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A framework is defined within which reactive systems can be studied formally. The

framework is based on s-categories, which are a new variety of categories within which

reactive systems can be set up in such a way that labelled transition systems can be

uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as

the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be

congruential. The theory rests on the notion of relative pushout, which was previously

introduced by the authors.

The framework is applied to a particular graphical model, known as link graphs, which

encompasses a variety of calculi for mobile distributed processes. The specific theory of link

graphs is developed. It is then applied to an established calculus, namely condition-event

Petri nets.

In particular, a labelled transition system is derived for condition-event nets, corresponding

to a natural notion of observable actions in Petri-net theory. The transition system yields a

congruential bisimilarity coinciding with one derived directly from the observable actions.

This yields a calibration of the general theory of reactive systems and link graphs against

known specific theories.

1. Introduction

1.1. Background

Process calculi have made progress in modelling interactive concurrent systems (Brookes

et al. 1984; Bergstra and Klop 1985; Hoare 1985; Milner 1980), systems with mobile

connectivity (Milner et al. 1992; Fournet and Gonthier 1996), and systems with mobile

locality (Berry and Boudol 1992; Cardelli and Gordon 2000). There is some agreement

amongst all these approaches, both in their basic notions and in their theories; perhaps the

strongest feature is a good understanding of behavioural specification and equivalence. At

the same time, the space of possible calculi is large, we lack a uniform development of their

theories, and, in particular, there is no settled way to combine the various kinds of mobility

that they model. As shown by Castellani’s comprehensive survey, Castellani (2001), widely

varying notions of locality have been explored, and this implies a similar variety in treating

mobility.
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Fig. 1. An example of a bigraph

There is, therefore, a dual challenge: first to find a larger common theoretical basis for

process calculi, and second to find a common treatment of mobility. The two challenges

may appear to be independent, and it would be simpler if they were, but it appears that

mobility is becoming essential to a huge range of applications, so the search for a common

theoretical basis should attend to mobility at the outset if it is not to risk irrelevancy.

The authors’ response (Leifer and Milner 2000; Leifer 2001) to the first aspect has

been to propose a uniform treatment of transition systems for process calculi, and to

erect upon it a uniform behavioural theory. In parallel, the response to the second

aspect (Milner 2001b; Jensen and Milner 2003) has been to propose and apply a

(topo)graphical process model, known as bigraphs, which not only unifies a variety of

treatments of mobility, but also underlies process calculi that are not obviously ‘mobile’.

In other words, it unifies mobility with other computational notions (such as scope and

control) that appear separate at first sight. A typical bigraph is shown in Figure 1; it

shows how the nesting of nodes (the places) is independent of the connectivity (the links)

among them. Further details are deferred to Section 3.1.

These twin proposals have been combined in applications to the π-calculus (Jensen

and Milner 2003; Jensen and Milner 2004), the ambient calculus (Jensen and Milner

2004; Jensen 2006) and Petri nets (Milner 2004a), yielding behavioural theory agreeing

well with those proposed independently. The theory developed so far is rather rich; it is

therefore appropriate to publish a paper presenting just those parts needed to support

one particular case study. The study of Petri nets (Milner 2004a) is a good choice, since it

requires just one of the two constituents of bigraphs: link graphs. The other constituent,

place graphs, is not needed since Petri nets involve no nested localities and no notion of

the scope of names.

In modelling process calculi, place graphs are useful for many purposes, including

sequential control (guarding), scoping of names, and replication. Application to the finite
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π-calculus was outlined in Jensen and Milner (2003), which showed there to be a fair

correspondence with the transitions and bisimilarity that were originally defined for the

calculus. This correspondence has recently been examined in greater detail for finite

CCS (Milner 2005), where agreement with the original bisimilarity is found to be exact.

In his forthcoming Ph.D. Dissertation (Jensen 2006), Jensen extends these treatments to

the full π-calculus and to mobile ambients.

Thus the present paper can serve both as an introduction to the theory and as a

test of its value to applications. We present notions independently wherever possible,

allowing the effect of different choices to be assessed. One choice we have made deserves

special mention; we have adopted an approach based on s-categories, which are a

well-behaved class of precategories. Treating bigraphs as the arrows in an s-category is

especially convenient for analysing the notion of occurrence of an entity in a bigraph.

In Section 5 we compare this with two alternative approaches: one using a category of

graph embeddings and the other a 2-category.

1.2. Synopsis

The rest of this paper is divided into three parts, followed by a concluding section on

related and future work.

Section 2 begins with an overview of the theoretical challenge, and then presents a

category-theoretic framework for deriving transition systems. The main structural topics

are the notion of s-category and the properties of relative pushouts (RPOs) and idem

pushouts (IPOs). Reactive systems are introduced by adding reaction rules to the s-

categories. Transition systems based on IPOs are then derived uniformly from these rules,

using RPOs. It is proved that, when enough RPOs exist, bisimilarity is a congruence.

Section 2 concludes with a study of how a reactive system may be equipped with different

transition systems, and how these may be related to one another.

Section 3 begins with an overview of the challenge from mobile applications, including a

summary of the bigraphical model of which link graphs are a constituent. It continues with

a mathematical formulation of link graphs, including a construction of RPOs and IPOs

for them. A central feature is the characterisation of the family of IPOs for any consistent

pair of link graphs. Link-graphical reactive systems (LRSs) are then defined as reactive

systems over link graphs. The theory of Section 2 is then applied to derive transition

systems for LRSs, for which a congruential bisimilarity is guaranteed. A particular class,

the simple LRSs, is shown to admit especially simple transition systems.

Section 4 begins with the concept of sorting disciplines for LRSs. A certain class of

sorting disciplines allows the transition theory of well-sorted LRSs to be transferred from

the unsorted ones, by pulling RPOs back along a forgetful functor. In particular, many-one

sorting is shown to enjoy this property; it also allows condition-event nets to be represented

accurately as an LRS (first reported in Milner (2004a)), for which the work of Section 3

yields a tractable transition system. It is then shown that the corresponding congruential

bisimilarity coincides with one that arises from a natural experimental equivalence defined

independently of link graphs.

The concluding section, Section 5, discusses related and future research.
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1.3. Correction

We should like to take this opportunity to correct an error in the paper ‘Axioms for

bigraphical structure’ (Milner 2004b). In Table 1 of the paper the following axiom was

mistakenly omitted and should be added at the end of the list of categorical axioms:

γI⊗J,K = (γI,K ⊗ idJ)(idI ⊗ γJ,K ) .

2. Reactive systems and transition systems

2.1. The challenge from process theory

In process calculi it is common to present the dynamics of processes by means of reactions

(typically known as rewriting rules) of the form a � a′, where a and a′ are agents. This

treatment is often accompanied by labelled transitions of the form a
�

� a′, where the

label � is drawn from some vocabulary expressing the possible interactions between an

agent and its environment. Typically, there is a distinguished label τ such that the labelled

transition relation τ
� coincides with the reaction relation � .

Labelled transitions express the interaction between a process and its environment.

They lead naturally to the definition of behavioural preorders, such as traces, failures and

bisimilarity, which often turn out to be congruences. But hitherto the labelled transitions

have been tailored individually for each calculus.

We therefore ask whether these labels can be derived uniformly from any given set of

reaction rules of the form r � r′, where the redex r is an agent that may change its

state to the reactum r′. A natural approach is to take the labels to be a certain class

of (environmental) contexts; if L is such a context, the transition a
L

� a′ implies that a

reaction can occur in L ◦a leading to a new state a′. In fact, we shall represent agents and

contexts as arrows in a category, or more generally a precategory, where the composition

L ◦a represents the insertion of agent a in context L. Moreover, we would like to be sure

that the behavioural relations, such as bisimilarity, that are determined by the transitions

are indeed congruential, that is, preserved by insertion into any surrounding environment.

But we do not want all contexts as labels; as Sewell (1998) points out, the behavioural

equivalences that result from this choice are unsatisfactory. The problem of finding a

satisfactory, and suitably minimal, set of labels, and to do so uniformly, remained an

open problem for many years. As a first step, Sewell was able to derive context-labelled

transitions uniformly for parametric term-rewriting systems with parallel composition and

blocking, and to show that bisimilarity is a congruence (Sewell 1998). His approach did

not handle reactive systems with ‘connectivity’, represented by the (potentially non-linear)

sharing of names that arises in many process calculi.

Recently, the current authors were able to define minimal labels in terms of the categor-

ical notion of relative pushout (RPO), and, moreover, to ensure that behavioural equival-

ence is a congruence for a wide class of reactive systems (Leifer and Milner 2000). These

results were extended and refined in the first author’s Ph.D. Dissertation (Leifer 2001),

and the theory was also applied to action graphs with rich connectivity in Cattani

et al. (2002). Meanwhile, the second author developed the bigraph model from action
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graphs (Milner 2001a; 2001b), with inspiration from the mobile ambients of Cardelli and

Gordon. The development was driven by the simplicity that comes from treating locality

and connectivity independently, and was also inspired by the development of symmetric

action graphs (that is, those with undirected edges) in Gardner (2000).

These applications have motivated the effort to formulate the RPO theory more

succinctly (Jensen and Milner 2004), and in a way that eases both the theory itself

and the characterisation of the transition systems to which it gives rise. This is the topic

of Section 2 of our paper. It turns out that these two tasks can be addressed well using a

variant of a category, which we call a supported precategory, or s-category.

A precategory is a category in which composition is not always defined. It is supported

if both of the following conditions hold: (a) each arrow f has a support |f|, a finite set,

and (b) the composition g ◦f is defined, for arrows of suitable domain and codomain,

if and only if |g| ∩ |f| = �. This structure makes s-categories remarkably well-behaved.

They inherit many notions from categories unchanged, and most work is unaffected by the

partiality of composition. They also admit direct treatment of the notion of occurrence (for

example, of a node in a graph), which in Section 3 we find essential to the characterisation

of behaviour.

In Section 2.2 we introduce our categorical framework. We then define RPOs and IPOs,

and derive their properties. This leads in Section 2.3 to reactive systems, and thence to

the derivation of transition systems based on IPOs. The central theorem, that bisimilarity

for these transition systems is a congruence provided enough RPOs exist, is then proved.

The remainder of the section deals with useful relationships between transition systems

in preparation for Section 3, where we need to refine them by varying their agents or

transitions, or both.

2.2. S-categories and relative pushouts

In this section and Section 2.3 we develop a mathematical framework for the static

and dynamic properties of mobile interactive systems. Though abstract, it is developed

with a view to underpinning the bigraphical model (Milner 2001b; Jensen and Milner

2003) and its applications. More specifically, to keep the paper well-focussed, the abstract

development is only taken as far as we need for link graphs, which are constituents of

bigraphs. These two sections are an adaptation and extension of work started by the

authors (Leifer and Milner 2000), then further developed by the first author in his PhD

Dissertation (Leifer 2001) and by the second author in Milner (2001b).

Sections 3 and 4 can be read independently of Section 2 provided the main results of

Section 2 are taken on trust and one is prepared to refer back to important definitions

from time to time.

The present section is concerned with the categorical framework and the important

concepts, especially relative pushouts, that will underlie the treatment of dynamics in

Section 2.3.

Notation. We shall always accent the name of a precategory, as in ´C. We use ‘ ◦ ’, ‘id’ and

‘⊗’ for composition, identity and tensor product. We use dom(f) and cod(f) to denote
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the domain I and codomain J of an arrow f : I → J , and we use ´C(I → J), or just I → J ,

to denote the set of arrows from I to J , which is called a homset.

We use IdS to denote the identity function on a set S , and �S to denote the empty

function from � to S . We shall use S � T for the union of sets S and T that are known

or assumed to be disjoint, and f � g for the union of functions whose domains are known

or assumed to be disjoint. This use of � on sets should not be confused with the disjoint

sum ‘+’, which disjoins sets before taking their union. We assume a fixed representation

of disjoint sums; for example, X + Y means ({0} × X) ∪ ({1} × Y ), and
∑

v∈V Pv means⋃
v∈V ({v} × Pv).

We write f � S for the restriction of a function f to the domain S . If R is a binary

relation, we write R � S for R ∩ S2; also, if ≡ is an equivalence, we define R≡ to be the

closure of R under ≡, that is, the relational composition ≡R≡ .

A natural number m is often interpreted as a finite ordinal m = {0, 1, . . . , m − 1}. We

often use i to range over m; when m = 2 we use ı for the complement 1 − i of i. We use �x

to denote a sequence {xi | i ∈ m}; when m = 2 this is an ordered pair.

Definition 2.1 (precategory, functor). A precategory ´C is defined in exactly the same way as

a category, except that the composition of arrows is not always defined. Composition with

the identities is always defined, and id ◦f = f = f ◦ id. In the equation h ◦ (g ◦f) = (h ◦g) ◦f,

the two sides are either equal or both undefined.

A subprecategory ´D of ´C is defined like a subcategory, with g ◦f defined in ´D exactly

when it is defined in ´C. A functor F : ´D → ´C between precategories is a total function

on objects and on arrows that preserves identities and composition, in the sense that if

g ◦f is defined in ´D, then F(g) ◦ F(f) = F(g ◦f) in ´C.

In general we shall use I, J, K, . . . to stand for objects and f, g, h, . . . for arrows. We

shall extend category-theoretic concepts to precategories without comment when they

are unambiguous. One concept, which we now extend explicitly, is that of a monoidal

category.

Definition 2.2 (tensor product, monoidal precategory, monoidal functor). A (strict, sym-

metric) monoidal precategory has a partial tensor product ⊗ on both objects and arrows.

It has a unit object ε, called the origin, such that I ⊗ ε = ε ⊗ I = I for all I . Given

I ⊗ J and J ⊗ I , it also has a symmetry isomorphism γI,J : I ⊗ J → J ⊗ I . The tensor and

symmetries satisfy the following equations when both sides exist:

(1) f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h and idε ⊗ f = f

(2) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦f0) ⊗ (g1 ◦g0)

(3) γI,ε = idI

(4) γJ,I ◦ γI,J = idI⊗J

(5) γI,K ◦ (f ⊗ g) = (g ⊗ f) ◦ γH,J (for f : H → I, g : J →K)

(6) γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K ) .

A monoidal functor is one that preserves tensor product and origin.

Note that the symmetric identity law f ⊗ idε = f is provable from (1), (3) and (5).

‘Strict’ means that associativity holds exactly, as stated, not merely up to isomorphism;
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‘symmetric’ refers to the symmetry isomorphisms satisfying equations (3)–(5). We shall

omit ‘strict’ and ‘symmetric’ from now on, as we shall always assume these properties.

Why do we wish to work in precategories? In the introduction we pointed out that the

dynamic theory of bigraphs will require the existence of relative pushouts (RPOs). This

means that we need to begin by developing the theory for concrete bigraphs (those in

which nodes have identity), and then we can transfer the results to abstract graphs by

the quotient functor that forgets this identity. Precategories allow a direct presentation of

concrete bigraphs, since we can stipulate that two bigraphs F and G may be composed

to form H = G ◦F only if their node sets are disjoint. We can think of this composition

as keeping track of nodes;† we can see in H exactly which nodes come from F and which

from G.

More generally, we are interested in monoidal precategories where the definedness of

composition and of tensor product depends on a support set associated with each arrow.

In bigraphs the support of an arrow will be its node set. In general we assume the

support to be drawn from some unspecified infinite set. We now give a general definition

of precategories ´C with support; we will continue to use this accented notation for them,

dropping the accent only when we have a category.

Definition 2.3 ((monoidal) s-category). We say that a precategory ´C is supported, or an

s-category, if it has:

— for each arrow f, a finite set |f| called its support, such that |idI | = �. The composition

g ◦f is defined iff |g| ∩ |f| = � and dom(g) = cod(f), so |g ◦f| = |g| � |f|.
— for any arrow f : I → J and any injective map ρ whose domain includes |f|, an arrow

ρ � f : I → J called a support translation of f such that:

(1) ρ � idI = idI

(2) ρ � (g ◦f) = ρ � g ◦ρ � f

(3) Id|f| � f = f

(4) (ρ1 ◦ρ0) � f = ρ1
� (ρ0

� f)

(5) ρ � f = (ρ� |f|) � f

(6) |ρ � f| = ρ(|f|) .
If ´C is monoidal as a precategory, it is a monoidal s-category provided the following

conditions hold: for f : H → I and g : J →K , their tensor product f ⊗ g is defined exactly

when H⊗J and I⊗K exist and |f|∩|g| = �, and then the product satisfies |f⊗g| = |f|�|g|
and

(7) ρ � (f ⊗ g) = ρ � f ⊗ ρ � g .

Each of these seven equations is required to hold only when both sides are defined.

† The first author’s development (Leifer 2001, Chapter 7) made use of a special category Track(´C) to keep

track of nodes in a precategory ´C. This allowed the theory of RPOs to be developed for categories rather

than for precategories. However, it can be developed more succinctly if we stay with the latter.
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Exercise. Deduce condition (1) from conditions (5) and (3). Prove that every isomorphism

has empty support. Show that in conditions (2) and (7) either both sides are defined or

both are undefined.

We now consider functors between s-categories.

Definition 2.4 (support equivalence, supported functor). Let Á be an s-category. Two

arrows f, g : I → J in Á are support-equivalent, written f � g, if ρ �f = g for some support

translation ρ. By Definition 2.3, this is an equivalence relation. If ´B is another s-category,

then we say a functor F : Á → ´B is supported if it preserves support equivalence, that is,

f � g implies F(f) � F(g).

When we no longer need to keep track of support we may use a quotient category (not

just s-category). To define such quotients, we need the following notion:†

Definition 2.5 (static congruence). Let ≡ be an equivalence defined on every homset of

an s-category ´C. We say ≡ is a static (monoidal ) congruence on ´C if it is preserved by

composition (and by tensor product): namely, if f ≡ f′ and g ≡ g′, then f ◦g ≡ f′ ◦g′

whenever the latter are defined (and likewise for tensor product).

As an example of a simple static congruence on link graphs, we may define f ≡ f′

to mean that f and f′ are identical when all K-nodes are discarded, for some particular

control K . (See Section 3.2 for the definitions of controls and link graphs.)

The most important example of a static congruence will be support equivalence (�),

but the following definition shows that any static congruence at least as coarse as support

equivalence will yield a well-defined quotient category.

Definition 2.6 (quotient categories). Let ´C be an s-category and ≡ be a static (monoidal)

congruence on ´C that includes support equivalence, that is, � ⊆ ≡. Then the quotient of

´C by ≡ is a category C
def
= ´C/≡ whose objects are the objects of ´C and whose arrows

are equivalence classes of arrows in ´C:

C(I, J)
def
= { [f]≡ | f ∈ ´C(I, J) } .

In C, identities and composition (and tensor product when ´C has it) are given by

idm
def
= [idm]≡

[f]≡ ◦ [g]≡
def
= [f ◦g]≡

[f]≡ ⊗ [g]≡
def
= [f ⊗ g]≡ .

Note that in the last two equations, the right-hand sides are only defined when f and g

have disjoint supports. However, this does not adversely affect composition and tensor

product in C: as the equivalence classes on the left-hand side are closed under support

equivalence, it is always possible to find candidates f and g whose supports are disjoint.

† We use the term static congruence to emphasise the fact that these congruences depend only on static

structure, in contrast with dynamic congruences such as bisimilarity, which depend on transitions.
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By assigning empty support to every arrow, we may also regard C as an s-category, so

that [·]≡ : ´C → C is a special supported functor called the ≡-quotient functor for ´C.

Note that the quotient does not affect objects; thus any tensor product on C may still

be partial on objects. But C is indeed a category; composition is always well-defined

because f � g implies f ≡ g, and so also is tensor product provided it is defined on the

domains and codomains.

We often abbreviate [·]� to [·]; we call it the support quotient functor. From the

definition, it is clear that a coarser quotient [·]≡ exists whenever ≡ is a congruence that

includes support equivalence. In Section 3 we shall define a coarser quotient functor by

this means.

We now turn to the notion of relative pushout (RPO), which will be of crucial

importance in defining labelled transitions in the following section.

Notation. In what follows we shall frequently use �f to denote a pair f0, f1 of arrows in a

precategory. If, for example, the two arrows share a domain H and have codomains I0, I1,

we write �f : H →�I .

Definition 2.7 (bound, consistent). If two arrows �f : H →�I share domain H , the pair

�g :�I →K share codomain K , and g0 ◦f0 = g1 ◦f1, then we say that �g is a bound for �f. If
�f has any bound, it is said to be consistent.

f0 f1 f0 f1

h0 h1

k0

k1

g0 h g1

h0 h1

g0 g1
h k

j

Definition 2.8 (relative pushout). In a precategory, let�g :�I →K be a bound for�f : H →�I .

A bound for �f relative to �g is a triple (�h, h) of arrows such that �h is a bound for �f and

h ◦hi = gi (i = 0, 1). We may call this triple a relative bound when �g is understood.

A relative pushout (RPO) for �f relative to �g is a relative bound (�h, h) such that for any

other relative bound (�k, k), there is a unique arrow j for which j ◦hi = ki (i = 0, 1) and

k ◦ j = h.

We say that a precategory has RPOs if, whenever �f has a bound, it also has an RPO

relative to that bound.

We shall often omit the word ‘relative’; for example we may call (�h, h) a bound (or

RPO) for �f to �g.

The more familiar notion, a pushout, is a bound�h for�f such that for any bound�g there

exists an h that makes the left-hand diagram commute. Thus a pushout is a least bound,

while an RPO provides a minimal bound relative to a given bound �g. In Section 3.2 we

find that RPOs exist for link graphs in cases where there is no pushout.
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Now suppose that we can create an RPO (�h, h) for �f to �g and ask what happens if we

try to iterate the construction. More precisely, is there an RPO for �f to �h? The answer

lies in the following important concept.

Definition 2.9 (idem pushout). In a precategory, if �f : H →�I is a pair of arrows with

common domain, then a pair �h : �I → J is an idem pushout (IPO) for �f if (�h, idJ) is an

RPO for �f to �h.

Then it turns out that the attempt to iterate the RPO construction will yield the same

bound (up to isomorphism): intuitively, the minimal bound for�f to any bound�g is reached

in just one step. This is a consequence of the first two parts of the following proposition,

which summarises the essential properties of RPOs and IPOs on which our work relies.

They are proved for categories in the first author’s dissertation (Leifer 2001) (see also

Leifer and Milner (2000)), and the proofs can be routinely adapted for precategories.†

Proposition 2.10 (properties of RPOs). In any precategory Á:

1 If an RPO for �f to �g exists, then it is unique up to isomorphism.

2 If (�h, h) is an RPO for �f to �g, then �h is an IPO for �f.

3 If�h is an IPO for �f, and an RPO exists for �f to h ◦h0, h ◦h1, then the triple (�h, h) is such

an RPO.

4 (IPO pasting) Suppose that the diagram

f0 f1

g0 g1

h0

f2

h1

commutes, and that f0, g0 has an RPO to the pair h1 ◦h0, f2 ◦g1. Then

— if the two squares are IPOs, so is the big rectangle;

— if the big rectangle and the left square are IPOs, so is the right square.

5 (IPO sliding) If Á is an s-category, then IPOs are preserved by support translation; that

is, if �g is an IPO for �f and ρ is any injective map whose domain includes the supports

of �f and �g, then ρ ��g is an IPO for ρ ��f.

We now consider a property of RPOs that may not be present in all precategories, but

will be enjoyed by link graphs. We know that the RPO status of a triple is preserved by

isomorphism at its mediating interface, that is, if (�h, h) is an RPO, then so is (i ◦�h, h ◦ j)
where i, j is an iso. But can RPO status be retained by keeping �h fixed and varying h? If

not we say that the RPO is rigid.

Definition 2.11 (rigid RPO). An RPO (�h, h) for�f to�g is rigid if whenever (�h, k) is another

RPO for �f to �g, then k = h.

† This adaptation works for the definition of precategory in Definition 2.1, which is satisfied by our s-categories.
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Exercise. (Not needed for what follows.) Prove that if �f has a rigid RPO relative to �g,

then all its RPOs relative to �g are rigid.

Show that not all RPOs are rigid, as follows. Work in a one-object category whose

arrows are strings over the alphabet {a, b, c, i} subject to the three equations ca = cb,

ic = c and ii = ε. The identity is ε, the empty string, and the composition s ◦ t of two

arrows is the concatenation st. Consider the following diagrams:

ε
c c

ba
c c

i
c

a b

c

c c

Prove that both the diagrams are RPOs, and hence that neither is rigid.

In Section 3.2 we shall show that every link graph RPO is rigid. This is useful as we

can then deduce from the following proposition that, in link graphs, a unique IPO is a

pushout.

Proposition 2.12 (unique IPOs are pushouts). Assume that whenever �f has a bound �g it

also has a rigid RPO relative to �g. Then, if �f has a unique IPO up to isomorphism, this

IPO is a pushout.

f0 f1

k0

k1

g0

h0

h1

hk
ι

g1

Proof. Let�k be an IPO for �f, and let�g be any bound. Under the assumptions, we must

find a unique mediator k such that k ◦ki = gi (i = 0, 1).

Take a rigid RPO (�h, h) for �f to �g. Then �h is an IPO by Proposition 2.10(2); hence by

assumption there is an isomorphism ι as shown such that ι ◦ki = hi (i = 0, 1). Then h ◦ ι
satisfies the required property of the mediator k.

Now let k be any such mediator, and let ι′ be the inverse of ι. Then (k ◦ ι′) ◦hi =

k ◦ ι′ ◦ ι ◦ki = k ◦ki = gi (i = 0, 1). It follows from Proposition 2.10(3) that (�h, k ◦ ι′) is an

RPO for �f to �g. But (�h, h) is rigid by assumption, hence k ◦ ι′ = h. So, finally, k = h ◦ ι,
which shows that the mediator h ◦ ι is unique, as required.

2.3. Reactive and transition systems

We now introduce a kind of dynamical system, of which link graphs will be an instance.

In previous work (Leifer and Milner 2000; Leifer 2001) a notion of reactive system was

defined. In the terms of the current paper this consists first of a monoidal s-category

whose arrows are called contexts. The objects I, J, . . . will be called interfaces. We adopt
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a change of notation from the preceding section: we shall now use upper case A,B, C, . . .

for arbitrary arrows. A composition C ◦A represents placing A in the context C .

Contexts C : ε→ I with the origin as domain are in a sense trivial, since in this case

we have C ◦A = C ⊗ A. We shall call a context ground if its domain is the origin, and

use lower case a, b, c, . . . for ground arrows. We write a : I for a : ε→ I , and Gr(I) for the

homset ε→ I .

The second ingredient of a reactive system in our earlier work (Leifer and Milner 2000;

Leifer 2001) was a set of ground pairs (r, r′) called reaction rules, and a subprecategory of

so-called active contexts. The reaction relation � between agents was taken to be the

smallest such that D ◦ r � D ◦ r′ for every active context D and reaction rule (r, r′).

For such systems we uniformly derived labelled transitions based on IPOs. Several

behavioural preorders and equivalences based on these transitions, including bisimilarity,

were shown to be congruences, subject to two conditions: first, that sufficient RPOs

exist in the s-category, and second, that decomposition preserves activity – that is, D ◦C
active implies both C and D active. In subsequent work, sufficient RPOs were found in

interesting cases (Leifer 2001; Cattani et al. 2002)).

The present section is essentially a reformulation of Leifer and Milner (2000) and

Leifer (2001). However, we omit the notion of ‘active’ context since it does not apply to

link graphs (where every context is active); we also simplify the treatment of functors

between reactive systems.

We are now ready to define reactive systems.

Definition 2.14 (reactive system). A reactive system (RS) is a monoidal s-category Á

equipped with a set ´R of reaction rules of the form (r : I, r′ : I), in which r is the redex

and r′ the reactum. We require ´R to be closed under support equivalence, that is, if (r, r′)

is a rule, then so is (s, s′) whenever r � s and r′ � s′.

The reaction relation � over ground arrows is the smallest such closed on both sides

under support equivalence, for which D ◦ r � D ◦ r′ whenever (r, r′) is a reaction rule, D

a context, and both compositions are defined.

We use Á(´R) to denote this RS, or just Á when ´R is understood. Closing the reaction

rules under support equivalence allows us in Definition 2.17 to divide Á by �, forming a

quotient RS.

To close ´R under support equivalence is a significant decision. Recall that we have

adopted the notion of support in concrete link graphs, or bigraphs, so that nodes have

identity; this enables us to construct RPOs (which would otherwise not exist, as shown in

Appendix C) and thence to derive transitions, as we shall see shortly. For this derivation

it was not necessary that node-identity should persist through a reaction. Our closure

condition prevents this persistent identity; we adopt it so that bigraphs capture the

standard behavioural equivalences in process calculi, where there is no notion of tracking

the identity of components through reaction.

When considering the closure condition, an alternative merits close attention. This

would replace the closure condition by a more modest one: that if (r, r′) is a reaction rule,

then so is (ρ � r, ρ � r′). It therefore respects the transmission of the identity of nodes from

r to r′. One important use of this is to admit logical analysis in the style of Caires and
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Cardelli (2001), using spatio-temporal assertions like ‘here there will always be a K-node’.

We leave this promising avenue of research to the future.

We extend the notion of functor F : Á → ´B to RSs, requiring it to preserve reaction.

Recall from Definition 2.4 that a supported functor is one that preserves support

equivalence.

Definition 2.15 (RS functor, sub-RS). A supported monoidal functor F : Á → ´B of

monoidal s-categories is an RS functor if it preserves reaction rules, that is, if (r, r′)

is a rule of Á, then (F(r),F(r′)) is a rule of ´B. If F is injective on objects and arrows,

we say Á is a sub-RS of ´B.

Proposition 2.16 (RS functors preserve reaction). An RS functor F : Á → ´B preserves

reaction, that is, if g � g′ in Á, then F(g) � F(g′) in ´B.

It is clear that RSs and their functors form a category. An important example of a

functor is the support quotient functor extended to RSs as follows.

Definition 2.17 (quotient RS). Let Á be a reactive system equipped with ´R. Then its

support quotient reactive system is based on the support quotient A = Á/�. Its reaction

rules are {([r], [r′]) | (r, r′) ∈ ´R}.

Proposition 2.18 (quotient reflects reaction). The support quotient functor [·] :
Á → A both preserves and reflects reaction, that is, [g] � [g′] in A iff g � g′ in Á.

The quotient functor takes a concrete RS based on an s-category to an abstract RS

based on a category. Later we will show how to obtain a behavioural congruence for an

arbitrary concrete RS Á with sufficient RPOs. The support quotient A of Á may not

possess RPOs, but, nevertheless, the quotient functor allows us to derive a behavioural

congruence for A also. This use of a concrete RS with RPOs to supply a behavioural

congruence for the corresponding abstract RS was first represented by the functorial

reactive systems of the first author’s Dissertation (Leifer 2001).

We now consider how to equip an RS with labelled transitions. Conventionally, a

labelled transition takes the form a
�

� a′, where a, a′ are agents and the label � comes

from some explicitly defined set. Here we shall study contextual transitions, in which the

labels are contexts into which agents may be inserted; these are in contrast with raw

transitions where the label set is defined by other means.

Traditionally (for example in CCS) transitions were raw, and defined independently

of, or even in preference to, reaction rules. But the latter are conceptually simpler, so

it is natural to take them, rather than transitions, as primitive. Given a reactive system,

we have previously (Leifer and Milner 2000) defined a labelled transition to be a triple

written a
L

� a′ for which there is a reaction rule (r, r′) and an ‘active’ context D such that

(L,D) is an idem pushout (IPO) for (a, r) and a′ = D ◦ r′.
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We shall adopt this, except that we do not always require an IPO or impose an

activeness condition:

Da
r

L

Definition 2.19 (transition). A (contextual) transition is a triple written a
L

� a′, where a

and a′ are ground, L is a context, and there exist a reaction rule (r, r′) and a context D

such that the diagram commutes and a′ � D ◦ r′. We say that the reaction rule and the

diagram underlie the transition. A transition is minimal if the underlying diagram is an

IPO.

For a fixed reactive system, many different sets of transitions may be considered,

according to the agents that we wish to observe, and the experiments, represented by

labels, that we wish to perform on them. This leads to the following definition.

Definition 2.20 (transition system). Given an RS Á, a (labelled) transition system L for

Á is a pair (IntL, TransL), where

— IntL is a set of interfaces called the agent interfaces; the agents of L are defined as

AgL
def
= {a : I | I ∈ IntL}.

— TransL is a set of transitions a L
� a′ such that a, a′ are agents of L; the labels of L

are those that appear in some transition of TransL.

The full (respectively, standard ) transition system for an RS consists of all interfaces,

together with all (respectively, all minimal) transitions. When the RS is understood, we

shall denote these two transition systems by ft and st, respectively.

We abbreviate ‘(labelled) transition system’ to TS. Another transition system M is a

sub-TS of L, written M ≺ L, if IntM ⊆ IntL and TransM ⊆ TransL.

Whether transitions are derived from reactions or defined in some other way, we may

use them to define behavioural equivalences and preorders. We are also interested in the

conditions under which these behavioural relations are congruential, that is, preserved by

context. Here we shall limit attention to strong bisimilarity. (Throughout the rest of this

paper we shall omit ‘strong’, since we do not define or use weak bisimilarity.)

Definition 2.21 (bisimilarity, congruence). Let Á be a reactive system equipped with a TS

L. A simulation on L is a binary relation S between agents with equal interface such

that if aSb and a
L

� a′ in L, then, whenever L ◦b is defined, there exists b′ such that

b
L

� b′ in L and a′Sb′. A bisimulation is a symmetric simulation. Then bisimilarity on

L, denoted by ∼L, is the largest bisimulation on L.

We say that bisimilarity on L is a congruence if

a ∼L b ⇒ C ◦a ∼L C ◦b

for all a, b : I and C : I → J , where I, J ∈ IntL.
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We shall often omit ‘on L’, and write ∼ for ∼L, when L is understood from the

context. This will usually be when L is st.

Note the slight departure from the usual definition of bisimulation in Park (1980); since

we are in an s-category we must require L ◦b to be defined. This is merely a technical

detail, provided that the TS respects support translation; for then, whenever L ◦a is

defined there will always exist L′ � L for which both L′ ◦a and L′ ◦b are defined. If we

are working in a category, in particular if it is a support quotient category, the side-

condition holds automatically and the definition of bisimilarity reduces to the standard

one.

We define bisimilarity only for ground link graphs. As a consequence, if bisimilarity is

a congruence, it is also preserved by tensor product; that is, if a ∼L b, then a⊗ c ∼L b⊗ c.

To see this, note that a ⊗ c = (id ⊗ c) ◦a.

Definition 2.22 (respect). Let ≡ be a static congruence (Definition 2.5) in an RS equipped

with L. Suppose that for every transition a
L

� a′ in L, if a ≡ b and L ≡ M for another

label M of L with M ◦b defined, then there exist an agent b′ and a transition b
M

� b′ in

L such that a′ ≡ b′. We then say that ≡ and L respect one another.

Note that ‘respect’ is mutual between an equivalence and a TS, so ‘L respects ≡’ means

the same as ‘≡ respects L’, and we shall use them interchangeably.

It is well known (Milner 1980) that if ≡ is included in (strong) bisimilarity, then to

establish bisimilarity it is enough to exhibit a bisimulation up to ≡; that is, a symmetric

relation S such that whenever aSb, each transition of a is matched by b in S≡. We now

deduce from Proposition 2.10(5) that support equivalence can be used in this way.

Proposition 2.23 (support translation of transitions). In a reactive system Á, the full and

standard transition systems respect support equivalence. Hence, in each case � is a

bisimulation, and a bisimulation up to � suffices to establish bisimilarity.

We may now prove our main congruence theorem for RSs, asserting that st ensures

bisimulation congruence. The reader can deduce the (more obvious!) result that ft ensures

the same; simply replace the word ‘IPO’ by ‘commuting square’ in the proof.

Theorem 2.24 (congruence of bisimilarity). In a reactive system that has RPOs and is

equipped with the standard transition system, bisimilarity of agents is a congruence; that

is, if a0 ∼ a1, then C ◦a0 ∼ C ◦a1.

(a) (b) (c) (d)

E0C ◦a0

a1 D1

L

M

r1

a0 D0

r0

L

M

a1 D1

r1

L
EE

M

r0

C

E1

C

E0
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Proof. The proof is along the same lines as the proof of Theorem 3.9 in Leifer (2001).

We establish the following as a bisimulation up to �:

S def
= {(C ◦a0, C ◦a1) | a0 ∼ a1} .

Suppose that a0 ∼ a1, and that C ◦a0
M

� b′
0 for some label M such that M ◦C ◦a1 is

defined. It is enough to find b′
1 such that C ◦a1

M
� b′

1 and (b′
0, b

′
1) ∈ S�.

There exist a reaction rule (r0, r
′
0) and a context E0 such that diagram (a) is an IPO;

moreover, b′
0 � E0 ◦ r′

0. Then, because consistent pairs have RPOs, there exists an RPO

for (a0, r0) relative to the given bound, and using Proposition 2.10(4) we can complete

diagram (b) so that each square is an IPO.

So the lower square of (b) underlies a transition a0
L

� a′
0, where a′

0 = D0 ◦ r′
0. Now

L ◦a1 is defined (since M ◦C ◦a1 is defined and M ◦C = E ◦L) and a0 ∼ a1, so there is a

transition a1
L

� a′
1 with a′

0 ∼ a′
1. But support translation of a′

1 preserves both of these

properties, so we may assume a rule (r1, r
′
1) and context D1 such that diagram (c) is an

IPO, a′
1 = D1 ◦ r′

1 and |E| ∩ |a′
1| = �.

Now replace the lower square of (b) by diagram (c), to get diagram (d), in which,

by Proposition 2.10(4), the large square is an IPO. Hence, setting E1
def
= E ◦D1, we have

C ◦a1
M

� b′
1 where b′

1
def
= E1 ◦ r′

1. Finally, (b′
0, b

′
1) ∈ S�, as required, because b′

0 � E ◦a′
0

and b′
1 � E ◦a′

1 with a′
0 ∼ a′

1.

We should mention that we are taking (strong) bisimilarity as a representative of many

preorders and equivalences; the first author has proved congruence theorems for several

others (Leifer 2001), and we expect that those results can be transferred to the present

setting.

Now, if an RS is equipped with a TS we wish to define transitions for various quotient

RSs. To this end, it is useful to extend a functor in the obvious way to sets and

tuples of objects and arrows. Thus, for example, on transitions we have F(a L
� a′) =

F(a)
F(L)

� F(a′). It is straightforward to check that this is a transition system in the

target of F.

Definition 2.25 (functors inducing and respecting transitions). Let F : Á → ´B be an RS

functor, and let Á be equipped with a TS L. We say that F(L) is the TS induced on ´B

by F. We say that F respects L if the static congruence it induces on Á respects L.

This definition always makes sense, but it will not always make bisimilarity a congruence

in ´B, even if it is one in Á. However, the next theorem shows that congruence of

bisimilarity is preserved when we quotient by any static congruence that includes support

equivalence. Recall that a full functor is surjective for each homset.

Theorem 2.26 (functors on bisimilarity). Let Á be equipped with a TS L. Let F be a full

RS functor from Á to ´B that is the identity on objects and respects L, and such that

a � b implies F(a) = F(b). Then the following hold for F(L):

1 a ∼L b in Á iff F(a) ∼F(L) F(b) in ´B.

2 If ∼L is a congruence in Á, then ∼F(L) is a congruence in ´B.
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Proof.

1 (⇒) We establish in ´B the bisimulation

R = {(F(a),F(b)) | a ∼L b} .

Let a ∼L b in Á, and let p = F(a), q = F(b) and p
M

� p′ in ´B, with M ◦q
defined. Then, by the definition of the induced TS, we can find L, a0 and a′

0 such

that M = F(L), p = F(a0) and p′ = F(a′
0), and a0

L
� a′

0 in Á. Moreover, since

F equates support-equivalent arrows, we may assume that L is chosen such that

L ◦b and L ◦a are defined. Since F respects L, there exists a′ such that a L
� a′

and F(a′) = F(a′
0) = p′. So for some b′ we have b

L
� b′ with a′ ∼L b′. It follows

that q M
� q′ in ´B, where q′ = F(b′) and (p′, q′) ∈ R, so we are done.

(⇐) We establish in Á the bisimulation

S = {(a, b) | F(a) ∼F(L) F(b)} .

Let F(a) ∼F(L) F(b) in ´B, and let p = F(a), q = F(b) where a
L

� a′ in Á

with L ◦b defined. Then p
M

� p′ in ´B, where M = F(L) and p′ = F(a′). Since

L ◦b is defined, so is M ◦q. So for some q′ we have q
M

� q′ with p′ ∼F(L) q
′.

This transition must arise from a transition b1
L1 � b′

1 in Á, where q = F(b1),

M = F(L1) and q′ = F(b′
1). But then b1 ≡ b and L1 ≡ L, where ≡ is the

equivalence induced by F. We also have L ◦b defined, and L respects ≡, so we

can find b′ for which b
L

� b′ and b′
1 ≡ b′. But we also have (a′, b′) ∈ S, so we

are done.

2 Assume that ∼L is a congruence. In ´B, let p ∼F(L) q and G be a context such that G ◦p
and G ◦q are defined and are agents with respect to F(L). Then, since F is full, there

exist a, b, C in Á with p = F(a), q = F(b) and G = F(C). Moreover, since F equates

support-equivalent arrows, these may be chosen such that C ◦a and C ◦b are defined.

From 1-(⇐) we have a ∼L b, hence, by assumption, C ◦a ∼L C ◦b. Applying the functor

F, we have from 1-(⇒) that G ◦p ∼F(L) G ◦q in ´B, as required.

In a later section we shall set up link-graphical reactive systems as RSs. Then, using

the theorems we have just proved, or close analogues of them, we shall derive TS and

deduce behavioural congruences for them.

We now turn to a question that arises strongly in applications. Our standard TS,

containing only the minimal transitions, is of course much smaller than the full TS. But

it turns out that in particular cases we can reduce the standard TS still further without

affecting bisimilarity. We introduce here the basic concepts to make this idea precise, since

they do not depend on the domain of application of our theory.

Definition 2.27 (relative bisimulation, adequacy). We assume we are given a TS L, with

a sub-TS M. A relative bisimulation for M on L is a symmetric relation S such that

whenever aSb, we have that for every transition a
L

� a′ in M, with L ◦b defined, there

exists b′ such that b
L

� b′ in L and a′Sb′. We define relative bisimilarity for M on L,

denoted by ∼M
L , to be the largest relative bisimulation for M on L.
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We say M is adequate (for L) if ∼M
L coincides with ∼L on the agents of M, and write

this as ∼M
L = ∼L � IntM.

(We have not seen this notion of relative bisimulation anywhere else in the literature.)

When L is understood we may omit ‘on L’; equally we may write ∼M for ∼M
L . Note

that, for a ∼M
L b, we require b only to match the transitions of a that lie in M, and b’s

matching transition need not lie in M. This means that relative bisimilarity is in general

non-transitive, so it is not in itself a behavioural equivalence.

Relative bisimilarity is valuable when M is adequate for L, for then the proof technique

of relative bisimulation can lighten the task of checking a large class of transitions. Indeed

fewer labels may occur in M-transitions than in L-transitions, so we only need consider

transitions involving this smaller set of labels.

An important example of adequacy arises from the intuition that the transitions that

really matter are those where the agent ‘contributes’ to the underlying reaction, that is, a

supplies a ‘part’ of the redex r, leaving the label L to supply the rest. We can make this

precise in terms of support: we are interested in transitions a whose underlying redex r is

such that |a| ∩ |r| �= �. We call such transitions engaged.

Intuitively, we may conjecture that the engaged transitions are adequate for the standard

TS. We shall later prove this for a particular class of link-graphical reactive systems, and,

indeed, Jensen and Milner (2003) shows how to extend the result to a class of bigraphical

reactive systems (BRSs) broad enough to include the π-calculus (Milner et al. 1992) and

the ambient calculus (Cardelli and Gordon 2000). It is pleasant when the conjecture holds,

for it means that the only significant labels L are such that |L| � |r| for some redex r.

We now look at a well-behaved kind of sub-TS whose transitions are determined by a

set of labels.

Definition 2.28 (definite, full sub-TS). Let M ≺ L. Then we say that M is definite for L
if, for some subset Ls of the labels of L, we have

TransM = {a L
� a′ ∈ TransL | L ∈ Ls}.

We say that M is full for L if Ls contains all labels L : I → J of L such that I ∈ IntM.

To clarify these ideas, suppose that a
L

� a′ is a transition of L. If M is definite for

L, the transition’s presence in M is determined entirely by L : I → J , that is, whether

L ∈ Ls . For this, it is clearly necessary that I ∈ IntM. If, furthermore, M is full for L, the

latter condition is also sufficient for the transition’s presence in M.

Thus, a definite sub-TS of L is obtained by cutting down the transitions, possibly leaving

the interfaces unchanged; on the other hand, a full sub-TS is obtained by reducing to a

smaller set of interfaces but keeping all transitions at those interfaces. We now show that

both definiteness and fullness yield congruence properties that will be useful in Section 4.2.

For a definite sub-TS (hence also for a full sub-TS) we immediately find that a relative

bisimilarity is an absolute one.

Proposition 2.29 (definite sub-TS). If M is definite for L, then ∼M = ∼M
L .
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Corollary 2.30 (adequate sub-congruence). Let M be definite and adequate for L. Then

1 The bisimilarities on M and L coincide at IntM, that is, ∼M = ∼L� IntM.

2 If ∼L is a congruence, then ∼M is a congruence; that is, for any C : I → J where

I, J ∈ IntM, if a ∼M b, then C ◦a ∼M C ◦b.

Finally, we discover that fullness implies not only definiteness, but also adequacy.

Proposition 2.31 (full sub-congruence). If M is full for L, then it is also adequate for L,

and hence the results of Corollary 2.30 hold.

Proof. It is enough to prove that ∼M = ∼L � IntM. For this, we show that ∼M is an

L-bisimulation and that ∼L � IntM is an M-bisimulation.

3. Link graphs and their dynamics

3.1. Introduction to link graphs

Bigraphical reactive systems (Milner 2001a; 2001b; 2001c; Jensen and Milner 2003; 2004)

are a graphical model of computation in which both locality and connectivity are

prominent. Recognising the increasingly topographical quality of global computing, they

take up the challenge of basing all distributed computation on a graphical structure. A

typical bigraph was shown in Figure 1. Such a graph is reconfigurable, and its nodes

(the ovals and circles) may represent a great variety of computational objects: a physical

location, an administrative region, a data constructor, a π-calculus input guard, an

ambient, a cryptographic key, a message, a replicator, and so on. We discussed several

applications of bigraphs in Section 1.

Bigraphs are a development of action calculi (Milner 1996). They use ideas from many

sources: the Chemical Abstract machine (Cham) of Berry and Boudol (1992), the π-

calculus of Milner et al. (1992), the interaction nets of Lafont (1990), the mobile ambients

of Cardelli and Gordon (2000), the explicit fusions of Gardner and Wischik (2000)

developed from the fusion calculus of Parrow and Victor (1998), and Nomadic Pict of

Wojciechowski and Sewell (1999). They also use the theoretical basis set out in Section 2.

The nesting of nodes in Figure 1 has many uses. A node may represent a location; it

may limit or even prevent activity within its boundary; it may represent the scope of a

link, that is, forbid certain links to cross its boundary; and it may define what should be

replicated or discarded by certain reactions. When none of these are needed, the theory

is simpler. But it has been set up (Jensen and Milner 2004) so that the placing (that is,

the nesting structure of nodes) is orthogonal to the linking of nodes; this means that the

theory of bigraphs consists of two almost independent theories, so it is easy to factor out

the theory of placing.

If the nesting structure of Figure 1 is forgotten, what remains is a link graph; a simple

one is shown in Figure 2. These graphs are almost exactly those of standard graph

theory, except that we enrich them with inner and outer interfaces to allow categorical

composition. Link graphs are reminiscent of several categories of linking, of which many

are classified in Bruni et al. (2002).
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Fig. 2. A link graph G : {x0, x1} →{y0, y1, y2}

The exact definition of link graphs has been a crucial part of the development of

bigraphs. In Appendix B the reader will find a discussion of the definition, including a

comparison with a previous version.

In Sections 3.2 and 3.3, respectively, we set out the structure and dynamic theory of

link graphs, in preparation for their application in Section 4.

3.2. Link graphs

In this section we define the notion of a link graph formally. In Section 3.3 we define a

link-graphical reactive system (LRS) and study its dynamic behaviour; then we apply the

results on RSs to derive labelled transitions and congruences for LRSs.

The family of link graphs in any LRS is determined by the kinds of nodes it has, and

these are specified as follows.

Definition 3.1 (pure signature). A pure signature K provides a set whose elements are

called controls. For each control K the signature also provides a finite ordinal ar(K), its

arity. We write K: n for a control K with arity n.

In refinements of the theory a signature may carry further information, such as a sort

for each arity member. These sorted signatures will be defined in Section 4,

In developing link graphs and LRSs we shall use two running examples with the

following signatures:

arithmetic nets Karith = {0 : 1, S : 2, + : 3, → : 2}
These controls represent zero, successor, plus and forwarding. The associated LRS

will evaluate arithmetic expressions. It resembles Lafont’s interaction nets, but allows

sharing of subevaluations.

condition-event nets Kpetri = {M : 1, U : 1, Ehk : h+k}
These controls represent a marked condition, an unmarked condition, and an event with

h preconditions and k postconditions. The associated LRS will represent the behaviour

of condition-event Petri nets. We shall derive for it a labelled transition system and

an observational congruence relation, and compare them with those already in the

literature.
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We now proceed to define link graphs over a signature K. Informally, every node in a

link graph has an associated control K : n, and has n ports; the graph consists essentially

of an arbitrary linking of these ports, together with an inner and outer interface that

provides access to some of these links. These interfaces will be the objects of an s-category

whose arrows are link graphs. To express the interface we presume an infinite set X of

names. Formally, we have the following definition.

Definition 3.2 (interface). An interface X,Y , . . . is a finite set of names drawn from X.

We refer to the empty interface as the origin.

Definition 3.3 (link graph). A concrete link graph

A = (V , E, ctrl , link ) : X →Y

has interfaces X and Y , called its inner and outer names, and disjoint finite sets V

of nodes and E of edges. It also has a control map (ctrl : V → K) and a link map

(link : X � P →E � Y ), where P
def
=

∑
v∈V ar(ctrl (v)) is the set of ports of A.

We say that the inner names X and ports P are the points of A, and that the edges E

and outer names Y are its links.

The term ‘concrete’ means that nodes and edges have identity. The support of a concrete

link graph consists of its nodes and edges; in terms of the definition, |A| = V � E. If ρ is

an injective map on |A|, the support translation ρ �A is obtained by replacing each v ∈ V

by ρ(v) and each e ∈ E by ρ(e) in every component of A.

Figure 2 shows a link graph G : X →Y , with X = {x0, x1} and Y = {y0, y1, y2}, over

the signature (K : 1, L : 2,M : 4). The figure shows both the nodes V = {v0, . . . , v3} and the

edges E = {e0, e1}; in future diagrams we omit these details unless we need them. Note

that the links corresponding to y0, y1 and y2 have three, one and three points, respectively;

one of these points is the inner name x0.

By working in an s-category of link graphs, with explicit node and edge identities, we

enable the construction of RPOs. Later we shall take the quotient by support equivalence

to obtain abstract link graphs, where RPOs do not exist in general. As is usual in graph

theory, we shall omit the adjectives ‘concrete’ and ‘abstract’ when they are unimportant

or implied by the context.

Note that the names in an interface are identified alphabetically, not positionally.

Alphabetical names are convenient for link graphs just as they are convenient in the

λ-calculus, and they also lead naturally to forms of parallel product that are familiar from

process calculi, as we shall see below.

We now look at the elementary link graphs. The first kind, the elementary wirings, are

shown in Figure 3; they have no nodes. The linker y/�x : {�x} →{y} has no edges, and

its link map sends the names �x (all distinct) to y. The case when �x is empty, written

y : � →{y}, is just a link graph with a single idle name (see Definition 3.8). The closure

/x : {x} → � has just one edge, to which it maps the inner name x. When we draw a

link graph we put all its nodes in a dotted rectangle, with the outer names above and the

inner names below, and links (usually curved) joining them.
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Fig. 3. Elementary wirings
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Fig. 4. Atoms for arithmetic nets

E21 M U

zyx xx

Fig. 5. Atoms for condition-event nets

The second kind of elementary link graph is the atom K�x : � →{�x}, where K : n is a

control and �x a vector of n distinct names. It consists of a single node with a link xi for

each port i ∈ n. Figures 4 and 5 show the node graphs 0x, and so on, for arithmetic nets,

and E21xyz, and so on, for condition-event nets. We draw nodes with a variety of shapes;

the shape has no formal purpose except to determine the ordering of ports.

All link graphs can be expressed in terms of atoms and elementary wirings with the

help of composition and tensor product, which we now define.

Definition 3.4 (s-category of link graphs). The s-category ´Lig(K) over a signature K has

name sets as objects and link graphs as arrows. The composition A1 ◦A0 : X0 →X2 of two

link graphs Ai = (Vi, Ei, ctrl i, link i) : Xi →Xi+1 (i = 0, 1) is defined when their supports

are disjoint; then their composite is

A1 ◦A0
def
= (V0 � V1, E0 � E1, ctrl , link ) : X0 →X2

where ctrl = ctrl0 � ctrl1 and link = (IdE0
� link 1) ◦ (link 0 � IdP1

).

The identity link graph at X is idX
def
= (�,�,�K, IdX) : X →X. A ground link graph

G : � →X is one whose inner interface is the origin.

To clarify composition, here is another way to define the link map of A1 ◦A0, considering

all possible arguments p ∈ X0 � P0 � P1:

link (p) =

⎧⎨⎩
link 0(p) if p ∈ X0 � P0 and link 0(p) ∈ E0

link 1(x) if p ∈ X0 � P0 and link 0(p) = x ∈ X1

link 1(p) if p ∈ P1 .

We often denote the link map of A simply by A.
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Fig. 6. A ground link graph and its decomposition

Note that the link map treats inner and outer names differently. Two inner names may

be linked – indeed, this is the purpose of the elementary linker – but each outer name

constitutes (the target of) a distinct link. The effect is that we do not allow ‘aliases’, that is,

synonymous outer names. A previous version of bigraphs (Milner 2001b) allowed these;

the effect was a much harder proof of the existence of RPOs, and then only under certain

conditions. The present version has wide application.

Figure 6 shows a ground link graph F in ´Lig(Karith). In such diagrams we often omit

the identities of nodes and edges. Also note that a link with several points is represented

by forking lines. The way the lines fork has no formal significance, but may be suggestive

of the intended application; for example, here it suggests that the ‘output’ of the successor

node is ‘input’ by two plus nodes.

The figure also shows how F may be composed from a smaller ground link graph G

and a context H . Later we shall see that G is the redex of a reaction rule for arithmetic;

it is in fact part of the primitive-recursive definition of summation in terms of zero

and successor. The sharing of the successor node is achieved by composition because its

‘output’ port belongs to a link of G that is open (see Definition 3.8).

Definition 3.5 (tensor product). The tensor product ⊗ in ´Lig(K) is defined as follows:

on objects, X ⊗ Y is simply the union X � Y of sets required to be disjoint. For two link

graphs Ai : Xi →Yi (i = 0, 1) we take A0 ⊗A1 : X0 ⊗X1 →Y0 ⊗Y1 to be defined when they

have disjoint support and the interface products are defined; its link map is the union of

those of A0 and A1.

The identity id� is clearly a unit for tensor product, which also obeys the axioms for a

monoidal s-category. We therefore obtain the following proposition.

Proposition 3.6 (link graphs are monoidal). The s-category ´Lig(K) is monoidal, with

origin ε = �.
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We say that a tensor product of linkers is a substitution, and use σ, τ to range over

substitutions. A tensor product of linkers and closures is called a wiring, and we use ω to

range over wirings.

We can conveniently blur the distinction between substitutions as functions and as link

graphs; their composition and tensor product means the same in either case. Substitutions

can be used to derive an important variant of the tensor product of link graphs that

merges outer names, that is, does not require them to be disjoint.

Definition 3.7 (parallel product). The parallel product | in ´Lig(K) is defined as follows:

on objects, X |Y def
= X ∪Y . On link graphs Ai : Xi →Yi (i = 0, 1) with disjoint support, we

define A0 |A1 : X0 ⊗X1 →Y0 |Y1 whenever X0 and X1 are disjoint, by taking the union of

link maps.

In fact, let σi : Yi →Zi (i = 0, 1) be bijective substitutions with disjoint codomains, and

let τ : Z0 ⊗ Z1 →Y0 ∪ Y1 be the union of their inverses. Then we have

A0 |A1 = τ ◦ ((σ0 ◦A0) ⊗ (σ1 ◦A1)) .

Parallel product has fewer algebraic properties than the tensor (categorically, it is not a

bifunctor), but will be important in modelling process calculi such as the π-calculus and

the ambient calculus.

We now define some basic properties.

Definition 3.8 (idle, open, closed, peer, lean). A link with no preimage under the link map

is idle. An outer name is an open link, and an edge is a closed link. A point (that is, an

inner name or port) is open if its link is open, otherwise it is closed. Two distinct points

are peers if they are in the same link. A link graph with no idle edges is lean.

An idle name is sometimes needed: for example, we may want to consider two link

graphs as members of the same homset, even if one of them uses a name x and the other

does not. On the other hand, an idle edge serves no useful purpose, but may be created

by composition. Sometimes we shall need to ensure that the property of leanness (no idle

edges) is preserved by certain constructions.

Isomorphisms, epimorphisms and monomorphisms are easy to characterise, and will

play an important part.

Proposition 3.9 (isos, epis and monos in link graphs). A link graph is an iso iff it is a

bijective substitution; it is epi iff no outer name is idle; it is mono iff no two inner names

are peers.

We need some more notation for what follows.

Notation. When considering a pair �A : W → �X of link graphs with common domain W ,

we shall adopt a convention for naming their nodes, ports and edges. We use Vi to denote

the node set of Ai (i = 0, 1), and V2 for V0 ∩ V1. We shall use vi, v
′
i , . . . to range over Vi

(i = 0, 1, 2). Similarly, we use pi ∈ Pi and ei ∈ Ei for ports and edges (i = 0, 1, 2). However,

we shall also sometimes use pi for points, that is, pi ∈ W �Pi, but the context will resolve

any ambiguity.
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Fig. 7. A bound �D for �A, and an RPO (�B, B) for �A to �D

We now turn to constructing RPOs for concrete link graphs. An informal intuition

will help in understanding the construction. Suppose that �D is a bound for �A and that

we wish to construct the RPO (�B, B). To form �B, we first truncate �D by removing its

outer names, and all nodes and edges not present in �A. (Of course, for this the identity of

nodes and edges is essential.) Then, for the outer names of �B, we create a name for each

link severed by the truncation, equating these new names only when required to ensure

that B0 ◦A0 = B1 ◦A1. As an example, consider Figure 7 (where controls are omitted for

clarity). The left-hand side of the diagram shows a bound �D for �A, and the right-hand

side shows an RPO (�B, B) for �A to �D. Note especially that A0 has an idle name z0; we

shall see later how this affects the family of IPOs for �A.

Formally, the construction of the RPO is as follows.

Construction 3.10 (RPOs in link graphs). An RPO (�B : �X → X̂, B : X̂ →Z) for a pair
�A : W → �X of link graphs relative to a bound �D : �X →Z will be built in three stages. We

use the notational conventions introduced above.

nodes and edges: If Vi are the nodes of Ai (i = 0, 1), then the nodes of Di are (Vı−V2)�V3

for some V3. (Recall that ı is the complement 1 − i of i.) Define the nodes of Bi and B to

be Vı−V2 (i = 0, 1) and V3, respectively. Edges are treated exactly analogously, and ports

inherit the analogous treatment from nodes.

interface: We construct the outer names X̂ of �B as follows. First, we define the names in

each Xi that must be mapped into X̂:

X ′
i

def
= {x ∈ Xi | Di(x) ∈ E3 � Z}.
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Next, on the disjoint sum X ′
0 + X ′

1, we define ∼= to be the smallest equivalence for which

(0, x0) ∼= (1, x1) whenever A0(p) = x0 and A1(p) = x1 for some point p ∈ W � P2. Then we

define X̂ up to isomorphism as follows:

X̂
def
= (X ′

0 + X ′
1)/

∼=.

For each x ∈ X ′
i , we use î, x to denote the name in X̂ corresponding to the ∼=-equivalence

class of (i, x).

links: We define B0 to simulate D0 as far as possible (B1 is similar):

For x ∈ X0 : B0(x)
def
=

{
0̂, x if x ∈ X ′

0

D0(x) if x /∈ X ′
0

For p ∈ P1−P2 : B0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally, we define B to simulate both D0 and D1:

For x̂ ∈ X̂: B(x̂)
def
= Di(x) where x ∈ Xi and î, x = x̂

For p ∈ P3: B(p)
def
= Di(p).

To prove that this definition is sound, we have to show that the right-hand sides in the

clauses defining link maps Bi and B are well-defined links in Bi and B respectively.

Lemma 3.11. The definition in Construction 3.10 is sound.

Proof. The second clause defining B0(x) is sound, since if x �∈ X ′
0, by definition,

D0(x) ∈ E1−E2, which is indeed the port set of B0. Similar reasoning applies to the second

clause defining B0(p).

The first clause defining B0(p) is sound, since if A1(p) = x with p ∈ P1 −P2, we have

x ∈ X ′
1; since otherwise D1(x) ∈ E0−E2, which is impossible since D1 ◦A1 = D0 ◦A0.

Finally, the clauses defining B are sound because the right-hand sides are independent

of the choice of i and of x; this is seen by appeal to the definition of ∼= and the equation

D1 ◦A1 = D0 ◦A0.

The full justification for our construction lies in the following lemma and theorem, both

of which are proved in Appendix A.

Lemma 3.12. (�B, B) is a candidate RPO for �A relative to �D.

Theorem 3.13 (RPOs in link graphs). ´Lig(K) has RPOs; that is, whenever a pair �A of link

graphs has a bound �D, there exists an RPO (�B, B) for �B to �D. Moreover, Construction 3.10

yields such an RPO.

It is clear that the identity of nodes and edges plays an important role in our RPO

construction. Indeed, the category Lig of abstract link graphs does not possess RPOs in

general. A counter-example appears in Appendix C.
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Fig. 8. The RPO (�B, B) for �A to �D varies as �D varies

Now, in order to prepare for the derivation of labelled transition systems, we proceed

to characterise all the IPOs for a given pair �A : W → �X of link graphs. Recall that �B is

an IPO for �A iff (�B, B) is an RPO for some B.

How does a link graph RPO (�B, B) vary when we keep �A fixed but vary the given

bound �D? The answer is that if �A are both epi, then �B remains fixed and only B varies,

so that in this case �B is a pushout.

But in the pair �A of Figure 7 the bigraph A0 is not epi; it has an idle name z0. The

effect is that a different bound �D for �A, as shown in Figure 8, yields an RPO that treats

the idle name z0 differently. Roughly, since D0 now ‘elides’ z0 into a closed link, so B0 also

elides z0. These ‘elisions’ are the only way that IPOs can vary for a fixed pair �A, as we

shall see in Construction 6.16, which characterises the family of IPOs for a given pair �A.

Before tackling that construction we need to establish necessary and sufficient conditions

under which a pair �A is consistent, that is, possesses any bound at all.

Definition 3.14 (consistency conditions for link graphs). We define three consistency con-

ditions on a pair �A : W → �X of link graphs. Let P2 = P0 ∩ P1 and E2 = E0 ∩ E1 be the

shared ports and edges, respectively. We use p to range over arbitrary points and p2, p
′
2, . . .

to range over W � P2, the shared points.

cl0 If v ∈ V0 ∩ V1, then ctrl0(v) = ctrl1(v) .

cl1 If Ai(p) ∈ E2, then p ∈ W � P2 and Aı(p) = Ai(p) .

cl2 If Ai(p2) ∈ Ei−E2, then Aı(p2) ∈ Xı , and if Aı(p) = Aı(p2) also, then p ∈ W � P2 and

Ai(p) = Ai(p2) .

Let us express cl1 and cl2 in words. If i = 0, cl1 says that if the link of any point p

in A0 is closed and shared with A1, then p is also shared and has the same link in A1. cl2
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says, on the other hand, that if the link of a shared point p2 in A0 is closed and unshared,

then its link in A1 must be open, and, furthermore, that any peer of p2 in A1 must also

be its peer in A0.

We shall find that the consistency conditions are necessary and sufficient for at least

one IPO to exist. Thus they precisely characterise when a process A0 may engage in

a labelled transition due to a redex A1. Recall that arrow composition, when defined,

does not change node or edge identities. As a result, the choice of redex A1 fixes how

a subset of its nodes and edges (the intersection of supports, |A0| ∩ |A1|) will be aligned

with the corresponding ones in A0 in all possible labelled transitions. Of course, different

alignments are possible by considering support translations of A1.

The consistency conditions closely resemble the gluing conditions in graph rewriting

(Ehrig 1979). Informally, the gluing conditions operate on the same kind of data as our

consistency conditions, namely a redex, a process and an embedding aligning the redex

with the process. The gluing conditions then characterise when the process can reduce (by

giving a pushout complement). We do not attempt to make the analogy mathematically

rigourous since the categories that each system uses are quite different: in link graphs, the

objects are graph interfaces and the arrows are contexts, whereas in graph rewriting, the

objects are graphs and the arrows are graph embeddings; furthermore, graph rewriting

has traditionally been concerned with reductions, not labelled transitions. Recent work

(Ehrig 2002; Ehrig and König 2004; Sassone and Sobocinski 2004), however, bridges

these gaps and therefore opens up the possibility for a formal comparison.

Returning to our consistency conditions, we see that they are easily implied by the

existence of a bound. We treat the converse case afterwards.

Proposition 3.15 (consistency in link graphs). If the pair �A has a bound, the consistency

conditions hold.

As an example, consider the pair �A : � → �X in Figure 7, where X0 = {x0, y0, z0} and

X1 = {x1, y1, z1}. Assuming controls are consistently allocated, the pair is consistent, with

bound �D as shown. It is worth checking the consistency conditions.

Now, assuming the consistency conditions of Definition 3.14, we shall construct a non-

empty family of IPOs for arbitrary �A. Informally, the construction works as follows. We

choose an arbitrary subset of the idle outer names of �A, which will be given special

treatment. If there are no idle outer names, then there will be a unique IPO, which is also

a pushout. We have a degree of freedom for each such outer name x in Ai (i = 0, 1). In

an IPO �C we may choose Ci(x) either to be a new open link or to be any closed link in

Ci. We call the latter case an elision of the idle name x; in the following construction the

set Li represents the set of idle names to be elided.

Construction 3.16 (IPOs in link graphs). We assume the consistency conditions for the

pair of link graphs �A : W → �X. We define a family of IPOs �C : �X →Y for �A as follows:

nodes and edges: Take the nodes and edges of Ci to be Vı−V2 and Eı−E2.
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interface: For i = 0, 1 choose any subset Li of the names Xi such that all members of Li

are idle. Set Ki = Xi−Li. Define K ′
i ⊆ Ki, the names to be mapped to the codomain Y , by

K ′
i

def
= {xi ∈ Ki | ∀p ∈ P2. Ai(p) = xi ⇒ Aı(p) ∈ Xı}.

Next, on the disjoint sum K ′
0 + K ′

1, define � to be the smallest equivalence such that

(0, x0) � (1, x1) whenever A0(p) = x0 and A1(p) = x1 for some p ∈ W � P2. Then define

the codomain up to isomorphism:

Y
def
= (K ′

0 + K ′
1)/�.

For each x ∈ K ′
i , we use î, x to denote the �-equivalence class of (i, x).

links: Choose two arbitrary maps ηi : Li →Eı −E2 (i = 0, 1), called elision maps, and

define the link maps Ci : Xi →Y as follows (we give C0; C1 is similar):

For x ∈ X0 :

C0(x)
def
=

⎧⎨⎩
0̂, x if x ∈ K ′

0

A1(p) if x ∈ K0−K ′
0, for p ∈ W � P2 with A0(p) = x

η0(x) if x ∈ L0

For p ∈ P1−P2 :

C0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1.

Thus, there is a distinct IPO for each choice of sets Li and elision maps ηi. However,

the IPO will be unique if Li = � is forced. This can happen for one of two reasons:

either, as previously mentioned, Ai has no idle names (that is, it is epi); or Eı−E2 is empty

(that is, all edges of Aı are shared), so no elision can exist.

A particular case of �A with no elisive IPOs is when one member, A1 say, has no idle

names and no edges (closed links). This is because the former prevents elisions from A1,

while the latter entails that C0 has no edges and so prevents elisions from A0. Now, our

principle application of IPOs is to derive transitions for A0 when A1 is the redex of a

reaction rule, and in many reactive systems the redexes do indeed have this desirable

property. We shall see later that this yields rather simple transition systems.

Lemma 3.17. The definition of �C is sound and yields a bound.

Proof. In the second clause for C0(x) we must ensure that p ∈ W � P2 exists such that

A0(p) = x, and that each such p yields the same value A1(p) in P1 −P2, and in the first

clause for C0(p) we must ensure that x ∈ K ′
1. The consistency conditions do indeed ensure

this, and they also ensure that C0 ◦A0 = C1 ◦A1.

We can now prove the essential theorem that underlies the derivation of labelled

transition systems. It states that our construction creates all and only IPOs for �A.

Theorem 3.18 (characterising IPOs for link graphs). A pair �C : �X →Y is an IPO for
�A : W → �X iff it is generated (up to isomorphism) by Construction 3.16.
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Proof (outline).

(⇒) Recall that a bound �B for �A is an IPO iff it is the legs of an RPO for some bound
�D. So we assume such a �B : �X → X̂ built by Construction 3.10, and recall the

subsets X ′
i ⊆ Xi and the equivalence ∼= over :X ′

0 + X ′
1 defined there. Now we apply

Construction 3.16 to create a pair �C : �X →Y by choosing the sets �L and elision

maps �η as follows:

Li
def
= {x ∈ Xi | x idle in Ai, Di(x) ∈ Pı}

ηi : Li →Pı
def
= Di �Li.

Then �C does indeed coincide with �B. To prove this, we first show that K ′
0, K

′
1 and �

in the IPO construction coincide with X ′
0, X

′
1 and ∼= in the RPO construction; so the

codomain Y of �C coincides with the codomain X̂ of �B. Then we show that the link

maps Ci coincide with Bi. Thus every IPO is a bound built by Construction 3.16.

(⇐) To prove the converse, we consider any bound �C : �X →Y built by Construction 3.16,

for some sets �L and elision maps �η. Now we apply Construction 3.10 to yield an

RPO (�B, B) for �A to �C .

Then �B does indeed coincide with �C up to isomorphism. To prove this, we first

show that X ′
0, X

′
1 and ∼= in the RPO construction coincide with K ′

0, K
′
1 and � in the

IPO construction; so the codomain X̂ of �B coincides with the codomain Y of �C .

Then we show that the link maps Bi coincide with Ci. Thus, every bound built by

Construction 3.16 is an IPO.

The reader may like to check the IPO construction by confirming that the two bounds �B

for �A shown in Figures 7 and 8 are both IPOs. In fact, they constitute the entire family

of RPOs for �A since the pair has only one idle name z0, and there is only one closed link

in B0 to which it may or may not be elided.

We continue with some more properties of IPOs that we shall need. First, tensor product

preserves IPOs with disjoint support.

Proposition 3.19 (tensor IPO). In ´Lig(K), let �C be an IPO for �A and �D be an IPO for
�B, where the supports of the two IPOs are disjoint. Then, provided the tensor products

exist, �C ⊗ �D is an IPO for �A ⊗ �B.

An important corollary follows.

Y

a ⊗ id

X⊗Y

b

a

id ⊗ b
X

ε

id ⊗ B
X⊗Y

X ′ ⊗Y

(a) (b)

A ⊗ id

id ⊗ B

A ⊗ id

X⊗Y ′

X ′ ⊗Y ′

Corollary 3.20 (tensor IPOs with identities). Let A : X ′ →X and B : Y ′ →Y have disjoint

support, and let X ′ ∪X be disjoint from Y ′ ∪Y . Then the pair (A⊗ idY ′ , idX ′ ⊗B) has an

IPO (idX ⊗ B,A ⊗ idY ). See diagram (a).
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In particular if X ′ = Y ′ = ε, then A = a and B = b are ground link graphs, and the

IPO is as in diagram (b).

Our next proposition shows exactly when an IPO becomes a pushout.

Proposition 3.21 (unique IPOs are pushouts). In link graphs, an IPO is unique up to

isomorphism iff it is a pushout.

Proof. For the forward implication, we claim first that the RPO (�B, B) built by

Construction 3.10 is rigid in the sense of Definition 2.11, that is, the last component

B is determined by the first two �B. This follows from the fact that the equations defining

B in that construction are necessary to ensure that B ◦Bi = Di (i = 0, 1). It follows that in

link graphs a pair �A has a rigid RPO relative to any bound. Proposition 2.12 then yields

the required result.

For the reverse implication, it is easy to check that a pushout for �A provides an RPO

relative to any bound, and is therefore an IPO by Proposition 2.10(2).

Recall that a link graph is lean if it has no idle edges. In Section 3.3 we shall need to

transform IPOs by the addition or subtraction of idle edges. We write AE for the result of

adding a set E of fresh idle edges to A. The following proposition is easy to prove from

the IPO construction for link graphs.

Proposition 3.22 (IPOs, idle edges and leanness). For any two pairs �A and �B:

1 If �B is an IPO for �A, and A1 is lean, then B0 is lean.

2 For any fresh set E of edges, �B is an IPO for �A iff (B0, B
E
1 ) is an IPO for (AE

0 , A1).

We now turn to abstract link graphs. To get them from concrete bigraphs, we wish to

factor out the identity of nodes and edges; we also wish to forget any idle edges. So we

define an equivalence � that is a little coarser than support equivalence (�).

Definition 3.23 (abstract link graphs and their category). Two concrete link graphs A and

B are lean-support equivalent, written A � B, if after discarding any idle edges they are

support equivalent. The category Lig(K) of abstract link graphs has the same objects

as ´Lig(K), and its arrows are lean-support equivalence classes of concrete link graphs.

Lean-support equivalence is clearly a static congruence (Definition 2.5). The associated

quotient functor, as defined in Definition 2.6, is

[[ · ]] : ´Lig(K) → Lig(K) .

The reason for studying concrete, rather than abstract, link graphs is that they possess

RPOs. This will allow us in Section 3.3 to derive a behavioural congruence for ´Lig, and

then to show how to transfer it, under certain assumptions, to Lig.

To see why we cannot work directly in Lig, we point out that it lacks some structure

present in ´Lig. For example, the functor [[ · ]] does not preserve epis. More seriously,

Lig lacks RPOs in general; this arises because it lacks any notion of the occurrence of

a node or edge. A counter-example appears as Example 10 (Figure 12) in Jensen and
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→yx→x

→
→→

→

Fig. 9. Reaction rules for arithmetic

Milner (2004). (It is presented in terms of bigraphs, but involves only their link graph

components.)

3.3. Reactions and transitions for link graphs

We are now ready to specialise the definitions and theory for reactive systems (RSs) in

Section 2.3 to obtain link-graphical reactive systems (LRSs), which form the objects of a

category whose arrows are RS functors.

Definition 3.24 (link-graphical reactive system). A (concrete) link-graphical reactive system

(LRS) over a signature K consists of a monoidal reactive system over ´Lig(K), with a

rule-set ´R in which no redex has an idle link. We denote it by

´Lig(K, ´R) .

As an example, Figure 9 shows a likely set of rules for the evaluation of arithmetic

nets, whose atoms appeared in Figure 4. The two rules on the left-hand side represent

the primitive recursive definition of +, while the two rules on the right deal with the

forwarder →. In each case we consider the names�x and�y to represent inputs and outputs,

respectively. (In Section 4 we shall capture this distinction by imposing a sort-discipline

on link graphs.) The top left-hand rule introduces a forwarder node. The top right-hand

rule creates a bypass around a forwarder; it is really a family of rules, since ‘?’ represents

any of the three controls {S,+,→}, and the dotted link represents any extra inputs to

the node with that control. The bottom right-hand rule eliminates a forwarder that has

finished its work.

Figure 6 shows how a redex, denoted by G, may occur within a ground arithmetic net F;

the occurrence is represented by the context H . The reader may like to draw compositions

that represent two other redex occurrences within F . This example is close to Hasegawa’s

sharing graphs (Hasegawa 1999), which enrich Lafont’s interaction nets (Lafont 1990) by

permitting shared subevaluations.
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We now proceed to consider the derivation of labelled transitions for LRSs. This

derivation instantiates the derivation for arbitrary RSs of transitions a
L

� a′ based on

IPOs, leading to the standard transition system st. LRSs thereby inherit the definition of

bisimilarity, so we have the following corollary of Theorem 2.24.

Corollary 3.25 (congruence of bisimilarity). In any concrete LRS equipped with the

standard transition system st, bisimilarity of agents is a congruence.

It is natural to ask whether identity transitions a
id

� a′ differ from reactions a � a′.

The two clearly coincide in the full transition system ft; but even in st we would expect

them to coincide, since both appear to represent the occurrence of a reaction without

external assistance. In fact we have the following proposition.

Proposition 3.26 (identity transitions are reactions). In a concrete LRS equipped with

standard transitions, if no redex has idle names, then a
id

� a′ iff a � a′.

Proof. The forward implication is immediate. For the reverse, if a � a′, then a = D ◦ r
and a′ � D ◦ r′ for some rule (r, r′). But r has no idle names, so by Proposition 3.9, it is epi.

But then it can be shown (by purely categorical means) that the pair (D ◦ r, r) has (id, D)

as a pushout, and hence as an IPO. Thus it follows that a id
� a′.

This result is valuable, since we see little value in a redex with idle names. The reader

may agree that it would be strange to have a rule where x is idle in the redex but not in

the reactum, and if it is idle in both it makes good sense to delete it.

We shall later examine the transition system st carefully, with the help of a detailed

example of condition-event Petri nets. For now, we consider how st and its induced

bisimilarity congruence are transferred to the abstract LRS Lig(K,R), where Lig(K) is

defined by the quotient functor [[ · ]] of Definition 3.23, and R is also obtained from ´R
by [[ · ]].

Now recall that this functor, the quotient by lean-support equivalence (�), is a little

coarser than the quotient by support equivalence (�), because it discards idle edges. To

transfer the congruence result, we must prove that � respects st. To this end, we have

required all redexes in ´R to have no idle links (which is no limitation in practice). We

then deduce the following crucial property of lean-support equivalence.

Proposition 3.27 (transitions respect equivalence). In a concrete LRS equipped with

standard transitions:

1 Every transition label L is lean.

2 Transitions respect lean-support equivalence (�) in the sense of Definition 2.20. That

is, for every transition a
L

� a′, if a � b and L � M where M is another label with

M ◦b defined, then there exists a transition b
M

� b′ for some b′ such that a′ � b′.

Proof. For the first part, use Proposition 3.22(1). For the second part, use Proposi-

tion 3.22(2); the assumption that each redex is lean ensures that it cannot share an idle

edge with the agent a.
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We are now ready to transfer transition systems, bisimilarities and congruence results

from concrete to abstract LRSs. The following corollary is immediate by invoking

Theorem 2.26 and Proposition 3.27, followed by Corollary 3.25.

Corollary 3.28 (behavioural congruence in abstract LRSs). Let Á be a concrete LRS

equipped with a TS L that respects lean-support equivalence. We use A to denote the

lean-support quotient of Á, and ∼L for the bisimilarity induced by L in both Á and A.

Then:

1 a ∼L b in Á iff [[a]] ∼L [[b]] in A.

2 If ∼L is a congruence in Á, then it is a congruence in A.

3 The bisimilarity induced by st in A is a congruence.

This concludes the elementary theory of LRSs. We shall now specialise it by defining the

simple LRSs, whose redexes have certain structural properties. As predicted in Section 2.3,

working in ´Lig, we then show that engaged transitions are adequate for the standard

transition system st. This yields a more tractable TS, which we can again transfer to

abstract LRSs over Lig, yielding a bisimilarity that is a congruence.

Recall from Section 3.2 that a link is open if it is an outer name, and closed otherwise,

and that these properties are inherited by the points of the link.

Definition 3.29 (simple). A link graph is simple if it has no idle names and all its links

are open. An LRS is simple if all its redexes are simple.

We have already argued that the first condition is easy to accept, so the main constraint

is openness. It remains to be seen how far we can relax it while retaining our results;

meanwhile, many simple LRSs appear to arise naturally.

Simpleness has important consequences.

Proposition 3.30 (simpleness properties).

1 Every simple link graph is lean.

2 If �B is an IPO for �A and A1 is simple, then B0 is simple and the IPO is a pushout.

3 In a simple LRS equipped with st, every label is simple and the IPO underlying every

transition is a pushout.

Proof.

1 It is enough to note that a simple link graph has no edges.

2 To prove B0 simple involves a routine check of the RPO construction. Next we show

that the IPO can contain no elisions. Since B0 has no closed links, there can be no

elisions from A0; and there can be no elisions from A1 since it has no idle names. It

follows that, up to isomorphism, there is a unique IPO for �A, so by Proposition 3.21 it

is a pushout.

3 Apply part 2 to the IPO underlying each transition, since its redex is simple.

These results make it easy to verify an important property of idle names. If we encode

(say) a version of the π-calculus in link graphs, then a process term T is represented in

every ground homset Gr(X) where X includes all the free names of T ; this allows the
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possibility of bisimilarities T ∼ T ′ where the free names of T and T ′ differ. But we do

not want the truth of this equation to depend on the chosen name-set X. We now show

that this is avoided, at least in a simple LRS. (Recall from Figure 3 and the discussion

following Definition 3.3 that x : � →{x} is a link graph consisting of the single idle name

x.).

Proposition 3.31 (idle names and bisimilarity). In a concrete LRS that is simple and

equipped with standard transitions, a ∼ b iff x ⊗ a ∼ x ⊗ b.

Proof. For the forward implication, we use congruence. For the converse, we shall verify

that S = {(a, b) | x ⊗ a ∼ x ⊗ b} is a bisimulation up to �.

(b)(a) (c)

s

G

idx ⊗ L

L

r
a D

idx ⊗ L

M

b
s

idx ⊗ L

E

x ⊗ b

x ⊗ id x ⊗ id x ⊗ id F

Let aSb and a
L

� a′. We seek a transition b
L

� b′ with (a′, b′) ∈ S�.

The IPO underlying the transition of a is the bottom square of diagram (a), based on

a rule (r, r′) with a′ � D ◦ r′. By Corollary 3.20, the upper square of (a) is also an IPO,

hence so is the large square, and it represents a transition

x ⊗ a
idx⊗L

� x ⊗ a′ .

Since x ⊗ a ∼ x ⊗ b, there is a rule (s, s′) and a transition

x ⊗ b
idx⊗L

�G ◦ s′ ∼ x ⊗ a′

with underlying IPO as in diagram (b). Now x ⊗ b = (x ⊗ id) ◦b, so, by taking an RPO

(M,E, F) for (b, s), we obtain a pair of IPOs as in (c). By Proposition 3.30(1), M is simple,

and by Proposition 3.30(3), the upper square of (c) is a pushout. But, by Corollary 3.20,

the pair (x ⊗ id,M) has a tensorial IPO (idx ⊗ M,x ⊗ id); up to isomorphism this must

coincide with the pushout, so without loss of generality we may assume M = L and

F = id. We then find from the lower square that b
L

� b′ def
= E ◦ s′, and since G = x ⊗ E,

we have G ◦ s′ = x ⊗ b′. So (a′, b′) ∈ S� as required.

We now turn to engaged transitions (see the discussion of engaged transitions in

Section 2.3).

Definition 3.32 (engaged transitions). A standard transition of a is said to be engaged if

it can be based on a reaction with redex r such that |a| ∩ |r| �= �. We use et to denote the

transition system of engaged transitions. We write ∼et for ∼et

st
, bisimilarity for et relative

to st.
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Now we would like to prove that the engaged transitions are adequate for standard

bisimilarity (Definition 2.27), that is, that ∼et = ∼, since that would mean that in order

to establish a ∼ b we need only match each engaged transition of a (respectively, b)

by an arbitrary transition of b (respectively, a). This is a lighter task than matching all

transitions. If an LRS is not simple, its engaged transitions may not be adequate. For

example, take two controls K and N with arity 1, and let there be a single reaction rule as

shown on the left in the following diagram:

K K

x

/x ◦Kx �� L = /x ◦ (idx | Kx)

The rule is not simple, because the redex is not open. Now consider two agents, Nx and

x, the latter being just an idle name. Observe that, in the context L shown, Nx has no

reaction, while x has a reaction; in fact L ◦Nx � � , while L ◦x = /x ◦Kx ��. Thus

Nx �∼ x. This is reflected directly by the fact that Nx has no L-transition, while x
L

��
by an elisive transition. However, this transition is not engaged; in fact, neither Nx nor x

has any engaged transition, so Nx ∼et x.

We shall now prove that, in a simple LRS, the engaged transitions are indeed adequate,

that is, a ∼et b implies a ∼ b. To do this, we have to show how b can match all transitions

of a, and the antecedent only tells us how to match the engaged ones. However, in a

simple LRS we find that non-engaged transition of a can be suitably matched by any b

(whether or not a ∼et b).

Theorem 3.33 (adequacy of engaged transitions). In a concrete LRS that is simple and

equipped with st, the engaged transitions are adequate; that is, engaged bisimilarity ∼et

coincides with bisimilarity ∼.

Proof. It is immediate that ∼ ⊆ ∼et. For the converse we shall show that

S = {(C ◦a0, C ◦a1) | a0 ∼et a1}

is a standard bisimulation. Then, taking C = id, we deduce ∼et ⊆ ∼.

Suppose that a0 ∼et a1. Let C ◦a0
M

� b′
0 be any standard transition, with M ◦C ◦a1

defined. We must find b′
1 such that C ◦a1

M
� b′

1 and (b′
0, b

′
1) ∈ S.

There exist a reaction rule (r0, r
′
0) and an underlying IPO as in diagram (a) below, and,

moreover, b′
0 = E0 ◦ r′

0. Then, by taking RPOs, we can complete diagram (b) so that every

square is an IPO.

(a) (c)(b)
EM

M

L

D1
r0 r1

L

r0
a0 a1D0

E0C ◦a0

E0
C
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Hence, a0
L

� a′
0, where a′

0 = D0 ◦ r′
0. Moreover, by Proposition 3.30(3), the lower square

in diagram (b) is a pushout. Also, b′
0 = E ◦a′

0.

Since M ◦C ◦a1 is defined, we deduce that L ◦a1 is defined, and we proceed to show in

two separate cases the existence of a transition a1
L

� a′
1, with underlying IPO as shown

in diagram (c). (Note that we cannot immediately infer this from a0 ∼et a1, since the

transition of a0 may not lie in et.) Substituting this diagram for the lower squares in (b),

we can infer a transition C ◦a1
M

� b′
1, where b′

1 = E ◦a′
1. In each of the three cases we

then argue that (b′
0, b

′
1) ∈ S, thus completing the proof of the theorem.

Case 1: Suppose the transition a0
L

� a′
0 is not engaged, that is, |a0| ∩ |r0| = �. The

lower square of (b) is a pushout; hence it is the unique IPO (up to isomorphism) for

a0 and r0, which by Corollary 3.20 must be a tensor IPO.† So, up to isomorphism, we

have L = id ⊗ r0 and D0 = a0 ⊗ id . Then we calculate

a′
0 = D0 ◦ r′

0 = a0 ⊗ r′
0

= E ′ ◦a0 where E ′ = id ⊗ r′
0 .

So in this case we take D1 = a1 ⊗ id and r1 = r0 to form the IPO (c). Hence

a1
L

� a′
1

def
= E ′ ◦a1 .

Then for the context C ′ def
= E ◦E ′ we have b′

0 = C ′ ◦a0 and b′
1 = C ′ ◦a1. But a0 ∼et a1,

so we have (b′
0, b

′
1) ∈ S, as required.

Case 2: Suppose the transition a0
L

� a′
0 is engaged, that is, |a0| ∩ |r0| �= �. Then it lies

in et. But a0 ∼et a1, so there is a transition a1
L

� a′
1 for some a′

1 such that a′
0 ∼et a′

1.

Hence C ◦a1
M

� b′
1

def
= E ◦a′

1, and thus (b′
0, b

′
1) ∈ S, as required.

We now wish to transfer et to abstract LRSs, via the functor

[[ · ]] : ´Lig(K) → Lig(K) .

To do this, we would like to know that et is definite for st (see Definition 2.28), since

then, by Proposition 2.29, we can equate the relative bisimilarity ∼et

st
with the absolute one

∼
et
. For this, we need to know that, from the label L alone, we can determine whether or

not a transition a
L

� a′ is engaged.

It turns out that this holds in a wide range of LRSs. This is because they all satisfy

a simple structural condition, which we now define, and which is sufficient to ensure

definiteness.

Definition 3.34 (proper LRS). Define ctrl (G), the control of a link graph G, to be the

multiset of controls of its nodes. An LRS is proper if for any two redexes r and s, if

ctrl (r) ⊆ ctrl (s), then ctrl (r) = ctrl (s).

† A forerunner of this phenomenon, that a non-engaged transition must be based on a tensor IPO, appears as

Theorem 3.33 in the first author’s Ph.D. Dissertation (Leifer 2001).
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Note that this property applies equally to concrete and abstract LRSs, and is indeed

preserved and reflected by the quotient functor [[ · ]]. Moreover, with the help of

Corollaries 2.30 and 3.25, we deduce the following corollary.

Corollary 3.35 (engaged congruence). In a concrete LRS that is both proper and simple:

1 The engaged transition system et is definite for st.

2 Engaged bisimilarity ∼
et

coincides with standard bisimilarity.

3 ∼
et

is a congruence, that is, a ∼
et
b implies C ◦a ∼

et
C ◦b

Proof. For the first part we must prove that if a standard transition a
L

� a′ is engaged,

then every standard transition with label L is engaged. To produce a contradiction, suppose

this is not the case, that is, suppose that some other standard transition b
L

� b′ is not

engaged. Let r and s be the redexes underlying the transitions of a and b, respectively.

Then, from the construction of RPOs, we have |L| � |r| and |L| = |s|. Hence |s| � |r|. So,

since nodes in an IPO for �A inherit their controls from �A, it follows that ctrl (s) � ctrl (r)

(as multisets), contradicting the assumption that the LRS is proper.

Since simpleness implies the adequacy of et, the last two parts follow directly.

Now recall from Proposition 3.30 that every simple link graph is lean. We therefore

specialise Corollary 3.28 to et under appropriate assumptions.

Corollary 3.36 (engaged congruence in abstract LRSs). Let Á be a concrete LRS that is

proper and simple, and let A be its lean-support quotient. Let ∼
et

denote bisimilarity both

for et in Á and for the induced transition system [[et]] in A. Then:

1 a ∼
et
b in Á iff [[a]] ∼

et
[[b]] in A.

2 Engaged bisimilarity ∼
et

is a congruence in A.

Proof. The quotient functor satisfies the conditions of Theorem 2.26. In particular, by

Proposition 3.27 it respects et, since this is a sub-TS of st. So the theorem yields (1)

immediately. It also yields (2) with the help of Corollary 3.35.

Thus we have ensured congruence of engaged bisimilarity in any abstract LRS Lig(K)

satisfying reasonable assumptions.

4. Sorted link graphs

4.1. Sorting and condition-event nets

Section 4 is devoted to the application of link graph theory. We begin in this subsection

with the topic of sorting, which is likely to be needed in any significant application. Then

in Sections 4.2 and 4.3 we apply link graph theory, together with our theory of transitions

systems, to deriving a behavioural congruence for a class of Petri nets. The work on Petri

nets was first reported by the second author in Milner (2004a); the present approach

improves on this by adding an adequacy result (see Proposition 4.11).
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Our sorting discipline for link graphs, which was first proposed for bigraphs (Milner

2001b), is akin to many-sorted algebra and has a similar purpose: given a signature, we

wish to limit the entities that can be built with it. In algebra, these are often the algebraic

terms that are meaningful for a particular interpretation; here, the same is true of link

graphs. For example, in Petri nets it is not meaningful to connect two transition-nodes

without an intervening place-node. Using a more sophisticated sorting discipline, we can

introduce a notion of name-binding into bigraphs (Jensen and Milner 2004); this sets

limits on the scope of a name, so that it cannot be linked to a port outside that scope.

In the following, we use Θ to denote a non-empty set of sorts, and θ will range over Θ.

Definition 4.1 (sorted link graphs). A signature K is Θ-sorted if it is enriched by an

assignment of a sort θ ∈ Θ to each i ∈ ar(K) for each control K . An interface X is

Θ-sorted if it is enriched by ascribing a sort to each name x ∈ X.

A link graph is Θ-sorted over K if its interfaces are Θ-sorted, and for each K, i the

sort assigned by K to i ∈ ar(K) is ascribed to the ith port of every K-node.

We use ´Lig(Θ, K) to denote the monoidal precategory of sorted link graphs whose

identities, composition and tensor product are defined in the obvious way in terms of the

underlying (unsorted) link graphs.

Note that sorts are ascribed to points and open links of a link graph, but not to its

edges. We say sorted instead of Θ-sorted when Θ is understood.

We may wish to consider only those sorted link graphs that obey some condition.

Definition 4.2 (sorting). A sorting (discipline) is a triple Σ = (Θ,K,Φ) where K is Θ-

sorted, and Φ is a condition on Θ-sorted link graphs over K. The condition Φ must be

satisfied by the identities and preserved by both composition and tensor product.

A link graph in ´Lig(Θ, K) is said to be Σ-sorted if it satisfies Φ. The Σ-sorted link

graphs form a monoidal sub-precategory of ´Lig(Θ, K) denoted by ´Lig(Σ). Furthermore,

if ´R is a set of Σ-sorted reaction rules, then ´Lig(Σ, ´R) is a Σ-sorted LRS.

We shall often say well-sorted instead of Σ-sorted when Σ is understood.

Even if we confine ourselves to a single sort, there are some important examples. One

example is undirected linear link graphs, where every open link contains exactly one point,

and every closed link exactly two points. (The reader may like to confirm that this sorting

satisfies the required conditions.) With two sorts, this condition can be refined to yield

directed linear link graphs, where each port of each control has a polarity and a link

must join ports only when their polarities are opposite. More generally, the purpose of a

sorting is to dictate how nodes of a given (sorted) signature may be linked.

What constraints must we place on the sorting Σ = (Θ,K,Φ) in order that we may

apply our transition theory? These constraints are best understood in terms of the obvious

forgetful functor that discards sorts:

U : ´Lig(Σ, ´R) → ´Lig(U(K),U(´R)) .

We shall say U is a sorting functor. Such functors have certain properties.
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Proposition 4.3 (sorting is faithful). On interfaces, a sorting functor is surjective (but not

in general injective). It is also faithful, that is, injective (though not in general surjective)

on each homset of link graphs.

We need more structure than this if we wish to apply our transition theory to a well-

sorted LRS. Consider the two properties in the following definition that a functor of

precategories may have.

Definition 4.4 (creating RPOs, reflecting pushouts). Let F be any functor on a precategory

Á. Then F creates RPOs if, whenever �D bounds �A in Á, then any RPO for F(�A) relative

to F(�D) has a unique F-preimage that is an RPO for �A relative to �D.

F reflects pushouts if, whenever �D bounds �A in Á and F(�B) is a pushout for F(�A),

we have that �B is a pushout for �A.

Corollary 4.5 (creation ensures RPOs). If F : Á → ´B creates RPOs and Á has RPOs,

then ´B has RPOs.

We shall often confuse Σ with its functor: for example we say ‘Σ reflects . . . ’, and so

on.

It turns out that if a sorting satisfies the two conditions of Definition 4.4 (which appear

to be independent, but we need not settle that question here), then we get sufficient

structure for our transition theory.

Theorem 4.6 (useful sortings).

1 If Σ creates RPOs, then bisimilarity for the standard transition system st over ´Lig(Σ,

´R) is a congruence.

2 If, in addition, Σ reflects pushouts and ´R is simple, then the engaged transitions are

adequate for st.

Note that simpleness for a well-sorted link graph is just the same as for a pure one. (In-

deed, sorting functors both preserve and reflect simpleness.) We omit the proof of the the-

orem: it follows closely along the lines of the proofs of Theorems 2.24 and 3.33; for the lat-

ter, the reflection of pushouts enables Proposition 3.30 to be lifted to the well-sorted LRS.

We are now ready to define the sorting discipline that we shall use in the remainder

of the paper. It may be motivated by our arithmetic nets, in which we want each link to

contain any number of ‘input’ ports, but at most one ‘output’ port. The formal definition

must also constrain the sorting of interfaces. Recall that in a link graph G : X →Y a

point is either an inner in X or a port, while a closed link is an edge and an open link is

an outer name in Y .

Definition 4.7 (many-one sorting). In a many-one sorting Σ = (Θ,K,Φ) the sorts are

Θ = {s, t}, the signature K is arbitrary with an arbitrary assignment of sorts to control

arities, and the condition Φ is as follows:

— a closed link has exactly one s-point

— an open s-link has exactly one s-point

— an open t-link has no s-points.

There is no constraint on the number of t-points in a link.



Transition systems, link graphs and Petri nets 41

0

+

+

x : t z : sy : s

t

t

t

t

s

s

s

t t s s

H

S

G

+

t t s s

s s
t

t

t

0
S

+

+

F

+

x : t y : s z : s

t

t

t

t

t

t

t
s

s

s

s

s

F = H G

Fig. 10. A well-sorted arithmetic net and its decomposition

It is helpful to think of s and t as standing for ‘source’ and ‘target’.

We can illustrate this using arithmetic nets. In this case the sorted signature is Karith as

defined at the beginning of Section 3.2 enriched by the assignment of s to output ports

and t to input ports; for example, + is assigned the sort-sequence tts. Figure 10 shows the

net of Figure 6, but now with sort ascriptions; the reader may like to check that it obeys

the many-one sorting discipline.

A many-one sorted LRS has a nice property that is not shared by all sortings:

F

G′

H

∃G
X Y Z

U

Proposition 4.8 (many-one sorted decomposition). Let U be a many-one sorting functor,

and let

U(H : X →Z) = G′ ◦ U(F : X →Y ).

Then there exists G : Y →Z such that U(G) = G′ and H = G ◦F .

Note that, since U is faithful, G exists uniquely. (Thus, in category-theoretic terms, the

proposition says that every arrow F is opcartesian.) With the help of this proposition, it

is not hard to show that many-one sorting has the structure we need.

Theorem 4.9 (many-sorting structure). Every many-one sorting discipline creates RPOs

and reflects pushouts.

Proof (outline). For the first property, it can be shown that if we apply Construc-

tion 3.10 to a well-sorted pair �A with a well-sorted bound �D, then the resulting RPO is
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itself well-sorted. Also, the existence of a mediator to any other well-sorted candidate is

assured by Proposition 4.8.

The second property can be proved for any functor of precategories that is faithful and

enjoys the property in Proposition 4.8.

We are now ready to induce a behavioural congruence for condition-event Petri nets,

since they can be modelled as a many-one sorted LRS.

4.2. Condition-event nets as link graphs

We begin this section with a digression from link graphs in order to discuss the behaviour

of Petri nets in their own terms. First we consider some recent papers on behavioural

equivalences on Petri nets.

Pomello et al. (1992) gives a comprehensive survey of such equivalences and preorders.

It covers those based on observation both of actions and of states, and range from fine

relations respecting causality to coarser ones such as the failures preorder from CSP,

which is the coarsest respecting deadlock. The study of congruence of these relations, that

is, whether they are preserved by contexts, and which contexts should preserve them, was

reported as being rather incomplete in 1992.

Nielsen et al. (1995) characterises some behavioural congruences on nets. Given a

semantic function B that assigns an abstract behaviour to each net, the congruence ≈ it

induces on nets is considered; this is defined by

N0 ≈ N1
def⇔ B(C[N0]) = B(C[N1]) for every context C.

An important contribution of the paper is to define a precise notion of context by means

of a set of combinators on nets. The authors are then able to characterise the congruences,

for each of four semantic functions B, by showing that for each pair N0, N1 there is a

single easily identified context that is sufficient to determine whether or not N0 ≈ N1.

Priese and Wimmel (1998) continues this programme by enriching the net combinators,

and considering a wider range of semantic functions.

The Petri Box calculus of Best et al. (1999), like the previous two approaches, emphasises

combinators and algebra. By identifying certain net-patterns as operators, it presents a

modular semantics of nets in terms of equivalence classes of Boxes (a special class of

nets). A main result of the paper is agreement between this denotational semantics and a

structured operational semantics of Box expressions.

Baldan et al. (2001) defines a class of open Petri nets, having input and output places

where tokens may, respectively, be added and removed at any time. The authors define a

form of composition of two such nets that allows interaction at these places, and define a

semantics of a net in terms of its processes, that is, the deterministic nets representing its

possible behaviours. The semantics is shown to be compositional, that is, the composition

of two open nets respects their underlying processes.

This brief summary does not do justice to the five papers, which form a good

representation of the progress towards a modular treatment of Petri nets. But it does

help us to identify where it differs from the theory of bigraphs (or link graphs), which
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Fig. 11. A condition-event net with two observable conditions

suggests contributions that can be made by the latter. The first difference is that, since

bigraphs and their contexts are the arrows of a (pre)category, whenever a class of agents,

such as Petri nets, is encoded in bigraphs, the contexts and combinators are thereby

determined; they need not be defined specifically for each class. The second difference is

that the semantic function on bigraphical agents is defined not by specific means, but as

the quotient by a generic equivalence relation that pertains to all bigraphical systems.

Finally, many such equivalences (including bisimulation, which we use in this paper, but

also others) are guaranteed by bigraphical theory to be congruences.

After this brief review, we now consider condition-event Petri nets, as illustrated in

Figure 11. These are nets in which each place, or condition, may be either marked (that

is, holding a single token) or unmarked. The usual firing rule for condition-event nets is

as follows:

‘An event with all pre-conditions and no post-conditions marked may “fire”, unmarking its pre-

conditions and marking its post-conditions.’

The firing rule describes what can happen inside a net, but does not indicate how

this net behaviour may be observed or controlled from outside. So we shall set up a

simple observational discipline, yielding a labelled transition system and hence inducing a

bisimilarity equivalence. This discipline is one of many possible, and differs from those in

the above-cited papers, but is, nevertheless, quite natural. It provides a good case study

in link graphs, since we can compare an equivalence expressible in Petri net terms with

one induced by link graph theory.

How may we conduct experiments, or observations, on a condition-event net? One way,

akin to the approach of Baldan et al. (2001), is to make certain conditions externally

accessible, allowing the observer both to detect and to change the state (marked or

unmarked) of the place. For example, the net in Figure 11 has two accessible conditions,

named x and y. In general, given a state g, that is, a net together with a marking of its

conditions, the transition g
+x

� g or g
−x

� g represents the addition or subtraction of a

token at x. Since we are dealing with condition-event nets, in any given state exactly one

of these experiments is possible for each accessible condition. A third kind of transition,

g
τ

� g, represents (the firing of) an internal event and involves no external participation.



J. J. Leifer and R. Milner 44

x

U UU

M

U

E21 E12

E11

E11

y

Fig. 12. A condition-event net represented as a link graph

These three kinds of transition are the basis of a raw TS Lp, with which we shall equip

our LRS of Petri nets, in order to compare it with another TS Lg, which we shall derive

from reaction rules by the methods discussed in Sections 2 and 3 of this paper.

We now set up condition-event nets as link graphs. There are many ways to do this;

we choose one that gives a smooth treatment. Figure 12 shows the net of Figure 11 as a

link graph, using the signature Kpetri defined at the start of Section 3.2 and illustrated

in Figure 5. Recall the three kinds of control: M (‘marked’) and U (‘unmarked’) for

conditions, and Ehk for events. The shape and shading of nodes will save us from writing

controls in diagrams. A condition-node has a single port, which we site in its centre. Thus,

for example, the three arcs that impinge on the marked node in Figure 11 are represented

in Figure 12 as a single arc connected to the single port of the M-node. An Ehk event-node

has h + k ports; h for pre-conditions, and k for post-conditions. You may check that the

above net has two open and three closed links.

Now we enrich Kpetri by assigning the sort s to all condition ports and t to event ports.

This leads us to the sorting discipline

Σpetri
def
= (Θpetri,Kpetri,Φpetri)

where Θpetri = {s, t} and Φpetri is the many-one sorting condition of Definition 4.7. Then

the concrete precategory of many-one sorted condition-event nets is

´CE
def
= ´Lig(Σpetri),

and we denote its lean-support quotient by CE. Although these nets share many-one

sorting with arithmetic nets, there is a considerable difference, which arises from the fact

that in arithmetic nets every node possesses exactly one s-port, while in ´CE the event

nodes have none. This illustrates the versatility of many-one sorting. However, we do not

yet claim any general taxonomy of sorting disciplines, since to develop this will require

the study of a wider range of applications.

In general, an interface may contain both s-names and t-names. But in the example

both x and y are s-names, because each is a link containing a condition. So we define an
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Fig. 13. A link-graph reaction rule for condition-event nets

s-interface to be one containing only s-names. We can then model condition-event nets

in ´CE and CE as link graphs with s-interfaces, and will call them s-nets.

Without further ado, we now set up in ´CE a raw transition system Lp whose interfaces

are s-interfaces and whose transitions a
�

� b are those we have already described with

� = +x,−x or τ. We also close the transitions under support equivalence. This induces

a TS [[Lp]] in CE. We will use ∼p for the associated bisimilarity in both cases. Since no

RPO theory is involved, we readily get the following proposition.

Proposition 4.10 (raw bisimilarity).

1 a
�

� a′ in ´CE iff [[a]] �
� [[a′]] in CE.

2 a ∼p b in ´CE iff [[a]] ∼p [[b]] in CE.

To compare this raw TS and bisimilarity with a contextual one, we must add reaction

rules to ´CE, to make it an LRS. To match the firing rule, for each pair h, k we introduce

a reaction rule for Ehk as illustrated in Figure 13 for h = 1, k = 2. As required by

Definitions 2.14 and 3.24, we close this set under support translation and make each rule

lean (no idle edges). Having thus established ´CE as a concrete LRS, we equip it with

the standard transition system st. We can then apply Corollary 3.25 to establish that the

associated bisimilarity ∼g, is a congruence.

Now we want to refine the transition system in two steps. The first step is to reduce its

transitions to the engaged ones.

Proposition 4.11 (adequacy for nets). The engaged transition system et over ´CE is definite

and adequate for st, so its bisimilarity coincides with ∼g.

Proof. It is easy to show that ´CE is simple, as defined in Definition 3.29. It is also

proper, according to Definition 3.34. Therefore, by Corollary 3.35, we may reduce st to

et without affecting the induced bisimilarity ∼g.

The second refinement step is to reduce the agents to s-nets. We define the TS Lg

to consist of s-interfaces together with all engaged transition between s-nets. Now, since

every redex and reactum is an s-net, we find that in any standard transition a
L

� a′, if a

is an s-net, then so are L and a′. It follows that Lg is a full sub-TS of et. Therefore by

Proposition 2.31 and Corollary 2.30 we have the following corollary.

Corollary 4.12 (bisimulation congruence for concrete s-nets). Bisimilarity for the transition

system Lg coincides with ∼g on s-nets and is a congruence.



J. J. Leifer and R. Milner 46

L

Fig. 14. A typical label in Lg

We have now taken the theory of Lg for concrete s-nets as far as we need, except

for characterising its transitions. We leave that task to Section 4.3. Here, noting that Lg

respects lean-support equivalence, we can relate it to the TS [[Lg]] induced on abstract

s-nets, using Corollaries 4.12 and 3.28.

Corollary 4.13 (bisimulation congruence for abstract s-nets). We use ∼g to denote the

bisimilarity induced on CE by the abstract TS [[Lg]]. Then:

1 a ∼g b in ´CE iff [[a]] ∼g [[b]] in CE.

2 The bisimilarity ∼g is a congruence in CE.

4.3. Coincidence of bisimilarities

We are now ready to examine the behaviour of s-nets. In ´CE this is given both by a raw TS

Lp with associated bisimilarity ∼p and by a contextual TS Lg with associated bisimilarity

∼g. These induce in CE the TSs [[Lp]] and [[Lg]], whose associated bisimilarities are again

denoted by ∼p and ∼g.

Our main concern is to compare these two abstract bisimilarities, but we shall do

the work mainly in concrete s-nets since it involves a little RPO theory. At the end the

comparison is transported easily to abstract s-nets.

Our first task is to characterise the labels of Lg. We omit the detailed analysis; it

uses the fact that transitions are engaged (Proposition 4.11) and that labels are simple

(Proposition 3.30) and have s-interfaces. It turns out that, up to isomorphism, a label

takes two forms: either it is an identity, or it is an open s-net with exactly one E-node,

which is linked to zero or more M-nodes as preconditions and U-nodes as post-conditions.

For the identity labels, we recall from Proposition 3.21 that a id
� a′ iff a � a′; an id

label signifies a transition with no help from the context.

Figure 14 shows a non-identity label; the dashed link indicates an identity on zero or

more names. A label can be thought of as a redex-fragment, lacking some conditions;

in the example it requires its client agent to provide one marked pre-condition and one

unmarked post-condition. Figure 15 shows the anatomy of a transition a
L

� a′ with this

label. Note that a′ takes the form L ◦a. In what follows we shall often use the notation a

to denote an s-net that differs from a only by the marking of some conditions; we call it

a residual of a.

We see that a single transition may change the marking of several named conditions

of a, however far apart they may lie in a. Any other agent b with the same interface as
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Fig. 16. Probes for observing conditions in a s-net

a will have a similar transition, provided only that it has the same initial marking of its

named conditions.

The two TSs Lp and Lg are significantly different, so it is not clear that they will

induce the same bisimilarity. We shall now prove that they do.

We shall first show that ∼g ⊆ ∼p in ´CE. This asserts that if we can distinguish two

s-nets a and b by using ‘experiments’ � of the form +x, −x or τ, then we can also do so

using ‘experiments’ L that are link graph contexts. So, among the labels L generated by

our theory (see Figure 14), we need to find those that can do the job of the experiments

+x, −x and τ.

It turns out that labels to mimic an experiment +x or −x need only involve E11 events,

those with one pre- and one post-condition; they take the form P ⊗ id, where P is,

respectively, an input or output probe. The probes are denoted inxz and outxz , and are

shown in the first column of Figure 16. The second column shows the spent probes P , the

residuals of the probes. The third column shows the spent probes with their conditions

closed; they are defined by in¬
x

def
= /z ◦ inxz and out¬x

def
= /z ◦ outxz . We shall call them twigs
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because, up to the equivalence ∼g, they can be ‘broken off’. The intuition is simply that a

twig occurring anywhere in a net can never fire. We express this formally as follows.

Lemma 4.14. For any s-agent a having x in its outer face, in¬
x ◦a ∼g out¬x ◦a ∼g a.

Proof (outline). For example, we must prove that there is a bisimulation of the form

S = {(in¬
x ◦a, a) | a an agent}. For this, we must use the fact that in¬

x cannot contribute

to transitions; that is, in¬
x ◦a L

� b′ iff there is a transition a
L

� a′ with b′ = in¬
x ◦a′. We

leave details to the reader.

Here we have abbreviated in¬
x ⊗ id to in¬

x, and we will continue to use such abbreviations

in what follows, but only in a composition that determines the identity id.

Now to prove that ∼g ⊆ ∼p it is enough to show that ∼g is an Lp-bisimulation. For

this, suppose that a ∼g b, and let a
�

� a in Lp. We must find b such that b
�

� b and

a ∼g b. If � = τ, this is easy because our assumption then implies that a � a, and hence

a
id

� a in Lg; but then, by bisimilarity in Lg, we have b
id

� b ∼g a, and by reversing

the reasoning for a, we get that b τ
� b, and we are done.

Now let � = +x (the case for −x is dual), so that a
+x

� a. This means that a has an

unmarked condition named x, so in Lg we have

a
inxz⊗id

� a′ = inxz ◦a.

Hence, by bisimilarity in Lg, we have

b
inxz⊗id

� b′ = inxz ◦b

where a′ ∼g b′ and b is the residual of b under the transition. This residual b differs from

b only in having a marked condition named x that was unmarked in b, and hence we

also have b
+x

� b in Lp. It remains only to show that a ∼g b. We deduce this using the

congruence of ∼g and Lemma 4.14:

a ∼g in¬
x ◦a = /z ◦ inxz ◦a = /z ◦a′

∼g /z ◦b′ = /z ◦ inxz ◦b = in¬
x ◦b

∼g b.

Therefore we have proved the following lemma, as desired.

Lemma 4.15. ∼g ⊆ ∼p in ´CE.

To complete our theorem we must prove the converse, ∼p ⊆ ∼g. It will be enough to

prove that

S def
= { (C ◦a, C ◦b) | a ∼p b }

is a bisimulation up to �. We get the required result by considering the case C = id.

We shall make use of the close correspondence between transitions in the concrete and

abstract LRSs, ´CE and CE, respectively. Furthermore, we shall use the convenient fact

that, by Proposition 3.30(3), in ´CE, every IPO is actually a pushout.

So let us assume that a ∼p b, and that C ◦a M
� a′′ in Lg. (This covers the case M = id.)

Then there is a reaction rule r and context D such that (M,D) forms a pushout for
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(C ◦a, r), as shown in the left-hand diagram of Figure 17, and a′′ � D ◦ r′. We now take the

pushout (L, F) for (a, r), and properties of pushouts then yield the right-hand diagram,

in which the upper square is also a pushout. So there is a transition a
L

� a′, where

a′ � F ◦ r′; note also that a′′ � C ′ ◦a′. Up to isomorphism, L is either an identity or a

non-identity label.

If L = id, then a � a′, hence a
τ

� a′ in Lp. Since a ∼p a′, we have b
τ

� b′ with

a′ ∼p b′. Then, also, b L
� b′, with underlying pushout as in the left-hand diagram of

Figure 18. We then proceed, as in the non-identity case below, to construct the right-hand

diagram and to find b′′ with C ◦b M
� b′′ and (a′′, b′′) ∈ S�.

If L is a non-identity label, we consider the anatomy of the transition a
L

� a′, as

exemplified in Figure 15. We know that the residual a differs from a only in the changed

marking of zero or more named conditions. It follows therefore that in Lp there is a

sequence of transitions

a
�1 � a1 . . .

�n � an = a (n � 0)

where �i ∈ {+xi,−xi}; each transition marks or unmarks a single named condition.

Moreover, a′ = L ◦a. Since a ∼p b, there exists a similar sequence

b
�1 � b1 . . .

�n � bn = b

with a ∼p b. This implies that b has the same initial marking as a for the named

conditions involved in the transitions. But we know that L ◦b is defined (since we assumed

M ◦C ◦b = C ′ ◦L ◦b to be defined), so in Lg there is a transition b
L

� b′ = L ◦b. Its

underlying pushout is shown in the left-hand diagram of Figure 18. Also, it has an

underlying reaction rule (s, s′), with b′ � G ◦ s′.
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Now we form the right-hand diagram of Figure 18 by replacing this pushout for

the lower square in the right-hand diagram of Figure 17. Since both small squares are

pushouts, the large square is also, and thus it underlies an Lg-transition

C ◦b M
� b′′ def

= E ◦ s′.

To complete our proof, we need only show that the pair (a′′, b′′) lies in S�. We already

know that a′′ � C ′ ◦a′ = C ′ ◦L ◦a. We can now compute

b′′ = E ◦ s′ = C ′ ◦G ◦ s′ � C ′ ◦b′ = C ′ ◦L ◦b,

and hence (a′′, b′′) ∈ S� since a ∼p b. It follows that ∼p ⊆ ∼g.

So we have proved the coincidence of our two bisimilarities.

Theorem 4.16 (coincidence of concrete bisimilarities). In ´CE the two bisimilarities ∼g and

∼p for concrete s-nets coincide. Hence, since ∼g is a congruence, ∼p is a congruence too.

It just remains to transfer this to abstract s-nets. But this is immediate by Propos-

ition 4.10 and Corollary 4.13, and we have finally arrived at the result we set out to

prove.

Corollary 4.17 (coincidence of abstract bisimilarities). In CE the two bisimilarities ∼g and

∼p for abstract s-nets coincide. Hence, since ∼g is a congruence, so is ∼p.

It is worth noting that since Lp and ∼p were defined without reference to link graphs,

it was not clear which contexts would preserve ∼p, that is, in what sense ∼p would be a

congruence. Thus link graph theory can claim to have provided a convincing answer to

these questions by means of an alternative characterisation of ∼p.

5. Related and future research

We conclude by commenting on some related work that has not already been mentioned

in the text, and at the same time point to some future directions for our own research.

In this paper we have limited our attention to link graphs, which are one constituent

of bigraphs, and have applied them to Petri nets where the other constituent, place

graphs, is not needed. The technical report by Jensen and the second author (Jensen and

Milner 2004) pursues a similar programme for full bigraphs, giving a full analysis of a finite

asynchronous π-calculus as reported earlier at a conference (Jensen and Milner 2003).

Jensen’s forthcoming Ph.D. Dissertation (Jensen 2006) will carry out this analysis not

only for the full π-calculus but also for the ambient calculus.

The first author, in his Ph.D. Dissertation (Leifer 2001), extended the present congruence

results for strong bisimilarity to many other behavioural relations, including weak

bisimilarity and the failures preorder; these results will be published separately. Jensen in

his Dissertation is also extending the first author’s treatment of weak transitions.

The long tradition of graph-rewriting is based on the double pushout (DPO) construction

originated by Ehrig (Ehrig 1979). Our use of (relative) pushouts to derive transitions is

quite distinct from the DPO construction, whose purpose is to explain the anatomy of

graph-rewriting rules (not labelled transitions) working in a category of graph embeddings
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where the objects are graphs and the arrows are embeddings. This contrasts with our

contextual s-categories, where the objects are interfaces and the arrows are graphs. But

there are links between these formulations, both via cospans (Gadducci 1999) and via

a categorical isomorphism between graph embeddings and a coslice over our contextual

s-categories (Cattani et al. 2002). Ehrig has investigated these links further (Ehrig 2002).

This led to the paper Ehrig and König (2004), which was further generalised by Sassone

and Sobocinski (2004), in which the RPO technique is transferred to graph-embedding

categories.

The bisimilarity based on the full transition system has been investigated in Montanari

and Sassone (1992), and has the advantage of a simple characterisation: it is the

coarsest congruence that is also a bisimulation. Sewell has argued that this approach

is unsatisfactory (Sewell 1998), and we agree with his view; we also aimed to achieve an

intuitively acceptable bisimilarity that is based on a smaller TS than the full one. To our

knowledge, the question of how to reduce significantly the full TS while retaining the

bisimilarity that it induces remains open.

Sassone and Sobocinski have generalised RPOs to groupoid RPOs, in a 2-category whose

2-cells (that is, arrows between arrows) are isomorphisms (Sassone and Sobocinski 2002).

They advocate treating graphical and other dynamic entities as arrows in such a 2-

category; the 2-cells keep track of the identity of nodes (which is essential for RPOs to

exist) and have the potential to serve as witnesses for rich structural congruences. An

advantage of their approach over s-categories is that composition is total, though this

comes at the cost of a more complicated notion of ‘2-RPO’. Our s-categories are well-

behaved, and lend themselves easily to the detailed analysis of transitions in the particular

case of bigraphs and link graphs, for example, the characterisation of all IPOs for a given

span (Theorem 3.18).The 2-categorical approach clearly deserves further development; but

until it can be shown to improve the treatment of results such as the characterisation of

IPOs and the adequacy theorem, there is good reason to retain the present approach.

The idea of finding conditions under which a labelled transition relation yields an

operational congruence has been thoroughly studied in work on structural operational

semantics (SOS) (Groote and Vaandrager 1992). The principle is to postulate rule formats,

which are conditions on an inductive presentation of a labelled transition relation that

ensure that operational equivalences are congruences. The work on SOSs takes almost the

opposite approach to the one we consider here by postulating that a labelled transition

relation is already given and then showing that if it satisfies a particular format then

the congruences follow. By contrast, we regard reaction rules as primitive, not labelled

transitions, and aim to synthesise a labelled transition relation from the reaction rules for

which operational equivalences are congruences.

The idea that the labels of a process can be those contexts that enable reactions has

been a longstanding intuition in the field. It appeared formally in Abramsky’s applicative

bisimilarity (Abramsky and Ong 1993) and was the basis of Bernstein’s work on rule

formats (Bernstein 1998) and Jeffrey and Rathke’s LTS for a variant of the λ-calculus

with fresh name creation (Jeffrey and Rathke 1999).

The tile model (Gadducci and Montanari 2000) generalises rule formats by using a

rich 2-categorical structure to describe the composition of the parts of an LTS derivation.
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By taking the appropriate notion of tile dynamic bisimulation to close up by context

composition, it is possible to recover open bisimilarity in the π-calculus (Bruni et al. 2005)

as well as giving a semantics to logic programming (Bruni et al. 2001).

The ‘dualism’ of graphs-as-arrows versus graphs-as-objects deserves further comment.

From the graph-rewriting perspective the latter is considered basic, and, indeed, embed-

dings as arrows are a natural way to distinguish different occurrences of one entity within

another. From the process calculus perspective, it is normal to represent processes as terms

of an algebra; one reason is the composition of such terms aligns well with the composition

of programs, and, indeed, there are good examples of programming languages derived

from process calculi. ‘Bigraphs-as-arrows’ can be seen as an instance (or an enrichment)

of Lawvere’s algebraic theories (Lawvere 1963), the standard categorical treatment of

algebra. In this spirit, the second author has completely axiomatised the algebra of pure

bigraphs (Milner 2004b).

The case-studies on deriving transitions from reaction rules, in both the π-calculus and

Petri nets, have shown an interesting mismatch between these derived transitions and

existing (or putative) transitions defined ab initio for these calculi, even when the bisim-

ilarities agree. One phenomenon, seen here for Petri nets, is that the derived transitions

have redundancy. This is because we derive transitions for each reaction rule separately;

no advantage is gained from treating a whole rule-set. An interesting future study would

be to somehow detect and eliminate redundancies to arrive at simpler transition systems.

We have discussed a way of deriving a non-trivial transitional theories for graphical

models of mobile systems, and this has served to calibrate such a model against process

calculi. But for many applications it will be important to look beyond theories of an

algebraic character, and pursue a kind of spatio-temporal logic (Caires and Cardelli 2001;

Caires 2004). Such logics admit a partial, rather than holistic, analysis of complex systems,

and they also lend themselves to powerful mechanical assistance (model-checking). The

present work will then be useful in studying the extent to which the algebraic and logical

theories agree.

Appendix A. Proofs

Lemma 3.12. (�B, B) is a candidate RPO for �A relative to �D.

Proof. By symmetry, to prove B0 ◦A0 = B1 ◦A1, it will be enough to consider cases for

p ∈ W � P0, and for the value of A0(p):

Case: p ∈ P0−P2, A0(p) = e ∈ E0.

In this case (B1 ◦A1)(p) = B1(p) = D1(p) = (D1 ◦A1)(p) = (D0 ◦A0)(p) = A0(p) =

(B0 ◦A0)(p).

Case: p ∈ P0−P2, A0(p) = x0 ∈ X0.

In this case (B1 ◦A1)(p) = B1(p) = x̂0 = B0(x0) = (B0 ◦A0)(p).

Case: p ∈ W � P2, A0(p) = e ∈ E0−E2.

In this case (B0 ◦A0)(p) = A0(p) = e. Also, (D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so for

some x1 ∈ X1 we have A1(p) = x1 and D1(x1) = e. Hence x1 /∈ X ′
1, and thus

(B1 ◦A1)(p) = B1(x1) = D1(x1) = e.
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Case: p ∈ W � P2, A0(p) = e ∈ E2.

In this case (D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so, A1(p) = e also. Hence (B1 ◦A1)(p) = e =

(B0 ◦A0)(p).

Case: p ∈ W � P2, A0(p) = x0 ∈ X ′
0.

In this case D0(x0) ∈ E3 � Z , so (D1 ◦A1)(p) = (D0 ◦A0)(p) ∈ E3 � Z . Hence, for some

x1 ∈ X ′
1 we have A1(p) = x1 and D1(x1) = D0(x0). Hence (B0 ◦A0)(p) = B0(x0) =

D0(x0) = D1(x1) = B1(x1) = (B1 ◦A1)(p).

Case: p ∈ W � P2, A0(p) = x0 ∈ X0−X ′
0.

In this case D0(x0) = e ∈ E1 −E2. Hence (D1 ◦A1)(p) = (D0 ◦A0)(p) = e, so A1(p) = e.

So (B1 ◦A1)(p) = e = D0(r0) = B0(x0) = (B0 ◦A0)(p).

We now prove B ◦B0 = D0 by case analysis:

Case: x ∈ X ′
0.

In this case (B ◦B0)(x) = B(0̂, x) = D0(x).

Case: x ∈ X0−X ′
0.

In this case B0(x) = D0(x) ∈ E0−E2, so (B ◦B0)(x) = D0(x).

Case: p ∈ P1−P2, D0(p) ∈ E1−E2.

Since D0 ◦A0 = D1 ◦A1, we have A1(p) /∈ X1, so B0(p) = D0(p) ∈ E1 −E2. Hence

(B ◦B0)(p) = B0(p) = D0(p).

Case: p ∈ P1−P2, D0(p) ∈ E3 � Z .

Since D0 ◦A0 = D1 ◦A1, there exists x ∈ X1 with A1(p) = x. Moreover, we can readily

deduce x ∈ X ′
1, so B0(p) = 1̂, x. Hence (B ◦B0)(p) = B(1̂, x) = D1(x) = (D1 ◦A1)(p) =

(D0 ◦A0)(p) = D0(p).

Case: p ∈ P3.

In this case (B ◦B0)(p) = B(p) = D0(p).

Theorem 3.13 (RPOs in link graphs). In ´Lig, whenever a pair �A of link graphs has a

bound �D, there exists an RPO (�B, B) for �B relative to �D, and Construction 3.10 yields

such an RPO.

Proof. We have already proved that the triple (�B, B) built in Construction 3.10 is an

RPO candidate. Now consider any other candidate (�C,C) with intervening interface Y .

Ci has nodes Vı−V2 � V4 (i = 0, 1) and C has nodes V5, where V4 � V5 = V3. We have to

construct a unique mediating arrow Ĉ , as shown in the diagram.

C0

Ĉ
X1X0

C1

B

B1

D0 D1

A1

Z

B0

A0

X̂

C

Y
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We define Ĉ with nodes V4 as follows:

for x̂ = î, x ∈ X̂ : Ĉ(x̂)
def
= Ci(x)

for p ∈ P4 : Ĉ(p)
def
= Ci(p) .

Note that the equations Ĉ ◦Bi = Ci (i = 0, 1) determine Ĉ uniquely, since they force the

above definition. We now prove the equations (considering i = 0):

Case: x ∈ X ′
0.

In this case (Ĉ ◦B0)(x) = Ĉ(0̂, x) = C0(x).

Case: x ∈ X0−X ′
0.

In this case D0(x) ∈ E1−E2, so B0(x) = D0(x), and thus (Ĉ ◦B0)(x) = D0(x). Also, since

C ◦C0 = D0 ∈ E1−E2, we have C0(x) = D0(x).

Case: p ∈ P1−P2, D0(p) ∈ E1−E2.

Since D0 ◦A0 = D1 ◦A1, we have A1(p) /∈ X1, so B0(p) = D0(p), and we then get

(Ĉ ◦B0)(p) = D0(p). Also, C0(p) = (C ◦C0)(p) = D0(p).

Case: p ∈ P1−P2, D0(p) ∈ E3 � Z .

In this case A1(v) = x ∈ X ′
1 with D1(x) = D0(p), and B0(p) = 1̂, x. So (Ĉ ◦B0)(p) =

Ĉ(1̂, x) = C1(x) = (C0 ◦A0)(p) = C0(p).

Case: p ∈ P4.

In this case (Ĉ ◦B0)(p) = Ĉ(p) = C0(p).

It remains to prove that C ◦ Ĉ = B. The following cases suffice:

Case: x̂ = 0̂, x ∈ X, B(x̂) ∈ E4.

In this case (C ◦ Ĉ)(x̂) = Ĉ(x̂) = C0(x) = D0(x) = B(x̂).

Case: x̂ = 0̂, x ∈ X, B(x̂) ∈ E5 � Z .

In this case D0(x) = B(x̂) ∈ E5 �Z , so for some y ∈ Y we have C0(x) = y and C(y) =

B(x̂). But, by definition, Ĉ(x̂) = y, so (C ◦ Ĉ)(x̂) = C(y) = (C ◦C0)(x) = D0(x) = B(x̂).

Case: p ∈ P4, B(v) ∈ E4.

In this case (C ◦ Ĉ)(p) = Ĉ(p) = C0(p) = D0(p) = B(p).

Case: p ∈ P4, B(p) ∈ E5 � Z .

In this case B(p) = D0(p) = C(y), where C0(p) = y ∈ Y , and, by definition, Ĉ(p) =

C0(p), so (C ◦ Ĉ)(p) = C(y) = B(p).

Case: p ∈ P5.

In this case (C ◦ Ĉ)(p) = C(p) = D0(p) = B(p).

Hence Ĉ is the required unique mediator, and (�B, B) is an RPO.

Appendix B. Commentary

A tractable definition of link graphs is crucial to the development of bigraphs. There is

at least one alternative definition, which was adopted in the initial formulation of link

graphs (Milner 2001b). (In that paper they were called monographs.) Here we compare

that definition with the present one, explaining why we have adopted the latter.

The reader may note that the present definition is not self-dual; that is, inner and outer

names are not treated symmetrically, so the inversion of a link graph is no longer a link
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graph. The key point is that each link may contain many inner names, but at most one

outer name, which is the image under the link map of each point in the link.

The earlier definition of link graphs (Milner 2001b) is indeed self-dual. Instead of

using a link map, it defines the links of G : X →Y to be the cells of a partition of the

set X + P + Y , where P are the ports of G. In other words, the link map is replaced

by an equivalence relation over ports, inner names and outer names, and a link is an

equivalence class. If H : Y →Z has ports Q, then the link equivalence for H ◦G is the

smallest equivalence over X +P +Y +Q+Z that includes the link equivalences of G and

H . This easily leads to an s-category. Moreover, in this s-category there is no role for the

set E of edges (closed links) here associated with a link graph, so the support of a link

graph with the earlier definition is just the set of its nodes.

Much of the theory presented here was developed for the earlier version of link graphs

by the second author, who thought, as the reader may also, that it was the obvious and

best formulation. Equivalence relations are well understood and there are well-known

techniques for manipulating them. Two factors, however, led to the present formulation.

The first is that proofs using equivalence relations turn out to be significantly more

complex than those for link maps. To measure this, the reader may like to compare the

work of Section 2.3 and Appendix A here with the corresponding work for the earlier

definition of bigraphs in Section 4 and Appendices B and C in Milner (2001b). Apparently,

for our purposes, maps are easier than equivalences!

The second factor against the earlier definition of link graphs is that RPOs do not

always exist, as they do in the present formulation. They do indeed exist for a pair �A with

bound �D, provided that at least one of the arrow �A is an epimorphism. Now, a link graph

with the earlier definition is epi iff it has no idle names and no aliases (an alias is a link

with two or more outer names). Figure 15 of Milner (2001b) provides a counter-example

showing the lack of an RPO when neither of �A is epi. Thus, by admitting aliases (which

we must if link graphs are to be self-dual), we also admit the partial lack of RPOs.

This second factor is not crippling, since when we use RPOs to generate labelled

transition systems one of the pair �A is always a redex, and there are good arguments for

excluding reaction rules with non-epi redexes. However, we expect other uses of RPOs to

arise, since an RPO merely exhibits the excess of one member of a span �A over the other,

and we may require this analysis more generally.

On balance, the combination of heavy proofs and only partial existence of RPOs has

led us to prefer the present formulation. In making this choice we certainly exclude some

possible applications: for example, aliases correspond to the explicit fusions introduced in

Gardner (2000). However, the range of applications is still very large, and we are keen to

explore this range with the most tractable conceptual tools.

Appendix C. No RPOs in abstract link graphs

Abstract link graphs, which were introduced in Definition 3.23, consist of lean-support

equivalence classes of concrete link graphs; that is, they forget the identity of nodes and

edges. As promised in Section 2.3 and at the end of Section 3.2, we now provide an

example to show that RPOs do not always exist in abstract link graphs.
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Fig. 19. A case where no RPO exists for abstract link graphs

Figure 19 shows a bound (D,D) for a pair (A,A), where A : � → x and D : x→ �. (We

are writing {x} as x.) It also shows two relative bounds for the pair, relative to (D,D). The

first of these is (idx, idx, D); the second, (�C,C), involves the creation of a new K node. Thus

the two relative bounds treat nodes differently: intuitively, the first regards the K-nodes

of the pair (A,A) as identical, while the second regards them as distinct. The large square

commutes in the category Lig of abstract link graphs only because an automorphism of

the composite link graph D ◦A is treated as an identity.

We now show that no RPO can exist for (A,A) to (D,D). We suppose (�B, B) is such

an RPO, and derive a contradiction from the assumption that mediating arrows F and

G exist to our two relative bounds. (The upper component B is not shown in the figure

as the argument does not require it.) Since F ◦B0 = idx, we have B0(x) = z and F(z) = x

for some z. Since B0 ◦A = B1 ◦A, we also have B1(x) = z. Since G ◦Bi = Ci (i = 0, 1),

we deduce that G(z) = x = y, which gives a contradiction since the link map of G is

single-valued. Thus RPOs do not exist in general in abstract link graphs.
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