt of arities and raw contexts 85

G′

G

The action graph G is a subgraph of G′

C

The corresponding context

Figure 5.7: The bottom context composed with the middle action graph yields the top
action graph

Chapter 5. Action graph contexts 86

A0

A1

T down
0Sin

1 Sup
0

T down
1 Sin

0 Sup
1

T out
1

T out
0

Figure 5.8: The composition of two raw contexts

Furthermore, we require that the looseness condition is satisfied (see nomenclature defined

below):

src(T down) ∩ Sup = ∅ . Loose

The looseness condition precludes a “tight” loop from the back of the hole to the front, such

as is formed by reflexion in action calculi. It does not preclude such a loop proceeding via a

control, which indeed occurs in Figure 5.7; thus the contexts permit only limited reflexion,

which simplifies the definition of composition. (See Chapter 8 for further discussion.)

Finally, |A| is the support of A, i.e. V in this case. ¥

Note that an action graph G is just a raw context A as above in which m′ = n′ = 0.

Nomenclature As for action graphs, there are induced injections for raw contexts as

follows:

bind(v) : [arout(v)]½ S for the binding sources of each v ∈ V ;

in : [m]½ S for the input sources;

up : [n′]½ S for the upput sources;

arg(v) : [arin(v)]½ T for the argument targets of each v ∈ V ;

out : [n]½ T for the output targets;

down : [m′]½ T for the downput targets.

With naming similar to that in action graphs for the partitions of S and T , we have

S = Sbind] Sin] Sup

T = T arg] T out] T down .

Raw contexts cannot be composed when the supports of each operand in a composi-

tion intersect non-trivially. Composition is well-defined when the operands have disjoint

supports— one of the required properties of a well-supported precategory (Definition 4.2).

5.5. The well-supported precategory A-Ixt of arities and raw contexts 87

Definition 5.8 (identity and composition for raw contexts) The identity raw

context id(m,n) = (∅,∅K, src) : (m,n) (m,n) has

S =̂ ∅ + [m] + [n] = Sin] Sup

T =̂ ∅ + [n] + [m] = T out] T down
src :

{

down(i) 7→ in(i) i ∈ [m]

out(j) 7→ up(j) j ∈ [n] .

Let Ai = (Vi, contr i, srci) : (mi, ni) (mi+1, ni+1) be two raw contexts for i = 0, 1, with

V0 ∩ V1 = ∅. Their composition, illustrated in Figure 5.8 by nesting A0 inside A1, is

A1 ⊕A0 =̂ A2 = (V2, contr2, src2) : (m0, n0) (m2, n2) ,

where V2 =̂ V1] V0 and contr2 =̂ contr1] contr0 (thus determining arin2 = arin1] arin0

and likewise arout2, bind2, arg2), and

S2 =̂
∑

v∈V2
[arout2(v)] + [m2] + [n0] = (Sbind

1] Sbind
0)] Sin

1] S
up
0

T2 =̂
∑

v∈V2
[arin2(v)] + [n2] + [m0] = (T arg

1] T arg
0)] T out

1] T down
0 .

Note (see Figure 5.8) that T down
1 is in bijection with Sin

0 and [m1], while S
up
1 is in bijection

with T out
0 and [n1]. It remains to define the source function src2; this is done in terms of

two auxiliary functions σi : Si S2 (i = 0, 1) which describe how sources of A0 and A1

“become” sources of A2:

σ0(s) =̂

{

s if s ∈ Sbind
0] Sup

0

src1down1(i) if s = in0(i) ∈ S
in
0

σ1(s) =̂

{

s if s ∈ Sbind
1] Sin

1

σ0src0out0(j) if s = up1(j) ∈ S
up
1

src2(t) =̂

{

σ1src1(t) if t ∈ T arg
1] T out

1

σ0src0(t) if t ∈ T arg
0] T down

0 .

¥

We have adopted the symbol “⊕” for composition of raw contexts as a reminder that it is

partial: the supports of the operands are required to be disjoint in order for a composition

to be defined.

Proposition 5.9 (raw contexts form a precategory) If A0 and A1 are raw contexts

with |A1| ∩ |A0| = ∅ then A1 ⊕ A0 is a raw context too. (In particular, ⊕ preserves the

Loose condition.) Composition is associative and has identity id (in the way required of

a precategory, see Definition 4.1).

Proof Follows immediately from Propositions 21 and 22 of [CLM00]. ¥

Chapter 5. Action graph contexts 88

By definition composition satisfies Supp-comp and Supp-id (Definition 4.2), i.e.

|A1 ⊕A0| = |A1|] |A0| Supp-comp

|idm| = ∅ . Supp-id

The only task remaining in order to show that A-Ixt is a well-supported precategory

is the definition of a support translation operation and the verification of its properties.

Definition 5.10 (support translation for raw contexts) Given a raw context

A : (m0, n0) (m1, n1) and an injection ρ whose domain contains the support of A,

i.e. Dom ρ ⊇ |A|, we define the support translation by ρ of A, written ρ¦A, as follows:

ρ¦A =̂ A′, where:

V ′ =̂ ρV

contr ′(v) =̂ contr(ρ−1(v)) thus determining arin, arout , bind , arg

S′ =̂
∑

v∈V ′ [arout
′(v)] + [m1] + [n0]

T ′ =̂
∑

v∈V ′ [arin
′(v)] + [n1] + [m0]

thus determining bijections ρS : S ½³ S′ and ρT : T ′ ½³ T whence we define:

src′ =̂ ρS ◦ src ◦ ρT . ¥

This definition satisfies the appropriate healthiness conditions:

Proposition 5.11 (support translation is well-defined) If A satisfies Loose then

so does ρ¦A, thus ρ¦(·) is a well-defined operation on raw contexts.

Proof Immediate from src ′ =̂ ρS ◦ src ◦ ρT, since ρS and ρT are the identity on upput

sources and downput targets respectively. (Proposition 24 in [CLM00].) ¥

Furthermore, support translation satisfies the remaining axioms in the definition of a

well-supported precategory (Definition 4.2):

Proposition 5.12 (support translation properties) All of the following properties

hold:

ρ¦idm = idm Trans-id-r

ρ¦(A1 ⊕A0) = ρ¦A1 ⊕ ρ¦A0 Trans-comp-r

Id|A|¦A = A Trans-id-l

(ρ1 ◦ ρ0)¦A = ρ1¦(ρ0¦A) Trans-comp-l

ρ0 ¹ |A| = ρ1 ¹ |A| implies ρ0¦A = ρ1¦A Trans-res

|ρ¦A| = ρ|A| . Trans-supp

5.6. Constructing a functorial reactive system 89

Proof All of these except the last follow from Proposition 25 in [CLM00]. Trans-supp

follows immediately from Definition 5.10. ¥

Thus:

Theorem 5.13 A-Ixt is a well-supported precategory. ¥

5.6 Constructing a functorial reactive system

Having established that A-Ixt is a well-supported precategory, the rest of the re-

sults of Chapter 4 are immediately applicable. We let Ĉ-Ixt be the track of A-Ixt

(Definition 4.3), a category of profiles and insertion contexts. The arrows are called “in-

sertion contexts” to remind us that they “insert” the nodes of the domain profile into the

codomain profile. Thus, if (m0, n0, U0)
A (m1, n1, U1) is an arrow of Ĉ-Ixt then U0 ⊆ U1.

A more complex category is considered in [CLM00] which allows the domain set to be

injected (rather than just included) in the codomain set. This richness seems to be super-

fluous, so I ignore it here.

Now let C-Ixt be the support quotient (Definition 4.10) of A-Ixt. Finally let

F : Ĉ-Ixt C-Ixt be the support-quotienting functor (Definition 4.12). Then by

Theorem 4.14, F lifts arrows by their domain, creates isos, creates compositions, and

creates left inverses. (The last is used only in Appendix B.) By Theorem 4.15, F allows

IPO sliding.

A-Ixt has a distinguished object (0, 0): as stated immediately after Definition 5.7, a

raw context with domain (0, 0) is identical to an action graph. Since C-Ixt has the same

objects as A-Ixt does, the distinguished object 0 of C-Ixt as a reactive system is just

(0, 0). Likewise, let ε =̂ (0, 0,∅), the distinguished object for Ĉ-Ixt. Since F(ε) = 0, we

have that F lifts agents, and thus:

Theorem 5.14 (F is functorial reactive system) The support-quotienting functor

F : Ĉ-Ixt C-Ixt is a functorial reactive system for any choice of D and Reacts. ¥

Thus all the congruence results of Chapter 3 are applicable to F (except Theorem 3.33

since we are not dealing with multi-hole contexts) with one proviso: we wish to determine

choices of D and Reacts such that F has all redex-RPOs. That is the subject of the next

chapter which shows that an arbitrary choice of D and a wide variety of choices of Reacts

(in particular of redexes) leads to sufficient RPOs.

Chapter 5. Action graph contexts 90

Chapter 6

RPOs for action graph contexts

6.1 Introduction

¨

§

¥

¦
ε p0

p1 p

G0

G1 A0

A1
6.1

The goal of this chapter is to show that F : Ĉ-Ixt C-Ixt has

all redex-RPOs for a wide variety of reaction rules Reacts and reactive

contexts D. With regard to D, the strongest result obtainable is with

D = C-Ixt, i.e. with all contexts in C-Ixt reactive, so let us fix on this

throughout this chapter. Recall from Definition 3.4, that F has all redex-RPOs if any

square in Ĉ-Ixt, such as in Figure 6.1, has an RPO provided that there exists r ∈ C-Ixt

such that (F(ε
G1 p1), r) ∈ Reacts.

So the key question is: for which choice of redexes l (first components of the Reacts

relation) do there exist RPOs in Ĉ-Ixt for squares whose upper-left profile is ε = (0, 0,∅)

and whose left leg is a preimage of l? Answering this question is the task of the present

chapter.

As indicated in the previous chapter, constructing RPOs by the direct manipulation

of contexts in Ĉ-Ixt is difficult and not attempted here. An alternate strategy is to carry

out a related construction (relative coproducts, to be explained later) in a related category

G-Inc of action graphs and inclusion embeddings. That is the plan followed here.

This chapter is organised as follows. First I define G-Inc and relate it to Ĉ-Ixt.

Second, I define relative coproducts and relate them to RPOs. Third, I show precise

(necessary and sufficient) conditions for the existence of relative coproducts in G-Inc.

Fourth, I give conditions on the redexes in Reacts which guarantee that F : Ĉ-Ixt

C-Ixt has all redex-RPOs (Theorem 6.29) — the main applied result in this dissertation.

91

Chapter 6. RPOs for action graph contexts 92

G′

t0 s2 t2

t′0

t′1

t′2

s′
0

t′′2

s1 t1

s′
1

G

s0

v

v

s′
2

Figure 6.2: An inclusion embedding

6.2 The category G-Inc of action graphs and inclusion em-

beddings

I now define the category G-Inc in which the objects are action graphs and the arrows are

inclusion embeddings. Our main task is to define what we mean by inclusion embeddings

and to capture the meaning in a tractable list of axioms.

Intuition Two graphs are shown in Figure 6.2. G′ is the graph of Figure 5.6, and G is a

smaller graph which intuitively “occurs” in G′. The way it occurs is represented informally

by the dotted rectangle. The input sources s0 and s1 of G are represented respectively

by s′0 and s′1 of G′, and the binding source s2 by s′2. The argument targets t0 and t1 are

represented respectively by t′0 and t′1, and the output target t2 by both t′2 and t′′2. The

other output target of G is not represented in G′; the aborted arc (not formally part of

G′) indicates that the lower arc from s2 in G is discarded by the inclusion embedding into

G′. Note that the action graph G here is simpler (by one less arc) than the one considered

in Figure 5.7.

There is no reason why the node v in G has to be sent to v in G′ and not to some v′,

6.2. The category G-Inc of action graphs and inclusion embeddings 93

however for simplicity, we confine our attention to inclusion embeddings — and usually

omit the adjective “inclusion”. The more general situation (G-Emb) for which embed-

dings inject (rather than include) the nodes of one graph in another is considered in detail

in [CLM00]. I make no use of G-Emb here.

Of course several parts of G′ do not represent G. Also our definition of inclusion

embedding must allow that a target of G may have any number (including 0) of represen-

tatives in G′; but we shall insist that every source in G is represented exactly once in G′.

Two sources may have the same representative, though this is not the case in our example.

We are therefore led to the following definition:

Definition 6.1 (inclusion embedding) Given graphs Gi = (Vi, contr i, srci), i = 0, 1,

a (loose) inclusion embedding η : G0 G1 of G0 in G1 consists of a pair of functions

(ηS, ηT) where

ηS : S0 S1 is a map of sources;

ηT : T1 ⇀ T0 is a partial map of targets

satisfying the following axioms:

contr1 ¹ V0 = contr0 Inc-Contr

ηS ◦ src0 ◦ η
T ⊆ src1 Inc-Src

ηS−1{bind1(v, i)} = {bind0(v, i)} Inc-Bind

ηT−1{arg0(v, j)} = {arg1(v, j)} Inc-Arg

src−11 ηS(Sbind
0) ⊆ Dom (ηT) . Inc-Targs

¥

These axioms deserve a little explanation. Inc-Contr says that η respects the control

function; Inc-Src says that it also respects the source function where ηT is defined. Inc-

Bind says not only that η respects the binding source functions, but also that ηS never

identifies (in G1) a binding source of G0 with any other source. This enforces the looseness

constraint (see below). Inc-Arg is similar. Inc-Targs says that if a source s in G1

represents a bound source of G0, then all its targets represent targets of G0.

The looseness constraint prevents an inclusion embedding for which G1 creates a tight

loop (such as is formed by reflexion in action calculi) from the back of the G0 to the

front. It does not preclude such a loop proceeding via a control, which indeed occurs

in Figure 6.2; thus our inclusion embeddings will permit some but not all of the power

of reflexion. To match full reflexion is more difficult and is not attempted here. This

limitation on inclusion embeddings corresponds to the limitation on contexts (Loose)

described in Definition 5.7. I shall usually omit the adjective “loose” as it applies to

inclusion embeddings throughout.

Chapter 6. RPOs for action graph contexts 94

Definition 6.2 (the category G-Inc of action graphs and inclusion embeddings)

The objects of the category G-Inc are action graphs (Definition 5.6) and the arrows are

(loose) inclusion embeddings (Definition 6.1). If η : G G′ and θ : G′ G′′ are two

inclusion embeddings, then their composition θη : G G′′ is defined by

θη =̂ (θS ◦ ηS, ηT ◦ θT) .

The identity inclusion embedding idG : G G is defined by

idG =̂ (IdS , IdT) . ¥

Proposition 6.3 G-Inc is a category with an initial object 0 (the empty graph).

Proof Definition 16 and Proposition 7 in [CLM00]. ¥

For any graph G we shall write 0G for the unique inclusion embedding 0 G whose

components are both empty (partial) functions.

Immediately following Definition 5.7, we noticed that action graphs (V, contr , src) : (m,n)

correspond to raw contexts with domain (0, 0) and support V , and thus to contexts in

Ĉ-Ixt of the form ε (m,n, V). The relationship between G-Inc and Ĉ-Ixt goes

further, as witnessed by the following functor:

A : G-Inc ε/Ĉ-Ixt

where ε/Ĉ-Ixt is a coslice category of Ĉ-Ixt; this is a simple general notion that is defined

formally in Appendix A. In brief, the objects of ε/Ĉ-Ixt are contexts in Ĉ-Ixt with

domain ε and the arrows G G′ are contexts p A p′ in Ĉ-Ixt for which ε
G p A p′ =

ε
G′ p′, i.e. A ⊕G = G′. The functor is formally defined as follows:

Definition 6.4 (A) The functor A : G-Inc ε/Ĉ-Ixt is defined on objects by A(G) =̂

ε
G (m,n, V), where G = (V, contr , src) : (m,n). Now let η : G0 G1 be an arrow (i.e.

an embedding). Suppose

Gi = (Vi, contr i, srci) : (mi, ni) for i = 0, 1

with V0 ⊆ V1. Then

A(η) =̂ (m0, n0, V0)
A (m1, n1, V1)

A =̂ (VA, contrA, srcA) ,

where VA =̂ V1 \V0 and contrA =̂ contr1 ¹VA (thus determining arityA = arity1 ¹VA, etc.),

and

SA =̂
∑

v∈VA
[aroutA(v)] + [m1] + [n0] = Sbind

A] Sin
1] S

up
1

TA =̂
∑

v∈VA
[arinA(v)] + [n1] + [m0] = T arg

A] T out
1] T down

1 .

6.2. The category G-Inc of action graphs and inclusion embeddings 95

Note that Sup
1 and T down

1 are in bijection with T out
0 and Sin

0 respectively. Finally we define

srcA:

srcA(t) =̂

{

up1(j) if ηT(t) is defined, i.e. ηT(t) = out0(j) for some j ∈ [n0]

src1(t) if ηT(t) is undefined

if t ∈ T arg
A] T out

1

ηSin0(i) if t = down1(i) ∈ T
down
1 for some i ∈ [m0]

A is a functor by Corollary 32 in [CLM00]. ¥

This functor is full and faithful, as witnessed by its inverse on every homset

DG0,G1
: ε/Ĉ-Ixt(A(G0),A(G1)) G-Inc(G0, G1) ,

which is formally defined as follows:

Definition 6.5 (D) Let G0 and G1 be action graphs. We define a function

DG0,G1
: ε/Ĉ-Ixt(A(G0),A(G1)) G-Inc(G0, G1) from contexts to embeddings.

Let (p0
A p1) : A(G0) A(G1) be a context, where Gi = (Vi, contr i, srci) : (mi, ni)

for i = 0, 1. Recall that by definition G1 = A ⊕ G0 . Thus if A = (V, contr , src) then

the components of G1 = A ⊕ G0 = (V1, contr1, src1) are as follows (a special case of raw

context composition)

V1 = V] V0

contr1 = contr] contr0

S1 = (Sbind] Sbind
0)] Sin

T1 = (T arg] T arg
0)] T out

src1(t) =

{

σ src(t) if t ∈ T arg] T out

σ0 src0(t) if t ∈ T arg
0

where

σ0(s) =

{

src down(i) if s = in0(i) ∈ S
in
0

s if s ∈ Sbind
0

σ(s) =

{

σ0src0out(j) if s = up(j) ∈ Sup

s if s ∈ Sbind] Sin

The components of the inclusion embedding DG0,G1
(p0

A p1) =̂ θ : G0 G1 are then

Chapter 6. RPOs for action graph contexts 96

m

f0

f1 g0

g1

6.3(1)

m

f0

f1 g0

g1

h0

h1 h

6.3(2)

m

f0

f1 g0

g1

h0

h1
h

h′

h′0

h′1

kk

6.3(3)

Figure 6.3: Construction of an RPO

defined by

θV : V0 ↪→ V1 =̂ v 7→ v (v ∈ V0)

θS : S0 S1 =̂ σ0

θT : T1 ⇀ T0 =̂ t 7→

t if t ∈ T arg
0

{

undefined if src(t) ∈ Sbind] Sin

out0(j) if src(t) = up(j) ∈ Sup
if t ∈ T arg] T out

¥

This function and is bijective on objects, so:

Proposition 6.6 A : G-Inc ε/Ĉ-Ixt is an isomorphism of categories. (See Proposi-

tion 42 of [CLM00].) ¥

Because of the notational overload of action graphs and contexts out of ε, we think of

A as the identity on objects, i.e. A(G) = G.

6.3 Relative coproducts

A consequence ofA : G-Inc ε/Ĉ-Ixt being an isomorphism of categories is that relative

coproducts (defined below) in G-Inc correspond naturally to RPOs in Ĉ-Ixt. This is a

crucial fact in deriving labelled transition systems.

I first recall RPOs, then define relative coproducts and prove a result relating them.

For this pure category theory arrows are denoted by f, g, h, When we come to use the

results I shall revert to the applied notation.

Definition (RPO recalled; see Definition 2.4) In any category C, consider a com-

muting square (Figure 6.3(1)) consisting of g0f0 = g1f1. An RPO is a triple h0, h1, h

satisfying two properties:

commutation: h0f0 = h1f1 and hhi = gi for i = 0, 1 (Figure 6.3(2));

6.3. Relative coproducts 97

h1

h0

g1
z

g′
0

g′
1

gg0

g′

h1

h0

Figure 6.4: A relative coproduct g0, g1, g

universality: for any h′0, h
′
1, h

′ satisfying h′0f0 = h′1f1 and h
′h′i = gi for i = 0, 1, there exists

a unique k such that h′k = h and khi = h′i (Figure 6.3(3)). ¥

Definition 6.7 (relative coproduct) In any category C, let h0, h1 be a pair of arrows

with a common codomain (see Figure 6.4). A triple g0, g1, g for which ggi = hi (i = 0, 1)

is a relative coproduct of h0, h1 if, for any other triple g′0, g
′
1, g

′ such that g′g′i = h′i, there

is an unique mediating arrow z such that zgi = g′i and g
′z = g. ¥

Remark RPOs and relative coproducts are pushouts and coproducts in slice categories

(the obvious dual notion to that of coslice, see Appendix A). I make no specific use of this

observation.

Nomenclature If h0, h1 is a pair of arrows as in Figure 6.4, a triple g0, g1, g for which

ggi = hi is a candidate (relative coproduct) for h0, h1.

If X is an object of C, relative coproducts in the coslice category X/C correspond to

RPOs in C for pairs of arrows with domain X:

Proposition 6.8 Let C be a category. Let X,X0, X1, X2 be four objects of C, and

fi : X Xi, hi : Xi X2 (i = 0, 1) four arrows of C. If we regard f0 and f1 as objects

of X/C and hi : fi hifi as arrows of X/C, respectively, the triple g0, g1, g is a relative

coproduct of h0, h1 iff it is an RPO in C for f0, f1 w.r.t. h0, h1.

Proof The proof is a trivial consequence of the definitions of relative coproduct and

RPO applied to the categories X/C and C respectively. ¥

This proposition relates RPOs in Ĉ-Ixt to relative coproducts in (m,n,U)/Ĉ-Ixt. In

particular we are interested in RPOs for pairs of contexts out of the empty profile ε, so

I focus on relative coproducts in ε/Ĉ-Ixt. As shown above, A : G-Inc ε/Ĉ-Ixt is an

isomorphism of categories, so preserves relative coproducts.

These facts underpin Corollary 6.28 which shows how to derive RPOs for Ĉ-Ixt from

relative coproducts in G-Inc. Let us look at an example of this derivation in the simple

Chapter 6. RPOs for action graph contexts 98

ε

η0

η1

G0

G1

G

G0

G1

A(θ1)

A(θ0)

A(η0)

t
t′

θ

θ1

θ0

G2

A(η1)

A(θ)

Figure 6.5: A relative coproduct in G-Inc becomes an RPO in Ĉ-Ixt

situation depicted in Figure 6.5. The left diagram shows a relative coproduct θ0, θ1, θ for

η0, η1 in G-Inc, which becomes an RPO in Ĉ-Ixt via A. (Recall that an arrow A(η)

of ε/Ĉ-Ixt is also an arrow of Ĉ-Ixt.) Note that A(θ0) (ε
G0 p0) = A(θ1) (ε

G1 p1) =

(ε
G2 p2) and A(θ)A(θi) = A(θ θi) = A(η), thus the proposed RPO commutes correctly.

The source and target maps of θ0, θ1 and θ are shown as dotted lines. For example

the embedding of G0’s single arc into G2 is represented by the hole in the context A(θ0).

Since G has no targets, the target map θT is empty; this corresponds to the discarding of

the targets t and t′, represented by the aborted arcs in A(θ). Just as in the action graph

b of Figure 5.2 in Example 5.1 (arithmetic), the extra arc of G2 connecting the control

node to t′ may seem at first superfluous. But it is essential, since a competing candidate

can have a target like t′, sourced by the control node, that is mapped back to G1 but not

to G0. This distinguishes it from t, which is mapped to both. By Inc-Targs there are

no other possibilities (such as a target mapped to G0 but not to G1). Thus G2 contains

precisely the targets it needs to be “as good as” any candidate. The formal construction

of G2 is given later in this chapter.

6.4 Existence of relative coproducts

Our task now is to establish relative coproducts in G-Inc. They are not always present!

Figure 6.6 shows a case with no controls — only “wiring” — in which there is no relative

coproduct. G0 is a graph with a single input source s0 and output target t0, with s0 =

src0(t0); G1 is similar. G has a single source but no target. H and H ′ are candidate

relative coproducts— one with a single arc and one with two sources and no arcs. The

6.4. Existence of relative coproducts 99

H

H ′

G

@G2

G1

G0

s0

s1

t0

t1

η0

η1

Figure 6.6: A case where no relative coproduct exists (and η0, η1 do not satisfy Chaste)

source and targets maps of the inclusion embeddings into H and H ′ are shown as dotted

lines. These maps are not shown for inclusion embeddings into G (they are simple: all

sources go to the single source in G, and G has no target to map). Now any relative

coproduct G2 must possess inclusion embeddings from Gi and to H and H ′ as shown by

dashed lines, making the diagram commute. But no such inclusion embeddings can exist.

The reader may enjoy proving this.

However, relative coproducts exist for many pairs of inclusion embeddings. We define

below a condition Chaste, which characterises exactly these pairs, i.e. is a necessary and

sufficient condition for the existence of relative coproducts.

First we define a key equivalence relation on which Chaste depends.

Definition 6.9 (source coalescing (≡)) Let ηi : Gi G (i = 0, 1) be a pair of

inclusion embeddings. The source coalescing of η0, η1 is the smallest equivalence relation

≡ on S0 + S1 such that src0η
T

0(t) ≡ src1η
T

1(t) for all t ∈ Dom ηT

0 ∩ Dom ηT

1 . ¥

An important property of ≡ is that it relates sources that must be equated in any

candidate, as shown by the following proposition:

Proposition 6.10 Let ζ0, ζ1, ζ be any candidate for η0, η1 and let si be a source of Gi

for i = 0, 1. If s0 ≡ s1 then ζS

0(s0) = ζS

1(s1). ¥

Definition 6.11 (Chaste) Let ηi be as in the previous definition. The Chaste condition

holds for η0, η1 if for all si ∈ S
in
i and ti ∈ T

out
i (i = 0, 1), if si = srci(ti) and η

S

0(s0) = ηS

1(s1)

Chapter 6. RPOs for action graph contexts 100

then s0 ≡ s1. ¥

The reader may like to check that Chaste fails for the pair η0, η1 in Figure 6.6. The

motivation for the name Chaste comes from the fact that it ensures that the inclusion

embeddings do not equate “promiscuously” sources which they should not.

The Chaste condition is implied by a striking property which is asymmetric between

G0 and G1:

Definition 6.12 (output-controlled) In any graph, a target is controlled if its source

is a bound source. G is output-controlled if all its output targets are controlled;

formally:

src(T out) ⊆ Sbind . (output-controlled)

Since Cod src = Sin] Sbind , an equivalent formulation is:

src(T out) ∩ Sin = ∅ . (output-controlled)

¥

Proposition 6.13 If G1 is output-controlled, then any pair of inclusion embeddings

ηi : Gi G (i = 0, 1) satisfies Chaste. ¥

Our interest in this fact arises because we are mainly concerned to find relative coprod-

ucts, or RPOs, when one of the graphs is a redex. In all cases I have met, the required

reaction relation can be achieved with reaction rules whose redexes are output-

controlled. This point is taken up later in Chapter 7.

Let us fix a pair ηi : Gi G (i = 0, 1) of inclusion embeddings. To show that Chaste

is sufficient for η0, η1 to have a relative coproduct, we could give a direct construction.

However, we also wish to show that Chaste is necessary, and therefore require a second

candidate to argue that no relative coproduct exists when Chaste fails. To factor the

work of constructing both candidates, the approach taken is to give a general way to lift

a triple of partial maps θT

0 , θ
T

1, θ
T to a candidate θ0, θ1, θ. Only those triples that satisfy

certain conditions (given here) can be so lifted; we call them target scaffolds (for η0, η1).

The drawback to the scaffold approach is that it builds up the relative coproduct in-

crementally, with many lemmas verifying the healthiness of the intermediate constructions

interspersed. The reader may wish to look directly at Figure 6.8 which distills out the

construction. The proof that the inclusion embeddings shown in Figure 6.8 do actually

form a relative coproduct provided that Chaste is satisfied is given in terms of scaffolds

in the following pages.

Remark The construction of T2 in Figure 6.8 appears complex, so the reader may wish

to pattern-match it against the target sets of the RPO examples given in Section 5.3. As

we will see shortly (Corollary 6.28) there is a tight correspondence as we now illustrate.

6.4. Existence of relative coproducts 101

G0

G

G1

η0

η1

6.7(1)

T0

T2 T

T1

ηT
0

ηT
1

ζT
0

ζT
1

ζT

6.7(2)

G0

G2 G

G1

η0

η1

ζ0

ζ1

ζ

6.7(3)

G0

G

G3

G1

η0

η1

ϕ0

ϕ1

ϕ

6.7(4)

T0

T2 T

T3

T1

ηT
0

ηT
1

ζT
0

ζT
1

ζT

ϕT
0

ϕT
1

ϕT

ξT

6.7(5)

G0

G2 G

G3

G1

η0

η1

ζ0

ζ1

ζ

ϕ0

ϕ1

ϕ
ξ

6.7(6)

Figure 6.7: Lifting a scaffold to a candidate relative coproduct

Example 5.1 (arithmetic): Consider the action graphs G0 = a and G1 = l1 in

Figure 5.2, embedded in b′. The targets of G2 = b, the RPO graph, correspond exactly to

T2; in particular, the extra arc in b connecting S to the top output target is generated by

the set O1 in the definition of T2. Similarly, t′ ∈ O1 in Figure 6.5.

Example 5.2 (wiring): Consider the identical action graphs G0 = a and G1 = b in

Figure 5.3, embedded in an identical graph. The targets {(t0, t2), . . . , (t1, t3)} of K in

G = Ca = Db are generated by the set O0,1 (a subset of the product of the targets from

G0 and G1) in the definition of T2.

The outline of the argument is as follows. Fix a pair of inclusion embeddings ηi : Gi

G, i = 0, 1, as in Figure 6.7(1).

Section 6.5 I define the notion of target scaffold (ζT

0 , ζ
T

1 , ζ
T), which consists of a triple of

partial maps (Figure 6.7(2)) satisfying certain properties. A scaffold can be lifted to

form a candidate w.r.t. η0, η1 (Figure 6.7(3)).

Section 6.6 Fix any other candidate ϕ0, ϕ1, ϕ (Figure 6.7(4)) and a partial map χT mak-

ing the triangles in Figure 6.7(5) commute. Then χT can be lifted to a mediating

inclusion embedding χ (Figure 6.7(6)). Under certain conditions χ is unique.

Section 6.7 I pick a particular scaffold θT

0 , θ
T

1 , θ
T and lift it to a candidate θ0, θ1, θ using

the technology of scaffold lifting. Provided that Chaste holds, this candidate is a

Chapter 6. RPOs for action graph contexts 102

¨

§

¥

¦

The construction builds an action graph G2 and inclusion embeddings θi : Gi

G2, i = 0, 1 and θ : G2 G. It is convenient to first construct the target set T2
of G2 and the target components θT

i , θ
T of the inclusion embeddings:

T2 =̂ A+O0 +O0,1 +O1

A =̂ {arg(v, k) / v ∈ V0 ∪ V1}

O0,1 =̂ {(t0, t1) ∈ T
out
0 × T out

1 / ηS

0src0(t0) = ηS

1src1(t1)}

Oi =̂ {ti ∈ T
out
i / ηS

i srci(ti) /∈ η
S

1−i(S
bind
1−i)}

θT

i (t) =̂

ηT

i (t) if t ∈ A

t if t ∈ Oi

ti if t = (t0, t1) ∈ O0,1

θT(t) =̂

t if t ∈ A

ηT

i (t) if t /∈ A and t ∈ Dom ηT

i \ Dom ηT

1−i

(ηT

0(t), η
T

1(t)) if t /∈ A and t ∈ Dom ηT

0 ∩ Dom ηT

1 .

Now let G2 =̂ (V2, contr2, src2) : (m2, n2), where:

V2 =̂ V0 ∪ V1

contr2(v) =̂ contr(v) for v ∈ V2

arg2(v, k) =̂ θTarg(v, k) for v ∈ V2

n2 =̂ ‖T2‖ − ‖Im arg2‖ .

and m2 is defined below. Take
.
= to be the least equivalence relation on S0 + S1

satisfying the following conditions:

s0
.
= s1 for i = 0, 1, si ∈ S

bind
i , s1−i ∈ S1−i, and η

S

0(s0) = ηS

1(s1)

src0θ
T

0(t)
.
= src1θ

T

1(t) for t ∈ Dom θT

0 ∩ Dom θT

1 .

Let [] .= : S0+S1 (S0+S1)/
.
= map sources to their equivalence classes. Finally,

let the source set of G2 and the source components of θi, θ be as follows:

S2 =̂ (S0 + S1)/
.
=

bind2(v, k) =̂ [bind i(v, k)] .= if v ∈ Vi

m2 =̂ ‖S2‖ − ‖Im bind2‖

src2(t) =̂ [srciθ
T

i (t)] .= if t ∈ Dom θT

i

θS

i (s) =̂ [s] .= for s ∈ Si

θS([s] .=) =̂ ηS

i (s) for s ∈ Si .

This completes the construction.

Figure 6.8: The construction of a relative coproduct θ0, θ1, θ for ηi : Gi G, i = 0, 1
(without scaffolds)

6.5. Construction of a candidate from a scaffold 103

relative coproduct, thus proving the sufficiency of Chaste. I then exhibit a second

target scaffold, θ̂T

0 , θ̂
T

1 , θ̂
T, lift it to a candidate, and show that the negation of Chaste

implies that no putative relative coproduct is better than both θ, θ0, θ1 and θ̂, θ̂0, θ̂1,

thus verifying the necessity of Chaste.

6.5 Construction of a candidate from a scaffold

First I define the notion of target scaffold :

Definition 6.14 (target scaffold) A target scaffold consists of a set T2 and a triple

of maps (ζT, ζT

0 , ζ
T

1) such that ζT : T ⇀ T2, ζ
T

i : T2 ⇀ Ti (i = 0, 1), and such that several

conditions hold:

ζT

i ◦ ζ
T = ηT

i for i = 0, 1 Scaf-Comp

Dom ζT

0 ∪ Dom ζT

1 = T2 Scaf-Tot

ηS

0 (src0 (ζ
T

0 t2)) = ηS

1 (src1 (ζ
T

1 t2)) for t2 ∈ Dom ζT

0 ∩ Dom ζT

1 Scaf-S

ζT

i
−1
{arg i(vi, k)} = {ζ

T (arg(vi, k))} for vi ∈ Vi and i = 0, 1 Scaf-Arg

ζT

i
−1

(src−1i (ηS

i
−1

(ηS

j S
bind
j))) ⊆ Dom ζT

j for i, j ∈ {0, 1} Scaf-Targs

¥

In the presence of Scaf-Comp, the equality in Scaf-Arg can be replaced by ⊆.

Scaf-Targs is equivalent to: “if t2 ∈ Dom ζT

i and ηS

i (srci (ζ
T

i t2)) ∈ η
S

1−i S
bind
1−i then t2 ∈

Dom ζT

1−i”.

It is convenient to express the construction of G2 up to bijection of its source and target

sets, rather than in the exact form of Definition 5.6. Let G2 =̂ (V2, contr2, src2) : (m2, n2)

where the parts are defined as follows. First we consider the vertices and targets of G2:

V2 =̂ V0 ∪ V1

contr2(v) =̂ contr(v) for v ∈ V2

arg2(v, k) =̂ ζTarg(v, k) for v ∈ V2

n2 =̂ ‖T2‖ − ‖Im arg2‖ .

Notice that V0 and V1 are not necessarily disjoint: V0 ∪ V1 contains the vertices of G0 and

G1 with appropriate overlap.

Now we consider the sources and source maps. Take
.
= to be the least equivalence

relation on S0 + S1 satisfying the following conditions:

s0
.
= s1 for i = 0, 1, si ∈ S

bind
i , s1−i ∈ S1−i, and η

S

0(s0) = ηS

1(s1)

src0ζ
T

0 (t)
.
= src1ζ

T

1 (t) for t ∈ Dom ζT

0 ∩ Dom ζT

1 .

Chapter 6. RPOs for action graph contexts 104

Let [] .= : S0 + S1 (S0 + S1)/
.
= map sources to their equivalence classes. Then, let:

S2 =̂ (S0 + S1)/
.
=

bind2(v, k) =̂ [bind i(v, k)] .= if v ∈ Vi

m2 =̂ ‖S2‖ − ‖Im bind2‖

src2(t) =̂ [srciζ
T

i (t)] .= if t ∈ Dom ζT

i

ζS

i (s) =̂ [s] .= for s ∈ Si

ζS([s] .=) =̂ ηS

i (s) for s ∈ Si .

Proposition 6.16 below shows that this construction yields a well-defined graph and

well-defined inclusion embeddings which form a candidate for η0, η1. Before getting to this

result, we first need a technical lemma used several times in the proposition.

Lemma 6.15 If for some i, j ∈ {0, 1}, s ∈ Si and s
′ ∈ Sj and s

.
= s′ then ηS

i s = ηS

j s
′.

Proof For the first rule generating
.
=, the result follows by definition. For the second

rule, the result follows by Scaf-S. ¥

Proposition 6.16 (scaffold lifting) For the construction given above, G2 is a graph,

ζ0, ζ1, ζ are all well-defined inclusion embeddings, and together they form a candidate for

η0, η1.

Proof

src2 is well-defined: Suppose t2 ∈ Dom ζT

0 ∩ Dom ζT

1 ; then src0 (ζ
T

0 t2)
.
= src1 (ζ

T

1 t2) by definition
of

.
=. By Scaf-Tot, src2 is a total function.

arg2 is injective: Suppose arg2(v, k) = arg2(v
′, k′), i.e. ζT (arg(v, k)) = ζT (arg(v′, k′)). Suppose

v ∈ Vi. By Scaf-Comp,

arg i(v, k) = ηT

i (arg(v, k)) = ζT

i (ζ
T (arg(v, k)))

= ζT

i (ζ
T (arg(v′, k′))) = ηT

i (arg(v
′, k′)) .

By Inc-Arg for ηi and the injectivity of arg , v = v′ and k = k′, as desired.

bind2 is injective: Suppose bind2(v, k) = bind2(v
′, k′) where v ∈ Vi and v′ ∈ Vj . Then

bind i(v, k)
.
= bind j(v

′, k′). By Lemma 6.15, bind(v, k) = bind(v′, k′); hence v = v′ and
k = k′, as desired.

ζi is an inclusion embedding for i = 0, 1: We consider each non-trivial axiom.

Inc-Src: if t2 ∈ Dom ζT

i then ζ
S

i (srci (ζ
T

i t2)) = [srci (ζ
T

i t2)] .= = src2 t2.

Inc-Bind: for vi ∈ Vi, ζ
S

i
−1{bind2(vi, k)} = {si ∈ Si / si

.
= bind i(vi, k)}. If si ∈ Si and

si
.
= bind i(vi, k) then by Lemma 6.15, η

S

i si = ηS

i (bind i(vi, k)), hence by Inc-Bind,
si = bind i(vi, k).

Inc-Arg: Scaf-Arg.

Inc-Targs: Suppose src2 t2 = bind2(vi, k) for vi ∈ Vi. By Scaf-Tot it is sufficient to
assume t2 ∈ Dom ζT

1−i and prove t2 ∈ Dom ζT

i . Thus, src1−i (ζ
T

1−i t2)
.
= bind i(vi, k). By

Lemma 6.15,

ηS

1−i (src1−i (ζ
T

1−i t2)) = ηS

i (bind i(vi, k))

By Scaf-Targs, t2 ∈ Dom ζT

i .

6.6. Construction of a mediating inclusion embedding 105

ζ is an inclusion embedding: First note that ζ S is well-defined by Lemma 6.15.

Inc-Src: Suppose t ∈ Dom ζT. By Scaf-Tot, there exists i = 0, 1 such that ζT t ∈ Dom ζT

i .
Hence, ζS (src2 (ζ

T t)) = ηS

i (srci (ζ
T

i (ζ
T t))) = src t by Scaf-Comp and Inc-Src for ηi.

Inc-Bind: Let vi ∈ Vi; then ζ
S (bind2(vi, k)) = bind(vi, k) by Inc-Bind for ηi. If ζ

S [si] .= =
bind(vi, k) for si ∈ Si then by Inc-Bind for ηi, si = bind i(vi, k); if ζ

S [s1−i] .= =
bind(vi, k) for s1−i ∈ S1−i then s1−i

.
= bind i(vi, k).

Inc-Arg: By definition, ζT (arg(v, k)) = arg2(v, k). Also, by Scaf-Comp and Inc-Arg for
ηT, we have that ζT t = arg2(v, k) implies t = arg(v, k).

Inc-Targs: If src t = bind(vi, k) for vi ∈ Vi then t ∈ Dom ηT

i , hence t ∈ Dom ζT by Scaf-

Comp.

ζζi = ηi: By Scaf-Comp we only need to show that ζ S◦ζS

i = ηS

i . Observe that ζ
S (ζS

i si) = ζS [si] .= =
ηS

i si for all si ∈ Si. ¥

When ζT is surjective, the inclusion embeddings induced by the scaffold have an im-

portant property which we make use of later, namely ζ0, ζ1 do not identify more input

sources than required by ≡ (cf. Proposition 6.10).

Lemma 6.17 Suppose ζT T = T2. Let si ∈ S
in
i for i = 0, 1. If s0 6≡ s1 then ζS

0 s0 6= ζS

1 s1.

Proof We show the contrapositive: s0
.
= s1 implies s0 ≡ s1. Consider any derivation for the

antecedent of minimal length:

s0 = s10
.
= s11

.
= · · ·

.
= sn0

.
= sn1 = s1

where sji ∈ Si for i = 0, 1, 1 ≤ j ≤ n. Suppose for contradiction there exist i, j such that

sji ∈ S
bind
i . By Lemma 6.15, ηS

i si = ηS

i s
j
i , hence ζ

S (ζS

i si) = ζS (ζS

i s
j
i); by Inc-Bind ζS

i si = ζS

i s
j
i ,

contradicting the minimality of the derivation. Thus, there exist t12, . . . , t
n
2 ∈ Dom ζT

0 ∩ Dom ζT

1

such that sji = srci (ζ
T

i t
j
2). Because ζ

T T = T2, there exist t
1, . . . , tn ∈ T such that ζT tj = tj2 for

1 ≤ j ≤ n. Hence sji = srci (ζ
T

i (ζ
T tj)) = srci (η

T

i t
j). Thus s0 ≡ s1 as desired. ¥

6.6 Construction of a mediating inclusion embedding

Let G3 be a graph and ϕ0, ϕ1, ϕ a triple of inclusion embeddings such that ϕi : Gi G3

and ϕ : G3 G and ηi = ϕϕi, i.e. ϕ0, ϕ1, ϕ is a relative coproduct candidate for η0, η1. Our

aim to construct an inclusion embedding χmediating between the ζ0, ζ1, ζ candidate (lifted

from the candidate scaffold above) and the ϕ0, ϕ1, ϕ candidate by lifting a mediating target

map χT (a “mediating scaffold”). Formally, let χT : T3 ⇀ T2 be a partial map satisfying

χT ◦ ϕT = ζT and ζi ◦ χ
T = ϕT

i for i = 0, 1. We wish to lift χT to an inclusion embedding χ

that mediates between the two candidates. Construct χS : S2 S3 as follows:

χS [si] .= = ϕS

i si for si ∈ Si .

Now, χ has all the required properties, as shown in the following proposition, the only

result that makes use of the Chaste condition.

Chapter 6. RPOs for action graph contexts 106

Proposition 6.18 (mediator lifting) χS is well-defined; χ is an inclusion embedding

and mediates between the candidates ζ0, ζ1, ζ and ϕ0, ϕ1, ϕ.

Proof

χS is well-defined: We consider each case of the definition of
.
=.

Case si ∈ S
bind
i , s1−i ∈ S1−i, and ηS

i si = ηS

1−i s1−i: Then ϕ
S

i si ∈ Sbind
3 by Inc-Bind for

ϕi; also ϕ
S (ϕS

i si) = ϕS (ϕS

1−i s1−i) so ϕ
S

i si = ϕS

1−i s1−i by Inc-Bind for ϕS.

Case t2 ∈ Dom ζT

0 ∩ Dom ζT

1: Let si = src (ζT

i t2) for i = 0, 1. By Lemma 6.15, η
S

0 s0 = ηS

1 s1.

Case si ∈ S
bind
i for some i = 0, 1: By Inc-Bind, ϕS

i si ∈ Sbind
3 , hence ϕS (ϕS

0 s0) =
ϕS (ϕS

1 s1) implies that ϕ
S

0 s0 = ϕS

1 s1 by Inc-Bind for ϕ.

Case si ∈ S
in
i for i = 0, 1: We distinguish two cases:

Case t2 ∈ T
arg
2 : There exists t ∈ T arg such that ζT t = t2, by Inc-Arg for ζ.

Thus, by Inc-Src for ϕi we have that for i = 0, 1:

ϕS

i si = ϕS

i (srci (ζ
T

i t2)) = ϕS

i (srci (ζ
T

i (ζ
T t))) = ϕS

i (srci (η
T

i t))

= ϕS

i (srci (ϕ
T

i (ϕ
T t))) = src3(ϕ

T t)

Case t2 ∈ T
out
2 : By Inc-Arg for ζi, ζ

T

i t2 ∈ T out
i for i = 0, 1. By the Chaste

condition, s0 ≡ s1. By Proposition 6.10, ϕ
S

0 s0 = ϕS

1 s1.

χ is an inclusion embedding:

Inc-Src: if t3 ∈ DomχT, then by Scaf-Tot there exists i = 0, 1 such that χT t3 ∈ Dom ζT

i .
Hence χS (src2 (χ

T t3)) = χS [srci (ζ
T

i (χ
T t3))] .= = χS [srci (ϕ

T

i t3)] .= = ϕS

i (srci (ϕ
T

i t3)) =
src3 t3 by Inc-Src for ϕi.

Inc-Bind: if vi ∈ Vi then χS (bind2(vi, k)) = χS [bind i(vi, k)] .= = ϕS

i (bind i(vi, k)) =
bind3(vi, k) by Inc-Bind for ϕi. Also, if χ

S [sj] .= = bind3(vi, k) for sj ∈ Sj then
ϕS

j sj = bind3(vi, k), therefore η
S

j sj = bind(vi, k) = ηS

i (bind i(vi, k)) by Inc-Bind for
ϕ.

Case i = j: By Inc-Bind, sj = bind i(vi, k).

Case i 6= j: Then sj
.
= bind i(vi, k).

In both cases [sj] .= = bind2(vi, k).

Inc-Arg: for vi ∈ Vi, χ
T t3 = arg2(vi, k) iff ζT

i (χ
T t) = ζT

i (arg2(vi, k)) = arg i(vi, k) (by
Inc-Arg for ζi) iff ϕ

T

i t = arg i(vi, k) iff t = arg3(vi, k) (by Inc-Arg for ϕi).

Inc-Targs: if src3 t3 = bind3(vi, k) for vi ∈ Vi, then t3 ∈ DomϕT

i = Dom (ζT

i ◦ χ
T) by

Inc-Targs for ϕi, hence t3 ∈ DomχT.

χζi = ϕi and ϕχ = ζ: The equalities for the target maps are postulated.

For the source map equalities, observe that χS (ζS

i si) = χS [si] .= = ϕS

i si for si ∈ Si; also
ϕS (χS [si] .=) = ϕS (ϕS

i si) = ηS

i si = ζS [si] .=. ¥

Under certain conditions the mediator χ is unique. These conditions depend on the

following general definition concerning partial maps.

Definition 6.19 (joint-injectivity) Given partial maps fi : X ⇀ Xi, i = 0, 1, we say

that (f0, f1) are jointly-injective if two conditions hold:

• for x, x′ ∈ Dom fi \ Dom f1−i, if fi x = fi x
′ then x = x′, for i = 0, 1;

6.7. Construction of a relative coproduct 107

• for x, x′ ∈ Dom f0 ∩ Dom f1, if (f0 x, f1 x) = (f0 x
′e, f1 x

′) then x = x′. ¥

Note that (f0, f1) are jointly-injective iff their product-pairing 〈f0, f1〉 : X ⇀ X0 +

X0 ×X1 +X1 in the category of sets and partial maps is a monomorphism.

Proposition 6.20 (uniqueness of the mediator) If (ζT

0 , ζ
T

1) are jointly-injective then

χ is a unique mediator.

Proof Let ξ : G2 G3 be an inclusion embedding satisfying ξζi = ϕi for i = 0, 1 and ϕξ = ζ,
i.e. ξ is an another mediating inclusion embedding between the candidates ϕ0, ϕ1, ϕ and ζ0, ζ1, ζ.
Then χ = ξ:

χS = ξS: for si ∈ Si, χ
S [si] .= = χS (ζS

i si) = ϕS

i si = ξS (ζS

i si) = ξS [si] .=.

χT = ξT: if t3 ∈ Dom ξT then by Scaf-Tot ξT t3 ∈ Dom ζT

i for some i = 0, 1; hence t3 ∈ Dom (ζT

i ◦
ξT) = DomϕT

i = Dom (ζT

i ◦ χ
T); thus t3 ∈ DomχT. By symmetry, t3 ∈ DomχT iff t3 ∈

Dom ξT, so DomχT = Dom ξT. Also, χT t3 ∈ Dom ζT

i iff ξ
T t3 ∈ Dom ζT

i , for i = 0, 1. Finally,
ζT

i (ξ
T t3) = ϕT

i t3 = ζT

i (χ
T t3), for i = 0, 1. Hence ξ

T = χT by the joint-injectivity hypothesis
for (ζT

0 , ζ
T

1). ¥

6.7 Construction of a relative coproduct

We now come to the main applied results of the dissertation which characterise precisely

the conditions under which relative coproducts exist, and thus under which condition F

has all redex-RPOs. The idea is to consider a particular scaffold, prove that it is well-

defined, lift it to a candidate and then show that it is “better” than any other competing

candidate, subject to condition Chaste. I discuss the sufficiency of Chaste later.

We exhibit a target scaffold consisting of a set T2 and a triple θT

0 , θ
T

1 , θ
T, which we lift

to a relative coproduct. Let:

T2 =̂ A+O0 +O0,1 +O1

A =̂ {arg(v, k) / v ∈ V0 ∪ V1}

O0,1 =̂ {(t0, t1) ∈ T
out
0 × T out

1 / ηS

0src0(t0) = ηS

1src1(t1)}

Oi =̂ {ti ∈ T
out
i / ηS

i srci(ti) /∈ η
S

1−i(S
bind
1−i)}

θT

i (t) =̂

ηT

i (t) if t ∈ A

t if t ∈ Oi

ti if t = (t0, t1) ∈ O0,1

θT(t) =̂

t if t ∈ A

ηT

i (t) if t /∈ A and t ∈ Dom ηT

i \ Dom ηT

1−i

(ηT

0(t), η
T

1(t)) if t /∈ A and t ∈ Dom ηT

0 ∩ Dom ηT

1 .

In Proposition 6.22 below we verify that θT

0 , θ
T

1 , θ
T is a target scaffold, so by

Proposition 6.16 can be lifted to a candidate θ0, θ1, θ. We first prove a technical

lemma.

Chapter 6. RPOs for action graph contexts 108

Lemma 6.21 Let G3 be a graph and ψ0, ψ1, ψ a triple of inclusion embeddings such that

ψi : Gi G3 and ψ : G3 G and ηi = ψψi, i.e. ψ0, ψ1, ψ forms a candidate.

1. If t3 /∈ ψ
T A and t3 ∈ DomψT

i \ DomψT

1−i then ψ
T

i t3 ∈ Oi.

2. If t3 /∈ ψ
T A and t3 ∈ DomψT

0 ∩ DomψT

1 then (ψT

0 t3, ψ
T

1 t3) ∈ O0,1.

Proof Note that ψT

i t3 ∈ T
arg
i iff for some k, i and vi ∈ Vi, t3 = arg3(vi, k) = ψT (arg(vi, k)) ∈

ψT A, by Inc-Arg for ψi and ψ. Thus t3 /∈ ψ
T A implies ψT

i t3 ∈ T
out
i if t ∈ DomψT

i . We use this
observation in each of the following parts.

1. By the observation in the head of this proof, ψT

i t ∈ T out
i ; by Inc-Src, ηS

i (srci (ψ
T

i t)) =
ψS (src3 t3); then ψ

S (src3 t3) ∈ η
S

1−i S
bind
1−i = ψS (ψS

1−i S
bind
1−i) implies that src3 t3 ∈ ψ

S

1−i S
bind
1−i

by Inc-Bind for ψ; by Inc-Targs for ψ1−i, we have t3 ∈ DomψT

1−i, which contradicts the
hypothesis. Thus ψT

i t3 ∈ Oi as desired.

2. By the observation in the head of this proof, ψT

i t3 ∈ T out
i for i = 0, 1. By Inc-Src,

(ψT

0 t3, ψ
T

1 t3) ∈ O0,1. ¥

Proposition 6.22 (healthiness of relative coproduct scaffold) (θT, θT

0 , θ
T

1) is a target

scaffold.

Proof

Scaf-Comp: By Lemma 6.21 instantiated with G3 = G, ζ = idG, and ζi = ηi, we have

θT

i (θ
T t) =

ηT

i t if t ∈ A

ηT

i t if t /∈ A and t ∈ Dom ηT

i \ Dom ηT

1−i

ηT

i t if t /∈ A and t ∈ Dom ηT

0 ∩ Dom ηT

1

Because the cases above are exhaustive, θTθT

i = ηT

i .

Scaf-Tot: By definition.

Scaf-S: Let t ∈ Dom θT

0 ∩ Dom θT

1. If t ∈ A then ηS

i (srci (θ
T

i t2)) = ηS

i (srci (η
T

i t2)) = src t2 by
Inc-Src for i = 0, 1. If t ∈ O0,1 then the result follows by definition.

Scaf-Arg: Since Scaf-Comp has already been verified, we need only show⊆. If θT

i t2 = arg i(vi, k)
for some vi ∈ Vi then t2 ∈ A. Hence η

T

i t2 = θT

i t2 = arg i(vi, k), so t2 = arg(vi, k) = arg2(vi, k)
by Inc-Arg for ηi.

Scaf-Targs: Suppose that t2 ∈ Dom θT

i and η
S

i (srci (θ
T

i t2)) ∈ η
S

1−i S
bind
1−i . Then t2 /∈ Oi. If t2 ∈ A

then by Inc-Src for ηi, src t2 = ηS

i (srci (η
T

i t2)) = ηS

i (srci (θ
T

i t2)) ∈ ηS

1−i S
bind
1−i . By Inc-

Targs for η1−i, t2 ∈ Dom ηT

1−i hence t2 ∈ Dom θT

1−i (since t2 ∈ A). If t2 /∈ A then t2 ∈ O0,1

hence t2 ∈ Dom θT

1−i. ¥

Now, consider any other candidate: let G3 be a graph and (ϕ0, ϕ1, ϕ) a triple of

inclusion embeddings such that ϕi : Gi G3 and ϕ : G3 G and ηi = ϕϕi. Construct

χT : T3 ⇀ T2 as follows:

χT t3 =̂

ϕT−1 t3 if t3 ∈ ϕ
T A

ϕT

i t3 if t3 /∈ ϕ
T A and t3 ∈ DomϕT

i \ DomϕT

1−i

(ϕT

0 t3, ϕ
T

1 t3) if t3 /∈ ϕ
T A and t3 ∈ DomϕT

0 ∩ DomϕT

1

Now we claim that χT satisfies all the conditions used by Proposition 6.18 needed for it to

be lifted to a mediating inclusion embedding:

6.7. Construction of a relative coproduct 109

Proposition 6.23 (mediator healthiness) χT is well-defined; χT◦ϕT = θT and θT

i ◦χ
T =

ϕT

i for i = 0, 1

Proof

χT is well-defined: If t3 ∈ ϕT A then by Inc-Arg for ϕ there exists a unique t ∈ A such that
ϕT t = t3.

χT ◦ ϕT = θT: Expanding the LHS, we have:

χT (ϕT t) =

t if t ∈ DomϕT and ϕT t ∈ ϕT A

ηT

i t if t ∈ DomϕT and ϕT t /∈ ϕT A and ϕT t ∈ DomϕT

i \ DomϕT

1−i

(ηT

0 t, η
T

1 t) if t ∈ DomϕT and ϕT t /∈ ϕT A and ϕT t ∈ DomϕT

0 ∩ DomϕT

1

By Inc-Arg for ϕ,

t ∈ DomϕT and ϕT t ∈ ϕT A iff t ∈ A

Also, because ϕT

i ◦ ϕ
T = ηT

i for i = 0, 1,

t ∈ DomϕT and ϕT t ∈ DomϕT

i iff t ∈ Dom ηT

i

Thus χT ◦ ϕT = θT.

θT

i ◦ χ
T = ϕT

i for i = 0, 1: By Lemma 6.21, the LHS of the second equality expands to:

θT

i (χ
T t3) =

θT

i (ϕ
T−1 t3) if t3 ∈ ϕ

T A

ϕT

i t3 if t3 /∈ ϕ
T A and t3 ∈ DomϕT

i \ DomϕT

1−i

ϕT

i t3 if t3 /∈ ϕ
T A and t3 ∈ DomϕT

0 ∩ DomϕT

1

Note that if t3 ∈ ϕ
T A then t3 = ϕT t for some t ∈ A; thus, the first case in the expansion is:

θT

i (ϕ
T−1 t3) = θT

i t = ηT

i t = ϕT

i t3 by Inc-Arg. Because the cases in the expansion above are
exhaustive, θT

i ◦ χ
T = ϕT

i . ¥

Moreover, by Proposition 6.20, the mediator χ is unique because (θT

0 , θ
T

1) are jointly-

injective, as verified in Proposition 6.25 below after a technical lemma.

Lemma 6.24 If t2 ∈ Dom θT

i \ Dom θT

1−i then t2 ∈ Oi or t2 = arg2(vi, k) for some k and

vi ∈ Vi.

Proof If t2 /∈ Oi then t2 ∈ A, hence t2 = arg2(vj , k) for some k, j, vj ∈ Vj . Since t2 /∈ Dom θT

1−i,

i = j. ¥

Proposition 6.25 (θT

0 , θ
T

1) are jointly-injective.

Proof

Case t2, t
′
2 ∈ Dom θT

i \ Dom θT

1−i and θT

i t2 = θT

i t
′
2: By Lemma 6.24, there are two cases.

Case t2 ∈ Oi: Then t2 = θT

i t
′
2. If t

′
2 /∈ Oi then by Lemma 6.24, θ

T

i t
′
2 ∈ T

arg
i , but t2 ∈ T

out
i ,

a contradiction. Thus t′2 ∈ Oi and t2 = t′2.

Case t2 = arg(vi, k) for some vi ∈ Vi and k: then arg i(vi, k) = θT

i t
′
2 thus t

′
2 /∈ Oi; by

Lemma 6.24, t′2 = arg(v′
i, k

′) for some v′
i ∈ Vi and k

′; but then vi = v′
i and k = k′, so

t2 = t′2.

Chapter 6. RPOs for action graph contexts 110

Case t2, t
′
2 ∈ Dom θT

0 ∩ Dom θT

1 and (θ
T

0 t2, θ
T

1 t2) = (θ
T

0 t
′
2, θ

T

1 t
′
2): There are two subcases.

Case t2 ∈ O0,1: Then (t2, t2) = (θ
T

0 t
′
2, θ

T

1 t
′
2), so t

′
2 ∈ O0,1 and t2 = t′2.

Case t2 = arg2(vi, k) for some vi ∈ Vi and k: Then t′2 ∈ A and η
T

i t2 = ηT

i t
′
2, hence t2 = t′2

by Inc-Arg. ¥

In summary, then:

Theorem 6.26 (sufficiency of Chaste for relative coproducts) If a pair of inclusion

embeddings ηi : Gi G (i = 0, 1) satisfies Chaste then the constructed triple θ0, θ1, θ of

inclusion embeddings forms a relative coproduct for η0, η1 in G-Inc. ¥

We now turn to the necessity of Chaste. We first construct a second candidate for

η0, η1 as follows. Let

T̂2 =̂ Dom ηT

0 ∪ Dom ηT

1

θ̂T : T ⇀ T̂ =̂ t 7→ t for t ∈ T̂

θ̂T

i : T̂ ⇀ Ti =̂ ηT

i ¹ T̂ .

Then θ̂T

0 , θ̂
T

1 , θ̂
T is a target scaffold, hence can be extended to a candidate θ̂0, θ̂1, θ̂. Now we

proceed directly to the result:

Theorem 6.27 (necessity of Chaste for relative coproducts) If a pair of inclusion

embeddings ηi : Gi G (i = 0, 1) does not satisfy Chaste then no relative coproduct

exists for η0, η1 in G-Inc.

Proof Suppose that the Chaste condition does not hold, i.e. there are si ∈ Sin
i and

ti ∈ T
out
i such that srci(ti) = si, η

S

0(s0) = ηS

1(s1), and s0 6≡ s1. Suppose for contradiction

that there is a graph G3 and a relative coproduct triple ψ0, ψ1, ψ such that ψ : G3 G

and ψi : Gi G3 for i = 0, 1. By the definition of relative coproduct, there exist two

mediating inclusion embeddings: χ : G3 G2 for the candidate θ0, θ1, θ and ξ : G3 Ĝ2

for the candidate θ̂0, θ̂1, θ̂.

By construction, θ̂T T = T̂ , so by Lemma 6.17, θ̂S

0 s0 6= θ̂S

1 s1, hence ξ
SψS

0(s0) 6= ξSψS

1(s1),

hence ψS

0(s0) 6= ψS

1(s1). However, (t0, t1) ∈ O0,1, so ψ
S

i (si) = ψS

i srci(ti) = ψS

i srciθ
T

i (t0, t1) =

ψS

i srciψ
T

i χ
T(t0, t1) = src3χ

T(t0, t1) for i = 0, 1, by Inc-Src for ψi; so ψ
S

0(s0) = ψS

1(s1), a

contradiction. ¥

6.8 Existence of RPOs

We are finally ready to deduce the existence of RPOs in the category Ĉ-Ixt of contexts,

which is the goal set at the beginning of this chapter. Recall that in Ĉ-Ixt a context

ε
G (m,n,U), whose domain is the empty profile ε, is actually a graph G : (m,n) with

|G| = U .

6.8. Existence of RPOs 111

Corollary 6.28 Let C0G0 = C1G1 = G in Ĉ-Ixt, where G1 is output-controlled.

Then there exists an RPO for G0, G1 w.r.t. C0, C1.

Proof Let ηi = DGi,G(Ci), for i = 0, 1. Since G1 is output-controlled the pair

η0, η1 satisfies property Chaste by Proposition 6.13, hence possesses a relative coproduct

by Theorem 6.26. The iso functor A : G-Inc ε/Ĉ-Ixt transforms any such relative

coproduct into a relative coproduct of C0 : G0 G and C1 : G1 G, and hence, by

Proposition 6.8, into an RPO in Ĉ-Ixt for G0, G1 with respect to C0, C1. ¥

Finally, note that if G is output-controlled then ρ¦G is too for any injection ρ with

Dom ρ ⊇ |G|. Thus it is well-defined to say that a context with domain (0, 0) in C-Ixt

(the category formed by quotienting out support translations) is output-controlled.

Thus:

Theorem 6.29 (F has all redex-RPOs) The functorial reactive system F : Ĉ-Ixt

C-Ixt has all redex-RPOs provided that every redex is output-controlled, i.e. pro-

vided that for all (l, r) ∈ Reacts, l is output-controlled. ¥

From this all of the congruence results of Chapter 3 (except the one for multi-hole

contexts) are immediately applicable to F : Ĉ-Ixt C-Ixt, as desired. The next chapter

argues that it is tolerable to ask that every redex satisfies certain reasonable constraints,

including output-controlled.

Chapter 6. RPOs for action graph contexts 112

Chapter 7

Expected properties of redexes

In this chapter, I consider the question of which constraints it is reasonable to ask a redex

to satisfy in a reactive system. The motivation for this comes from two directions, the

first from the applied work in Chapter 6 and the second from the categorical work in

Chapter 3.

Firstly, the previous chapter’s main result (Theorem 6.29) asserted that F : Ĉ-Ixt

C-Ixt has all redex-RPOs provided that every redex is output-controlled. But is this

a reasonable constraint? Can we point to redexes that are not output-controlled and

show that they induce undesirable reactions?

Secondly, as shown in Section 3.4, id-labelled transitions and reactions coincide when

redexes have epi preimages (Definition 3.14). Is there a concrete (graph theoretic) char-

acterisation of this requirement? Is this characterisation a reasonable constraint? What

form do redexes that do not have such constrained preimages take? Do they lead to

undesirable reactions?

The first motivation is the stronger one: without RPOs, the edifice of congruence

results collapses. And yet, the latter is worth considering in order to understand the space

of possible redexes. Delightfully, there is a brief concrete characterisation of when a redex

has epi preimages and, moreover, this characterisation consists of three simple conditions,

one of which is output-controlled.

As a result, the output-controlled condition is on the path to understanding epis,

so I argue about the former when it comes up in the course of examining each of the three

epi conditions.

Let us start then with the problem of finding a concrete characterisation for the epi

conditions. Instantiating the property redexes have epi preimages for F : Ĉ-Ixt C-Ixt

yields the following: For all G ∈ Ĉ-Ixt, if there exists (l, r) ∈ C-Ixt such that F(G) = l,

then G is an epi. (As usual we do not distinguish between an action graph G and arrows

in Ĉ-Ixt with domain ε.)

Notice that this definition does not require that redexes themselves be epis, just that

113

Chapter 7. Expected properties of redexes 114

L0K

L1

K

K

(0, 0) (0, 1)

K

K L1

L0

(0, 1)

(0, 1)(0, 0)

L0

L1

=

l

C0

C1

Figure 7.1: In C-Ixt, l is a not an epi

ε (0, 1, {v}) (0, 1, {v, v′, v0, v1})

K
v

v′
K

v1

L1

v0

L0

v0

L0

v′
K

v1

L1

Figure 7.2: In Ĉ-Ixt, the tracking of node occurrences makes the left-hand graph an epi

115

their preimages be. To see why, consider two compositions in C-Ixt (Figure 7.1). The

redex l containing a single control K is as simple and unobjectionable a redex as could be

found. Yet it is not an epi in C-Ixt as shown: there are two contexts C0, C1 ∈ C-Ixt for

which C0l = C1l but C0 6= C1. (The latter follows because the hole is attached to Li in

Ci.)

However every preimage of l is an epi in Ĉ-Ixt (as proved in Proposition 7.3). Consider

the situation in Ĉ-Ixt as shown in Figure 7.2. Then the two compositions are not equal

because an arc links v to v0 in the top one but to v1 in the bottom.

Under which conditions is an action graph G an epi in Ĉ-Ixt? The answer is given

by the following definition which characterises exactly (Proposition 7.3) the epis with

domain ε of Ĉ-Ixt. The interesting part of the argument is carried out in terms of

inclusion embeddings (Proposition 7.2) with the functors A and D being used to transfer

constructions from G-Inc to Ĉ-Ixt and back. (This is reminiscent of the approach used

to construct RPOs.)

Definition 7.1 (G has modest wiring) Say that an action graph G has modest wiring

iff G satisfies the following properties:

src(T out) ∩ Sin = ∅ output-controlled

Sin ⊆ src(T) no-discarded-inputs

src ¹ T out is injective . no-controlled-forks

¥

The negation of each condition is illustrated by each G shown in Figure 7.6.

Note that each one of these conditions is concerned only with wiring and not nodes, so

holds for G iff it holds for ρ¦G, where ρ is any injection with Dom ρ ⊇ |G|. As was pointed

out immediately after Corollary 6.28, it is thus well-defined to say that an agent, i.e. an

arrow in C-Ixt with domain (0, 0), has modest wiring. The reason is that an agent is an

equivalence class of action graphs, all of which are a support translation of one another.

Thus an agent is C-Ixt has modest wiring iff every (indeed any) preimage in Ĉ-Ixt out

of ε has modest wiring.

Now, the interesting question is whether it is tolerable to demand that each redex has

modest wiring. I believe yes, based on the absence of any example redex that does not

have modest wiring. Of course, this is open to contradiction by future work. However, I

now argue that the reactions obtained from a putative redex that does not have modest

wiring are sufficiently strange that I feel safe in expunging such redexes for the moment.

I consider each condition in turn. The first (output-controlled) is indispensable for

the existence of RPOs, as is explained at the beginning of this chapter:

output-controlled: Consider the redex l in Figure 7.3 which does not satisfy output-

controlled because of the arc going across from an input source to an output

Chapter 7. Expected properties of redexes 116

K

K L

M0 M1

K1 M1

M0

K0 L

a′a

l r

C

M0

L

M1

K0

K1

Figure 7.3: An undesirable reaction a = Cl Cr = a′ generated by a redex l that does
not satisfy the condition output-controlled

K

L

M0

l r

C

M0
M1

K0

K

M0 M1

M1

K0

a′a

L

Figure 7.4: An undesirable reaction a = Cl Cr = a′ generated by a redex l that does
not satisfy the condition no-discarded-inputs

117

l r

C
L

K0

K1

K

K L
K0 L

a′a

K1

Figure 7.5: An undesirable reaction a = Cl Cr = a′ generated by a redex l that does
not satisfy the condition no-controlled-forks

target. This arc in l matches an arc connecting M0 to M1 in a (as witnessed by

C). The induced reaction affects K (which seems reasonable given that K is in l),

but also breaks M0 from M1 and connects a new control K1 to M1. The latter

seem unreasonable because it is so highly nonlocal: the arc in l can match and then

modify an arc anywhere in an agent, not necessarily near the site of K.

no-discarded-inputs: Consider the redex l in Figure 7.4 which does not satisfy no-

discarded-inputs. It too has a nonlocal affect on a: the discarded input source

of l is matched by the bound source of M0 in a (as witnessed by C), resulting in a

reaction that connects L to M0.

no-controlled-forks: Consider the redex l in Figure 7.5 which does not satisfy no-

controlled-forks. The bound source of K has a forked arc emanating from

it. Despite this, the forked arc matches a non-forked arc in a (as witnessed by C)

that connects K to L, resulting in a reaction that connects K0 to L and leaves K1

dangling.

Furthermore, in each of these cases, it seems that the redex could be replaced with a

simpler one that does satisfy the condition in question. Consider the condition output-

controlled. Let (l, r) be a reaction rule whose redex l is not output-controlled.

Consider all arcs connecting an input source to an output target. If the contractum r

possesses all these arcs, then it can be shown that the alternative rule (l′, r′) with all such

arcs removed yields a superset of the reactions; the rule could be replaced by (l′, r′) for

Chapter 7. Expected properties of redexes 118

the purpose of deriving an LTS. If on the other hand r does not contain such an arc (as in

Figure 7.3) then the rule (l, r) appears to generate non-deterministic behaviour of a kind

not normally required.

I now prove that if G has modest wiring then G is an epi in Ĉ-Ixt. The first step is

to show a related result for inclusion embeddings in G-Inc and then return to Ĉ-Ixt in

Proposition 7.3.

Proposition 7.2 G has modest wiring iff for all inclusion embeddings η0, η1 : G G2,

we have that η0 = η1.

Proof

LHS implies RHS: Suppose that G has modest wiring. Let G2 be an arbitrary graph

and let η0, η1 : G G2.

ηS

0 = ηS

1: Consider s ∈ S. We distinguish two cases.

case s ∈ Sbind : By Inc-Bind, ηS

0(s) = ηS

1(s).

case s ∈ Sin : By no-discarded-inputs and output-controlled, there ex-

ists arg(v, j) ∈ T arg such that s = src arg(v, j) =Inc-Arg src ηT

i arg2(v, j)

for i = 0, 1. Thus

ηS

i (s) = ηS

i src η
T

i arg2(v, j) =
Inc-Src src2 arg2(v, j)

for i = 0, 1, so ηS

0(s) = ηS

1(s).

ηT

0 = ηT

1: Consider t ∈ Dom ηT

0 . We distinguish two cases:

case ηT

0(t) ∈ T
arg : By Inc-Arg, t ∈ Dom ηT

1 and ηT

0(t) = ηT

1(t).

case ηT

0(t) ∈ T
out : By output-controlled, src ηT

0(t) ∈ S
bind ; then,

ηS

1 src η
T

0(t) =
Inc-Bind ηS

0 src η
T

0(t) =
Inc-Src src2(t) .

By Inc-Targs, t ∈ Dom ηT

1 . By Inc-Arg, ηT

1(t) ∈ T arg implies ηT

0(t) ∈

T arg , which contradicts the case’s hypothesis. Thus ηT

1(t) ∈ T out . By

output-controlled, src ηT

1(t) ∈ Sbind . By Inc-Src, ηS

i src η
T

i (t) =

src2(t) for i = 0, 1, so by Inc-Bind, src ηT

0(t) = src ηT

1(t). By no-

controlled-forks, ηT

0(t) = ηT

1(t).

In both cases ηT

0 ⊆ ηT

1 . By symmetry, ηT

0 = ηT

1 .

RHS implies LHS (outline): Let G be a graph. We argue that each condition in

Definition 7.1 is necessary in order for the RHS to be true.

output-controlled: Suppose G does not satisfy output-controlled, i.e. there

exists t ∈ T out such that src(t) ∈ Sin . We know that idG : G G is one

119

G

G

G

idG

η
t

t

t

7.6(1) Necessity of output-controlled

G

G2

G2

η0

η1s′

s′

s′

7.6(2) Necessity of no-discarded-inputs

G

idG

η

G

G

K

K

K

t0

t1

t0

t1

t0

t1

7.6(3) Necessity of no-controlled-forks

Figure 7.6: Necessity of Definition 7.1

Chapter 7. Expected properties of redexes 120

inclusion embedding. Let η be the same at idG but with t 7→ t removed from

ηT (a partial map). Then η : G G is an inclusion embedding and idG 6= η.

See Figure 7.6(1) for an example.

no-discarded-inputs: Suppose G does not satisfy no-discarded-inputs, i.e.

there exists s′ ∈ Sin such that s′ /∈ src(T). Suppose G : (m,n). Let

G2 : (m+1, n) be the same as G but with one extra discarded input source, i.e.

V2 =̂ V

contr2 =̂ contr

T2 =̂ T

S2 =̂ S] in2(m)

src2 : T2 S2 =̂ t 7→ src(t)

Let η0 : G G2 be an inclusion embedding that is essentially the identity, i.e.

ηS

0 : S S2 =̂ s 7→ s

ηT

0 : T2 T =̂ IdT

Let η1 : G G2 be an inclusion embedding that differs only in its action on s′:

ηS

1 : S S2 =̂

{

s 7→ s if s 6= s′

s 7→ in2(m) if s = s′

ηT

1 : T2 T =̂ IdT

Then η0 6= η1. See Figure 7.6(2) for an example.

no-controlled-forks: Suppose G does not satisfy no-controlled-forks, i.e.

there exist t0, t1 ∈ T out such that src(t0) = src(t1) ∈ Sbind . We know that

idG : G G is one inclusion embedding. Let η be the same at idG but with

ηT : ti 7→ t1−i for i = 0, 1. Then η : G G is an inclusion embedding and

idG 6= η. See Figure 7.6(3) for an example. ¥

To make the following result easier to read, we take the liberty of omitting the usual

decorations on arrows in Ĉ-Ixt.

Proposition 7.3 Let G be a context in Ĉ-Ixt with domain ε. Then G has modest

wiring iff G is an epi in Ĉ-Ixt.

Proof Suppose G has modest wiring and that G2 =̂ C0G = C1G in Ĉ-Ixt for some

C0, C1. By Proposition 7.2, DG,G2
(C0) = DG,G2

(C1) ∈ G-Inc(G,G2), so

C0 = A(DG,G2
(C0)) = A(DG,G2

(C1)) = C1

since A inverts D.

121

Suppose that G does not have modest wiring. Then by Proposition 7.2, there exist a

graph G2 and η0, η1 ∈ G-Inc(G,G2) such that η0 6= η1. Then A(η0) 6= A(η1) since A is

faithful but A(η0)G = G2 = A(η1)G. Thus G is not an epi in Ĉ-Ixt. ¥

This result shows that Definition 7.1 provides an exact characterisation of epis in

Ĉ-Ixt, whence we have the following, which rounds out the chapter:

Corollary 7.4 For F : Ĉ-Ixt C-Ixt, if every redex has modest wiring (Definition 7.1)

then redexes have epi preimages (Definition 3.14). ¥

The implications of this chapter are not that epis are important per se but that there

is a space of possible constraints that may be imposed upon redexes. One can imagine

requiring all the nodes in a redex to be connected by wiring. This would guarantee that the

parts of the redex occur locally in an agent, precluding far-flung instantiations. It would

be enlightening if this or other graph-theoretic constraints could be described categorically.

Conversely, as we investigate richer graph structure (such as nesting, free names, binding,

etc.) we can look specifically for which redexes satisfy known categorical properties, such

as was done here for epi preimages.

If we can build up a library of useful categorical constraints, then it may be possible to

provide a way of classifying redexes from different functorial reactive systems according to

these constraints. An application of this might be a new way of disproving the existence of

encodings between process calculi represented as functorial reactive systems: if one could

show that any putative encoding preserves certain categorical properties that hold of the

redexes in the source of the encoding but not of the redexes in the target, then one has a

handle on disproving the encoding’s existence.

It remains to be seen whether such classifications are possible or useful. Yet, it seems

like a fruitful direction: the power of functorial reactive systems is they are abstract and

thus provide a general setting in which to derive operational congruences. There is no

reason why this power cannot be exploited for other ends as well, such as the classification

of dynamics. This, however, is future work.

Chapter 7. Expected properties of redexes 122

Chapter 8

Conclusions and future work

This final chapter summarises some of the accomplishments of the dissertation and points

to areas that require further work.

The main motivation for my research is to provide mathematical tools that ease the

construction of new process calculi. Every computational phenomenon (distributed hosts,

failures, cryptography, etc.) that gives rise to a new calculus carries with it rules for

describing how it works, how a computation evolves. These are often reaction rules, which

capture the allowable state changes. The redexes are typically composites formed from

atoms, so the following questions naturally arise. When an agent has parts of a redex,

which atoms does the agent require to form a complete redex? Can we get a definition

of labelled transition if we choose the labels to be those small contexts that complete

redexes? These questions are not original with me: they are often used by the process

calculus community as motivation and intuition for designing specific labelled transition

relations. I believe, though, that the original contribution of my work is to give a general

way of transforming reaction rules into tractable labelled transitions.

By tractable, I mean two things: (i) the labels are small, i.e. contain only those parts of

a redex necessary to complete a whole redex in an agent; (ii) the labelled transitions yield

operational equivalences and preorders that are congruences. The key ideas in trying to

achieve both desiderata are that of a relative pushout (RPO) and an idem pushout (IPO).

With respect to (ii) the results are good: I prove congruence for strong bisimulation,

weak bisimulation, the traces preorder, and the failures preorder. For (i), the results are

encouraging: IPOs ensure that the labels of transitions contain no junk, i.e. that no lesser

label would do. There is, however, more work required in making the labels even simpler

by exploiting the uniformity present in reaction rules that contain metavariables. This is

discussed below in the paragraphs concerned with multi-hole redexes.

One of the most attractive qualities of the theory of RPOs is that it is abstract : it is

applicable to all categories of contexts and therefore provides a unifying discipline. Before I

understood RPOs, I spent several years thinking about dissection results for specific graph-

123

Chapter 8. Conclusions and future work 124

like contexts: “If C0a0 = C1a1, then what part of ai is present in C1−i for i = 0, 1?” I could

only get results about nodes (for example, which nodes of a1 are supplied by C0) but not

about arcs. Trying to work in an ad hoc way with graphs was unsatisfying until the RPO

theory arrived: it was only the discipline of a universal property in the category theory

sense that sustained me in carrying out the constructions contained in Chapter 6. Sewell’s

ad hoc reasoning about dissection for term algebras with parallel composition [Sew01] was

successful without employing RPOs, but his statement of dissection was complicated. To

be fair, his dissections were for multi-hole redexes that RPOs do not neatly handle. I say

more on this below. He is now recasting some of his results in terms of RPOs and other

universal constructions.

RPOs thus support the goal of developing a shared theory that can produce labelled

transitions and operational congruences for many process calculi. The task that we usu-

ally face for each new process calculus of defining labelled transitions and proving that

equivalences and preorders are congruences is replaced by the task of choosing reactions

and proving that RPOs exist. This is attractive leverage gained from RPOs.

Nonetheless, constructing RPOs is difficult, as witnessed by the daunting complexity

in Chapter 6. It is therefore desirable that it not be done afresh for each new process

calculus. This is the impetus for the leading example in this dissertation, namely the

construction of RPOs for action calculi-like contexts. Recall that the functorial reactive

system F : Ĉ-Ixt C-Ixt is really a family with varying choices of control signature K

and of reaction rules Reacts. The fragment of action calculi considered in Chapter 5 is

thus a framework : if one can express states of a computational model using controls (for

atoms) and arcs (for names and sharing) and reactions in terms of redexes that satisfy

the condition output-controlled then RPOs exist and hence Chapter 3 gives labelled

transitions and operational congruences.

A framework is often deficient for two reasons: (i) it provides insufficient benefits to

compensate for the effort of casting a specific example in the framework’s form; (ii) it is

not rich enough to cover all the phenomena that one wants. Criticism (ii) hits home. The

fragment of action calculi presented in this dissertation is inadequate for most purposes:

there is no nesting of action graphs (needed for prefixing), no free names, no binding,

limited reflexion, no choice operator, and no multi-hole redexes (needed to represent faith-

fully metavariables in reaction rules). I describe future work below that addresses these

issues. Criticism (i), however, is unjustified when applied to the action calculi shown here:

getting “for free” a labelled transition system and a collection of operational congruences

is a worthwhile benefit.

The reverse situation held for action calculi as originally presented by Milner [Mil96]:

criticism (ii) was not such a problem but criticism (i) was: up until now there has been

little tangible reward to using action calculi to present specific examples of process calculi.

The central goal of future work is to construct a framework with rich enough structure

125

out

in

in

x

y

Figure 8.1: Nesting of nodes

(perhaps like Milner’s original action calculi) to dodge criticism (ii) while still providing

the rewards of labelled transitions and operational congruences.

To this end, it will be important to pursue several research directions:

nesting: The nesting of agents inside nodes is essential for representing prefixing. For

example, in CCS the agent x.y.x̄ contains three levels of nesting with the name x

shared by the outermost and the innermost. In order to represent this with graph-

like constructions, we need that each node packages up the continuation agent, e.g.

as in Figure 8.1 which gives a possible representation of the CCS agent above.

At first glance, nesting is a trivial thing: term algebras, for instance, consists of just

pure nesting structure with nothing else. It is straightforward to calculate RPOs

for them. However the real challenge is the combination of wiring and nesting:

Figure 8.1 has an arc sourced by x that is forked and has targets at multiple levels.

In particular, even the notion of context composition is difficult: when composing

contexts that fork an arc at different nesting levels, the forks have to be normalised

in some way, either by pushing them in to the innermost level or pulling them out

to the outermost.

As a stepping stone to handling nesting with rich wiring, Milner is currently looking

at a simpler situation, namely the enhancement with nesting of work we did on linear

graphs [LM00b]. In this case the normalisation of forked arcs is not an issue since

arcs cannot be forked or discarded.

There are many possible representations for nested graphs. One that seems most

promising comes out of the work by Milner referred to here: the idea is to treat

a nested graph as a flat graph with an added parent function overlaid. It seems

Chapter 8. Conclusions and future work 126

that RPOs can then be calculated by handling the wiring structure and the nesting

structure orthogonally. Furthermore, this orthogonality appears to be robust when

passing to more complex wiring.

Even without the full power of nesting, it may be possible to handle the π-calculus

(or variants thereof) indirectly. Honda and Yoshida [HY94a] give a translation in

terms of “concurrent combinators”; these encode prefixing in a flat structure by using

triggers to point to parts of agents that may execute. A derived labelled transition

relation for their combinator reaction rules might be too intensional since the labels

could detect exactly the combinators present in an agent. It is worth trying this,

though, to see what kind of equivalences would transpire.

free names and binding: It is straightforward to add free names to graphs: the idea

is to enrich the set of source ports to include names. It is more subtle though to

make precise how a context can bind the names of the thing that goes in its hole.

It seems likely that the objects of the category of contexts need to contain name

sets to ensure that RPOs exist (analogously to inclusion of node sets in Ĉ-Ixt), i.e.

a context is an arrow of the form (m,n,U,X) (m′, n′, U ′, X ′), meaning that its

hole is expecting a context with support (nodes) U and names X. Nonetheless, it

is not clear whether the downstairs category (the analogue of C-Ixt) should include

these name sets. For example, in π-calculus we write the binding context (νx)−

without saying which names can fit in the hole. Perhaps the functor from upstairs

to downstairs (like F : Ĉ-Ixt C-Ixt in this dissertation) will allow two kinds of

IPO sliding: the first with respect to nodes (as I have shown here) and the second

with respect to names.

There has been recent work on modelling names and name binding in a categorical

way [TFP99, GP99] and it would be exciting to join together those syntactic models

with operational semantics, and in particular, the reactive systems shown here.

Name binding carries with it the problem of scope extrusion in labelled transitions.

In π-calculus, for example, it is a subtle problem to handle the labelled transition of

(νx)(ȳ〈x〉). There are many ways of handling this when looking at bisimulation, for

example, but most involve augmenting the definition with freshness side conditions to

cater explicitly for extrusion. An alternate approach [CS00] keeps track of extruded

names as annotations of the agents themselves, thus gaining the power of extrusion

but keeping the simplicity of bisimulation without added conditions. Adding these

annotations seems almost identical to adding name sets in the objects of a context

category (as outlined above).

multi-hole redexes: The basic reaction rule of the π-calculus is

x̄〈y〉.a | x(z).b a | {y/z}b . (8.1)

127

Imagine for a moment that the questions of nesting and free names are overcome.

There is still a problem adequately representing (8.1) in a reactive system. Currently

I require that the reaction rules Reacts consist of pairs of agents, not agent contexts.

As a result, the only way to represent (8.1) is via an infinite family of rules, one for

each possible instantiation of a and b. Thus there might be labelled transitions of

the form

x̄〈y〉
−|x(z).b

(8.2)

for all instantiations of b. But these are ungainly labels: the only important part

of any label of the form − | x(z).b is the top-level structure, namely x(z); the b is

irrelevant.

How can we winnow down the family of labels to a single one? The answer lies in

using the uniformity present in (8.1). The a and b there are really metavariables and

the rule can be expressed thus:

x̄〈y〉.−1 | x(z).−2 −1 | {y/z}−2 . (8.3)

This rule consists of a pair of 2-hole contexts which capture the uniformity present

in it. If we relax the condition on Reacts and allow it to contain pairs of contexts

(L,R) for which L,R : m n are arbitrary contexts, then it is easy to generate the

reaction relation (forgetting about the details of D)

A A′ iff (∃(L,R) ∈ Reacts, C,D. A = DLC & A′ = DRC) .

¨

§

¥

¦

B

A

F

C

L

D

B′ F ′

C′ D′

8.2

Contrast this to Definition 2.2 for which the reaction rules

are closed-up under context application on the outside, not

also on the inside (as shown here). The hard problem is

to define labelled transitions A F A′. We cannot rely on

IPOs anymore since the domain of A is potentially different

from the domain of any redex L. A possible replacement for IPOs might be via

hexagon idem pushouts (which are special kinds of hexagon relative pushouts) as

suggested by Sewell. Notice how L and A are wrapped up in Figure 8.2 by arrows

composed on either side. The hexagon idem pushout property guarantees that there

is no lesser hexagon bounded by B′, C ′, F ′, D′. It seems plausible that such hexagons

can yield the single labelled transition x̄〈y〉
−1|x(z).−2 from (8.3), which is lighter

than having the infinite family shown in (8.2).

In [Sew01], Sewell already exploited the uniformity present in reaction rules when

looking at term algebras with parallel composition. He achieved lightweight labelled

transitions, but made use of complex context dissection lemmas. He is now looking

at the problem of recasting his results in terms of universal constructions (such

Chapter 8. Conclusions and future work 128

as hexagons). In conclusion, there are two important lines of research related to

multi-hole redexes which mirror what was done in my dissertation: (i) defining

labelled transitions by universal constructions and proving congruence for a variety

of equivalences and preorders; (ii) showing that the relevant universal constructions

exist in categories of interest (term algebras, graphs, etc.).

sum: As discussed in Section 3.5, the proper treatment of summation (such as occurs in

CCS and the π-calculus) requires care. It is not good enough for sum to be a free

operator (just another control) if we want to describe its reactive behaviour, e.g.

(x̄.a+ b) | (x.a′ + b′) a | a′

τ.a+ b a .

Consider the second reaction rule. In order for the sum to be rearranged so that

τ.a is on the left and the rest is on the right, we require + to be commutative,

associative, and have the empty agent as an identity. I do not understand how to

represent this in graphs.

The same problem surfaces for other operators that change the structural congruence

(syntactic equality). In the π-calculus, for example, replication is handled by the

axiom

! a ≡ a | ! a . (8.4)

This seems even harder to represent in terms of graphs since the RHS has, poten-

tially, more nodes than the LHS. Even if the problems of finding graph theoretic

representation of sum and replication can be overcome, it may be difficult to con-

struct RPOs. A possible solution, at least for replication, is to disallow the structural

equality in (8.4), and instead confine replication to be input guarded and to have a

reaction rule of the form

x̄〈y〉 | !x(z).a {y/z}a | !x(z).a .

This is a commonly done in asynchronous variations of π-calculus [HT91].

Another way of handling replication is via an encoding in terms of combinators

(already mentioned above) [HY94b]. For input guarded summation, encoding [NP96]

is also an option.

full reflexion: The contexts considered in Chapter 5 have only a limited form of reflexion,

as enforced by the condition Loose that prevents tight loops linking a hole to itself.

This simplifying assumption makes the composition of contexts and the composition

of the associated embeddings easy. With full reflexion, the composition of contexts

can create arcs that are formed from arbitrarily many segments of arcs present in the

129

inner and outer context. Indeed, it is difficult to prove even that the composition of

reflexive embeddings is associative [Lei01]. Better technology for handling reflexion

has been developed in [LM00b] for graphs with linear wiring. Proving the existence

of RPOs for full reflexion with non-linear wiring represents a future challenge.

inductive presentation of labelled transitions: This item is not related to compu-

tational phenomena, but rather the form in which derived labelled transitions are

presented.

In this dissertation, the way of deriving labelled transitions from reactions yields

a direct characterisation. This is in contrast to the inductive presentation usually

found in the process calculus literature. Can the gap be bridged, though? In other

words, can an inductive presentation of labelled transitions be derived from reaction

rules? It seems plausible. For any particular reactive system whose syntax is gen-

erated from some constructors, one could instantiate Lemma 2.19 (recalled here) by

substituting each constructor for C:

C

F ′ F

C′
is an IPO a F ′ a′′ C ′ ∈ D

Ca F C ′a′′
.

There are several interesting questions that follow: Under what conditions can we

derive an inductive presentation that generates precisely the same labelled transition

relation as the direct presentation gives? Under what conditions would an inductive

presentation satisfy any of the GSOS rule formats [GV92, Blo93]? If some set of

the latter is satisfied, it would be enlightening to compare two different proofs of

congruence for strong bisimulation, say — one based on the RPO theory shown in

this dissertation and the other based on GSOS reasoning, particularly as provided

by recent categorical treatments of the latter [TP97].

It is not surprising that some of these areas (e.g. free names and multi-hole redexes)

require changes to the categorical abstractions of a reactive system, not just cleverer ways

of constructing RPOs. This pattern is well-established in my dissertation. I started with

reactive systems, then passed to functorial reactive systems when it became clear that

RPOs needed to be calculated in a separate category, then considered functorial monoidal

reactive system to cater explicitly for RPOs resulting in multi-hole contexts.

A test of the future work outlined above is to see what labelled transitions and opera-

tional congruences are generated for applications such as CCS, π-calculus, λ-calculus, and

ambients. It would be exciting (though not likely) to get congruences that coincide exactly

with well-known ones (open bisimulation for π-calculus, say). It should not be a cause

for dejection if the derived congruences do not match exactly the historically established

Chapter 8. Conclusions and future work 130

ones: π-calculus comes with a zoo of bespoke congruences, none of which is good for all

applications.

The best outcome of this work will be if the mathematical tools that are proposed

here ease the path for exploring new primitives and new patterns of behaviour inherent

in distributed computing. The development of mathematical techniques for reasoning

about hosts and host failure, agent mobility, and cryptography, for example, is critical for

guiding infrastructure and language design. Proofs techniques for these models are critical

for precise reasoning. Much work needs to be done before the tools of this dissertation are

good enough to address these applications. Nonetheless, I see no limits as to what can be

so achieved.

Appendix A

Review of category theory

I summarise here the main ideas of category theory used in this dissertation. For greater

detail, the reader is referred to the classic work by Mac Lane [Mac71]. Another good

reference is [BW01] (which is online).

Categories A category C consists of objects X,Y, . . . and of arrows f, g, . . . between

objects. An arrow f has a domain object Dom f and a codomain object Cod f . We write

f : X Y if Dom f = X and Cod f = Y . The arrows from X to Y are a homset, denoted

C(X,Y). The objects of C are denoted objC. Composition is defined on all pairs of

arrows between appropriate objects:

f : X Y g : Y Z

gf : X Z

and is associative: h(gf) = (hg)f . Every object X has a (unique) identity arrow idX :

X X; for f : X Y , we have idY f = f = f idX .

Special arrows An arrow f : X Y is an iso iff there exists an arrow g : Y X

such that gf = idX and fg = idY . If g′ : Y X has the same properties as g then

g = gidY = gfg′ = idXg
′ = g′, so the inverse of f is unique and is often written f−1.

An arrow f is an epi iff it is right-cancellable, i.e. g0f = g1f implies g0 = g1. A split

epi f is an arrow with a right-inverse, i.e. there exists h such that fh = id.

An arrow f is a mono iff it is left-cancellable, i.e. fg0 = fg1 implies g0 = g1. A split

mono (also known as a retraction) f is an arrow with a left-inverse, i.e. there exists h such

that hf = id.

Subcategories A subcategory D of C is a category all of whose objects and arrows

are objects and arrows of C and whose identities and compositions are the same as in C.

131

Appendix A. Review of category theory 132

Furthermore, D is a full subcategory if every homset in D is equal to the corresponding

homset in C, i.e. for all X,Y ∈ objD, D(X,Y) = C(X,Y). (Thus a full subcategory is

determined entirely by its objects.)

Commutation The composition of arrows is depicted by concatenating them. For ex-

ample, if f : X Y and g : Y Z then gf is shown as X Y
f

Z
g Often the

object labels are omitted. A square commutes if every path with common start and end

is equal. For example, the following square commutes iff g0f0 = g1f1:

f0

f1 g0

g1

Coproducts Given two objects X0, X1, their coproduct consists of an object X (some-

times written X0 +X1) and a pair of arrows fi : Xi X, i = 0, 1, so that for any other

pair f ′i : Xi X ′, there exists a unique mediating arrow k : X X ′ (sometimes written

[f ′0, f
′
1]) such that the two triangles below commute:

X0

X X′

X1

f ′0

f ′1

f0

f1

k

.

Universal constructions and isos Coproducts are unique up to isomorphism in the

following sense: if f0, f1 and f ′0, f
′
1 are both coproducts then the k shown above is an iso.

Conversely, if k is an iso and f0, f1 is a coproduct then f ′0, f
′
1 is too.

This robustness with respect to isos is not accidental and is not limited to coproducts.

In general, universal constructions, like coproducts, pushouts (see below), and relative

pushouts (see Definition 2.4) are unique up to isomorphism. Moreover, if one replaces any

object Y in such a construction with, say, Y ′ for which there is an iso k : Y Y ′ and one

composes k with all the arrows in the construction whose codomain is Y and composes k−1

with all the arrows whose domain is Y , then the diagram is still a universal construction.

For example, we have the following property about IPOs (Definition 2.5):

Y
f0

f1 g0

g1

is an IPO iff
Y ′

kf0

f1 g0k−1

g1

is too.

133

Pushouts Give two arrows f0, f1 with common domain, a pushout is a pair g0, g1 such

that g0f0 = g1f1 and for any other pair g′0, g
′
1 satisfying g′0f0 = g′1f1, there exists a unique

k such that kgi = g′i for i = 0, 1:

f0

f1 g0

g′0
g1

g′1

kk

Slice and coslice categories Given a category C and an object of X, the slice category

C/X is defined as follows. An object of C/X is an arrow in C with codomain X; an arrow

h : f g of C/X is an arrow of C such that gh = f :

X

f

h

g

Composition in C/X is just given by composition in C. Finally, idf in C/X is idCod f in

C.

The coslice category X/C is the dual notion: an object in X/C is an an arrow in C

with domain X; an arrow h : f g of X/C is an arrow of C such that hf = g:

X

f g

h

Composition in X/C is just given by composition in C. Finally, idf in X/C is idDom f in

C.

Strict monoidal categories A strict monoidal category C has a tensor ⊗, which is a

binary operation on objects and arrows, and a unit object U . On objects, the tensor is

associative and has identity U . On arrows, the tensor satisfies the following inference rule:

f0 : X0 Y0 f1 : X1 Y1

f0 ⊗ f1 : X0 ⊗X1 Y0 ⊗ Y1

and is associative and with identity idU . Furthermore, compositions and tensors can be

rearranged as follows,

(g0 ⊗ g1)(f0 ⊗ f1) = (g0f0)⊗ (g1f1)

provided that the arrows match up appropriately: fi : Xi Yi and gi : Yi Zi for

i = 0, 1.

Appendix A. Review of category theory 134

Functors A functor F : C0 C1 maps objects and arrows of category C0 to those of

C1, such that the following properties hold:

f : X Y

F (f) : F (X) F (Y)
F (gf) = F (g)F (f) F (idX) = idF (X)

We say that F is faithful if it is injective on arrows; F is full if it maps surjectively the

homeset C0(X,Y) onto C1(F (X), F (Y)) for all objects X,Y in C0.

Appendix B

Labelled transitions via retractions

As promised in Section 3.4, this appendix presents a new definition of labelled transition,

which is denoted by ·
r . This definition has two properties: (i) it recovers the reaction re-

lation, i.e. id = ; (ii) it does not involve case analysis (unlike ·
c , see Definition 3.10).

The key idea is to make use of retractions, otherwise knows as split monos (see p. 22

in [BW01]). We say that an arrow f̄ is a retraction if it has a left inverse, i.e. if there

exists an arrow f such that f f̄ = id.

The development follows closely that of Section 3.4: I present the definition of ·
r ;

show how to recover the reaction relation; prove cutting and pasting results; prove that

the induced strong bisimulation ∼r is a congruence; and, finally, compare ∼r to ∼c.

These results (specifically Lemma B.4 and Proposition B.6) assume an added property

of functorial reactive systems not included in Definition 3.1: If F is a functorial reactive

system then F creates left inverses, i.e. if id = C1F(C0) then there exists C1 ∈ Ĉ such

that id = C1C0 and F(C1) = C1. This added property holds for all functors constructed

in the form shown in Chapter 4, as proved in Theorem 4.14. As a result, the functor

F : Ĉ-Ixt C-Ixt (Chapter 5) creates left inverses, so the results presented here are

applicable to graph contexts.

¨
§

¥
¦

a

l R̄F

D B.1

Definition B.1 (labelled transition by retractions; cf.

Definition 3.10) a F
r a′ iff there exists a, l, F, D, R, R̄ ∈ Ĉ and

r ∈ C such that Figure B.1 is an IPO in Ĉ and

a′ = F(RD)r F(D) ∈ D (F(l), r) ∈ Reacts RR̄ = id

F(a) = a F(F) = F . ¥

It follows immediately from this definition that id
r ⊆ . The interesting question is the

converse:

Proposition B.2 (recovery of the reaction relation for ·
r) Suppose F : Ĉ C

is a functorial reactive system and has all redex-RPOs. Then a a′ implies a id
r a′.

135

Appendix B. Labelled transitions via retractions 136

¨

§

¥

¦

a

l id

D

R̄

D′ R

B.2

a

l R̄ id

D′ B.3

Proof By Proposition 3.2, there exist a, l, D ∈ Ĉ and

r ∈ C such that a = Dl and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a .

Thus the outer square in Figure B.2 commutes. Since F has all redex-RPOs, we can

construct R̄, R, D′ forming an RPO as shown in Figure B.2. Thus a′ = F(D)r = F(RD′)r

and RR̄ = id. Moreover, by Proposition 2.7, the square in Figure B.3 is an IPO. Hence

a id
r a′ as desired. ¥

¨

§

¥

¦
C

F′ R̄F

C′ B.4

Lemma B.3 (portable IPO cutting; cf. Lemma 3.5) Suppose

F : Ĉ C is a functorial reactive system and has all redex-RPOs. If

Ca F
r a′ then there exist a′′ ∈ C, R ∈ Ĉ and an IPO square shown in

Figure B.4 such that a
F(F′)

r a′′ and

a′ = F(RC′)a′′ F(C′) ∈ D RR̄ = id

F(C) = C F(F) = F .

¨

§

¥

¦

a

l

C

F′
R̄F

D

D′ C′

B.5

Proof By the definition of F
r and the hypothesis that F creates

compositions, there exist a, C, l, F, R, R̄ ∈ Ĉ and r ∈ C such that the

big rectangle in Figure B.5 is an IPO and

a′ = F(RD)r F(D) ∈ D (F(l), r) ∈ Reacts RR̄ = id

F(a) = a F(C) = C F(F) = F .

Because F has all redex-RPOs, there exist F′, D′, C′ forming an RPO in

Ĉ, as in Figure B.5. Then F(C′) ∈ D since F(C′)F(D′) = F(D) ∈ D. By Proposition 2.7,

the small left-hand square of Figure B.5 is an IPO. Because F has all redex-RPOs,

Proposition 2.9 implies that the small right-hand square is an IPO too. By definition,

a
F(F′)

r a′′ and a′ = F(RC′)a′′, where a′′ =̂ F(D′)r, as desired. ¥

¨

§

¥

¦
C

F′ R̄F

C′ B.6

Lemma B.4 (portable IPO pasting; cf. Lemma 3.7) Suppose

F : Ĉ C is a functorial reactive system and has all redex-RPOs. If

a
F(F′)

r a′, Figure B.6 is an IPO with F(C′) ∈ D, and there exists R such

RR̄ = id then F(C)a
F(F)

r F(RC′)a′. ¨

§

¥

¦
a

l T̄0F
′
0

D B.7

C0

F′0 R̄0F0

C′0 B.8

Proof Since a
F(F′)

r a′, there exist a, l, F′0, D, T0, T̄0 ∈ Ĉ

and r ∈ C such that Figure B.7 is an IPO in Ĉ and

a′ = F(T0D)r F(D) ∈ D (F(l), r) ∈ Reacts

T0T̄0 = id F(a) = a F(F′0) = F(F
′) .

137

Since F allows IPO sliding and creates compositions, there exist C0, R̄0, F0, C
′
0 ∈ Ĉ such

that Figure B.8 is an IPO and

F(C0) = F(C) F(R̄0) = F(R̄) F(F0) = F(F) F(C′0) = F(C
′) .

Since id = F(id) = F(R)F(R̄) = F(R)F(R̄0) and F creates left inverses, there exists R0

such that id = R0R̄0 and F(R0) = F(R). ¨

§

¥

¦
C′0

T̄0 id

C′0T0 B.9

a

l

C0

R̄0F0K0

D

K1

C′0T0

K

B.10

a

l

C0

K0

K1
B.11

Pasting Figure B.8 vertically to

the commuting square shown in

Figure B.9 and then pasting hori-

zontally the composite to Figure B.7

results in the outer rectangle shown in Figure B.10. Because F has all redex-RPOs, there

exist K0, K1, K forming an RPO inside, as shown. By Proposition 2.7, the rectangle in

Figure B.11 is an IPO. ¨

§

¥

¦

a

l C′0F
′
0

C′0T0D

T̄0F
′
0

D

C′0T0

B.12

a

l C′0F
′
0

C′0T0D

T̄0F
′
0

D

C′0T0

K

K0C0

K1

JJ

B.13

Since F has all redex-RPOs

and Figure B.7 is an IPO,

Proposition 2.8 implies that

Figure B.12 is an RPO. But

K0C0, K1, K is a candidate, so

there exists a unique J as shown

in Figure B.13. Now

F(K)F(J)F(T̄0) = F(KJT̄0) =Figure B.13 F(C′0) = F(C′) ∈ D

so F(J) ∈ D. ¨

§

¥

¦

C0

F′0 R̄0F0

C′0

K0

JT̄0

K

K̄̄K

B.14

a

l

C0

K̄R̄0F0

JD B.15

Thus, K0, JT̄0, K is a candidate for

Figure B.7, an IPO, as shown in Figure B.14.

Thus there exists a unique K̄ such that

KK̄ = id, K̄R̄0F0 = K0, and K̄C′0 = JT̄0. We re-

draw Figure B.11, an IPO, with equivalent arrows in Figure B.15. Recall that F(J) ∈ D,

so F(JD) ∈ D. Thus:

F(C)a = F(C0)a
F(F0)

r F(R0KJD)r =Figure B.13 F(RC′)F(T0D)r = F(RC′)a′ ,

so F(C)a
F(F)

r F(RC′)a′, as desired. ¥

Theorem B.5 (congruence for ∼r; cf. Theorem 3.12) Let F : Ĉ C be a functorial

reactive system which has all redex-RPOs. Then ∼r is a congruence, i.e. a ∼r b implies

Ca ∼r Cb for all C ∈ C of the required domain.

Proof By symmetry, it is sufficient to show that the following relation is a strong sim-

ulation:

S =̂ {(Ca,Cb) / a ∼r b and C ∈ C} .

Suppose that a ∼r b and C ∈ C, and thus (Ca,Cb) ∈ S. Suppose Ca F
r a′.

Appendix B. Labelled transitions via retractions 138

¨

§

¥

¦
C

F′ R̄F

C′ B.16

By Lemma B.3, there exist a′′ ∈ C, R ∈ Ĉ and an IPO square shown

in Figure B.16 such that a
F(F′)

r a′′ and

a′ = F(RC′)a′′ RR̄ = id F(C′) ∈ D

F(C) = C F(F) = F .

Since a ∼r b, there exists b′′ such that b
F(F′)

r b′′ and a′′ ∼r b
′′. By Lemma B.4, Cb F

r

F(RC′)b′′. Hence (F(RC′)a′′,F(RC′)b′′) ∈ S since a′′ ∼r b
′′, as desired. ¥

Proposition B.6 (∼c ⊆ ∼r; cf. Proposition 3.13) Let F : Ĉ C be a functorial

reactive system which has all redex-RPOs. Then ∼c ⊆ ∼r.

Proof We show that∼c is a strong bisimulation w.r.t. the labelled transition relation ·
r .

By symmetry, it is sufficient to shown that ∼c is a strong simulation over ·
r . Consider

any a, b for which a ∼c b. Suppose a F
r a′. By definition, there exists F, R, R̄ ∈ Ĉ and

a′′ ∈ C such that a
F(R̄F)

c a′′ and

a′ = F(R)a′′ RR̄ = id F(F) = F .

Since a ∼c b, there exists b′′ such that b
F(R̄F)

c b′′ and a′′ ∼c b
′′. We now distinguish two

cases:

case F(R̄F) is an iso: In this case, F(R̄F)b b′′. Since F(R)F(R̄) = id ∈ D, we have

that F(R) ∈ D, thus F(F)b F(R)b′′. Since F creates isos, R̄F is an iso in Ĉ, so

has an inverse K. Thus KR̄ is an inverse for F, so F is an iso, so F(F) = F is an iso.

Thus b F
c F(R)b′′. Since ∼c is a congruence, a′ = F(R)a′′ ∼c F(R)b

′′, as desired.¨
§

¥
¦

b

l R̄0F0

D B.17

case F(R̄F) is not an iso: In this case, b
F(R̄F)

b′′. Since F creates

compositions, there exist b, l, F0, R̄0, D ∈ Ĉ and r ∈ C such that

Figure B.17 is an IPO in Ĉ and

b′′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(b) = b F(F0) = F = F(F) F(R̄0) = F(R̄) .

Since id = F(id) = F(R)F(R̄) = F(R)F(R̄0) and F creates left inverses, there exists

R0 such that id = R0R̄0 and F(R0) = F(R). Thus b F
r F(R0D)r = F(R)b

′′. Since ∼c

is a congruence, a′ = F(R)a′′ ∼c F(R)b
′′, as desired. ¥

Bibliography

Curly braces enclose pointers back to the pages in this dissertation that cite the work.

[AG97] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the spi

calculus. In Proc. 4th ACM Conf. on Computer and Communications Security,

Zürich, pages 36–47. ACM Press, 1997. {6}

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North

Holland, revised edition, 1984. {7, 8}

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Proc. 17th Annual

Symposium of Principles of Programming Languages, pages 81–94. ACM Press,

1990. {6}

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96(1):217–248, 1992. {6}

[BF00] M. Bunge and M. P. Fiore. Unique factorisation lifting functors and categories

of linearly-controlled processes. Mathematical Structures in Computer Science,

10(2):137–163, 2000. {69}

[Blo93] B. Bloom. Structural operational semantics for weak bisimulations. Technical Re-

port TR-93-1373, Department of Computer Science, Cornell University, August

1993. {14, 45, 129}

[BW01] M. Barr and C. F. Wells. Toposes, triples and theories. Version 1.1. Available

from: http://www.cwru.edu/artsci/math/wells/pub/ttt.html, 2001. {131, 135}

[CG98] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software

Science and Computation Structure, First International Conference, FoSSaCS

’98, Held as Part of the European Joint Conferences on the Theory and Practice of

Software, ETAPS ’98, Lisbon, Portugal, March 28 – April 4, 1998, Proceedings,

volume 1378 of Lecture Notes in Computer Science. Springer-Verlag, 1998. {7}

139

Bibliography 140

[CLM00] G. L. Cattani, J. J. Leifer, and R. Milner. Contexts and embeddings for closed

shallow action graphs. Technical Report 496, Computer Laboratory, University

of Cambridge, July 2000. {16, 74, 87, 88, 89, 93, 94, 95, 96}

[CM91] A. Corradini and U. Montanari. An algebra of graphs and graph rewriting. In 4th

Biennial Conference on Category Theory and Computer Science, Proceedings, vol-

ume 530 of Lecture Notes in Computer Science, pages 236–260. Springer-Verlag,

1991. {15}

[Con72] F. Conduché. Au sujet de l’existence d’adjoints à droite aux foncteurs “image

réciproque” dans la catégorie des catégories. Comptes rendus de l’Académie des

sciences A, pages 891–894, 1972. {69}

[CS00] G. L. Cattani and P. Sewell. Models for name-passing processes: interleaving and

causal. In 15th Annual IEEE Symposium on Logic in Computer Science, 26–29

June 2000, Santa Barbara, California, USA, pages 322–332. IEEE Press, 2000.

{126}

[DH84] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theo-

retical Computer Science, 34:83–133, 1984. {14}

[Ehr79] H. Ehrig. Introduction to the algebraic theory of graph grammar. In Proc. first

international Workshop on Graph Grammars and their application to Computer

Science and Biology, volume 73 of Lecture Notes in Computer Science, pages

1–69. Springer-Verlag, 1979. {15}

[FF86] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine and the

λ-calculus. In M. Wirsing, editor, Formal Description of Programming Concepts

III, pages 193–217. North Holland, 1986. {7, 21}

[FG98] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous cal-

culi. In Automata, Languages and Programming, 25th International Colloquium,

ICALP ’98, Aalborg, Denmark, July 13–17, 1998, Proceedings, volume 1443 of

Lecture Notes in Computer Science, pages 844–855. Springer-Verlag, 1998. {14}

[FGL+96] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of

mobile agents. In CONCUR ’96, Concurrency Theory, 7th International Confer-

ence, Pisa, Italy, August 26–29, 1996, Proceedings, volume 1119 of Lecture Notes

in Computer Science, pages 406–421. Springer-Verlag, 1996. {7}

[Fou98] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.

PhD thesis, École Polytechnique, November 1998. {14}

Bibliography 141

[GP99] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving

binders. In 14th Annual Symposium on Logic in Computer Science, 2–5 July,

1999, Trento, Italy, pages 214–224. IEEE Press, 1999. {126}

[GV92] J. F. Groote and F. W. Vaandrager. Structural operational semantics and bisim-

ulation as a congruence. Information and Computation, 100(2):202–260, 1992.

{14, 129}

[Has99] M. Hasegawa. Models of sharing graphs: a categorical semantics of let and letrec.

BCS Distinguished Dissertation Series. Springer-Verlag, 1999. {76}

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666–677, August 1978. {4}

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. {4,

47, 50}

[Hon00] K. Honda. Elementary structures for process theory (1): sets with renam-

ing. Mathematical Structures in Computer Science, 10(5):617–663, October 2000.

{64}

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communication.

In ECOOP ’91: European Conference on Object-Oriented Programming, Geneva,

Switzerland, July 15–19, 1991, Proceedings, volume 512, pages 133–147. Springer-

Verlag, 1991. {128}

[HY94a] K. Honda and N. Yoshida. Combinatory representation of mobile processes. In

POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, Portland, Oregon, January 17–21, 1994, pages 348–360. ACM

Press, 1994. {126}

[HY94b] K. Honda and N. Yoshida. Replication in concurrent combinators. In Theoreti-

cal Aspects of Computer Software, International Conference TACS ’94, Sendai,

Japan, April 19–22, 1994, Proceedings, volume 789, pages 786–805. Springer-

Verlag, 1994. {128}

[HY95] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical

Computer Science, 152(2):437–486, November 1995. {14}

[Joh99] P. Johnstone. A note on discrete Conduché fibrations. Theory and Application

of Categories, 5(1):1–11, 1999. {69}

[JR99] A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local names. In

14th Annual Symposium on Logic in Computer Science, 2–5 July, 1999, Trento,

Italy, pages 56–66. IEEE Press, 1999. {15}

Bibliography 142

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical

Proceedings of the Cambridge Philosophical Society, 119(3):425–446, 1996. {75}

[Kön99] B. König. Generating type systems for process graphs. In CONCUR ’99: Con-

currency Theory, 10th International Conference, Eindhoven, The Netherlands,

August 24–27, 1999, Proceedings, volume 1664, pages 352–367. Springer-Verlag,

1999. {15}

[Laf90] Y. Lafont. Interaction nets. In Conference Record of the Seventeenth Annual ACM

Symposium on Principles of Programming Languages, San Francisco, California,

January 1990, pages 95–108. ACM Press, 1990. {76}

[Lei01] J. J. Leifer. A category of action graphs and reflexive embeddings. Technical

report, Computer Laboratory, University of Cambridge, 2001. To appear. {129}

[Lév78] J.-J. Lévy. Réductions correctes et optimales dans le lambda calcul. PhD thesis,

Université Paris VII, 1978. {8}

[LM00a] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive sys-

tems. In C. Palamidessi, editor, CONCUR 2000 - Concurrency Theory, 11th

International Conference, University Park, PA, USA, August 22–25, 2000, Pro-

ceedings, volume 1877 of Lecture Notes in Computer Science, pages 243–258.

Springer-Verlag, 2000. {16}

[LM00b] J. J. Leifer and R. Milner. Shallow linear action graphs and their embeddings.

Technical Report 508, Computer Laboratory, University of Cambridge, November

2000. {81, 125, 129}

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithms for Con-

struction and Analysis of Systems, Second International Workshop, TACAS ’96,

Passau, Germany, March 27–29, 1996, Proceedings, volume 1055 of Lecture Notes

in Computer Science, pages 147–166. Springer-Verlag, 1996. {4, 50}

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

{131}

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer-Verlag, 1980. {4}

[Mil88] R. Milner. Communication and Concurrency. Prentice-Hall, 1988. {4, 34, 44,

45, 47}

[Mil90] R. Milner. Functions as processes. Technical Report RR-1154, INRIA, Sophia

Antipolis, February 1990. {6, 21}

Bibliography 143

[Mil92] R. Milner. Functions as processes. Mathematical Structures in Computer Science,

2(2):119–141, 1992. {41}

[Mil94] R. Milner. Action calculi V: reflexive molecular forms.

Third draft; with an appendix by O. Jensen. Available from:

ftp://ftp.cl.cam.ac.uk/users/rm135/ac5.ps.Z, 1994. {75}

[Mil96] R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996. {10,

74, 77, 124}

[Moo56] E. F. Moore. Gedanken-experiments on sequential machines. In C. E. Shannon

and J. McCarthy, editors, Automata Studies, pages 129–153. Princeton University

Press, 1956. {3}

[MPW89] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I

and II. Technical Report ECS-LFCS-89-85 and ECS-LFCS-89-86, Laboratory for

the Foundations of Computer Science, University of Edinburgh, 1989. {6}

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I

and II. Information and Computation, 100(1):1–77, September 1992. {6}

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In Automata, Languages and

Programming, 19th International Colloquium, ICALP ’92, Vienna, Austria, July

13–17, 1992, Proceedings, volume 623 of Lecture Notes in Computer Science.

Springer-Verlag, 1992. {14}

[MSS00] P. Mateus, A. Sernadas, and C. Sernadas. Precategories for combining proba-

bilistic automata. In M. Hofmann, G. Rosolini, and D. Pavlovic, editors, Proc.

CTCS ’99, volume 29 of Electronic Notes in Theoretical Computer Science. El-

sevier Science, 2000. {63}

[NP96] U. Nestmann and B. C. Pierce. Decoding choice encodings. In CONCUR ’96,

Concurrency Theory, 7th International Conference, Pisa, Italy, August 26–29,

1996, Proceedings, volume 1119 of Lecture Notes in Computer Science. Springer-

Verlag, 1996. {128}

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Duessen, editor,

Proc. 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages

167–183. Springer-Verlag, 1981. {5, 31}

[Pau98] L. C. Paulson. The inductive approach to verifying cryptographic protocols. J.

Computer Security, 6:85–128, 1998. {47}

[Plo75] G. D. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical Com-

puter Science, 1(2):125–159, December 1975. {21}

Bibliography 144

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI-FN-19, Department of Computer Science, University of Aarhus, 1981.

{4}

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical

Computer Science. Springer-Verlag, 1985. {4}

[Ros94] A. W. Roscoe. Model-checking CSP. In A. W. Roscoe, editor, A Classical Mind:

Essays in Honour of C. A. R. Hoare, pages 353–378. Prentice-Hall, 1994. {4,

50}

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

{3, 4, 48, 50}

[Sew98] P. Sewell. Global/local subtyping and capability inference for a distributed pi-

calculus. In Automata, Languages and Programming, 25th International Collo-

quium, ICALP ’98, Aalborg, Denmark, July 13–17, 1998, Proceedings, volume

1443 of Lecture Notes in Computer Science. Springer-Verlag, 1998. {7}

[Sew00] P. Sewell. Applied π — A brief tutorial. Technical Report 498, Computer Labo-

ratory, University of Cambridge, August 2000. {41}

[Sew01] P. Sewell. From rewrite rules to bisimulation congruences. Theoretical Computer

Science, 272(1–2), 2001. {10, 15, 21, 55, 60, 81, 124, 127}

[SV99] P. Sewell and J. Vitek. Secure compositions of insecure components. In Proc.

12th Computer Security Foundations Workshop. IEEE Press, June 1999. {7}

[SV00] P. Sewell and J. Vitek. Secure composition of untrusted code: wrappers and

causality types. In Proc. 13th Computer Security Foundations Workshop. IEEE

Press, July 2000. {47}

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001. {7}

[TFP99] D. Turi, M. P. Fiore, and G. D. Plotkin. Abstract syntax and variable binding. In

14th Annual Symposium on Logic in Computer Science, 2–5 July, 1999, Trento,

Italy, pages 193–202. IEEE Press, 1999. {126}

[TP97] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In 12th

Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June

29 – July 2, 1997, pages 280–291. IEEE Press, 1997. {14, 129}

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In D. M. Gabbay, S. Abram-

sky, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

volume 4, pages 1–148. Oxford University Press, 1995. {4}

	Declaration
	Abstract
	Acknowledgements
	Introduction
	Overview
	Historical background and motivation
	Contexts as labels
	Relative pushouts
	Other work
	Outline

	Operational congruences for reactive systems
	Formalisation of reactive systems
	Categorical basis for contextual labels
	Labelled transitions and congruence for strong bisimulation

	Further congruence results
	Introduction
	Functorial reactive systems
	Cutting and pasting portable IPO squares
	Strong bisimulation
	Weak bisimulation
	Traces preorder
	Failures preorder
	Multi-hole contexts

	Sliding IPO squares
	Introduction and motivation
	Properties of A
	Construction of C-hat
	Operations on C-hat
	Construction of C
	Construction of F

	Action graph contexts
	Introduction
	Action calculi reviewed
	Examples and a problem
	Closed shallow action graphs
	The well-supported precategory A-Ixt of arities and raw contexts
	Constructing a functorial reactive system

	RPOs for action graph contexts
	Introduction
	The category G-Inc of action graphs and inclusion embeddings
	Relative coproducts
	Existence of relative coproducts
	Construction of a candidate from a scaffold
	Construction of a mediating inclusion embedding
	Construction of a relative coproduct
	Existence of RPOs

	Expected properties of redexes
	Conclusions and future work
	Review of category theory
	Labelled transitions via retractions
	Bibliography

