ISSN 0249-6399

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

Acute
High-level programming language design
for distributed computation
Design rationale and language definition
12th October 2004

Peter Sewell James J. Leifér Keith Wansbrough Mair Allen-Williams*
Francesco Zappa Nardélli Pierre Habouzit Viktor Vafeiadis

*University of Cambridge  TINRIA Rocquencourt

http://www.cl.cam.ac.uk/users/pes20/acute

N° 5329
October 2004

THEME 1

apport
de recherche







% INRIA

ROCQUENCOURT

Acute

High-level programming language design
for distributed computation

Design rationale and language definition
12th October 2004

Peter Sewell James J. Leifér Keith Wansbrough Mair Allen-Williams*
Francesco Zappa Nardélli Pierre Habouzit Viktor Vafeiadis

*University of Cambridge  TINRIA Rocquencourt
http://www.cl.cam.ac.uk/users/pes20/acute

Théeme 1 — Reseaux et sysmes
Projet Moscova

Rapport de recherche n° 5329 — October 2004 — 193 pages

Abstract: This paper studies key issues for distributed programmmrggh-level languages. We discuss the design
space and describe an experimental languagete, which we have defined and implemented.

Acute extends arDCaml core to support distributed development, deployment, awdigion, allowing type-
safe interaction between separately-built programs. dxjgressive enough to enable a wide variety of distributed
infrastructure layers to be written as simple library cotieve the byte-string network and persistent store APIs,
disentangling the language runtime from communication.

This requires a synthesis of novel and existing featurésyfie-safe marshalling of values between programs; (2)
dynamic loading and controlled rebinding to local resosr¢8) modules and abstract types with abstraction bound-
aries that are respected by interaction; (4) global nanersergted either freshly or based on module hashes: at the
type level, as runtime names for abstract types; and at theléwel, as channel names and other interaction handles;
(5) versions and version constraints, integrated with tfgeatity; (6) local concurrency and thread thunkification;
and (7) second-order polymorphism withh@necase construct. We deal with the interplay among these featurds a
the core, and develop a semantic definition that tracksati&in boundaries, global names, and hashes throughout
compilation and execution, but which still admits an efintisnplementation strategy.
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Acute

Langage de programmation de haut niveau
pour la programmation des sysémes distribues

Motivations et définition du langage

Résune : Cet articleétudie les proliimes cds pogs par la conception et I'impientation de langages pour la
programmation distritee. Nous explorons I'espace de conception et proposonsngada,Acute, que nous avons
défini et impEmeneé.

Acute étend le noyau d®Caml afin de faciliter le @veloppement, le&ploiement et I'egcution des programmes
réepartis. Il garantit la g@servation des types et des abstractionsmmn lors des interactions entre programmes
developes €paement.Acute ne se focalise pas sur leadia de transport ou de stockage (TCP, UDP, fichiers, ...) il
est suffisamment expressif pour permettre l'iérpentation aise, sous forme de bibliodlgues de communication, de
multiples sckmas d’interaction.

Cela requiert une synélse de fonctionnafis nouvelles et existantes : (Ermlisation ire des valeurs; (2) liaison
dynamique des valeurs transmises aux ressources loc8esysgme de modules et types abstraits ; (4) espace de
nommage global; les noms sont soit construits feai®&xécution, soit bass sur des hashes> de modules; ils
sont utili€sa la fois pour les types abstraits, et commesalle multiplexage pour les interactions; (5) gestion de
versions de modules et de contraintes sur ces versionso@)oence locale et thunkifications des threads; (7)
polymorphisme du deugme ordre.

Nous inegrons ces fonctionnadis par dessus le noy@Laml. Nous avons @velop@ une €mantique qui frserve
les abstractions, les noms globaux, eddémshes a travers les processus de compilation et é@ion, et qui, malgr
tout, se pétea une impémentation efficace.

Mots-clées : langages de programmation, programmation diségumarshalling,&rialisation, types abstraits, mo-
dules, tleorie des typesyiL
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1 Introduction

Distributed computation is now pervasive, with executisoftware development, and deployment spread over large
networks, long timescales, and multiple administrativendms. Because of this, many distributed systems cannot be
deployed or updated atomically. They are not composed dfipieiinstances of a single program version, but instead
of many versions of many programs that need to interopgratbaps sharing some libraries but not others. Moreover,
the intrinsic concurrency and nondeterminism of distélousystems, and the complexity of the underlying network
layers, makes them particularly hard to understand andgdebu

Existing programming languages, such\Mis, Haskell, Java andC*, provide good support for local computation,
with rich type structures and (mostly) static guaranteetypé safety. When it comes to distributed computation,
however, they fall short, with little support for its manyssgm-development challenges.

This paper addresses the design of distributed languagesfo€us is on the higher-order, typed, call-by-value
programming of theML tradition: we concentrate on what must be addediitalike languages to support typed
distributed programming. We discuss the design space asutide a programming languagksute, which we have
defined and implemented.

Acute extends arDCaml core with a synthesis of several novel and existing featimemdly addressing naming
and identity in the distributed setting. It is not a propdsala full-scale language, but rather a testbed for experime
tation. Our extensions are lightweight changebitg but suffice to enable sophisticated distributed infrastme, e.g.
substantial parts dfoCaml [JoC] orNomadic Pict [SWP99], to be programmed as simple libraries (and its supior
interaction between programs goes well beyond these). \Wmnstrate this with an example typed communication
library, written inAcute above the byte-string TCP Sockets API, which requires ard o®st of the new features.

The paper is divided into four parts. Part | is devoted to dorinal presentation of the main design points
from the programmer’s point of view, omitting details of tbemantics. It is supported by a full definition Afute
in Part Ill, with the main points of the semantics explainedPart Il (including the compiled code and marshalled
values from the Part | examples), and by an implementatidre definition covers syntax, typing, compilation, and
operational semantics. The implementation is a prototgfiiejent enough to run moderate examples while remaining
close to the semantics. Part IV gives theute code for the communication infrastructure example of §lart ¥
gives a brief description of the implementation togethahwtie current command-line options, concrete syntax and
standard libraries. The definition and implementation Haotlh been essential: the synthesis of the various features
has involved many semantic subtleties. The definition islaoge (on the scale of thilL definition rather than an
idealised\-calculus) to make proofs of the properties feasible with dailable resources and tools. To increase
confidence in both semantics and implementation, thereforeimplementation can optionally type-check the entire
configuration after each reduction step.

Design rationale Part | is structured as follows, with §2—10 discussing thénrdasign points, 811 demonstrating
thatAcute does indeed support typeful distributed programs with amgte distributed communication infrastructure
library, and 812 and 813 describing related and future woik @oncluding. An appendix summarises most of the
Acute syntax.

82 and 83 set the scene: we discuss the right level of alistndot a general-purpose distributed language, arguing
that it should not have a commitment to any particular forrm@hmunication. We then recall the design choices for
simple type-safe marshalling, for trusted and untrustestaction.

84: We introducedynamic linkingandrebindingto local resources in the setting of a language withvinlike
second-class module system. There are many questionsdfdrew to specify which resources should be shipped
with a marshalled value and which dynamically rebound; velvatuation strategy to use; when rebinding takes effect;
and what to rebind to. In this Section our aim is to expose teégh choices rather than identify definitive solutions.
It is a necessary preliminary to our work in 885-11. Paute we make interim choices, reasonably simple and
sufficient to bring out the typing and versioning issues im@d in rebinding, which here is at the granularity of
module identifiers. A runningé.cute program consists roughly of a sequencaeiule definitions (ofML structures),
imports of modules with specified signatures, which may or may ndtrid@d, andmarks which indicate where
rebinding can take effect; together with running processeka shared store.

85: Type-safe marshalling demands a notiotypg identitythat makes sense across multiple versions of differing
programs. For concrete types this is conceptually striighird, but with abstract types more care is necessary.
We generate globally-meaningftype name®ither byhashingmodule definitions, taking their dependencies into



account;freshly at compile-timeor freshly at run-time The first two enable different builds or different programs
to share abstract type names, by sharing their module scodee or object code respectively; the last is needed to
protect the invariants of modules with effect-full iniigdtion.

86: Globally-meaningfukexpression-level namese needed for type-safe interaction, e.g. for commuminati
channel names or RPC handles. They can also be construdtediass or created fresh at compile time or run time;
we show how these support several important idioms. Theypatysupport andswap operations of Shinwell, Pitts
and Gabbay’$reshOCaml [SPGO03] are included to support swizzling of local namesmducommunication.

§7: In a single-program development process one ensurexé#uoaitable is built from a coherent set of versions
of its modules by controlling static linking — often by buihg) from a single source tree. With dynamic linking and
rebinding more support is required: we agersionsandversion constraint$o modules andimports respectively.
Allowing these to refer to module names gives flexibility ouahether code consumers or producers have control.

88: There is subtle interplay between versions, modulegoits, and type identity, requiring additional structure
in modules andimports. A mechanism for looking through abstraction boundasesso needed for some version-
change scenarios.

89: Local concurrency is important for distributed prograimg. Acute provides a minimal level of support,
with threads, mutexes and condition variables. Local nggsgdibraries can be coded up using these, though in
a production implementation they might be built-in for pemhance. We also providéaunkification allowing a
collection of threads (and mutexes and condition variglitebe captured as a thunk that can then be marshalled and
communicated (or stored); this enables various constfactaobility to be coded up.

Part | is an extended version of [SIW}) The main changes are:

addition of 84.7 on the relationship between modules andilésystem;

addition of 84.8 on module initialisation;

addition of 84.9 on marshalling references;

addition of 86.2—86.4 on naming: name ties, polytypic naperations, and the implementation of names;
extension of §7 on versioning;

extension of 88.2 on breaking abstractions aich!;

addition of 8.5 on marshalling inside abstraction bouiesar

extension of 89 on concurrency, with 89.1-9.11 coveringctiaces for threads anthunkify in more detail,
discussing several interactions between language featamel

e addition of 810 on polymorphism anthmecase.

Semantics and Implementation The definition of compilation describes how global type- @xgression-level
names are constructed. Unusually, the semantics presber@sodule structure throughout computation, instead of
substituting it away; this is needed to express rebindingstiaction boundaries are also preserved, with a generali-
sation of thecoloured bracketef Grossman et al [GMZ00] to the entifecute language (except, to date, the System
F constructs). This is technically delicate (and not neededmplementations, which can erase all brackets) but
provides useful clarity in a setting where abstraction lauies may be complex, with abstract types shared between
programs.

The semantics preserves also the internal structure oEkastd type data associated with freshly-created names.
This too can be erased in implementations, which can imphim&shes and fresh names with literal bit-strings (e.g.
160-bit SHA1 hashes and pseudo-random numbers), but iedeedtate type preservation and progress properties.
The abstraction-preserving semantics makes these ratbegsr than usual.

The Acute implementation is written irfFreshOCaml, as a meta-experiment in using the Fresh features for a
medium-scale program (some 25 000 lines). Itis a prototgipsigned to be efficient enough to run moderate examples
while remaining rather close to the semantics. The runtimerprets an intermediate language which is essentially
the abstract syntax extended with closures.

Syntax For concreteness we summarise the most interesting cotsttAcute for types, expressions, and defi-
nitions. The full grammar is given in the Definition and sumised in an appendix. Tt highlighted forms do not
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occur in source programs. Hekeis a module name, hash- or freshly-generatet; a freshly-generated name, and
[e] 2 is a coloured bracket. The other constructs are explairted la

T ::=..| T name|thread| h.t | n

e ::=...|marshal ¢; eo : T |unmarshal cas T |
freshT | cfreshr | hash(M;.x) 7 |hash(T, e2) 7/ |hash(T, es, e1) 7 |

swap e; and e, in e3|support e |thunkify | [e]Z

sourcedefinition ::=
module mode M : Sig version wvne = Str withspec |
import mode My, : Sig version wvce likespec by resolvespec = Mo |
mark MK

These are added to a substantial fragmeibf The core language @fcute consists of normallL types and expres-
sions: booleans, integers, strings, tuples, lists, optiogcursive functions, pattern matching, referencegpians,
and invocations of OS primitives in standard libraries. ded not have standatdL-style polymorphism, as our
distributed infrastructure examples need first-classtemimls (e.g. to code up polymorphic channels) and firss<l
universals (for marshalling polymorphic functions). Wertfore have explicit System F style polymorphism, and for
the time being the implementation does some ad-hoc panfedence. The full grammar of types is

T == int|bool|string|unit|char|void| Ty *..x Ty | Th +..+ To| T — T'| T list| T option| T ref|exn|
Mpyt|t|V¢.T|3¢.T|T name| T tie|thread | mutex | cvar | thunkifymode | thunkkey | thunklet | A.t |n

The module language includes top-level declarations ofcsires, containing expression fields and type fields,
with both abstract and manifest types in signatures. Mouhitialisation can involve arbitrary computation.

We omit some other standard features, simply to keep theitagegsmall: user-defined type operators, construc-
tors, and exceptions; substructures; and functors (weumelhat adding first-order applicative functors would be
straightforward; going beyond that would be more interggti Some more substantial extensions are discussed in the
Conclusion. To avoid syntax debate we fix on one in use, th@(afml.

Contribution  Our contribution is threefold: discussion of the designcgpand identification of features needed
for high-level typed distributed programming, the synibed those features into a usable experimental language,
and their detailed semantic design. We build on our previsok on global type names and dynamic rebinding
[Sew01, LPSWO03, BHS03] which developed some of these ideas for small calcule fiain technical innovations
here are: a uniform treatment of names created by hash, teesbmpile-time fresh, both for type names and (covering
the main usage scenarios) for expression names, dealihgwatlule initialisation and dependent-record modules;
explicit versions and version constraints, with their ca&té interplay with imports and type equality; module-leve
dynamic linking and rebinding; support for thunkificati@nd an abstraction-preserving semantics for all the above.
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Part |
Design Rationale

2 Distributed abstractions: language vs libraries

A fundamental question for a distributed language is whatroeanication should be built in to the language runtime
and what should be left to libraries. The runtime must be lyideployed and so is not easily changed, whereas addi-
tional libraries can easily be added locally. In contrastdme previous languages (efgcile [TLK96], Obliq [Car95],
andJoCaml [JoC]), we believe thaa general-purpose distributed programming language sthawit have a built-in
commitment to any particular means of interaction

The reason for this is essentially the complexity of theriiated environment: system designers must deal with
partial failure, attack, and mobility — of code, of devicasd of running computations. This complexity demands a
great variety of communication and persistent store attstras, with varying performance, security, and robustnes
properties. At one extreme there are systems with tighdlypted computation over a reliable network in a single trust
domain. Here it might be appropriate to use a distributedeshenemory abstraction, implemented above TCP. At
another extreme, interaction may be intrinsically asyaobhus between mutually-untrusting runtimes, e.g. wittpery
tographic certificates communicated via portable persistorage devices (smartcards or memory sticks), between
machines that have no network connection. In between, #meraystems that require asynchronous messaging or
RMI but, depending on the network firewall structure, turthed over a variety of network protocols.

To attempt to build in direct support for all the requiredtadstions, in a single general-purpose language, would be
a never-ending task. Rather, the language should be atl@falestraction that makes distribution and communication
explicit, allowing distributed abstractions to be expszgkas libraries.

Acute has constructearshal andunmarshal to convert arbitrary values to and from byte strings; they lba
used above any byte-oriented persistent storage or coraation APIs.

This leaves the questions of (a) how these should behavegiafip for values of functional or abstract types, and
(b) what other local expressiveness is required, espgdrathe type system, to make it possible to code the many
required libraries. The rest of the paper is devoted to these

3 Basic type-safe distributed interaction

In this section we establish our basic conventions and gsisoms, beginning with the simplest possible examples of
type-safe marshalling. We first consider one program thadséhe result of marshallirgyon a fixed channel:

I0.send( marshal "StdLib" 5 : int )
(ignore the"stdLib" for now) and another that receives it, addand prints the result:
I0.print_int (3+(unmarshal (I0.receive()) as int))

Compiling the two programs and then executing them in palredkults in the second printirgy This and subsequent
examples are executabdeute code. For brevity they use a simple address-i@skbrary, providing communication
primitiveSsend: string->unit andreceive:unit->string. (There are two implementations o, one uses TCP
via theAcute sockets API, with the loopback interface and a fixed port;atier writes and reads strings from a file
with a fixed name.) Below we write the parallel execution & ttvo separately-built prograngg andp2 separated
by a —.

For safety, a type check is obviously needed at run-time énstcond program, to ensure that the type of the
marshalled value is compatible with the type at which it Wwélused. For example, the second program here

I0.send( marshal "StdLib" "five" : string )
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I0.print_int (3+(unmarshal (I0.receive()) as int))

should raise an exception. Allowing interaction via an ety medium inevitably means that some dynamic errors
are possible, but they should be restricted to clearlytiiable program points, and detected as early as possihis. T
error can be detected at unmarshal-time, rather than wieenetieived value is used as an argument &b we should
do that type check at unmarshal-time. (In some scenariogayee able to exclude such errors at compile-time, e.g.
when communicating on a typed channel; we return to this ih 86

Theunmarshal dynamic check might be of two strengths. We can:

(a) include with the marshalled value an explicit repreagon of the type at which it was marshalled, and check
at unmarshal-time that that type is equal to the type expdayetheunmarshal — in the examples above,
int=int andstring=int respectively; or

(b) additionally check that the marshalled value is a wethfed representation of something of that type.

In a trusted setting, where one can assume that the stringreated by marshalling in a well-behaved runtime (which
might be assured by network locality or by cryptographicaifotected interaction with trusted partners), option (a
suffices for safety.

If, however, the string might have been created or modifiedrbwpttacker, then we should choose (b), to protect
the integrity of the local runtime. This option is not alwayailable, however: when we consider marshalled values of
an abstract type, it may not be possible to check at unmatishalthat the intended invariants of the type are satisfied.
They may have never been expressed explicitly, or be trdbajlproperties. In this case one should marshal only
values of concrete typés.

A full language should provide both, but Aczute we focus on the trusted case, with option (a), and the prablem
of distributed typing, haming, and rebinding it raises. Ar@ques for the untrusted case, including XML support and
proof-carrying code, are also necessary but are largeipgadnal.

We do not discuss the design of the concrete wire format fosh@dled values — thAcute semantics presupposes
just a partialraw_unmarshal function from strings to abstract syntax of configuratioimgluding definitions and
store fragments; the prototype implementation simply ese®nical pretty-prints of abstract syntax. A production
language would need an efficient and standardised intelimaf@rmat, and for some purposes (and for simple types)
a canonical XML representation would be useful for interagien. In the untrusted case XML is now widely used
and good language support for (b) is clearly important.

4 Dynamic linking and rebinding to local resources

4.1 References to local resources

Marshalling closed values, such as #hand"five" above, is conceptually straightforward. The design space b
comes more interesting when we consider marshalling a thhterefers to some local resources. For example, the
source code of a function (it may be useful to think of a larlygypn software component) might mention identifiers
for:

(1) ubiquitous standard library calls, e.print_int;

(2) application-specific library calls with location-deygent semantics, e.g., routing functions;

(3) application code that is not location-dependent buh@¥n to be present at all relevant sites; and
(4) other let-bound application values.

In (1-3) the function should beeboundto the local resource where and when it is unmarshalled, eelsein (4)
the definitions of resources must be copied and sent alomgebtfeir usages can be evaluated.

There is another possibility: a local resource could be eded into adistributed referencevhen the function is
marshalled, and usages of it indirected via further netweorkmunication. In some scenarios this may be desirable,
but in others it is not, where one cannot pay the performanse for those future invocations, or cannot depend

10ne could imagine an intermediate point, checking the reptatien type but ignoring the invariants, but the posdipitf breaking key
invariants is in general as serious as the possibility oéikirey the local runtime.
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on future reliable communication (and do not want to makeheéaegocation of the resource separately subject to
communication failures). Most sharply, where the funci®marshalled to persistent store, and unmarshalled after
the original process has terminated, distributed refereace nonsensical. Following the design rationale of 82jave
not support distributed references directly, aiming ratb@nsure our language is expressive enough to allow idsar

of ‘remotable’ resources to be written above our lowerd@varshalling primitives.

4.2 What to ship and what to rebind

Which definitions fall into (2) (to be rebound) and (4) (to bépgied) must be specified by the programmer; there is
usually no way for an implementation to infer the correctdsbur. How this should be expressed in the language is
explored below.

On the other hand, tracking which definitions need not bepsd{3) because they are present at the receiver can
be amenable to automation in some scenarios: in the case wieehave good connectivity, and are communicating
one-to-one rather than via multicast, the two parties camaxge fingerprints of what is required/present. If there
is a repeated interchange of messages, the parties may astes this data from one to another. We believe a good
language should make it possible to encode such algorithmsgain, the variety of choices of desirable distributed
behaviour leads us to believe that none should be built ico#img them requires some reflectivity — to inspect the
set of resources required by a value, and calculate the tsobd®se that are not already present at the receiver. In
this paper we do not go into this further, and suaejgotiationprotocols are not expressible Atute at present.

Instead, we adapt the mechanism proposed in [BB8} (from a lambda-calculus setting to &t -style module
language) to indicate which resources should be reboundvainch shipped for any marshal operation. Anute
program consists roughly of a sequence of module definitioterspersed witmarks followed by running processes;
those module definitions, together with implicit module diibns for standard libraries, are the resources. Marks
essentially name the sequence of module definitions pregedem. Marshal operations are each with respect to a
mark; the modules below that mark are shipped and referéngasdules above that mark are rebound, to whatever
local definitions may be present at the receiver. The masdLib" used in 83 is declared at the end of the standard
library; both this mark and library are in scope in all exae®l

In the following example the sender declares a moduldth ay field of typeint and values. It then marshals
and sends the valuin ()->M.y. Thismarshal is with respect to markStdLib", which lies above the definition
of modulelM, so a copy of the! definition is marshalled up with the valdan ()->M.y. Hence, when this function is
applied to() in the receiver the evaluation ®f y can use that copy, resulting @

module M : sig val y:int end = struct let y=6 end
I0.send( marshal "StdLib" (fun (O->M.y))

(unmarshal (I0.receive ()) as unit -> int) ()

On the other hand, references to modules above the specifiddaan be rebound. In the simplest case, one can
rebind to an identical copy of a module that is already presarthe receiver (for (3) or (1)). In the example below,
theM1.y reference tai1 is rebound, whereas the first definition)sf is copied and sent with the marshalled value.
This results in() and ((6,3) ,4) for the two programs.

module Ml:sig val y:int end = struct let y=6 end
mark "MK"
module M2:sig val z:int end = struct let z=3 end

I0.send( marshal "MK" (fun ()-> (Ml.y,M2.z))

: unit->int*int)
module Ml:sig val y:int end = struct let y=6 end
module M2:sig val z:int end = struct let z=4 end
((unmarshal (I0.receive()) as unit->int*int) () ,M2.z)

Note that we must permit running programs to contain mutipbdules with the same source-code name and interface
but with different definitions — here, after the unmarshad teceiver has two versionsid present, one used by the
unmarshalled code and the other by the original receivee.cod
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In more interesting examples one may want to rebind to a ldefiition of M1 even if it is not identical, to pick
up some truly location-dependent library. The code beloawsthis, terminating witi() and (7,3).

module Ml:sig val y:int end = struct let y=6 end
import Ml:sig val y:int end version * = Ml

mark "MK"

module M2:sig val z:int end = struct let z=3 end
I0.send( marshal "MK" (fun (O-> (Ml.y,M2.z))

! unit->int*int )
module Ml:sig val y:int end = struct let y=7 end
module M2:sig val z:int end = struct let z=4 end
(unmarshal (I0.receive ()) as unit->int*int) ()

The sender has two modules, andM2, with M1 above the markk. It marshals a valuéun (O-> (M1.y,M2.z),
that refers to both of them, with respect to that mark. TheatsM2.z statically and11.y dynamically at the mar-
shal/lunmarshal point: a copy B$ is sent along, and on unmarshalling at the receiver the val@bound to the local
definition ofM1, in whichy=7. To permit this rebinding we add an expligitport

import M1 : sig val y:int end version * = Ml

An import introduces a module identifier (the left) with a signature; it may or may not be linked to an earlier
module or import (this one is, to the earligt). The version * overrides the default behaviour, which would
constrain rebinding only to identical copiesiof. Marks are simply string constants, not binders subjecipbaa
equivalence, as they need to be dynamically rebound. Fongbeaif one marshals a function that has an embedded
marshal with respect to'StdLib", and then unmarshals and executes it elsewere, one typicatits the embedded
marshal to act with respect to the now-locabtdLib".

4.3 Evaluation strategy: the relative timing of variable indantiation and marshalling

A language with rebinding cannot use a standard call-byevaperational semantics, which substitutes out identifier
definitions as it comes to them, as some definitions may neeé t@bound later. Two alternative CBV reduction
strategies were developed in [BH&3] in a simple lambda-calculus settingdex-timein which one instantiates an
identifier with its value only when the identifier occurs irdex-position, andlestruct-timewvhere instantiation may
occur even later. Here, to make the semantics as intuitiygoasible, we use the redex-time strategy for module
references (local expression reduction remains stand@xg.C

For example, the first occurrenceMfy in the first program below will be instantiated byefore the marshal hap-
pens, whereas the second occurrence would not appear irpediion until a subsequent unmarshal and application
of the function to() ; the second occurrence is thus subject to rebinding. Thétsesre() and (6,2).

module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M

mark "MK"

I10.send( marshal "MK" (M.y, fun (O-> M.y)

: int * (unit->int) )
module M:sig val y:int end = struct let y=2 end
let ((x:int), (f:unit->int)) =

(unmarshal(I0.receive()) as int*(unit->int)) in

x, £ O)

4.4 The structure of marks and modules

A running Acute program has a linear sequence of evaluated definitions gnamkdule definitions and imports)
scoping in the running processes. Imports may be linked mnhyodule definitions (or imports) that precede them in
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this sequence. When a value is unmarshalled that carrietiaadimodule definitions with it, those definitions are
added to the end of the sequence.

This linear structure is not ideal. There are some obviossipte alternatives, whose exploration we leave for
future work. An unordered set of module definitions woulawalicyclic linking; or a tree structure would allow the
usual structure of nested scopes to be expressed. In aaufficreflective language (i.e. one that would support
negotiation, as mentioned above) one could think of codimgnarks, dynamically maintaining particular sets of
module names. One might well want explicit control over whatstnot be shipped, e.g. due to license restrictions or
security concerns.

With any mark structure one has to decide where to put modafiritions carried with values being unmarshalled.
A useful criterion is to ensure thegpeatedmnarshalling/unmarshalling, moving code between many inashbehaves
well. With the linear structure, putting definitions at thredeof the sequence ensures they are inside all marks, and so
will be picked up by subsequent marshals. In the hierartbicanordered cases it is less clear what to do.

A further criterion is that the user of a module should notdxguired to know its dependency tree — in particular,
if one specifies that the module be shipped, other moduldstth@ay have dynamically loaded should be treated
sensibly.

We also have to decide what to do with marks occurring betweedules being marshalled: they can either be
discarded or copied and sent. Aute we take the latter semantics, but neither is fully satisfgctin one, shipped
module code may refer to marks that are not present locallyxg other there can be unwanted mark shadowing. This
is a limitation of the linear structure.

4.5 Controlling when rebinding happens

We have to choose whether or not to allow execution of paptiadjrams, which are those in which some imports are
not linked to any earlier module definition (or import). Rarprograms can arise in two ways. First, they can be
written as such, as in conventional programs that use dynkmking, where a library is omitted from the statically-
linked code, to be discovered and loaded at runtime. For pheam

import M : sig val y:int end version * = unlinked
fun () -> M.y

Secondly, they can be generated by marshalling, when orghalara value that depends on a module above the mark
(intending to rebind it on unmarshalling). For example,fihal state of the receiver in

module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M

mark "MK"

I0.send( marshal "MK" (fun ()->M.y) : unit->int )

unmarshal (I0.receive ()) as unit->int
is roughly the program below.

import M : sig val y:int end version * = unlinked
fun ()-> M.y

If we disallow execution of partial programs then, when wenanshal, all the unlinked imports that were sent with
the marshalled value must be linked in to locally-availat#énitions; the unmarshal should fail if this is not possibl

Alternatively, if we allow execution of partial programsewnust be prepared to deal withnx in redex position
whereM is declared by an unlinked import. For any particular uninaksone might wish to force linking to occur at
unmarshal time (to make any errors show up as early as pepsibtlefer it until the imported modules are actually
used. The latter allows successful execution of a prograsrevbne happens not to use any functionality that requires
libraries which are not present locally. Moreover, the gesaoint’ could be expressed either explicitly (as with a cal
to the Unixdlopen dynamic loader) or implicitly, when a module field appearssidex-position.

A full language should support this per-marshal choice faausimplicity Acute supports only one of the alterna-
tives: it allows execution of partial programs, and no livkkis forced at unmarshal time. Instead, when an unlinked
M.x appears in redex position we look for Ero link the import to.
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4.6 Controlling what to rebind to

How to look for such am is specified by aesolvespethat can (optionally) be included in the import. By default
it will be looked for just in the running program, in the seqoe of modules defined above the import. Sometimes,
though, one may wish to search in the local filesystem (erg:doventional shared-object names suchias: . so. 6),
or even at a web URI. IAcute we make an ad-hoc choice of a simpésolvespetanguage: a resolvespec is a finite
list of atomic resolvespeceach of which is eithe$tatic_Link, Here_Already or a URI. Lookup attempts proceed
down the list, withStatic_Link indicating the import should already be linkébre Already prompting a search
for a suitable module (with the right name, signature andige) in the running program, and a URI prompting a file
to be fetched and examined for the presence of a suitablelmodu

There is a tension between a restricted and a geremalvespetanguage. Sometimes one may need the generality
of arbitrary computation (as idava classloaders), e.g. for the negotiation scenario abovasadn browsers that
dynamically discover where to obtain a newly-required plugOn the other hand, a restricted language makes it
possible to analyse a program to discover an upper boundeosettof modules it may require — necessary if one is
marshalling it to a disconnected device, say. A full languagould support both, though the majority of programs
might only need the analysable sublanguage.

Thisresolvespedata is added to imports, for example:

import M : sig val y:int end version * by
"http://wuw.cl.cam.ac.uk/users/pes20/acute/M.ac"
= unlinked

M.y + 3

Here theM. y is in redex-position, so the runtime examines hgolvespedist associated with the import of That
list has just a single element, the URItp: //www.cl.cam.ac.uk/users/pes20/acute/M.ac. The file there will
be fetched and (if it contains a definition Bfwith the right signature) the modules it contains will be edldo the
running program just before the import, which will be linkiedthe definition oM. TheM.y can then be instantiated
with its value.

URI resolvespexare, of course, a limited form of distributed reference.

Note that this mechanism is not an exception — aftex loaded, the!. y is instantiated in its original evaluation
context_ + 3. It could be encoded (with exceptions and affine continuatimr by encoding imports as option
references) but here we focus on the user language.

One would like to be able to limit the resources that a padicunmarshal could rebind to, e.g. to sandboxed ver-
sions of libraries, to securely encapsulate untrusted.cblis was possible in our earligrcalculus work [BHS 03],
but to support sufficiently-flexible limits here it seems @gsary to have more structure thanAleete linear sequence
of marks and modules.

4.7 The relationship between modules and the filesystem

Programs are decomposed not just into modules, but intoaepsource files. We have to choose whether (1) source
files correspond to modules (as@taml, where a file namedloo .m1 implicitly defines a modul®oo), or (2) source
files contain sequences of module definitions, and are Ithgicancatenated together in the build process, or (3) both
are possible. As we shall see in the following sections, & déth version change we sometimes need to refer to the
results of previous builds. Fdtcute we take the simplest possible structure that supportsftiiswing (2) with files
containing compilation units:

compilationunit ::=
empty
e
sourcedefinition ;; compilationuntt
includesource sourcefilename ;; compilationunit
includecompiled compiledfilename ;; compilationunit
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The result of compilation is a compiled unit which is just gwence of compiled module definitions followed by an
optional expression.

compiledunit
empty
e
definition ;; compileduntt

This means that the decomposition of a program into files do¢sffect its semantics, except that when code is
loaded by a URtesolvespean entire compiled unit is loaded.

In Acute any modules shipped with a marshalled value are loadedhettotal runtime, but are not saved to local
persistent store to be available to future runtime instan@me could envisage a closer integration of communication
and package installation.

4.8 Module initialisation
In ML, module evaluation can involve arbitrary computation. &wample, in

module fresh M : sig val x: int ref val y:unit end
= struct let x=ref 3 let y=I0.print_int !x end

the structure associates non-value expressions toxdatiay; the evaluation to a structure value involves expression
evaluation which has both store and 10 effects. The stoszténables per-module state to be created.

This is also possible ilcute, though as we shall see in 85 it is necessary to distinguishkda® modules that
have such initialisation effects and modules that do note &taluation order for a single sequential program is
straightforward: a program is roughly a sequence of modefmitions followed by an expression; the definitions are
evaluated in that order, followed by the expression.

New module definitions can be introduced dynamically, bgtlubmarshalling and fetched viasolvespes. The
evaluation order ensures that any modules that must be al@ghave already been evaluated, and so unmarshalling
only ever adds module value definitions to the program.

Consider now the definitions fetched visesolvespecAs we do not have cyclic linking, these definitions must be
added before themport that demanded them. One could allow such definitions to beiedunits of unevaluated
definitions. In the sequential case this would be straigiwfod: simply by evaluating the extant definition list in
order, any newly-added definitions would be evaluated leefontrol returns to the program below. With concurrency,
however, there may be multiple threads referring to an itnihat triggers the addition of new definitions, and some
mechanism would be required to block linking of that impantilthey are fully evaluated (or, equivalently, block
instantiation from each new definition until it is evalugtedhis flow of control seems complex both from the pro-
grammer’s point of view and to express in the semantics; weetbre do not allow non-evaluated definitions to be
fetched via aesolvespecWe return to the interaction between module initialisatimd concurrency in §9.8.

In a language with finer-grain control of linking (for the mgigtion discussed in 8§4.2) one might want more
control over initialisation, allowing clients to demanctihown freshly-initialised occurrences of modules, Audtite
does not support this at present.

4.9 Marshalling references

Acute containsML-style references, so we have to deal with marshalling afesthat include store locations. For
example:

let (x:int ref) = ref J%[int] 5 in I0.send( marshal "StdLib" x : int ref)

I0.print_int ( ! %[int] (unmarshal (I0.receive ()) as int ref ))

Here the best choice for the core language semantics sedmasfto the marshalled value to include a copy of the
reachable part of the store, to be disjointly added to theesbd any unmarshaller. Just as in 84.1 we reject the
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alternative of building in automatic conversion of localerences to distributed references, as no single diseibut
semantics (which here should include distributed garbadeation) will be satisfactory for all applications. A ful
language must be rich enough to express distributed storariks above this, of course, and perhaps also other
constructs such as those of [SY97, BouO3].

Some applications would demand distributed referencestheg with distributed garbage collection (BgCaml
provides [Fes01]). We leave investigation of this, and eftifpe-theoretic support it requires, to future work.

One might well add more structure to the store to support medieed marshalling. In particular, one can envisage
regionsof local and of distributed store, perhaps related to thekmrsruicture. We leave the development of this to
future work also.

5 Naming: global module and type names

We now turn to marshalling and unmarshalling of values ofralbstypes. InML, and inAcute, abstract types can be
introduced by modules. For example, the module

module EvenCounter

. sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->2+x
end end

provides an abstract ty@renCounter . t with representation typent; this representation type is not revealed in the
signature above. The programmer might intend that all watdi¢his type satisfy the ‘even’ invariant; they can ensure
this, no matter how the module is used, simply by checkingttiestart andup operations preserve evenness.

Now, for values of typeEvenCounter.t, what should the unmarshal-time dynamic type equality krefc§3
be? It should ensure not just type safety w.r.t. the reptatien type, but als@bstraction safety— respecting the
invariants of the module. Within a single program, and fanoaunication between programs with identical sources,
one can compare such abstract types by their source-coldg path EvenCounter .t having the same meaning in
all copies (this is roughly what the manifest type and sitaglékind static type systems of Leroy [Ler94] and Harper
et al [HL94] do).

For distributed programming we need a notion of type equ#tiat makes sense at runtime across the entire dis-
tributed system. This should respect abstraction: twaratistypes with the same representation type but completely
different operations will have different invariants, aritbsld not be compatible. Moreover, we want common cases
of interoperation to ‘just work’: if two programs share afff¢et-free) module that defines an abstract type (and share
its dependencies) but differ elsewhere, they should betal#drchange values of that type.

We see three cases, with corresponding ways of construgiiglly-meaningful type names.

Case 1 For a module such avenCounter above that is effect-free (i.e. evaluation of the struchwdy involves
no effects) we can use modubashesas global names for abstract types, generalising our earbek [LPSWO03].
The typeEvenCounter. t is compiled tor. t, where the hash is (roughly)

hash(

module EvenCounter

. sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun(x:int)->2+x

end end

)

i.e. the hash of the module definition (in fact, of the abdtsamtax of the module definition, up to alpha equiva-
lence and type equality, together with some additional)dafaone unmarshals a pair of tyf@renCounter.t *
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EvenCounter.t the unmarshal type equality check will compare witht*h.t. This allows interoperation to just
work between programs that share fvenCounter source code, without further ado.

In constructing the hash for a modwewne have to take into account any dependencies it has on othdulas
M’, replacing any type and term referentgs t andM’.x. In our earlier work we did so by substituting out the
definitions of all manifest types and terms (replacing austtypes by their hash type name). Now, to avoid doing
that term substitution in the implementation, we replacex by » ’ . x, whereh ’ is the hash of the definition of’.
This gives a slightly finer, but we think more intuitive, raniof type equality. We still substitute out the definitioris o
manifest types from earlier modules. This is forced: in atexinwhereM. t is manifestly equal tant, it should not
make any difference to subsequent types which is used.

Case 2 Now consider effect-full modules such as tf&unter module below, where evaluating the expression
to a value involves an IO effect.

module fresh NCounter

. sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up =

let step=I0.read_int() in
fun (x:int)->step+x
end end

This reads anint from standard input at module initialisation time, and theariant — that all values of type
NCounter.t are a multiple of thatint — depends on that effect. For such effect-full modules ahftgpe name
should be generated each time the module is initialisedyratime, to ensure abstraction safety.

Case 3 Returning to effect-free modules, the programmer may wadbrce a fresh type name to be generated, to
avoid accidental type equalities between different ‘rusfsthe distributed system. A fresh name could be generated
each time the module is initialised, as in the second casgar time the module is compiled. This latter possibility,
as in our earlier work [Sew01], enables interoperation ketwprograms linked against the same compiled module,
while forbidding interoperation between different builds

For abstract types associated with modules it suffices tergém hashes or fresh nameper module, using the
varioush.t as the global type names for the abstract types of that module

We let the programmer specify which of the three behavicsireduired with eéhash, fresh, or cfresh mode
in the module definition, writing e.gnodule hash EvenCounter. In general it would be abstraction-breaking to
specifyhash or cfresh for an effect-full module. To prevent this requires somedkiri effect analysis, for which we
use coarse but simple notions\aluability, following [HS00], and ofcompile-time valuability We say a module is
valuable if all of the expressions in its structure are aiiis ifiypes are hash-generated. The set of valuable expnsssio
is intermediate between the syntactic values and the esipresthat a type-and-effect system could identify as &ffec
free, which in turn are a subset of the semantically effemt-fexpressions. They can include, e.g., applications of
basic operators such as2, providing useful flexibility.

The compile-time valuable, @mvaluable modules can also includefresh but otherwise are similar to the valu-
able modules. Theon-valuablemodules are those that are neither valuable nor cvaludbienk of thefresh, hash
or cfresh keywords are specified then a valuable module defaultash; a cvaluable module defaults tdresh;
and a non-valuable module musthessh. On occasion it seems necessary to override the valuabliggks, which
we make possible withash! andcfresh! modes. This is discussed in §8.3.

Acute also provides first-class System F existentials, as therexme with Pict [PTO0] andNomadic Pict
[SWP99, US01] demonstrates these are important for expgessessaging infrastructures. For these a fresh type
name will be constructed at each unpack, to correspond hatistatic type system.
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6 Naming: expression names

Globally-meaningfulexpression-level namese also needed, primarily as interaction handles — dibplatys for
high-level interaction constructs such as asynchronoasrels, location-independent communication, reliabls-me
saging, multicast groups, or remote procedure (or fungtiethod) calls. For any of these an interaction involves the
communication of a pair of a handle and a value. Taking asymcius channels as a simple example, these pairs
comprise a channel name and a value sent on that channelekeedispatches on the handle, using it to identify a
local data structure for the channel (a queue of pending agessor of blocked readers). For type safety, the handle
should be associated with a type: the type of values cargatidochannel. (RPC is similar except that an additional
affine handle must also be communicated for the return Jalue.

In Acute we build in support for the generation and typing of name esgions, leaving the various and complex
dynamics of interaction constructs to be coded up abovelrabliregy and byte-string interaction. As FreshOCaml
[SPGO03], for any typeg” we have a type

T name

of names associated with it. Values of these types (like hgpees) can be generated freshly at runtime, freshly at
compile-time, or deterministically by hashing, with exgg®n formsfresh, cfresh, hash(M.x), hash(T, e), and
hash(T, e, e). We detail these forms below, showing how they support séireportant scenarios. In each, the basic
guestion is how one establishes a name shared between seddeceiver code such that testing equality of the name
ensures the type correctness of communicated values.

The expressiofiresh evaluates to a fresh name at run-time The expressfiersh evaluates to a fresh name at
compile-time. It is subject to the syntactic restrictioattit can only appear in a compile-time valuable context. The
expressiorhash (M.x) compiles to the hash of the pair af and the labek, wheren is the (hash- or fresh-)name
associated with module, which must have as component. The expressitrash(T, e) evaluatese to a string
and then computes the hash of that string paired with thementepresentation of. (Recall that a string can be
injectively generated from an arbitrary value by marshglii The expressiohash(T, e2, e1) evaluates? to aT’
name ande2 to a string, then hashes the triple of the two and

Each name form generatds names that are associated with a tyffe For fresh and cfresh it is the type
annotation; forhash (M.x) it is the type of thex component of modul@; for hash (T, e) it is T itself; and for
hash(T,e2,e1) itis T. Of these,fresh is non-valuablecfresh is compile-time valuablehash(M.x) has the
same status a5 andhash(T, e) andhash(T, e2, e1) have the join of the status of their component parts.

(A purer collection of hash constructs, equally expressivauld behash(T), hash(e?, e2) (of a name and a
string) anchash(e?, T) (of a name and a type). We chose the set above instead as #mysbée the combinations
that one would commonly wish to use.)

6.1 Establishing shared names

For clarity we focus on distributed asynchronous messagingposing a moduleChan which implements a dis-
tributedDChan . send by sending a marshalled pair of a channel name and a valussaiti® network.

module hash DChan :
sig
val send : forall t. t name * t -> unit
val recv : forall t. t name * (t -> unit) -> unit
end

This uses names of tyge name as channel names to communicate values of e

Scenario 1 The sender and receiver both arise from a single executi@nsigle build of a single program. The
execution was initiated on machine A, and the receiver isgrethere, but the sender was earlier transmitted to
machine B (e.g. within a marshalled lambda abstraction).

2Acute does not yet support user-definable type constructorsdiflitve would define an abstract type construcizan. ¢ : Type->Type and
havesend : forall t. t Chan.c name * t -> unit.
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Here the sender and receiver can originate from a singledestcope and a channel name can be generated at
runtime with afresh expression. This might be at the expression level, e.g.

let (c : int name) = fresh in

with sender DChan.send %[int] (c,v) and receiverDChan.recv %[int] (c,f) for some v:int and
f:int->unit (the%[int] is an explicit type application), or a module-level binder

module M : sig val ¢ : int name end
= struct 1let c = fresh end

generating the fresh name when thet is evaluated or theodule is initialised respectively. This first scenario is
basically that supported hjpCaml andNomadic Pict.

Commonly one might have a single receiver function for a naand tie together the generation of the name and
the definition of the function, with an additionathan field

val fresh_recv : forall t. (t -> unit) -> t name
implemented simply as

Function t -> fun f ->
let c=fresh in DChan.recv %[t] (c,f); c

and used as below.

module M : sig val c : int name end
= struct let c = DChan.fresh_recv %[int]
(fun x -> I0.print_int x+1) end

Note that thig1 is an effect-full module, creating the name toat module initialisation time.

Scenario 2 The sender and receiver are in different programs, but retstatically linked to a structure of names
that was built previously, with expressiatiresh for compile-time fresh generation.
Here one has a repository containing a compiled instancerafdule such as

module cfresh M : sig val ¢ : int name end
= struct let c = cfresh end

in a filem.aco, which is included by the two programs containing the seadérreceiver:

includecompiled "m.aco"
DChan.send %[int] (M.c,v)

includecompiled "m.aco"
DChan.recv %[int] (M.c,f)

Different builds of the sender and receiver programs wilbb& to interact, but rebuilding creates a fresh channel
name forc, so builds of the sender using one buildMokill not interact with builds of the receiver using anotheilt
of M.

This can be regarded as a more disciplined alternative tprilgrammer making use of an explicit off-line name
(or GUID) generator and pasting the results into their seeade.

Scenario 3 The sender and receiver are in different programs, but Hudhesthe source code of a module that
defines the functioti used by the receiver; the hash of that module (and the idemtjfis used to generate the name
used for communication.

This covers the case in which the sender and receiver aexetiff execution instances of the same program (or
minor variants thereof), and one wishes typed communieatievork without any (awkward) prior exchange of names
via the build process or at runtime. The shared code might be

module hash N : sig val £ : int -> unit end
= struct let f = fun x->I0.print_int (x+100) end
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module hash M : sig val ¢ : int name end
= struct let ¢ = hash(int,"",hash(N.f) %[]) %[] end

in afilenm. ac, included by the two programs containing the sender andvece

includesource "nm.ac"
DChan.send %[int] (M.c,v)

includesource "nm.ac"
DChan.recv %[int] (M.c,N.f)

The hash(N.f) gives aT name where T = int->unit iS the type ofN.f; the surrounding hash coercion
hash(int,"",_) constructs arint name from this3 This involves a certain amount of boiler-plate, with separa
structures of functions and of the names used to access buiihjs unclear how that could be improved.

It might be preferable to regard the hash coercion as a fashibplymorphic operators, indexed by pairs of type
constructors\t.T; andAt. T, (of the same arity), of typ&i.T; name — T, name.

Scenario 4 The sender and receiver are in different programs, shadrgpuarce code except a type and a string; the
hash of the pair of those is used to generate the name useahfmngnication.

let ¢ = hash(int,"foo") %[] in
DChan.send %[int] (c,v)

let ¢ = hash(int,"foo") %[] in
DChan.recv %[int] (c,f)

This idiom requires the minimum shared information betwibertwo programs. It can be seen as a disciplined, typed,
form of the use of untyped “traders” to establish interatticedia between separate distributed programs.

Scenario 5 The sender and receiver have established by some meandatyped shared name but need to
construct many shared names for different communicati@nicbls. The hash coercion can be used for this also,
constructing new typed names from old names, new types,raitdaay strings. Whether this will be a common idiom
is unclear, but it is easy to provide and seems interestiegptore. For example:

let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)

let c¢3 = hash(bool,"",c)

DChan.send %[int] (c1,v1); DChan.send %[int] (c2,v2); DChan.send %[bool] (c3,v3);

let c1 = hash(int,"one",c)
let c2 = hash(int,"two",c)
let ¢3 = hash(bool,"",c)

DChan.recv %[int] (c1,f1); DChan.recv %[int] (c2,f2); DChan.recv %[bool] (c3,f3);
Whether this will be a common idiom is unclear, but it is easgrvide and seems interesting to explore.

6.2 Arefinement: ties

Scenario 3 of §6.1 above usedash (N.f) as part of the construction of a namec used to access the £ function
remotely, linking the name and function together with aballan.recv (M.c,N.f). It may be desirable to provide
stronger language support for establishing this linkagaking it harder to accidentally use an unrelated name and
function pair. For this, we propose a built-in abstract type

T tie

of those pairs, with an expression foMrx that constructs the pair afash (M.x) and the value ofl.x (of type T
tie whereM.x : T), and projections from the abstraction tygpene of tie andval of tie.

3Such coercions suppdthan. c type constructors too, e.g. to constructiait Chan.c name from an (int->unit) name.
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6.3 Polytypic name operations
We include the basic polytypiereshOCaml expressions for manipulating names:

swap el and e2 in e3
el freshfor e2
support %[T] e

Hereswap interchanges two names in an arbitrary valftegshfor determines whether a name does not occur free
in an arbitrary value, anglupport calculates the set of names that do occur free in an arbiedng (returning them
as a duplicate-free list, at present).

We anticipate using these operations in the implementatialistributed communication abstractions. For exam-
ple, when working with certain kinds of distributed chanoe¢ must send routing information along with every value,
describing how any distributed channels mentioned in thhtescan be accessed.

We do not include th&reshOCaml name abstraction and pattern matching constructs justrfgligity — we
foresee no difficulty in adding them.

In contrast tadFreshOCaml, when one has values that mention store locations, theypatybperations have effect
over the reachable part of theute heap. This seems forced if we are to both (a) implement Higtd abstractions,
as above, and (b) exchange values of imperative data tyderimeptations.

For constructing efficient datastructures over names, asi€inite maps, we provide access to the underlying order
relation, with a comparison between any two names of the $gpee

compare_name %[T] : T name -> T name -> int

This cannot be preserved by name swapping, obviously, aitdveuld be an error to use it under any name abstrac-
tion, and in any other place subject to swapping. Nonetbetas performance cost of not including it is so great we
believe it is required. To ameliorate the problem slightheanight add a type

T nonswap

with a single constructdfonswap that can be used to protect structures that depend on therardeith swap either
stopping recursing or raising an exception if it encountkelNonswap constructor. For the time being, however,
nonswap iS not included iMcute.

6.4 Implementing names

In the implementation, all names are represented as fixegtHebit-strings (e.g. fron2'°) — both module-level

and expression-level names, generated both by hasheseashdlyfrThe representations of fresh names are generated
randomly. More specifically: we do not want to require that tmplementation generates each individual name
randomly, as that would be too costly — we regard it as acbépta generate a random start point at the initialisation
of each compilation and the initialisation of each languagime instance, and thereafter use a cheap pseudo-random
number function for compile-time fresh and run-time frettfe(successor function would lead to poor behaviour in
hash tables). This means that a low-level attacker woukhdfe able to tell whether two names originated from the
same point, and that (for making real nonces etc) a more sgjgedy randontresh would be required.

There is a possible optimisation which could be worthwHilsmany names are used only locally: the bit-string
representations could be generated lazily, when they atenfairshalled, with a finite map associating local represen-
tations (just pointers) to the external names which have bgported or imported. This could be garbage-collected as
normal. Whether the optimisation would gain very much is eaglso we propose not to implement it now (but bear
in mind that local channel communication should be made gkeap).

In order to implement the polytypic name operations theesgion-level names must be implemented with explicit
types.

7 \ersions and version constraints

In a single-executable development process, one enswexdecutable is built from a coherent set of versions of its
component modules by choosing what to link together — in &mpses, by working with a single code directory tree.
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In the distributed world, one could do the same: take sufitadare about which modules one links and/or rebinds to.
Without any additional support, however, this is an ernamrg approach, liable to end up with semantically-incohiere
sets of versions of components interoperating. Typechgogan provide some basic sanity guarantees, but cannot
capture these semantic differences.

One alternative is to permit rebinding only to identical imspof modules that the code was initially linked to.
Usually, though, more flexibility will be required — to permiebinding to modules with “small” or “backwards-
compatible” changes to their semantics, and to pick up tigeally location-dependent modules. It is impractical to
specify the semantics that one depends upon in interfacgeieral, theorem proving would be required at link time,
though there are intermediate behavioural type systems}h@fefore we introduogersionsas crude approximations
to semantic module specifications. We need a language abmsrsvhich will be attached to modules, a language of
version constraints, which will be attached to imports,tes&action relation, checked at static and dynamic linketim
and an implication relation between constraints, for chaifimports.

Now, how expressive should these languages be? Analogtmugig situation foresolvespes, there is a tension
between allowing arbitrary computation in defining the tielas and supporting compile-time analysis. Ultimately,
it seems desirable to make the basic module primitives peatrésron abstract types of versions and constraints —
in a particular distributed code environment, one may waparicular local choice for the languages. Fatte
once again we choose not the most general alternative, tetaich one which should be expressive enough for many
examples, and which exposes some key design points.

Scenario 1 Itis common to use version numbers which are supplied by thgrammer, with no checked relation-
ship to the code. As an arbitrary starting point, we takeigaraumbers to be nonempty lists of natural numbers, and
version constraints to be similar lists possibly ending iwillcard * or an interval; satisfaction is what one would
expect, with a matching any (possibly empty) suffix. Many minor enhancetsiare possible and straightforward.
Arbitrarily, we enhance version constraints with closedt-bpen and right-open intervals, elg.5-7, 1.8.-7, and
2.4.7-. These are certainly not exactly what one wants (they caexutess, for example, the set of all versions
greater tharz. 3. 1) but are indicative. Theneaningsf these numbers and constraints is dependent on some social
process: within a single distributed development envirenhone needs a shared understanding that new versions of
a module will be given new version numbers commensuratetivitit semantic changes.

Scenario 2 To support tighter version control than this, we can makeaigbe global module names (hash- or
freshly-generated) introduced in 85: equality testinghefse names is an implementable check for module seman-
tic identity. We let version numbers includgname and version constraints include module identifigr@hose in
scope, obviously). In each case the compiler or runtimeewrith the appropriate module name. This supports a
useful idiom in which code producers declare their exaattitheas the least-significant component of their version
number, and consumers can choose whether or not to be thigufsar For example, a module might specify it

is version2.3.myname, compiled to2.3.0xA564C8F3; an import in that scope might requige 3.M, compiled to
2.3.0xA564C8F3, or simply2.3.*; both would match it.

A key point is the balance of power between code producerscadd consumers. The above leaves the code
producer in control, who can “lie” about which version a miedis — instead of writingnyname they might write a
name from a previous build. This is desirable if they knowé¢hare clients out there with an exact-name constraint
but also know that their semantic change from that previaild lvill not break any of the clients.

Scenario 3 Finally, to give the code consumer more control, we allowst@ints not only on the version field of a
module but also on its actual name (which is unforgeableimitie language). Typically one would haaelefinition

of the desired version available in the filesystemAitute bringing it into scope a® with an include) and write
name=M. (These exact-name constraints are also used to conséfaciid mports when marshalling). One could also
cut-and-paste a name in explicitlyame=0xA564C8F3. To guarantee that only mutually-tested collections of utesl
will be executed together, e.g. when writing safety-caitisoftware, this would be the desired idiom everywhere,
perhaps with development-environment support.

The currentAcute version numbers and constraints, including all the abaeeas follows.

avne ::= Atomic version number expression
n natural number literal
N numeric hash literal
myname name of this module
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une ::= Version number expression

avne avne .vne
avce ::= Atomic version constraint expression
n natural number literal
N numeric hash literal
M name of modules
dvce ::= Dotted version constraint
avce | n-n’ | -n | n- | * | avce.dvce
vce ::= \ersion constraint
duvce dotted version constraint
name = M exact-name version constraint

Version number and constraint expressions appear in meduidimports as below.

definition ::= ...
module M:Sig version wne = Str
| import M:Sig version wvce
by resolvespec = Mo

In constructing hashes for modules we also take into accthit version expressions, to prevent any accidental
equalities. That version expression can mentipname, and, as we do not wish to introduce recursive hashes, the
hash must be calculated before compilation replageame with the hash.

It turns out that one needs exact-name version constraimjsst for user-specified tight version constraints, as in
the idiom above, but also during marshalling, when one mag bagenerate imports for module bindings that cross
a mark. Exact-name constraints seem to be the only reasodefzlult to use there.

One might wish to extend the version language further withjuactive version number expressions and disjunc-
tive constraints. One might also wish to support cryptolgi@pignatures on version numbers. Both would affect the
balance of power between code producer and consumer, aherf@xperience is needed to discover what is most
usable.

Finally, we have had to choose whether version numbers aeglit@ry or not. A hereditary version number for
a moduleM would include the version numbers of all the modules it delsern (and the version constraints of all
the imports it uses), whereas a non-hereditary version pumsljust a single entity, as in the grammar above. The
hereditary option clearly provides more data to usens, dfut, concomitantly, requires those users to understamd th
dependency structure — which usually one would like a modyfdem to insulate them from. If one really needs
hereditary numbers, perhaps the best solution would beppaostiversion number expressions that can calculate a
number fomM in terms of the numbers of its immediate dependencies, édingtuples andersion (M) expressions
to theavne grammar.

Just as fowithspes one might need rich development-environment supportalsecifications of version con-
straints, spread over the imports in the source files of @laaftware system, could be very inconvenient. One might
want to refer to the version numbers of a source-controksystuch as CVS, for example.

8 Interplay between abstract types, rebinding and versions

8.1 Definite and indefinite references

With conventional static linking, module references sughM & aredefinite in the terminology of [HP]: in any fully-
linked executable there is just a single sd¢cithough (with separate compilation) it may be unknown at jgitertime
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which module definition fow it will be linked to. In contrast, the possibility of rebimdj makes some references
indefinite— during a single distributed execution, they may be bourdifferent modules.
For example, consider a module that declares an abstractitgpdepends on the term fields of some other module:

module M : sig val f:int->int end
= struct let f=fun(x:int)->x+2 end
module EvenCounter

. sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->M.f x
end end

In the absence of any rebinding, the runtime type name foalistract typ&venCounter.t would be the hash of
the EvenCounter abstract syntax witht. f replaced byr. £, wherer is the hash of the abstract syntaxtofThis
dependence on theoperations guarantees type- and abstraction-presanvatio

Now, however, if there is a mark between the two module déimt a marshal can cut and rebind to any other
module with the same signature, perhaps breaking the amaoif EvenCounter .t that its values are always even.
TheM. £ module reference below is indefinite.

module M : sig val f:int->int end
= struct let f=fun (x:int)->x+2 end
import M : sig val f:int->int end version * = M

mark "MK"
module EvenCounter
: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->M.f x
end end

I10.send(marshal "MK" (fun ()->EvenCounter.get
(EvenCounter.up EvenCounter.start)):unit->int)

module M : sig val f:int->int end
= struct let f=fun (x:int)->x+3 end
(unmarshal (I0.receive ()) as unit->int) ()

To prevent this kind of error one can use a more restrictivsigg constraint in the import af thatEvenCounter
uses, either by using an exact-name constigant=M to allow linking only to definitions of1 that are identical to
the definition in the sender, or by using some conventionalbring. If no import is given explicitly, an exact-name
constraint is assumed.

The version constraint should be understood as an asséstitiee code author that whatevévenCounter is
linked with, so long as it satisfies that constraint (and aBs®an appropriate signature, and is obtained following any
resolvespepresent), the intended invariantsifenCounter . t will be preserved.

Now, what should the global type name farenCounter . t be here? Note that the original author might not have
had any” module to hand, and even if they did (as above), that moduletiprivileged in any wayEvenCounter
may be rebound during computation to otlianatching the signature and version constraint. In gemgydtie hash
for EvenCounter, analogously to our replacement of definite referentesk by the hash of the definition of’,
we replace indefinite import-bound references such .&sby the hash of thémport This names the set of altl
implementations that match that signature and versionting

In the case above this hash would be roughly

hash(import M:sig val f:int->int end version * )

and where one imports a module with an abstract type field
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import M : sig type t val x:t end
version 2.4.7-

the hashh =

hash(import M : sig type t val x:t end
version 2.4.7- ...)

provides a global name. t for that type.

In theEvenCounter example, the imported module had no abstract type fields. &they do, for type soundness
we have to restrict the modules that the import can be linketbtensure that they all have the same representation
types for these abstract type fields. We do so by requiringitspvith abstract type fields to havdikespedin place
of the . .. above), giving that information. A compildikespeds essentially a structure with a type field for each of
the abstract type fields of the import.

At first sight this is quite unpleasant, requiring the impostof a module to ‘know’ representation types which
one might expect should be hidden. With indefinite referertoemodules with abstract types, however, some such
mechanism seems to be forced, otherwise no rebinding ishp@ssMoreover, in practice one would often have
available a version of the imported library from which théoimation can be drawn. For example, one might be
importing a graphics library that exists in many versiong,for which all versions that share a major version number
also have common representations of the abstract typgesiaf, window, etc. A typical import might have the form

import Graphics:sig type t end version 2.3.%*
like Graphics2_0

(with more types and operations) whe&teaphics2_0 is the name o& graphics module implementation, which is
present at the development site, and which can be used bythgiler to construct a structure with a representation
for each of the abstract types of the signature.

While the abstraction boundaries are not as rigid adlin this should provide a workable idiom for dealing with
large modular evolving systems, supporting rebinding Bd allowing one to restrict type representation informiati
to particular layers. The only alternative seems to be toaraktypes fully concrete at interfaces where rebinding
may occur.

To correctly deal with abstract types defined by modules¥dthg an import, which use abstract type fields of the
imported module in their representation types, compilebpecsnust be included in the hashes of imports.

On the other hand, we choose not to includsolvespes in import hashes. This is debatable — the argument
against including them is that it is useful to be able to cleatig location of code without affecting types, and so
without breaking interoperation (e.g. to have a local codeam to change a web code repository to avoid a denial-
of-service attack etc.).

Note that the indefinite character of autports makes them quite different from module imports that arelves
by static linking, where typing can simply use module pathsame any abstract types andlk@specmachinery is
required. Both mechanisms are needed.

8.2 Breaking abstractions

In ongoing software evolution, implementations of an adxgtitype may need to be changed, to fix bugs or add
functionality, while values of that type exist on other miags or in a persistent store. It is often impractical to
simultaneously upgrade all machines to a new implememtataosion.

A simple case is that in which the representation of the abstype is unchanged and where the programmer
asserts that the two versions have compatible invariants jslegitimate to exchange values in both directions.sThi
may be the case even if the two are not identical, e.g. for faziesfcy improvement or bug fix. Here there should be
some mechanism for forcing the old and new types to be idanticeaking the normal abstraction barrier.

In [Sew01, LPSWO03] we proposeds&rong coercionsith! to do so, andAcute includes a variant of this. By
analogy withML sharing specifications, we allow a module definition to hawataspeg a list of equalities between
abstract types and representations of modules constreerdidr (often this will be of previous builds of the same
module).

definition
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module M : Sig version wne = Str withspec
withspec ::= empty | with! withspecbody
withspecbody empty | M.t=T,withspecbody

The compiler checks the representation type of these are equal to the types specified (respecting any internal
abstraction boundaries); if they are, the type equalitteshe used in typechecking this definition.

For example, suppose tlBrenCounter module definition of 85 was compiled to a fifet1_even.aco and is
widely deployed in a distributed system, and that later arezls a reviseBvenCounter module, adding an operation
or fixing a bug without making an incompatible type. A new miednith an addedlown operation can be written as
follows.

includecompiled "pll_even.aco"
module EvenCounter
. sig
type t = EvenCounter.t
val start:t
val get:t->int
val up:t->t
val down:t->t
end
= struct
type t=int
let start = 0
let get = fun (x:int)->x
let up = fun (x:int)->2+x
let down = fun (x:int)-> x-2
end
with! EvenCounter.t = int

In the interface here the typeof the new module is manifestly equal to the abstract typd the previously-built
module, and therith! enables the type equality between that abstract typeiando be used when typing the
new module. The new type is compiled to be manifestly equéthi® internal hash-name of) the old type. (For this
example, where the previo@senCounter had ahash-generated type, one could include the source of the prsviou
module rather than the compiled file, but if it weréresh-generated the compiled file is obviously needed.)

Thewithspeds, in effect, a declaration by the programmer that the oltirsgw implementations respect the same
important invariants — here, that values of the represimtégpe will always be even. In general they will not respect
exactly the same invariants. For example, here the new raaligws negativents, but the programmer implicitly
asserts that the clients of the old module will not be brokethis.

It would not suffice to check only that the new module respattsast the important invariants of the old, as if the
types are made identical then values produced by either imadn be acted upon by operations of the other.

In the more complex case where the old and new invariants@reampatible, or where the two representation
types differ, the programmer will have to write an upgradection. The same strong coercion can be used to make
this possible, with a module that contains two types, onecaukto each. An example is given in [LPSWO03].

There are several design options feithspes. In our earlier proposalgith! coerced an abstract type of the
module being defined to be equal to an earlier abstract typee iistead theith! simply introduces a type equality
to the typechecking environment; manifest types in theaige of the new module can be used to make the type
field of the compiled signature equal to the old. This simgdifthe semantics slightly and may be conceptually
clearer. We allow thevithspectype equalities to be used both for typechecking the bodjeihew module and for
checking that it does have the interface specified. One nmgttad only allow them to be used for the latter; it is
unclear whether this would always be expressive enoughpidgrammer has to specify the representation type in a
withspecexplicitly. This is fine for small examples, e.g. tiet above, but if the representation type is complex then it
would be preferable to simply writgith! M.t. That requires a somewhat more intricate semantics (ashwgking
of modules withwithspes then depends on the representation types of earlier ng)dahel so we omit it for the
time being. Finally, one might well want development-eamiment support, allowing collections of modules to be
‘pinned’ to the types in a particular earlier build withowving to edit each module to addathspecand make the
types manifestly equal to the earlier ones.
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8.3 Overriding valuability checks

The semantics for abstract type names outlined in 85 ensliaédwo instances of an effect-full module give rise
to distinct abstract types. In general this is the only adrlehaviour, as (as explained there) they may have very
different invariants. In practice, however, one may ofteantvto permit rebinding to modules which have some
internal state. For example, in the communication libragatibed in §11 theistributed_channel module stores
aTcp_string messaging.handle option Which is set by calls t®@istributed channel.init : Tcp.port

-> unit. One has to keep this as module state rather than threadiagdéehthrough th®istributed_channel
interface calls so that those calls can be correctly rebduisdy) one marshals a function mentioning them. Despite
the initialisation effect (evaluatingef None) we need the module name foistributed_channel to be hash-
generated, not fresh-generated, so that the abstract ityples interface are the same in different instance, so that
rebinding can take place. The desired behaviour really righfe conceptually-distinct abstract types of different
instances to be compatible. This could be expressed either

1. with module annotationlsash! andcfresh!, which override the valuability check but otherwise are liash
andcfresh; or

2. with an expression fornignore_effect(e), transparent at runtime but concealing arbitrary effest$aa as
valuability goes.

We choose the former, to make the coercion clearer in the la@turce and to avoid polluting the expression gram-
mar, but the latter has the advantage of localising the emeto where it is really needed.

8.4 Exact matching or version flexibility?

In 86 we focussed on name-based dispatch. An alternatieenidor remote invocation simply makes use of the
dynamic rebinding facilities provided iAcute, e.g. as in the code below where a thunk mentioning is shipped
from one machine to another.

module N:sig val f:int->unit end
= struct let f=fun x-> I0.print_int (x+1) end

mark "MARK-N"

I0.send (marshal "MARK-N" ((fun ()->N.f), 9))

module N:sig val f:int->unit end
= struct let f=fun x-> I0.print_int (x+1) end

mark "MARK-N"

let (g, (y:int))=unmarshal(I0.receive()) in g O y

As themarshal is with respect to a mark'{IARK-N") below the definition ofi, the pair of the thunk ane will
be shipped together with an unlinked import fgrwhen the unmarshalled thunk is applied that import willdree
linked to the local definition off on the receiver machine.

In the code as written the import will have an exact-nameiorrsonstraint, but this could be liberalised by writing
an explicit import in the sender, with an arbitrary versiamstraint.

This is quite different from the name-based dispatch of 86ene a simple name equality is checked for each
communication. Here, a full link-ok check is involved, ckieg a subsignature relationship and a version constraint.
It is therefore much more costly, but also allows much moopdlile linking.

Another difference between the two schemes is that with Alaased dispatch the receiver can express access-
control checks by testing name equality, whereas here onkweed to test equality of arbitrary incoming functions
(againstftun ()->N.f thunks), which we do not admit.

A common idiom may be to establish a shared structure of néaydgnamic linking (including a version check)
at the start of a lengthy interaction and thereafter to useenbased dispatch Acute does not yet provide the low-
level linking machinery needed for explicitly sending swchktructure (see the discussion of negotiation elsewhere),
so we do not explore this further here.

31



8.5 Marshalling inside abstraction boundaries

If one has a module defining an abstract type, and within tloatuie marshals a value of that type, one has to choose
whether it is marshalled abstractly or concretely. For gXefrin

module EvenCounter
. sig
type t
val start:t
val get:t->int
val up:t->t
val send : t -> unit
val recv : unit -> t
end
= struct
type t=int
let start = 0
let get = fun (x:int)->x
let up = fun (x:int)->2+x
let send = fun (x:t) -> I0.send( marshal "StdLib" x : t)
let recv = fun () -> (unmarshal (I0.receive()) as t)
end
EvenCounter.send (EvenCounter.start)

is the communicated value compatible witht or with EvenCounter.t? ForAcute we take the former option:
all types (in the absence of polymorphism) are fully norsedi with respect to the ambient type equations before
execution. Running the above in parallel with

I0.print_int (3+(unmarshal (I0.receive()) as int))

will therefore succeed.

One might well want more source-language control herewélig the programmer to specify that sucharshal
should be at the abstract type, but we leave this for futunk\lout cf. the comment on pad®). In general, with
nested modules and withith! specifications, there may be a complex type equation setgtauto select from.

9 Concurrency, mobility, and thunkify

Distributed programming requires support for local conency: some form of threads and constructs for interaction
between them.

9.1 Language-level concurrency vs OS threads

The first question here is whether to fix a direct relationshipe underlying OS threads or take language-level threads
to be conceptually distinct, which might or might not be ieyplented with one OS thread each. The former has the
advantages of a simple relationship with the OS scheduleicfwmay provide rich facilities, e.g. for QoS, that some
programs need) and the potential to exploit multiple preces It has the disadvantages of different concurrency
models on different OSs, and of a nontrivial relationshipdeen threading and the language garbage collector. The
latter gives the language implementor much more freedonpatticular, to support lightweight concurrency (as in
Erlang, Pict, JoCaml etc.), in which many parallel components simply send a ngessa two, it is desirable for
parallel composition to not require the (costly) constiartbf a new OS thread. Fdxcute we adopt language-level
concurrency.
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9.2 Interaction primitives

There are two main styles of interaction between threadseshmemory and message passing. The latter is a better
fit to large-scale distributed programming and, we beliefien leads to more transparent code. The former, however,
is needed when dealing with large mutable datastructunelssaits the imperative nature fL/OCaml programming.

In large programs we expect both to be requiredAdnte we initially provide shared-memory interaction,@§aml

does: references can be accessed from multiple threads,awiimic dereferencing and assignment, and mutexes
and condition variables can be used for synchronizatiores&tenable certain forms of message-passing interaction
to be expressed as library modules, which suffices for the tiging. In future we expect to build in support for
message-passing. Indeed, some forms require direct lgagugport (or a preprocessor-based implementation), e.g.
Join patterns with their multi-way binding construct.

9.3 Thunkification

We want to make it possible to checkpoint and move runningmaations — for fault-tolerance, for working with
intermittently-connected devices, and for system managén$everal calculi and languagdsCaml, Nomadic Pict,
Ambients,etc.) provided a linear migration construct, which movexemputation between locations.

It now appears more useful to support marshalling of contjmnts, which can then be communicated, check-
pointed etc. using whatever communication and persisterd sonstructs are in use. Taking a step further, as we have
marshalling of arbitrary values, marshalling of computiasi requires only the addition of a primitive for convertang
running computation into a value. We call thisinkification Checkpointing a computation can then be implemented
by thunkifying it, marshalling the resulting value, and tivrg it to disk. Migration can be implemented by thunkifi-
cation, marshalling, and communication. Note that thesenat in general linear operations — if a computation has
been checkpointed to disk it may be restarted multiple times

There are many possible forms of thunkification. The sintptet® be both subjective and synchronous: executing
thunkify in a single thread gives a thunk of that thread, essentialyuring the (single-thread) continuation of the
thunkify. Typically, though, the computation which one wishes taify will be composed of a group of threads.
The programmer would then have to manually ensure thatalihreads synchronize and then thunkify themselves,
and collect together the results. This would be very heagliring substantial rewriting of applications to maketthe
amenable to checkpointing or migration. Accordingly, wimlthit preferable to have an objective and asynchronous
thunkify, freezing a group of threads irrespective of their curreftaviour.

A group of threads may be intertwined with interaction ptivgis (i.e. mutexes and condition variables) used for
internal communication and synchronization. Accordinghunkify should also be applicable to those interaction
primitives.

Thunkification is destructive, removing the threads, meseand condition variables that are thunkified.

Thunkification of a group must be atomic. To see the inadeqoéa thunkify that operates only on a single
thread, consider thunkifying a pair of threads, the first diicl is performing a thread operation (ekg.11) on
the second. If the second is thunkified before the first therkih1 will fail, whereas with an atomic multi-thread
thunkify it will always succeed, either before theunkify happens or after the group is unthunkified later.

9.4 Naming and grouping

Threads must be structured in some fashion. The simplestnopaken by many process calculi, is to have a running
system be a flat parallel composition of anonymous threadsontrast, operating system threads are typically named,
with names provided by the system at thread creation tinesgthames may be reused over time and between runtimes.

For Acute some naming structure is required, to allow threads to bapukated (thunkified, killed, etc.). We see
two main possibilities:

1. globally-unique names, created freshly by the systetmraatl creation time; or

2. locally-unigue names, provided by the programmer athgzeation time, with an exception if they are already
in use on this runtime.
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The other two possibilities are not useful or not implemblgaif names are being created freshly by the system they
might as well be globally unique, with the same represemmas we use for other names; if names are being provided
by the programmer then it is not in general possible to chiitley are in use on any runtime.

We expect (1) to be the most commonly desired semantics. tNeless, inAcute we choose (2). Firstly, given
(2) the programmer can implement (1) simply by providingesfrname at each thread creation point. The difference
between the two shows up when one moves a group of threadsh wternally record and manipulate the thread
names of the group, from one machine to another. With (1) tleegssarily receive new names at the destination, so
to maintain correctness all records of their old names megidsmuted with the new — which may be awkward if
there are external records of these names. With (2), if tkigament is known to be linear then the original names can
be reused without further ado.

The same two possibilities exist for the naming of intexatiprimitives for synchronization and communication
between threads, i.e. (at present) mutexes and conditiiaibles, and we make the same choice of (2) for them.

Many distributed process calculi have exploited a hiefiaedtgroup structure over processes, with boundaries
delimiting units of migration, units of failure, synchraaition regions, secure encapsulation boundaries, anchadmi
istrative domains. There is a basic tension between the feeetbmmunication across boundaries and the need
for encapsulation and control over untrusted componeiggyrise to a complex design space which is not well-
understood. The tutorial [Sew00] gives a very preliminavgreiew. How this tension should be resolved and what
group structure should be provided as primitive is a vergriggting question for future work. We conjecture that
groups for migration and synchronization units can be esqaé rather easily iAcute with flat parallel compositions
of named threads, and that is what the language currentlyda®.

Any group structure should — presumably — also structurérttezaction primitives (mutexes, channels, etc.) but
here there are additional complications, as these are sadggoing to be used for interaction across a boundary, so
the interactands may be split apart by thunkification.

A further motivation for richer group structure comes froerformance requirements. When programming in a
message-passing style (as in thealculus and in the derived languaglesaml, Pict, andNomadic Pict) one may
have many threads which contain only a single asynchrongtypsib For performance it may be necessary to optimise
these, not always creating thread names and schedulezsfarithem. If threads can discover their own names, e.g.
by a

self : unit -> thread name

primitive, then this optimisation is nontrivial: a threadhieh outputs the value of an expression involviyg £ must
have been created with a name, whereas outputs of othesvadeel not. This led us to explore grouping structures of
named groups containing anonymous threads. Ultimatelyejeeted them, returning to the flat parallel compositions
of named threads, as they seemed excessively complex aehiesl likely that a rather simple static analysis would
be able to identify most noself outputs.

9.5 Thread termination

Acute threads do not return values, and their termination canpatybchronized upon. We have no strong opinion
about these choices, making them for simplicity for the timeéng. Thread termination is observable indirectly, as
thunkify andkill raise exceptions if called on non-existent threads.

9.6 Nonexistent threads, mutexes, and condition variables

In conventional single-machine programming it is straigivtard to ensure that any mutexes and condition variables
used must already exist — @Caml, for example, the type system guarantees thisAdate, however, this is no
longer possible.

Firstly, mutex names may be marshalled (either alone or imatfon such agunction () -> unlock m) and
then unmarshalled on another machine. In the absence dfiflvation it is debatable whether this is useful: one
might imagine forbidding such examples, either with a dyitacheck at marshal-time or a rich type system that
identifies non-marshallable types. With thunkificationwilewer, one may certainly need to marshal a thunkified group
of threads together with their internal mutexes. Secontlynkification can remove a mutex, leaving active threads
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that refer to it. This scenario seems inescapable: if oneesigome threads, they typically are going to have been
interacting, in some fashion, with other threads at thecaur

Accordingly, the mutex and condition variable operatioray/fail dynamically, givingNonexistent _mutex and
Nonexistent_cvar exceptions. One would expect high-level communicatioraliles, e.g. of distributed communi-
cation channels and migration, to ensure such errors necer.o

9.7 References, names, marshalling, and thunkify

Semantically, it is tempting to treat store locations astlaovariety of name, similar to thread and mutex names.
In Acute we do not make this identification as the cost seems undeavaed. A naive implementation, indirecting
all access via a name lookup, would obviously be absurd. Bweoptimisation, using local pointers but keeping a
name with every store value, would be rather expensive — yipigal program there are many more store locations
than mutexes or threads (it would be necessary to keep a rameadh explicitly as garbage collection can relocate
pointers but the name order must be preserved).

Further, the dynamic semantics is rather different: mdlisacopies the reachable fragment of the store, whereas
names are simply marshalled as the values that they are.kifying threads and mutexes is destructive, removing
them from the running system. Copying the reachable fragofehe store ensures that dereferencing and assignment
can never fail dynamically (which we think would be unaced) whereas the implicit marshalling of entire threads
seems unlikely to be desirable. Further practical expedésmrequired to assess these choices.

9.8 Module initialisation, concurrency, and thunkify

Without module initialisation all threads are simply extaeg an expression. With initialisation, however, at least
one thread might be executing a sequence of definitionselll by an expression), evaluating expressions on the
right-hand-side of structures in programs as below.

module fresh M : sig val x: int ref val y:unit end
= struct let x=ref 3 let y=I0.print_int !x end
M.x :=7

These expressions may spawn other threads, which maydh{eia the store, mutexes etc.) with the first.

In fact, as discussed in 84.8, no uninitialised definiticens loe dynamically added to the system, so itis an invariant
that at most one thread is executing in definitions (thoughstmantics actually allows definitions in all threads, for
uniformity).

The initial thread has no other special status.

Now, what shouldhunkify do if invoked on such a thread%ute has a second-class module system, so there is
(unfortunately) no way to represent a suspended modut-tevnputation in the expression language. Thankify
must therefore either abort or block until module initiatisn is complete. For the time being we take the former
choice, raising &hunkify_thread_in definition exception.

9.9 Thunkify and blocking calls

With any form of thread migration or (more generally) withrahunkification one has to deal with threads that are
blocked in system calls. There are two possibilities:

1. have thechunkify block until the target thread returns, thunkifying its statst after the return; or

2. have thethunkify return immediately, thunkifying the state of the targetetid with a raise of a
Thunkify EINTR exception replacing the blocked call, and discarding thenmal return value of the call.
This is analogous to the UnEINTR error, returned when a system call is interrupted by a sjgviaich appli-
cations must be prepared to deal with.

Both are desirable, in different circumstances, and so Vesvad per-thread choice. Note that this applies only to
blocking (or “slow”) system calls such agad (), not to the many non-blocking system calls which return kijyic
The language semantics must distinguish the two classes.
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Taking this further, it is unpleasant for the system integfto be special in this way. For example, suppose one has
a user library module that provides a wrapper around thesystterface; one might want to identify some of the user
module entry points as blocking and have similannkify behaviour. This would be conceptually straightforward
if the functions provided by the module are all first-orded aannot be partially applied, in which case there is a
straightforward notion of a thread executing ‘in’ the maalwhunkify could behave as (2) as far as the calling thread
is concerned and raise an asynchronous exception in thdilisey code. We believe this kind of mechanism is
desirable, but have not explored it in detail.

9.10 Concurrency: the constructs

Putting these choices together, we have types

thread
mutex

cvar
thunkifymode
thunkkey

The first three types are empty; they are introduced to fopegyhread name, mutex name, andcvar name. A
thunkifymode is eitherInterrupting or Blocking; type thunkkey has three constructorShread, Mutex and
CVar, each taking a name of the associated type; the first takesatsinkifymode.

We have operations for threads, mutexes, condition varsadahd thunkification as below.

create_thread : thread name -> (T->unit) -> T -> unit
self : unit -> thread name
kill : thread name -> unit

create_mutex : mutex name -> unit
lock : mutex name-> unit
try_lock : mutex name -> bool
unlock : mutex name -> unit
create_cvar : cvar name -> unit
wait : cvar name -> mutex name -> unit
signal : cvar name —> unit
broadcast : cvar name -> unit
thunkify : thunkkey list -> thunkkey list -> unit
exit : int > T
In addition, we have a control operator
el ||| e2
that spawns its first argument, as syntactic sugar for
create_thread fresh (function () -> el); e2
Herethunkify takes a list ofthunkkeys specifying which threads, mutexes and condition vargatdehunkify; it

returns a function which takes a list of the same shape gpegithe names to give these entities and then atomically
re-creates them.
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9.11 Example
Below is a simple use afhunkify, capturing the state of a single running thread and an (afumsatex.

let rec delay x = if x=0 then () else delay (x-1) in
let rec f x = I0.print_int x; IO0.print_newline (); f (x+1) in

let tl1 = fresh in

let ml1 = fresh in

let _ = create_thread t1 £ O in

let _ = create_mutex ml in

let _ = delay 15 in

let v = thunkify ((Thread (t1,Blocking))::(Mutex mi)::[]) in

I10.send( marshal "StdLib" v : thunkkey list -> unit )

let rec delay x = if x=0 then () else delay (x-1) in

let exit_soon = create_thread fresh (fun () -> delay 15 ; exit 0) () in
let v = (unmarshal(I0.receive()) as thunkkey list -> unit) in

v ((Thread (fresh,Blocking))::(Mutex fresh)::[])

When run the first program prints 1 2 3 4 and the second 6 7 8. The marshalled value, containing the thunk,
is shown in §15.10.

10 Polymorphism

Ultimately, both subtype and parametric polymorphism $thbe included. Many version changes involve subtyping,
e.g. the addition of fields to a manifest record type arguroéatremote function; it should be possible to make these
transparent to the callers. Parametric polymorphism i®afse needed in some form for ML-style programming. In
the distributed setting it seems to be particularly usefuiave first-class universals, allowing polymorphic fuocs

to be communicated, and first-class existentials. Therlattpport an idiom, common iRict andNomadic Pict, in
which one packages a channel name and a value that can bendbiat channel, as a value of tyfet.t name x t.
This lets one express communication infrastructure libsathat can uniformly forward messages of arbitrary types.

There are two substantial difficulties here. Firstly, typierence is challenging for such combinations of subtyping
and parametric polymorphism. A partial type inference atgm will be required, and it must be pragmatically
satisfactory — inferring enough annotations, and unssimgito the programmer. This is the subject of recent rekearc
onlocal type inferencgPT98, HP99] anatoloured local type inferend®©zz01]. Without subtyping, the MLF of Le
Botlan and Rmy [LBRO3] allows full System F but can infer types for all Mypable programs.

Secondly, the interaction between subtyping and hash tgogsres further work — one can imagine, for instance,
that a subhash order derived from subtype and subversiatiorethips needs to be dynamically propagated.

In Acute we sidestep both of these issues for the time being, makinigtarnm choice that suffices for writing
non-trivial examples, e.g. of polymorphic communicatiofrastructure modulesAcute has no subtyping. The basic
scheme is monomorphic, but with type inference. The defimitif the internal language has explicit type annotations,
on pattern variables and on built-in constructors suchlaandNone. In the external language these annotations can
all be inferred by a unification-based algorithm. To this wld &rst class System F universals and existentials, with
typesforall t.T andexists t.T and explicit type abstractions, applications, packs anmhoks, with expression
forms

Function t -> e

e %[T]

{T,e} as T’

let {t,z} = el in e2

There is no automatic generalisation, and the subsignatle&on remains, as in the monomorphic case, without
generalisation. We also have no user-definable type cantsisu The expression forms could easily be more tightly
integrated with the other pattern matching and functiomfar
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Traditional ML implementations can erase all types befosecation. In contrast, aAcute runtime needs type
representations at marshal and unmarshal points, to ex#fioeitexpressionsarshal e : T andunmarshal e
as T. (These types can often be inferred). Type representasianalso needed diresh, cfresh andhash(...)
points. Our prototype implementation keeps all type infation, throughout execution, so that we can do runtime
typechecking between reduction steps. A production implaation would probably do a flow analysis to determine
where types are required, adding type representation gaeasnto functions as needed. The only operations that
a production implementation needs to do on these type repi@ions are (1) compare them for syntactic equality,
(2) construct them when a polymorphic function is appliedtsdype parameter, and (3) take hashes of them. Itis
therefore not necessary to keep all the type structure ebhdme could (with a small probabilistic reduction in sgfet
work with hashes of types at runtime. Alternatively, if oreeks the structure it would be possible to add some form
of runtime type analysis [Wei02] at little extra cost, atdefor non-abstract types.

10.1 Arefinement: marshal keys and name equality

In the implementation of distributed communication likegrone may often be communicating values of types such
asexists t. t name * T (with thet potentially occurring inT) where thet name is used as a demultiplex-
ing/dispatch key at the receiver.

To statically type the receiver code an enhanced conditmm@atching form is needed: having compared that
name with the locally-stored name associated with (say) a chladtate structure, typing therue branch must be in
an environment where the two are known to be of the same type.

The enhanced form could be either an explicit type equadity or a name equality test. At present we do not
see a strong argument either way. A type equality test isgpsrbleaner, but would lead to runtime type information
being required at more program points. A general name aytiedit,if el=e2 then e3 else e/, whereel and
e2 are of arbitraryT1 name andT2 name types, is the most obvious alternative, but this requirdgyatty intricate
treatment of multiple type equalities in the semantics. thertime being we combine name equality testing with
existential unpacks, with

namecase el with {t,(z1,z2)} when zl=e
-> e2
otherwise -> e3

whereel :exists t. t name * T,thee:T’ name is evaluated first and used to build an equality pattern, and i
thee2branch it is known that=T". Obviously such existentials are not uniformly parametriécute.

If one is communicating values of typexists t. t name * t, and is demultiplexing on the name, the
explicit type in the marshalled value (and the unmarsimaéttype equality check) could be omitted; name equality
gives an equally strong guarantee. If communicating marmsllsralues the performance gain of this could be worth
direct language support for such ‘marshal keys'.

11 Pulling it all together: examples

To date, we have written many small examplegiute (for automated testing), and three larger programs. Thee firs
two areblockhead andminesweeper games that mostly exercise local computation; the lattes nsarshalling to
save and restore the game state. The third is a communidafrastructure library which shows how most of the
Acute features are needed and used. It has the following modules:

Tcp-connection management maintains TCP connections to TCP addresses (IP addresghics), creating
them on demandfcp_string messaging uses that to provide asynchronous messaging of strings Foabdresses.
These are bothash modules, with abstract types of handles; they spawn daetoahsal with incoming communi-
cations.

Separately, a modulkocal _channel provides local (within a runtime) asynchronous messagiggin with an
abstract type of channel management handles and with popfitesend: forall t. t name * t -> unit and
recv:forall t. t namex(t->unit) -> unit (to register a handler). Channel states are stored as mtidédte
packages of lists of pending messages or receptorsagitecase operation is used to manipulate them. Mutexes are
needed for protection.
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Distributed_channel pulls these together, wittsend:forall t.string->(Tcp.addr*t name)->t->
unit (and a similarrecv) for distributed asynchronous messaging to TCP addresHes.string names the mark
to marshal with respect to. For a local address this simpfsUscal_channel. For a remote address tlend
marshals itg argument and us&xp_string messaging; therecv unmarshals and generates a local asynchronous
output. This deals with the non-mobile case — active reegigannot be moved from one runtime to another. How-
ever, code that uses this module, e.g. functions that ingeke andrecv, can be marshalled and shipped between
runtimes; the module initialisation state includes the Téssaging handles and so rebinding to different instances
of send andrecv works correctly. A simpl&FI module implements remote function invocation above distad
channels.

Clients of this libraries can use any of the various ways efting shared typed names discussed in §6 and §8.4.
Moreover, the use of first-class marks means that clients tievsame flexible control over the marshalling that goes
on as direct users afarshal.

Going further, alomadic_pi module supports mobility of running computations, with malgroupsof threads,
each with a local channel manager, that can migrate betweshines. Migration useshunkify to capture the
group’s channel and thread state. Threads within a groupntaract via local channels; groups can interact with
a location-dependentend_remote that sends a message to a channel of a group assumed to berétwdgrar CP
address.

The location-independent messaging algorithm$o@fam| or high-levelNomadic Pict should be easy to express
above this (the former requiring the polytygiecpport andswap operations to manipulate the free channel names of
a communicated value).

12 Related work

Acute builds on our earlier work: compile-time fresh generatiémalostract type names and channel names [Sew01];
hash-generation of effect-free abstract type names [LP$VH08 dynamic rebinding [BHS03]. There is extensive
related work on module systems, dynamic binding, dynanpe tgsts, and distributed process calculi. For most of
this we refer the reader to the discussion in those papendingtg our attention here to some of the most relevant
distributed programming language developments.

Early work on adding local concurrency ML resulted inConcurrent ML [Rep99] and the initiaFacile, both
based on th6 ML /NJ implementationFacile was later extended with rich support for distributed exiecytincluding
a notion oflocation and computation mobility [TLK96]. dML [OK93] was anotherstiibuted extension of ML,
implementable by translation into remote procedure caithout requiring communication at higher typesang
[AVWW9E6] supports concurrency, messaging and distributibut without static typing.

The Pict experiment [PT0O0] investigated how one could base a usablgrgamming language purely on local
concurrency, with ar-calculus core instead of primitive functions or objectie Distributed Join Calculus [FG196]
and subsequedbCaml implementation [JoC] modified theprimitives with a view to distribution, and added location
hierarchies and location migration. The runtime involvetbenplex forwarding-pointer distributed infrastructuee t
ensure that, in the absence of failure, communication weatitm-independent.Pplyphonic C* [BCF02] adds the
Join Calculus local concurrency primitives to a class-tidaaguage.) Other work in the 1990s was also aimed at
providing distribution transparency, notalidbliq [Car95], with network-transparent remote object refeesnabove
Modula3’s network objects.

Distribution transparency, while perhaps desirable imttjgcoupled reliable networks, cannot be provided in
systems that are unreliable or span administrative boigslakVork onNomadic Pict [SWP99, US01] adopted a
lower level of abstraction, showing how a wide variety oftdisited infrastructure algorithms, including one simila
to that of theJoCaml implementation, could be expressed in a high-level language was proved correct. The low
level of abstraction means the core language can have aaheheasily-understood failure semantics; the work is a
step towards the argument of §2.

A distinct line of work has focussed on typing the entireritistted system to prevent resource access failures, for
D7 [HRYO04] and with modal types [MCHPO4]. Even where this is §ibke, however, programmers must still deal
with low-level network failure.

Work on Alice [Ali03, Ros03] is perhaps closest to ours, witt. modules, support for marshalling (‘pickling’)
arbitrary values, and run-time fresh generation of abstyge names.

39



Many of the language designs cited above address disttilextcutionwith type-safe interaction within a single
program that forks across the network, but there has beknibrk on distributedievelopmenton typed interaction
betweerprogramé, or on version change.

Both Java and.NET have some versioning support, though neither is integnattdthe type systemJava se-
rialisation, used in RMI, includeserialVersionUIBs for classes of any serialised objects. These default tmliy)
hashes of the method names and types, not including thernmapition. Class authors can override them with hashes
of previous versions. Linking fosava, and in particular binary compatibility, has been studigddnossopoulou et
al. [DEW99]. The.NET framework supports versioning aksembliefdot03]. Sharable assemblies must hatreng
nameswhich include a public key, file hashes, anthajor.minor.build.revisiorversion. Compile-time assembly ref-
erences can be modified before use by XML policy files of thdiegion, code publisher, and machine administrator;
the semantics is complex.

Explicit versioning is common in package management, hewdxor example, both RedHat and Debian packages
can contain version constraints on their dependencieb,iwitneric inequalities and capability-set membership. ELF
shared objects express certain version constraints usithgn@me and symlink conventions. Vesta [ves] provides a
rich configuration language.

As discussed in 83cute addresses the case in which complex values must be comrtedhimad the interacting
runtimes are not malicious. Much other work applies to thieusted case, with various forms of proof-carrying code
and wire-format XML typing which we cannot discuss here.

13 Conclusions and future work

We have addressed key issues in the design of high-levelgroging languages for distributed computation, dis-
cussing the language design space and presentingciite language.Acute is a synthesis of a®@Caml core with
several novel features: dynamic rebinding, global fresth laaish-based type and term naming, versions, type- and
abstraction-safe marshalling, etc. It is an experimeatagliage, not a proposal for a full production language,dsut (
demonstrated by our examples) it shows much of what is nefeddibher-order typed distributed computation.

The new constructs should also admit an efficient implentiemtaThe two main points are the tracking of run-
time type information, and the implementation of redexeineduction and rebinding. For the first, note that an
implementation does not need to have types for all runtinheéega but only (hashes of) the types that reach marshal
and unmarshal points. The second would be a smooth exteosi@faml’s existing CBV implementationOCaml|
currently maintains each field referen¢ex as a pointer until it is in redex position, when it is then derenced.
Since field references inside a thunk remain as pointerng cinéd easily be rebound with only modest changes to the
run-time. Of course compile-time inlining optimisationstiveen parts of code separated by a mark would no longer
be possible.

A great deal of future work remains. In the short term, mor&cpical experience in programming Atute is
needed, and there are unresolved semantic issues in thecitite between explicit polymorphism, coloured brackets
and marshalling. Straightforward extensions would easgramming: user definable type operators and recursive
datatypes, first-order functors, and richer version laggaaA more efficient implementation runtime may be needed
for larger examples. Improved tool support for the semantiould be of great value, for meta-typechecking, for
conformance testing, and for proofs of soundness.

More fundamentally:

e We must study more refined low-level linking, for negotiatiand for access control (escaping the linear
mark/module structure). This may demand recursive modules

e The Acute operational semantics is rather complex, as is the defin@gfacompilation. In part this seems in-
evitable — the semantics deals with dynamic linking, malsttg concurrency, thunkify, and coloured brackets,
all of which are dynamically intricate (and few of which am@vered by existing large-scale definitions). Addi-
tionally, our focus has been on a direct semantics of thelasguage, rather than a combination of a simpler
core and a translation, ardtute has evolved through several phases. It should be possibtake the compi-
lation semantics less algorithmic by appealing expliditlyype canonicalisation. The operational semantics for

4Several, includingoCaml andNomadic Pict, have ad-hoc ‘traders’ for establishing initial connextidetween programs.
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a language with lower-level linking might well be simpleaththat presented here, factoring out the algorithmic
issues ofresolvespecs, for example.

e Subtyping is needed for many version-change scenariobapsrwith corresponding subhash relations. As
mentioned in 810, the proper integration of this with polyptasm is challenging, as is the question of what
subtype information needs to be propagated at run-time.

e The Acute constructs for local concurrency are very low level, and itinclear what should be added. Join
patterns, CML-style events;style channels, and explicit automata; all are usefulngio

e Some distributed abstractions, such as libraries of tisgied references with distributed garbage collection,
may challenge the type system.

e The constructs we have presented should be integrated wyfiost for untrusted interaction.

A combination of what has been presented\inute with solutions to these problems would support a wide rarfge o
distributed programming well.
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Part Il
Semantics

14 Semantics overview

TheAcute definition, given in 816, describes syntax, typing, typesiudgring, errors from compilation and execution,
compilation, and operational semantics. It also states pypservation and progress conjectures and gives semantic
descriptions of two optimisations: for closures and for oging ‘vacuous brackets’. This section outlines the main
points of the semantics. It should be read in conjunctioh grie definition.

The definition involves several related languages:

1. Theconcrete sourcdéanguage is the language that programmers type,fegction (x,y) -> x + y +
M.z. This is concrete — a set of character sequences.

2. Thesugared source internd@nguage is generated by parsing, scope resolution andrtigrence; for example
function (z :int,y :int) — (+) = ((+) y M .z). This is an abstract grammar, up to alpha equivalence. The
z, y and M are internal identifiers, subject to alpha equivalencezthedM are external identifiers, which are
not. (In fact operators are eta-expanded to ensure theyllyeapplied.)

3. The source internallanguage is generated by desugaring, for exanfplection (v : int x int) —
match « with ((z :int),(y :int)) = (+) z ((+) y Mas.2).

4. Thecompiledanguage is generated by compilation, which here complbealtype names for hashed abstract
types, carries outithspec and likespec checks, etc. The operational semantics is defined over atsroéthe
compiled language.

Note that the compiled language contains both compiled famch source internal form components. Specif-
ically, a compiled program consists of compiled form defamis and/or source internal formmodule fresh
definitions, and an optional compiled form expression.

The main definition is of the union of the grammars for oeirce internabndcompiledlanguages.

14.1 Naming

The language makes heavy use of names: at the expressid(nieres for communication channels, RPC handles
etc.), at the type level (for abstract type names), and aitbéule level (names associated with modules and with
imports are used both to construct abstract type names amaision constraints and version expressions).

Names, of each variety, can be generated either from modutaport hashes (deterministically), or by taking
(psuedo-)random numbers, at either compile-time or nnetiIn an implementation these names will all be repre-
sented uniformly, e.g. as 160-bit numbers.

Both hash-generation and random-generation allow nantes$afely associated with type information across the
global distributed system. If one wishes to establish asshaame (expression or type) across programs, it can either
be hash-generated from shared source of a module or be eotimpé fresh generated and the resultingo file
included by both programs. Other names, on the other hanst, lImeurun-time generated (for names of dynamically-
created channels, and of generative types that depend goutational effects).

Using hashes and random name generation means that thet@pegation of programs is only probabilistically
guaranteed. The name representation must be chosen to m@uwdhebits to make the probability of accidental
collision acceptably low (e.g. lower than the rate of handwar cosmic-ray errors).

While a production implementation would represent nameslpas 160-bit numbers, in order to define typability
for states reachable by computation more structure is reduiThe semantics is therefore expressed in terms of
structured hashehash(...) and abstract names; the metavariablé: ranges over both. Structured hashes, e.g.
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hash(hmodule.,; M : Sig, version wne = Str), are formal representations of hash values that presefve al
their internal structure. For abstract namesvhich have no internal structure, the semantics maintaigisbal type
environmentE,, mapping all those that have been created so far to their ctgpenodule, kind or type data. Our
prototype implementation can work either with structuradhres (and maintain ar,) or with literal numeric hashes
(and discard thé”,,). The former allows optional run-time typechecking, of émtire configuration on a machine after
every reduction step, which is a valuable tool for debugdiath the language definition and the implementation. It
also allows the less costly option of unmarshal-time andivestime typechecking.

We do not work up to alpha-equivalence of the global abstrantes inFE,, instead choosing fresh names non-
deterministically from those that have not been used soGar. F,, really is a global environment, affected (in the
semantics but not the implementation) &y running machines. This contrasts with the uswalalculus approach
of extruding binders as necessary. We make this choice tid &#aving to consider alpha-equivalence of marshalled
values, which are simply byte-strings, but which can be ushelled to values containing names.

A further subtlety arises in the version expression andtcaim$ languages. Here it is desirable to let the program-
mer paste in literal hashes, and there is no way for the lagggt@mensure that these literals all arise as the hashes of
well-formed modules.

14.2 Typing

(816.3, page 91) Much of the type system is standard, usimggeton kinds to express manifest and abstract types in
modules [HL94, Ler94], and with a subsignature relationeldasn the subkind relation E@') <: TYPE allowing
manifest type information to be forgotten.

In contrast to most previous work on abstract types and neoslygtems the semantics constructs global names
for abstract types, at compile-time or run-time, insteadrasing all types or substituting abstractions away. Ac®ur
internal language typkl ,,.t (thet type field of moduléVi,,) is compiled or reduced to a global type namg where
his a hash or fresh abstract name. This is a dynamic analoghe tfpe-theoretiselfificationrules in singleton-kind
systems.

To establish greater confidence in the internal coherendbeoSemantics we preserve abstraction boundaries
throughout execution, adapting and extendaodpured bracket§GMZ00, LPSWO03] to delimit subexpressions in
which setsegs of type equalitiesh.t =~ T between abstract typdst and their representations can be used. Addi-
tionally, most type judgements, and the operational r@hsti are with respect to such sets of equalitigs reflecting
which abstractions one is within. To type a coloured bra¢k]é’§s,, with type T' and in an ambient colouys, one
must havee of type T' in colour egs’.

The most interesting typing rules are for modules, impaaty] hashes and abstract names. These latter two
behave very like module identifiers, with rules for selfifioatand for constructing typgst and terms.x (the latter
occuring only within other hashes, not in executable co@bg type rules for the compiled language check that such
h are used correctly, referring to their internal structuréhe global type environmerit,, respectively for hashes or
abstract names. An implementation does not need this ifiom however — in particular, it is not required for the
unmarshal-time type equality check.

Typing source internal language modules and imports is mgane would expect. Typing their compiled forms
is more interesting, capturing a number of properties tteeatablished by compilation.

Marshalling and unmarshalling are straightforward as $athair static typing goes, converting between arbitrary
T andstring.

In any given environmenk and colouregs, each semantic type may be represented by any member of an equ
alence class of syntactic types defined by the relakion.,s 7' ~ 7’. Compilation ensures that the syntactic type
chosen is always theanonical typefrom the relevant equivalence class. The canonical typeeihe that is most
concrete: it is the normal form under the rewri{e8.t ~ T |(X.t = T) € eqs}, M.t ~ T|M : Sig € Ent:
EQ(T) € Sig, andt ~ T |t : EQ(T) € E. This is important because in certain circumstances theasgo
representative chosen for a semantic type is significant.
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14.3 Compilation
(816.7, page 115) Compilation involves several activifielsich are recursively intertwined in the definition):

 preprocessing (i.e., replacirigcludesource sourcefilename andincludecompiled compiledfilename
by the file bodies)

« desugaring

* type-checking

« traversing module definitions calculating (and using)rihees to use for global type name of abstract type
« calculating fresh names fefresh modules and expressions

 checking assertedithspec equations are correct and that any module linking is legiten These are not
checked by the type system as they depend on knowledge oéphesentation types of earlier abstract types,
which is not recorded in type environments.

Formally, compilation is a relation from a name environmBpt a sourcefilename, and a filesysten® to either a
tuple of a source type environmefy, a compiled type environmerdt;, and acompiledunit, or an error.

Note thatcompiledunit includes a name environmefi: this environment containdresh names created during
compilation. This name environment has no implementatignificance: its sole purpose is to allow included com-
piled units to be appropriately typechecked and the cordigur produced by compilation to be typechecked. These
two checks are both necessary for runtime typecheckingydiudtherwise.

Note that compilation is not a function because the choiagaaie environment in theompiledunit is nondeter-
ministic. This nondeterminism is common in many of the helfienctions” throughout, thus we take them all to be
relations. For convenience, though, we write them as fanstof their inputs, and use rather than= to relate the
“input arguments” to the “results”.

Compilation has the form

compileg, (sourcefilename) E, ~ (E}, E{, compiledunit)

defined to be

. ty En Econst Feonst (3 - . -/
compileg g Peonst Feonst (jncludesource  sourcefilename ;; empty) ~~ (Ej, E{, compiledunit’)

where the latter relation

definitions E, Eg Eq
O sourcefilenames

compile (compilationunit) ~ (E}, Ef, compiledunit)
is defined inductively on theompilationunit. Here sourcefilenames is the filenames we've been through (used to
detect cyclic includes)yefinitions is the accumulated compiled definitiors, is the accumulated name environment
(all names created during compilation will be disjoint frolom( £,,)), Eo is the accumulated source type environment
(including E.ost at the start),F; is the accumulated compiled type environment (includifig,s; at the start), and
compilationunit is what we have left to do.

The behaviour of compilation on a module (or import, sintiladepends on whether it is annotafiealsh, cfresh
or fresh (which will generally depend on whether it is valuable, cxadlle or non-valuable). We first describe the
hash case, with steps corresponding to those in §16.7. Firstecohslly, all types are normalised as far as possible,
replacing any typed!’,,,.t defined in earlier modules by either the correspondihg (if they are abstract) or the
corresponding?’ (if they are manifest). References to earlier type fieldshis thodule are also flattened where
possible: in the structure all type definitions are substtiaway; in the signature only manifest type fields can be
substituted away. Thirdly, anyithspec is checked, and the resulting set of type equations, nosedlis recorded.
Fourthly, the hash of this module can be constructed, fipthoing any other-module expression dependendigg .x
by the corresponding’.x. Fifthly, that hash is used to selfify the remaining absttgpt fields of the signature,
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replacingtype t; : TYPEby type t; : EQ(h.t). Sixthly, the version number expression of the module isustad,
replacingmyhash by the hashh. The result has the form

cmoduley; o4; 5i9, Mas : Sig; version wvn = Str

whereh is this module’s hashegs are any extra equations added by thihspec, Sig, is the normalised but non-
selfified signatureSig, is the normalised and selfified signatuve,is the version number, angtr is the normalised
structure.

The body of a hash thus does not exactly match either the souwdule or the compiled module. It cannot be the
source module as it must be type-normalised, so that hasdigguespects provable type equality. It cannot be the
compiled module as that would require recursive hashes —sdfification during compilation uses the hash. (One
could introduce a formal recursive hash, but it seems mduive not too.)

Compilation of a hash-import is broadly similar, witHi&espec rather than avithspec, resulting in a form

cimport,.g;, My : Sig, version vc like Str by resolvespec = Mo

In thecfresh cases compilation constructs arfior the module nondeterministically instead of by hashtaging
anyn not in the domain of the ambieft,. Expression-levetfresh names are constructed similarly, and compilation
is otherwise similar.

In the fresh case thé: for the module is constructed nondeterministically at taet ©f its execution, whereupon
it can be used to selfify and normalise types similarly.

14.4 Operational judgements

(816.8.1, 16.8.2, and 16.8.3, page 125) The runtime cordiguns of a single machine have the form
(Es, s, definitions, P)

whereF; is the store typing (not required in a production implemgotg, s is the storedefinitions is the sequence
of module definitions (all of which are definition values)dai is a multiset of named running threads, mutexes, and
condition variables.

P == 0
Py | Py
n : definitions e
n: MX(bd)
n:CV

The main operational judgements are as below. The first twitbaxfe are the main judgements; the other four are
auxiliaries introduced so that most reduction axioms neadgl mention the relevant parts of a configuration. We
sometimes call a tupléFs, s, definitions, e) apseudo-configuratian

s E,; (E, s, definitions, P) LNy K (E',, §', definitions’, P') Process reduction.
* E,; (Es, s, definitions, P) — TERM Progam termination.
* E,; (Es, s, definitions, e) Leqs E) ; (E'y, s, definitions’, e') Expression reduction.

4 /
€ —egs €
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where

¢ = empty internal reduction step
z" v{z .02 forz™ € dom(E.opns:) A 0s(z™) invocation of OS call
Ok(v?) return from OS call
Ex(v?) return from OS calll
GetURI(URI) request for code a/RT
DeliverURI(definitions) resulting code
CannotFindURI nothing found atUR!

. t. .
We write 2222, simply as—.

The class of values is parameterised by colours, with ranging over the values at coloeys.
The dynamic semantics is expressed with evaluation cangextollows.

* C.qs is a single-level evaluation context at colays. These are largely standard, for exampleandv©% _.

¢ Cegs)t is a colour-changing single-level evaluation context,abuar egs; but with a hole at colouegs,. The
main case of these is the coloured brack[elgm, but there are several cases where we need to construciea valu
at colourg, e.g. to store or to pass to a primitive operator, so this gramincludes e.g. :=/, _for egs, = @.

» OC.ys and CC 271 are multi-level evaluation contexts — simple compositiohthe above.

eqsy

CCeps = _ Cor = _

eqsy

CC egs-Cegs COGt-Cos,
» SC s is a structure evaluation context, allowing computatiothi first non-value expression field of a struc-
ture.

» TC .4 is a thread evaluation context. For a thread with body jushgle expressiore, computation can take
place there; for a thread with a bodyfinitions e where the head ddefinitions is acmodule, computation
can take place in the first non-value expression field of thegtre.

* TCC ¢4 is @a compositionl'C ¢4, . CC¢L:?, allowing computation within the expression irff&' ;s hole.

eqs !

14.5 Colours and bracket dynamics

The semantics preserves abstraction boundaries bousdgegaeralising theoloured bracketof Grossman et al
[GMZ00]. (At present this covers the entifeute language except the System F polymorphism constructs.)

Coloured brackets make explicit the type equalities whighia scope for any subexpression. There is a bracket
expression form

[€]cas

for type equations
eqs = G Myt T|ht= T)|eqgs,eqs

giving the representation types of abstract types (solamgdage projections from a module identifidn, .t and
compiled-language projections from a module name. From the outsidt{ae}equ is of type T'; the type equationsgs
can be used in typecheckirrg We use “colour” and “type equations” interchangeably.

Brackets are not needed in a production implementationiggplementation can work with them or without them),

and they are not strictly speaking necessary for the seosantiwith the exception of the work of Grossman et al, and
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of our previous [LPSWO03] and Rossberg’s [Ros03], most opmrat semantics for existential types and for module
systems forgets abstraction boundaries as it comes to thgmyith this rule for opening an existential package

let {t,2} = ({T,e}as T')in ea — {T/t,e/z}es

or by substituting out module definitions. Maintaining ahstion boundaries requires some complexity in the se-
mantics, but we think it well worth while. Type preservatifam an abstraction-preserving semantics is intuitively a
much stronger property that for a standard semantics, aadoetter check of internal consistency; and making type
equations explicit in both the type system and runtime plesiconceptual clarity.

Brackets are not a user source language construct. Theynamuced primarily when instantiating a
module field referencéM,,;.x from a moduleM,, that introduced some abstract types (dedule field in-
stantiation — module case, via import sequen&l6.8.6, page 136). For a simple example, consider the
EvenCounter of 85, with fieldSstart : EvenCounter.t andup : EvenCounter.t->EvenCounter.t EX-
pressionsEvenCounter.start and EvenCounter.up Will be instantiated, when they appear in redex-position,
to [0]%. . and [fun (x:int)->2+x]}-EI7M* respectively. Here: is the hash-generated module name of
EvenCounter as in §5.

Bracket semantics could be expressed either with a stala@angruence or with reductions. We choose the latter,
to support our prototype implementation. The basic poingstiae definition of values (816.8.2, page 125) and the
bracket-pushing reductions of §16.8.4, page 130. The latigh brackets through values in cases where the outermost
value structure and the outermost type structure of thekbtagpe coincide, e.qg.

[ eqs’ eqs/]T list [ 6clé"]T o Eqs/]T list

Uy Uy eqs’ egs U eqs’ - V2 eqs’

Bracket type revelation permits use of the ambient type wopugmto reveal an abstract bracket type, and bracket
elimination removes redundant nested brackets.

The semantics must also suitably-bracket expressionsinsedstitutions to ensure they retain their original type
equations. One sees this in the rule for pushing bracketsigirlambdas and in the reduction axioms for function
application and recursive functions.

At several points it is necessary to take a value at someiegsats and construct a value that makes sense at the
empty set of equation®, e.g. when marshalling a value, passing a value to a prienitperator or an OS call, etc.

The treatment of store locations and names is discusse?i?in §

14.6 Marshalling and unmarshalling

(816.8.5, page 133) A marshalled value is a byte-stringessrtation of amiv, containing data as below.
mv = marshalled(E,, Es, s, definitions, e, T) Marshalled value

Here e is the core value being shipped, its type, s a store,F, a store typingdefinitions is a sequence of module
definitions, andt,, is a name environment.

The E,, and E; would not be shipped in an production implementation, batregeded to state type preservation
and for runtime typechecking of reachable states. Theyldpped in our implementation only if literal hashes are
not being used.

As with the other syntactic objects, marshalled valuesaltert up to alpha equivalence. Here: the name environ-
mentE,, binds in everything to the right and internally contains pidles; the store environmeft, binds in everything
to the right and may contain internal cycles; the stoend thedefinitions bind to the right and may mutually refer
to each other; the may contain internal cycles.

To characterise the wire format, we simply suppose a fixetigb&émnction raw_unmarshal from strings to mar-
shalled values that includes all marshalled values in itge&a The semantics for marshalling constructsranand
then nondeterministically allows any string that is mapfeetthatmv. This permits small variations in the wire format
(which a characterisation in terms of a function from mallsldavalues to strings would not). We use actstaings
for wire-format marshalled values, instead of (say) addingnguage typenarshalled with elements of the form
mv, SO that the semantics can capture the behaviour of progranhdo string operations — for example, extracting
marshalled values from TCP byte streams.
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The dynamic semantics fanarshal e; e; : T first evaluates; to a stringMK — the mark at which module
bindings will be cut. It then evaluates to a value in the ambient colouys, and then to a value in the empty colour
@, giving a redexmarshalz MK 2 : T in a configuration of the form

E. ; (Es, s, definitions, P |n: TCC ,s.marshalz MK v? : T)
Suppose

definitions = definitions, ;; mark MK ;; definitions,
mark MK ¢ definitions,

In outline, what we do is prunéefinitions,, omitting any modules that are not needed by the marshadileg vand on
the way calculating which modules frotefinitions, are referred to. We then go throughfinitions, constructing
an import for each of those. The constructed imports eitla@etan exact-name constraint ané Rt ALREADY
resolvespec, for a cutmodule binding, or with the original version constraint and regsipec, for a cutimport
binding. Note that this does not involve any definitions of@xing threads, so théefinitions’ that are shipped
are guaranteed to be definition values. The shippgthitions’ includes (copies of) all the marks passed through in
definitions,, but not of themark MK being marshalled with respect to. The marshalled valueiatdodes a copy
of the reachable part of the store: the vallfemay contain store locations. They may contain other starations,
but also module identifiers (under lambdas) frdafinitions, and definitions, which must be taken into account.
Moreover, asiefinitions may be the result of module initialisation, it too may contsiore locations.

Unmarshalling of a string, in a configuration of the form

E, ; (E, s, definitions, P | TCC cqs.unmarshal sas T)

takes theaw_unmarshal image ofs, saymarshalled(E,’, E,, s', definitions’, v'?, T'), adds the store fragment
s’ to the current store (disjointly), adds thedefinitions’ to the end ofdefinitions (avoiding clashes with alpha
equivalence), and mergds, with any new names fron,’. Note this depends on the fact thatfinitions’ are fully
evaluated.

Existing marks will thus be shadowed by markslifinitions’, which is sometimes desirable but not always. This
is a defect of the linear mark/module structure.

14.7 Module field instantiation

(816.8.6, page 135) This specifies the runtime semanticeefmution of module field references, describing what
happens when akl ,;.x appears in redex position. In general we have to chase thragossibly-empty) sequence
of linked imports until we arrive at either a module definitior an unlinked import. In the former case we instantiate
the M ,.x with its value from the module definition. In the latter, wenkdhrough theresolvespec attached to the
import M’ that is unlinked. Each atomic resolve spec is dealt withiin,tas follows:

e STATIC_LINK —falil, raising an exception;

 HERE_ALREADY - look in the preceeding modules for one that matches thasigmand version constraint. If
there is one, link this import to it;

e URI —try to load acompiledunit from the URI. If we find one containing a module that matches the external
name, signature and version constraint, andchas empty, add it to the configuration'definitions just before
the import, and link the import to it.

In the latter two cases, if there is a failure we try the subsetjatomic resolve specs, raising an exception if there are
no more. Success leaves fhig,.x again in redex position, where it can now be instantiated #dsa former case.

Note that no additional linking is done, either to or of newdgded modules. Some user control of this would be
desirable.

Resolution may involve 1O, to pull a file containing compiletkfinitions from the web or filesystem.
The semantics expresses this with labelled transitians: GetURI(URI) for making a request for a
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URI, n : DeliverURI(E,’, definitions’) for receiving a name environment,” and definitions’, and n
CannotFindURI if no file is found at the URI. The intermediate state is stored in the term, as a
resolve_blocked(M ;.x, M’ 5/, resolvespec) for the blocked state and mesolve(M y,.x, M’ 5/, resolvespec) for

a state which is just about to make a request. The action neustlli into send and receive events as the receive may
be blocked arbitrarily, and the semantics must make sertselaviguage threads are added (note that the reduction
closure rules add thread ids to the transitions of axiomhbisfdection).

There is a choice as to how we generate coloured brackets passing through multiple imports: (1) we could
make a singlegs set containing all the equalities we need; or, (2) we coulelzanested sequence of brackets. Choice
(1) might require the bracket pushing rules compagesets by inclusion (or logical implication). The latter do#s
suffer from this problem, and so we choose (2).

On instantiating aiM ; .x via a chain of imports, wherel 5, is bound by &import which is linked to aimport
which ... is linked to acmodule, the equation set is the union of theqgs of thatcmodule, the equations of the
signature/structure boundary of thahodule, and the equaltions of the signature/likespec boundarpefrtitial
cimport. The intermediate imports are not relevant.

There is a technical choice relating to the semantics odiriittion, of module initialisation, and of rebinding. For
a module with internal expression dependencies, e.g.

module M : sig val x:int val f:int->int end =

struct
let x = 3
let £ = fun (y:int) > x + y
end
M.f 10

we can either (1) substitufs/x} through the body of in the structure at compilation or module-initialisatiomé

(if x were bound to an effect-full computation it would have to be fatter), or (2) leave the body 6fwith a free
occurrence ok. For (1) module field instantiation is straightforward, dsanM. £ is in redex position (as here) it can
be replaced by the expression-identifier-closed (y:int) -> 3+y. For (2), instantiation ofl. f would have to
rewrite thex on the fly, either (a) tel.x or (b) to3. Option (2a), instantiating the. f to fun (y:int) -> M.x+y,
allows more rebinding that (1) or (2b), #anight be rebound before the x itself appears in redex position. If one

is instantiating via an import, however, and if width sulbsityring were added to the language, it seems that one
could not give a satisfactory semantics for (2a). The remsibuld have to use the module identifier, not the import
identifier, and hence rebinding could often lead to link esre- it would not be enough to supply an implementation
of the import one was working with as other fields of the modunight be required.

14.8 Concurrency

(816.8.8, page 140) The semantics for thread creation,irtation, self, andkill are technically straightforward,
written as reduction axioms for the judgeméht— P’ (but note that as some of the axioms need to check the set of
all locally-used thread names, these transitions are notctlosger parallel composition).

Our configurations keep the states of threads, mutexes arttitiom variables in a single multiset; each is named
with a global name (which might be hash-, fresh- or cfreshegated). This is notationally smoother than the alterna-
tive of having separate configuration components for each.

For mutexes, POSIX describes three semantics (“kinds” derjufast, recursive anderror checking Thefast
semantics blocks when a thread attempts to lock a lockedxnbitate that this leads to deadlock if a thread attempts
to lock a mutex it has already locked. In the LinuxThreadslémgntation, any thread is allowed to unlock a locked
mutex. However: “This is non-portable behaviour and mustbheorelied upon.” — POSIX is quite clear that it is
assumed thewneris unlocking the mutex. Unlocking an unlocked mutex has riecef(this is also non-portable:
in POSIX it is undefined). Theecursivesemantics maintains the owner and a lock count in the mutexthread
locks a mutex it already holds, this succeeds immediateti/the count is incremented; on unlock, the count is
decremented (again, LinuxThreads non-portably does retkcthe owner here). (POSIX specifies that unlocking
an unlocked mutex should fail withPERM, but LinuxThreads’ man page suggests that unlocking anckatb mutex
(non-portably) has no effect). Therror checkingsemantics is like the fast semantics, except that lockingigexn
already held by the calling thread results in an immediB®ADLK error, and attempting to unlock a mutex not owned
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by the caller results in an immediat2ERM error. Unlocking an unlocked mutex results in an immediERM error.
POSIX does not specify which semantics is the default. OnXIilmreads the default fast andOCaml on our Linux
install appears by default to have tfest POSIX semantics. It is this semantics (approximately) ihapressed in
our semantics. We are not committed to this, but it is fine faw.n

Application programmers using threads, mutexes and dondiariables depend on some fairness properties. The
semantics does not express these at present.

The semantics farthunkify uses an auxiliary functioihunkify to atomically construct a thunk encapsulating the
state of the threads, mutexes and condition variables ltkeunkified. When that thunk is applied (talunkkey list
giving the names at which to reify the various parts) it usesauxiliaryUnthunkify to (atomically) build a process
and place it in parallel with that of the running configuratio

If a blocking thunkify is waiting, it does not at present havéock’ of any kind on the things it is trying to thunkify,
though that might be desirable. Here, there just are noitiams for such a thunkify, or indeed a thunkify with a thread
in a fast system call. Races between overlappimgnkifys are thus possible, and the liveness properties even of a
singlethunkify are very weak.

Note thatthunkify fails when applied to a thread which contains some unirsgal definitions. One could
instead have it block until the initialising thread is finksh (As thunks are simply part of the expression language,
and Acute modules are second-class, allowing thunkification of meduitialising threads would entail substantial
changes to the language — they simply cannot be expressed syhtax as it stands, and the evaluation order for
their usages is problematic.)
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15 Semantics Examples

This Section illustrates some aspects of the semanticsexdimples generated by our implementation. At present
it covers just the compilation and marshalled values of tkeargles earlier in the paper. They are rendered in a
typewriter variant of the grammar used in the semanticssecko the concrete source language. In addition, the
pretty-printer collects together occurrences of modukhka and abstract names, introducing metavarigbbesdn .
Internal identifiers are rendered with numeric subscripiy.x,. Internal identifiers of modules and imports that are
not printed are rendered aM?:.

15.1 Compilation: hash modules

The result of compiling modulgvenCounter from 85, page 20, is below. Scope resolution has introductednial
identifiersMo, to, starty, xo etc. Compilation has calculated a module nahteEvenCounter as a hash of an
hmodule form, containing external module identifier, signaturesi@n expression, and structure. This hash is taken
up to alpha equivalence by choosing canonical strings fontadentifiers and up to type equality by substituting
out earlier module names for identifiers and substitutingioternal type dependencies. (The hash body shown is
pretty-printed in a different mode to that used to build tlotual hash to make it more readable, with identifiers
based on the source language strings.) Both the symbolititaral hash forms are shown. The compiletbdule
EvenCounter has two signatures, one in which source abstract typesithebstract and one in which they have been
selfified using the module name and substituted throughtteegype t[to]l : Eq(hO_EvenCounter.t) andval
start[starto] : hO_EvenCounter.t. The version of the compiled module has defaulted to its ‘tggsterated
name.

cmodule EvenCounter[Mo] hO_EvenCounter : {}
sig
type tlto] : Type
val start[starte] : to
val getl[geto] : to -> int
val uplupo] : to —> to
end (valuable, valuable)
sig
type tlto] : Eq(hO_EvenCounter.t)
val start[starto] : hO_EvenCounter.t
val getl[geto] : hO_EvenCounter.t -> int
val uplupo] : hO_EvenCounter.t -> hO_EvenCounter.t
end
version hO_EvenCounter
= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let up[upo] = function (x¢ : int) -> 2 + x¢
end

where
hO_EvenCounter = hash(hmodule EvenCounter : {}

sig
type tlto]l : Type
val start[starto] : to
val get[geto] : to -> int
val uplupo] : to —> to

end

version myname

= struct

type tlto] = int
let start([starto] = 0O

52



function (xp : int) -> xo

let getlgeto] =
= function (x¢o : int) -> 2 + xo

let up[upo]
end)
= O0#E09083A42C03366FA0698C81E0063682

15.2 Compilation: fresh modules
The moduleiCounter from 85, page 21, compiles to:

module fresh NCounter [Mo]
. sig
type tlto] : Type
val start[starte] : to
val getl[geto] : to —-> int
val uplupo] : to -> to
end
version myname
= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let uplupo] =
match Pervasives[Lib_Pervasives].read_-int () with (step, : int) ->
function (xo : int) -> stepo + X0
end

The first execution step of this involves generating a frestmen for the module and hashifying it, after which the
read_int performs |O.

15.3 Compilation: hash module dependencies

The result of compiling modulé$s andEvenCounter from 88, page 28, is below. Two hashes are constructed to use
as the names of the two moduleé®,_¥# andhr1_EvenCounter. Note that theip field of thecmodule EvenCounter
structure refers tt[M,] . f xo, whereas thep field of thehmodule EvenCounter in the body of its hash refers to
hO_M.f xq, Using the earlier hash.

cmodule M[Mo] hOM : {}
sig
val f[fo] : int -> int
end (valuable, valuable)
sig
val f[fo] : int -> int
end
version hO_M
= struct
let f[fo] = function (x¢ : int) -> xo + 2
end

where
hO_M = hash(hmodule M : {}
sig
val f[fo] : int -> int
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end
version myname
= struct
let f[fo] = function (xo : int) -> xo + 2
end)
= O#FBCF6A65CCD4AF06635C5188503EA9B72

cmodule EvenCounter[Mo] hi_EvenCounter : {}
sig
type tlto] : Type
val start[starte] : to
val get[geto] : to -> int
val uplupo] : to => to
end (valuable, valuable)
sig
type tlto] : Eq(hi_EvenCounter.t)
val start[starto] : hIl_EvenCounter.t
val getl[geto] : hi_EvenCounter.t -> int
val uplupo] : hi_EvenCounter.t -> hi_EvenCounter.t
end
version hl_EvenCounter
= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let up[upo] = function (xo : int) -> M[Mo].f xo
end

where
h1_EvenCounter = hash(hmodule EvenCounter : {}

sig
type tlto]l : Type
val start[starto] : to
val get[geto] : to -> int
val uplupo] : to -> to

end

version myname

= struct

type tlto] = int
let start[starto] = 0O
let getlgeto] = function (xo : int) -> xo
let uplupo] = function (xo : int) -> RO_M.f xo

end)

= O#F5EF4DE7D2DCBOESDS56EES8AAD19AE3E9

15.4 Compilation: cfresh modules
Thecfresh code from Scenario 2, page 23, compiles to:

cmodule M[Mol RO : {}
sig
val c[co] : int name
end (cvaluable, cvaluable)
sig
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val c[co] : int name

end
version hO
= struct
let c[co] = name_value(ni %[int])
end
where
hO = n0 = 0#2D3C130675CA1701BB285B45679B27BD
where
n0 = 0$2D3C130675CA1701BB285B45679B27BD
nl = 0$5C334F890F66E794B27733D88A8228A7 % [int]

15.5 Compilation: constructing expression names from mode hashes

The result of compiling the shared code from Scenario 3, g&ges below. Note the hasto_v involves the intension
of N. £, and this appears within thefield of thecmodule M at the end. (Skip over the intervening hashes of standard
library modulesh1_I0, h2_Pervasives, andh3_Persist.)

cmodule N[Mo] hON : {}
sig
val f[fo] : int -> unit
end (valuable, valuable)

sig
val f[fo] : int -> unit
end
version hO_N
= struct
let f[fo] = function (xo : int) -> IO[Lib_IO].print_int (xo + 100)
end
where
hO_N = hash(hmodule N : {}
sig
val f[fo] : int -> unit
end
version myname
= struct
let f[fo] = function (xo : int) -> kI1_I0.print_int (xo, + 100)
end)
= O#75ABE6A8126FA4F96A02789EAC83E487
where
h1_I0 = hash(hmodule IO : {}
sig
val print_int[print_into] : int -> unit

val print_string[print_string,] : string -> unit
val print_newline[print newlineo] : unit -> unit
val send[sendo] : string -> unit
val receive[receiveo] : unit -> string

end

version myname
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= struct
let print_int[print_inte] = function (xo : int) -> h2_Pervasives.print_int xo
let print_string[print_stringe] =
function (so : string) -> h2_Pervasives.print_string so
let print_newline[print newline,] =
function (dso : unit) -> match dso with () -> h2_Pervasives.print_newline ()
let send[sendo] = function (datap, : string) -> h3_Persist.write datag
let receivel[receiveo] =
function (dso : unit) -> match dsg with () -> h3_Persist.read ()
end)
= O0#2808905E9138A8AA18FFE6FFBE169EDED

where
h2_Pervasives = hash(hmodule Pervasives : {}
sig
val string of_int[string of_into] : int -> string

val int_of_string[int_of _stringo] : string -> int
val print_string[print_strings] : string -> unit
val print_int[print_into] : int -> unit
val print_endline[print_endlineo] : string -> unit
val print newline[print newlineo] : unit -> unit
end
version myname
= struct
let string of_int[string of_int,] =
function (dse : int) -> J"Apervasives_string of_int" dso
let int_of_string[int_of_string,] =
function (dso : string) -> J"Apervasives_int_of_string" dso
let print_string[print_stringe] =
function (dsp : string) -> %"Apervasives_print_string" dso
let print_int[print_inte] =
function (dsp : int) -> % "Apervasives_print_int" dso
let print_endline[print_endline,] =
function (dso : string) -> %"Apervasives_print_endline" dso
let print_newline[print newline,] =
function (dso : unit) -> %"Apervasives_print_newline" dso
end)
= O#4AS5FE3EC8D80DFA70AD367461DD525AA
h3_Persist = hash(hmodule Persist : {}
sig
val writel[writeo] : string -> unit
val read[reads] : unit -> string
val write2[write2;] : string -> unit
val read2[read2,] : unit -> string
end
version myname
= struct
let writel[writeo] = function (dso : string) -> ¥ "Persist_write" dso
let read[reado] = function (dso : unit) -> %"Persist_read" dso
let write2[write2,] = function (dsp : string) -> %"Persist_write2" dso
let read2[read2,] = function (dso : unit) -> %"Persist_read2" ds,
end)
= 0#D90A83203B41EF6EGE512B3ESFF54850

cmodule M[Mo] h4{M : {}
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sig
val c[co] : int name
end (valuable, valuable)

sig
val c[co] : int name
end
version h4 M
= struct
let clco] = hash(int, "", hash(hO_N.f) %[int -> unit]) %[int]
end
where
h4_M = hash(hmodule M : {}
sig
val clco] : int name
end

version myname
= struct
let clco] = hash(int, "", hash(hON.f) %[int -> unit]) %[int]
end)
O#2F7112C065BF44899C98205353679AD7

15.6 Compilation: type normalisation and marshalling within abstraction boundaries

The result of compilation for the example of marshallinghwvitan abstraction boundary, §8.5, page 32, is below.
Note here in themodule struct that the types at which marshalling and unmarshalling aredm thesend and
receive fields, have both been normaliseditot from the source-language

cmodule EvenCounter[My] hO_EvenCounter : {}

sig
type tlto]l : Type
val start[starte] : to
val get[geto] : to —> int
val uplupo] : to => to
val send[sendo] : to —-> unit
val recv[recvo] : unit -> to

end (valuable, valuable)

sig
type tlto] : Eq(hO_EvenCounter.t)
val start[starto] : hO_EvenCounter.t
val getl[geto] : hO_EvenCounter.t -> int
val uplupo] : hO_EvenCounter.t -> hO_EvenCounter.t
val send[sendo] : hO_EvenCounter.t -> unit
val recv[recvo] : unit -> hO_EvenCounter.t

end

version hO_EvenCounter

= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let up[upo] = function (x¢ : int) -> 2 + xg
let send[sendo] = function (xo : int) -> IO[Lib_IO0].send (marshal "StdLib" x, : int)
let recvlrecvy] =
function (dso : unit) -> match dsg with () -> (unmarshal (IO[Lib_I0].receive ()) as int)
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end

where
hO_EvenCounter = hash(hmodule EvenCounter : {}

sig
type tlto] : Type
val start[starte] : to
val get[geto] : to -> int
val uplupo] : to -> to
val send[sendo] : to -> unit
val recv[recvo] : unit -> to

end

version myname

= struct
type tlto] = int
let start[starto] = 0O
let get[geto] = function (xo : int) -> xo
let uplupo] = function (xo : int) -> 2 + xo
let send[sendo] =
function (x¢ : int) -> hi1_I0.send (marshal "StdLib" x, : int)
let recv([recvo] =
function (dsp : unit) ->
match dsp with () -> (unmarshal (h1_IO0.receive ()) as int)
end)
= O#A896BA1BAS8F408A0AEEQT744742E2717

where
h1_I0 = hash(hmodule I0 : {}
sig
val print_int[print_into] : int -> unit
val print_string[print_stringe] : string -> unit
val print newline[print newlineo] : unit -> unit
val send[sendo] : string -> unit
val receive[receiveo] : unit -> string
end
version myname
= struct
let print_int[print_into] = function (xo : int) -> h2_Pervasives.print_int xo
let print_string[print_string,] =
function (so : string) -> h2_Pervasives.print_string so
let print newline[print newline,] =
function (dso : unit) -> match dso with () -> h2_Pervasives.print_newline ()
let send[sendo] = function (datay : string) -> h3_Persist.write datag
let receivel[receiveo] =
function (dso : unit) -> match dsg with () -> h3_Persist.read ()
end)
= 0#2808905E9138A8AA18FF6FFSE169EDED

where
h2_Pervasives = hash(hmodule Pervasives : {}
sig

val string of_int[string of_into] : int -> string
val int_of_string[int_of_stringo] : string -> int
val print_string[print_stringe] : string -> unit
val print_int[print_into] : int -> unit

val print_endline[print_endlineo] : string -> unit
val print newline[print newlineo] : unit -> unit
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en
ve
= st

en
= O#4AS5FE3E
h3_Persist = hash(hmodule
sig
val
val
val
val
end
versi
= struc
let
let
let
let
end)
= O0#D90A83203B

d
rsion myname
ruct
let string of_int[string of_int,] =

function (dse : int) -> J"Apervasives_string of_int" dso
let int_of_string[int_of_string,] =

function (dso : string) -> J"Apervasives_int_of_string" dso
let print_string[print_stringe] =

function (dso : string) -> J"Apervasives_print_string" dso
let print_int[print_inte] =

function (dse : int) -> % "Apervasives_print_int" dso
let print_endline[print_endline,] =

function (dso : string) -> %"Apervasives_print_endline" dso
let print_newline[print newline,] =

function (dso : unit) -> %"Apervasives_print_newline" dso
d)
C8D8ODFA70AD367461DD525AA

Persist : {}

write[writeo] : string -> unit
read[reado] : unit -> string
write2[write2,] : string -> unit
read2[read2,] : unit -> string

on myname
t

write[writeo] = function (dsp : string) -> %"Persist_write" dso

read[reado] = function (dso : unit) -> %"Persist_read" dso

write2[write2,] = function (dso : string) -> %"Persist_write2" ds,

read2[read2,] = function (dso : unit) -> %"Persist_read2" ds,

41EF6E6ES512B3ESFF54850

EvenCounter [Mo] .send EvenCounter[My] .start

15.7 Compilation: imports

The result of compiling th& and
M and thecimport M have quite
in the hashh2_EvenCounter of t
any source-languag&renCounte

cmodule M[Mo] hOM : {}
sig
val f[fo] : int -> int
end (valuable, valuable)
sig
val f[fo] : int -> int
end
version hO_M
= struct
let f[fo] = function (xo
end

EvenCounter import example, 88, page 28, is below. Note here thatthwiule
different names, the hashes¥ andhi1_M respectively. It is the latter that appears
heEvenCounter module, and that thus would appear in the runtime type narfnes o

r.t types (there are no such occurrences in this example).

int) -> xo + 2
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where
hO-M = hash(hmodule M : {}

sig
val f[fo] : int -> int

end

version myname

= struct

let f[fo] = function (xo : int) -> xo + 2

end)

= O#FBCF6A65CCD4F06635C5188503EA9B72

cimport M[M;] hI_M

sig
val f[fo] : int -> int

end (valuable, valuable)

sig
val f[fo] : int -> int
end
version *
like struct end
by Here_Already
= M[Mo]
where
hi_M = hash(himport M: sig val f[fo] : int -> int end version * like
= O#BD28AD1B690255427DBA10F9471C765B
mark "MK"
cmodule EvenCounter[Mo] h2_EvenCounter : {}
sig

type tlto] : Type
val start[starte] : to
val getl[geto] : to —> int
val uplupo] : to —> to
end (valuable, valuable)
sig
type tlto] : Eq(h2_EvenCounter.t)
val start[starto] : h2_EvenCounter.t
val getl[geto] : h2_EvenCounter.t -> int
val uplupo] : h2_EvenCounter.t -> h2_EvenCounter.t
end
version h2_EvenCounter
= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let up[upo] = function (xo : int) -> M[M;].f xo
end

where
h2_EvenCounter = hash(hmodule EvenCounter : {}

sig
type tlto]l : Type
val start[starto] : to
val get[geto] : to -> int
val uplupo] : to -> to

end
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version myname
= struct

type tlto] = int
let start[starto] = 0O
let getlgeto] = function (xo : int) -> xo
let uplupo] = function (xo : int) -> RI_M.f X

end)

= O#A60A0OBC55D9A1BOF753ED1FA69475D83

I0[Lib_I0] .send
(marshal "MK"
(function (ds¢ : unit) ->
match dsp with () -> EvenCounter[M;].get (EvenCounter[M;].up EvenCounter[Mo].start))
: unit -> int)

15.8 Compilation: imports with abstract type fields

Here we show a fleshed-out version of the last two example8.4f age 28. Consider the import below, which has
a non-exact-name version and has a signature containingsaraet type field. It has Bkespeclike M specifying
that the representation type for that type must be the satiabsf the preceedingodule M (one could equivalently
give thelikespecexplicitly, writing 1ike struct type t=int end). The import is initially linked tav.

module M : sig type t val x:t end
version 2.4.9
= struct type t=int 1let x=17 end

import M : sig type t val x:t end
version 2.4.7-
like M
=M

mark "MK"

(marshal "MK" M.x : M.t)

The result of compiling this code is below. Note that kespeadata appears in the import haslh ¥, which is used
to form the typeri_mM.t) at which the finaharshal is done. Type errors caused by rebinding the import to madule
with different representation types are thus excluded.

cmodule M[Mo] hOM : {}
sig
type tlto]l : Type
val x[xo] : to
end (valuable, valuable)
sig
type tlto] : Eq(hO_M.t)
val x[xo] : hO_M.t
end
version 2.4.9
= struct
type tlto] = int
let x[x0] = 17
end

where

hO_M = hash(hmodule M : {}
sig
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type tlto] : Type
val x[xo] : to

end

version 2.4.9

= struct

type tlto] = int
let x[xo] = 17

end)

= O#D17E216FA11DBB5BDDBOB020646900A3

cimport M[M;] hI_M
. sig
type tlto] : Type
val x[xo] : to
end (valuable, valuable)
sig
type tlto] : Eq(hi_M.t)
val x[xo] : hI_M.t
end
version 2.4.7-
like struct type tlto] = int end
by Here_Already
= M[Mo]

where
hi M

hash(himport M
: sig
type tlto] : Type
val x[xo] : to
end
version 2.4.7-
like struct type tlto] = int end)
O#FE46E0350E1A6EAFB00547C6E836B6CB

mark "MK"
(marshal "MK" M[M;].x : hI_M.t)

15.9 Compilation: breaking abstractions

The result of compiling therith! example of §8.2, page 29, is below. Here EvenCounter is the hash of the
original module anch0_EvenCounter is the hash of the new version withdawn operation. The type equation
{hi1_EvenCounter.t=int} is recorded in themodule.

cmodule EvenCounter[My] hO_EvenCounter : {hl_EvenCounter.t=int}
sig
type tlto] : Eq(hI_EvenCounter.t)
val start[starto] : hI_EvenCounter.t
val getl[geto] : hi_EvenCounter.t -> int
val uplupo]l : hi_EvenCounter.t -> hl_EvenCounter.t
val down[downo] : hI_EvenCounter.t -> hl_EvenCounter.t
end (valuable, valuable)
sig
type tlto] : Eq(hi_EvenCounter.t)
val start[starto] : hI_EvenCounter.t
val getl[geto] : hI_EvenCounter.t -> int
val uplupo] : hi_EvenCounter.t -> hi_EvenCounter.t
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val down[downo] : hIl_EvenCounter.t -> hil_EvenCounter.t
end
version hO_EvenCounter
= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let up[upo] = function (x¢ : int) -> 2 + x¢
let down[downo] = function (x¢ : int) -> xo - 2

end
where
hO_EvenCounter = hash(hmodule EvenCounter : {hil_EvenCounter.t=int}
sig
type tlto] : Eq(hl_EvenCounter.t)
val start[starto] : hI1_EvenCounter.t
val get[geto] : hi1_EvenCounter.t -> int
val uplupo] : hi_EvenCounter.t -> hi_EvenCounter.t
val down[downo] : hI_EvenCounter.t -> hl_EvenCounter.t
end
version myname
= struct
type tlto] = int
let start[starto] = 0
let get[geto] = function (xo : int) -> xo
let up[upo] = function (x¢ : int) -> 2 + x¢
let down[downo] = function (x¢ : int) -> xo - 2
end)
= O#ESE0448DECB46AC6F6E22081B274831D
where
h1_EvenCounter = hash(hmodule EvenCounter : {}

sig
type tlto]l : Type
val start[starte] : to
val get[geto] : to -> int
val uplupo] : to —> to

end

version myname

= struct

type tlto] = int
let start[starto] = 0
let getl[geto] = function (xo : int) -> xo
let up[upo] = function (x¢ : int) -> 2 + x¢

end)

= O#E09083A42C03366FA0698C81E0063682

15.10 Marshalled values

In these examples thehack_optimise option of the implementation is used to suppress most vacaoloured
brackets, as described in §16.11.
The marshalled value of the first example of §3, page 13, mabdt contains simply a value and a type.
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marshalled ({ }, { }, {}, {}, 5, int)

The marshalled value of the first example of 84.2, page 1%I®Ab Here the moduld is shipped together with a
function that refers to it.

marshalled (
{ }3
{cmodule M[Mo] RO_M : {}
sig
val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version hO_M
= struct
let y[x] = 6
end

oA
{+

(function (x : unit) -> match x with () -> M[Mo].y),
unit -> int)

The marshalled value of the second example of 84.2, page bBlaw. This includes an import féit and the module
for M2, and a function that refers to both. The former is autombyicgenerated for the module binding ®i that is

cut by the mark. It is constructed with an exact-name versa@nrstraint, here to the hash-generated namer: of

M1. Thelikespeoof the import is also constructed based on the original medhbugh here that had no abstract types
so the resultindikespeds empty.

marshalled (
{ b
{cimport M1[My] hO_MI1
: sig
val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version name = hO_M1
like struct end
by Here_Already
= unlinked
cmodule M2[Mo] hi_M2 : {}
sig
val z[x] : int
end (valuable, valuable)
sig
val z[x] : int
end
version hi_M2
= struct
let z[x] = 3
end
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oAb
{

(function (x : unit) -> match x with (O -> (M1[Mo].y, M2[Mo]l.2)),
unit -> int * int)

The marshalled value of the third example of 84.2, page 1Belisw. Here the marshalled import is essentially that
supplied by the user above the mark (hence, that of the lrttat is cut by the mark), not an automatically-generated
default import.

marshalled (
{ }3
{cimport M1[Mo] hO_M1
: sig
val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version name = hO_M1
like struct end
by Here_Already
= unlinked
cimport M1[M;] hi_MI1
: sig
val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version *
like struct end
by Here_Already
= unlinked
cmodule M2[Mo] h2_M2 : {}
sig
val z[x] : int
end (valuable, valuable)
sig
val z[x] : int
end
version h2_M2
= struct
let z[x] = 3
end

b b
{3

(function (x : unit) -> match x with () -> (M1[M;].y, M2[Mo].2)),
unit -> int * int)

The marshalled value of the first example of 84.3, page 16l Here one can see that they under thefun in
the source language has not been instantiated (and an im@hipped, binding that) whereas the unguarded y
has been instantiated by its valei®efore marshalling took place.
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marshalled (

{ b
{cimport M[Mo] hO_M
: sig

val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version name = hO_M
like struct end
by Here_Already
= unlinked
cimport M[M;] hI1_M
: sig
val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version *
like struct end
by Here_Already
= unlinked

oAb
{}

(6, (function (x : unit) -> match x with () -> M[M].y)),
int * (unit -> int))

The marshalled value of the example of §4.5, page 17, is b&dtvjust an import being sent.

marshalled (

{5
{cimport M[Mo] hO_M
: sig

val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version name = hO_M
like struct end
by Here_Already
= unlinked
cimport M[M;] hi1_M
: sig
val y[x] : int
end (valuable, valuable)
sig
val y[x] : int
end
version *
like struct end
by Here_Already
= unlinked
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oAb
{

(function (x : unit) -> match x with OO -> M[M].y),

unit -> int)

The marshalled value of the example of §4.9, page 19, is b&ldtva store fragment mapping a single location to the
value5s and a store typing associating that location with type. The expression part is just that location.

marshalled ({ }, { }, {(1>:

The marshalled value of the thunkify example of §9.11, pageiSbelow. The body is a function which takes a
list containing a thread name and a mutex name and reconstrectsitfinal thread and mutex state at
those names.

thunkkey

marshalled (

{ },

int ref)}, {(<1>

:= 5)}, <1>, int ref)

{cimport Pervasives[Lib_Pervasives] hO_Pervasives

sig

val string_of_int[x] : int -> string
val int_of_string[xo] : string -> int
val print_string[x;] : string -> unit

val print_int[x,] : int -> unit

val print_endline[x3] : string -> unit
val print_newline[xs] : unit -> unit

end (valuable, valuable)
sig

val string of_int[x] : int -> string
val int_of_string[xo] : string -> int
val print_string[x;] : string -> unit

val print_int[x,] : int -> unit

val print_endline[x3] : string -> unit
val print_newline[xs] : unit -> unit

end

version name = hO_Pervasives
like struct end

by Here_Already

= unlinked

cimport Persist[Lib_Persist] hi_Persist

sig
val write[x] : string -> unit
val read[xo] : unit -> string
val write2[x;] : string -> unit
val read2[x,] : unit -> string

end (valuable, valuable)

sig
val write[x] : string -> unit
val read[xo] : unit -> string

val write2[x;] : string -> unit
val read2[x,] : unit -> string
end
version name = hl_Persist
like struct end
by Here_Already
= unlinked
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cimport IO[Lib_IO0] h2_IO
sig
val print_int [x] int -> unit
val print_string[xo] string -> unit
val print_newline[x;] : unit -> unit
val send[x] string -> unit
val receive[xz] : unit -> string

end (valuable, valuable)
sig
val print_int [x]
val print_string([xo]
val print_newline [x4]
val send[x] string -> unit
val receive[xz] : unit -> string

int -> unit
string -> unit
¢ unit -> unit

end

version name = h2_I0
like struct end
by Here_Already

= unlinked

oA
{1

(function (x : thunkkey list) ->
match x with Thread ((x; : thread name),
thunkkey]) ->
unthunkify
(Thunked_thread (x,
(function (x3
(let rec

(x1

: unit) ->

int -> unit
function
(x5 int) ->

I0[Lib_IO].print_int xs;

X4

in
xq) ([4 ]}T + 1))
Thunked_mutex (xo, false) ([0 %[thunkletl))),
thunkkey list -> unit)

: thunkifymode)): :Mutex (xo

I0[Lib_IO0] .print_newline ();

: mutex name)::([] %[

xg (x5 + 1)

where
hO_Pervasives = hash(hmodule Pervasives : {}

sig
val string_of_int [x] int -> string
val int_of_string[x,] string -> int
val print_string[x;] string -> unit
val print_int[x-] int -> unit
val print_endline [x3] string -> unit
val print_newline[xs] : unit -> unit

end

version myname

= struct

let string_of_int[x] = function (x :

let int_of_string[xe] =
function (xo
let print_string[x;] =
function (x1
let print_int[x,] = function (x»
let print_endline([x3] =
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int) -> "Apervasives_string_of_int" x

¢ string) -> Y"Apervasives_int_of_string" xo

: string) -> Y"Apervasives_print_string" x

int) -> %"Apervasives_print_int" x,



function (x3 : string) -> %“Apervasives_print_endline" X3
let print_newline[xs] =

function (x4 : unit) -> %"Apervasives_print_newline" x4

end)

= O#4A5FE3EC8D80DFA70AD367461DD525AA
hi1_Persist = hash(hmodule Persist : {}
sig
val write[x] : string -> unit
val read[xo] : unit -> string

val write2[x;] : string -> unit
val read2[x,] : unit -> string
end
version myname
= struct

let write[x] = function (x : string) -> "Persist_write" x
let read[xo] = function (x¢ : unit) -> %"Persist_read" xo
let write2[x;] = function (x; : string) -> J"Persist_write2" x
let read2[x,] = function (xy : unit) -> %"Persist_read2" x»
end)
= O#D90A83203B41EF6E6E512B3ESFF54850
h2_I0 = hash(hmodule I0 : {}
sig
val print_int[x] : int -> unit
val print_stringl[xo] : string -> unit
val print_newline[x;] : unit -> unit
val send[x,] : string -> unit
val receive[xz] : unit -> string
end
version myname
= struct
let print_int[x] = function (x : int) -> hO_Pervasives.print_int x
let print_string[xo] = function (xo : string) -> hO_Pervasives.print_string xo
let print_newline[x;] =
function (x; : unit) -> match x; with () -> hO_Pervasives.print_newline ()
let send[x,] = function (x; : string) -> hI_Persist.write x,
let receivel[xs] = function (x3 : unit) -> match x3 with () -> hl_Persist.read ()
end)
= O0#2808905E9138A8AA18FFE6FFSE169EDED
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Part Il

Definition

16 Language Definition

16.1 Metavariables

Time-stamp: <2004/10/12 08:14:29 GMT leifer>

TCC
TpubfromC
TrepfromC
URI

X

ahvc

ahvce
atomicresolvespec
ave

avce

avn

set of module identifierdl;; and locationg
bracket context

single-level evaluation context, definitions
evaluation context

compile-time valuable context

type environment

type environment of global abstract names
kind

set of store locations

module identifier (external)

mark (string literals)

module identifer (internal)

module identifier option

sequence of module identifier

numeric hash

process

filesystem

set of module identifier

structure evaluation context

signature

structure

type

thread top-level evaluation context
thread evaluation context

type

type

Uniform Resource Identifier

module name or hash

atomic hash version constraint

atomic hash version constraint expression
atomic resolve spec

atomic version constraint

atomic version constraint expression
atomic version number
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avne
b

c

compilationunit
compilationunit
compileddefinition
compiledfilename
compiledunit
config

definition
definitions

dvc

dvce

e

likespec
likestr

nset

p
resolvespec

p
S

o

s1q
sourcedefinition
sourcefilename

atomic version number expression
boolean literal

character literal

compilation unit

compilation unit

compiled definition

filename of compiled file
compiled unit

runtime configuration
module definition

module definitions

dotted version constraint
dotted version constraint expressi
expression

expression

transition label

expression option

type equation

type equation set

hash

index (fromN)

integer literal

index (fromN)

index (fromN)

store location

likespec

structure (in a likespec)
index (fromN)

module or import mode
match

marshalled value

index (fromN)

natural number literal (fron¥,s:)
abstract name (from\)
abstract or hash name value
abstract or hash name
name list

name set

operator

pattern

resolvespec

substitution ofT"s for M, .t's
store

substitution ofh.x’s for M ;.x's
signature body

source language definition
filename of source file

DN
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Time-stamp: <2004/10/12 08:14:29 GMT leifer>

sourcefilenames | set ofsourcefilenames

s string literal

str structure body

strval structure body value

t type identifier (internal)

0 arbitrary syntactic entity

thk thunk

thks thunk list

tk thunkkey

tks thunkkey list

tmode thunkify mode

t type identifier (external)

U expression identifier (internal

v value

valuability valuability

valuabilities valuabilities

ve version constraint

vee version constraint expression

un version number

une version number expression

weqs withspec type equation set

withspec withspec

x expression identifier (internal

xo expression identifier option

X expression identifier (external)

Y expression identifier (internal

y expression identifier (external)

z expression identifier (internal

z expression identifier (external)
16.2 Syntax

The definition involves several related languages:

1. Theconcrete sourcdéanguage is the language that programmers type,fagction (x,y) -> x + y +
M.z. This is concrete — a set of character sequences.

2. Thesugared source internd@nguage is generated by parsing, scope resolution andrtigrence; for example
function (z : int,y : int) — (+) = ((+) y Ma.z). This is an abstract grammar, up to alpha equivalence. The
x, y and M are internal identifiers, subject to alpha equivalencezthedM are external identifiers, which are
not. (In fact operators are eta-expanded to ensure theyillyeapplied.)

3. The source internallanguage is generated by desugaring, for exanfplection (v : int x int) —
match « with ((z :int),(y :int)) = (+) z ((+) y Mas.2).

4. Thecompiledianguage is generated by compilation, which here compibesktype names for hashed abstract
types, carries outvithspec andlikespec checks, etc. The operational semantics is defined over atsroéthe
compiled language.

Note that the compiled language contains both compiled famch source internal form components. Specif-
ically, a compiled program consists of compiled form deiiims and/or source internal formmodule fresh
definitions, and an optional compiled form expression.
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The main definition is of the union of the grammars for sleeirce internabndcompiledlanguages. The differences
are signposted withSource internal forni: (or S) and ‘Compiled form (or C) respectively. The main type system
is defined over this union.

Sugared forms (theugared source internadditions to thesource internalanguage) are signposte8tigared source
internal language: (or G). Additional rules specify typing for the sugaredrfts.

Differences between thgugared source internand the concrete syntax of tleencrete sourcéanguage are sign-
posted Concrete source languade:

For any syntactic entity, we saysugaredsourceinternalform(6), sourceinternalform(#) or compiledform(#) to
mean that entity is an element of the respective language.

Some syntactic requirements are not easily expressed BNiregrammar itself. They are are instead placed in the
body of the text in paragraphs signposted wilyfitactic requiremerit:

Concrete source languagéhis definition does not fix character sets, comments, whdtes etc. The implementation
generally followsOCaml.

CommentThe syntax generally follom®Caml for standard features. We have tried to resist any temptadio
change or improve it, for three reasons: (1) to avoid timesconing and unproductive syntactic debate; (2) to
enable automated testing of the implementation of thoselata features again&tCaml’s behaviour; and (3)
so that we and others can wrideute code without needing to learn new syntactic conventiongrélare quite

a number of things that should in principle be improved, have

Identifiers
b expression identifier (external)
x expression identifier (internal)
t type identifier (external)
t type identifier (internal)
M module identifier (external)
M module identifier (internal)

Concrete source languageExpression and type identifiers are not split into intermrad axternal forms; they are
uncapitalized. External module identifiers are capitaljizeey can have an optional internal identifier, also ctipéd.

We usez, x, t, t etc. both as metavariables (in most of this document) andeaseats of their respective syntactic
categories (in examples). Henge (qua metavariables) ranges over, x,, y,, etc (qua elements) — just because
the two metavariables look similar does not mean that angrete instance must be a pair related by the obvious
isomorphism.

In ASCII when we need to writd1,,, x,., andt, they are rendered, respectivaly{[M], xx[x], andtt [t].
Kinds

K := Type kind of all types
EQ(T) kind of types equal td’
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Types
T == TCy TCyp == int TC; == list
T TCy bool option
Ty x..x T, n > 2 string ref
T+ ..+ T, n>2 unit name
n char tie
T— T void
My, .t exn
h.t C thread
t mutex
VitT cvar
3¢.T thunkifymode
thunkkey
thunklet C

unixerrorcode
HereM,, .t is a type fieldt from moduleM,;, andt¢ (used within a structure or signature) is a type defined in a
previous field.

Source internal form#.t is a global type name built from a module name; it is not parditn source programs.
Compiled form:M y, .t is not permitted in compiled form.

Type Environments

E = empty empty type environment
Ex:T
E[:T ref
E M)y, : Sig
E.t: K

We write £, E’ for the concatenation of two type environments, therebgriisg also that? and £’ have disjoint do-
mains. The domain dofi) of an E is a set of internal value identifiers, locations, modulemal/internal identifier
pairs, and internal type identifiers.

Names

Take an infinite sefV" of abstract names, ranged over iy These are used to represent runtime and compile-time
freshly-generated names.

We introduce a global type environmefit associating abstract names with types, ki, or module/import data.
Note that these can occur inside “closed” types, hashes etc.

E, = empty
E,,n : nmodule., M : Sig, version vne = Str
E,,n:nimport M : Sig, version vc like Str
E,,n:TYPE
Ey,n: T name

Comment:In the absence of first-class existentials freshly genérgige names would not be required,Mk
abstract types are a module-level feature.

CommentWe often write justE to stand for the paiF,,, E of a name environment and a type environment. In
this casepamepart(F) denotes the name environment component of this pair..
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We letnn range over term names (hash- or fresh-generatedhamner their bracket-closure:

nn := hash(hx)r
hash(T’,s)r
hash(7’,s,nn)
nr

n = nn
[n)?,

eqs

In building these and other hashes we hash the abstracksymta alpha equivalence.
These are subgrammars of thgrammar; the: typing judgements apply.
Define the auxiliantypeof (n) to give the type subscript of the innan.

We suppose there is a fixed total ordemver then, taken (in the implementation) to depend on the haslonly,
ignoring theT" subscripts).

CommentLater we will also add name-indexed hashtables, which shadpect the order.

We leth range over module names (hash- or fresh-generated).

h == hash(hmodule., M : Sig, version wne = Str)

hash(himport M : Sig, version vc like Str)
n

Comment: Note that only the external identifidd of a definition is included in the hash; the internal identifie
is not. We will only ever deal with hashes in whiehs, Sig, and Str have been module-identifier-closed by
substituting forM’ ,..t andM’y;..x. Furthermore, any internal module field references to tyg@eviations
will have been normalised away.

The version in a module hash is a version number expresgiqrermit it to includemyname. This avoids

the need for a recursive hash construction. In any contaxtaame may simply be interpreted as the hash in
which it occurs. In contrast, the version in an import hashdsa version constraint expression but a version
constraint. This is to force the evaluation of akly, references, replacing them by the hash of the module
named. Otherwise, the meaningMf,; would be (undesirably) context-dependent.

For the term part, we substitutex for M,,.x whereh is the hash of whatever is boundkd,,. That gives

a slightly more discriminating type equivalence than theRCalculus (which substituted code, not hash) for
types that depend on the code containing thaf but it seems more intuitive, and is cheaper to implement. Fo
the type part:

« whereM, .t is abstract (of kind YPE in the source definition) we substitute/r.

- whereM,, .t is concrete we must substitute in the type representatiberwise we won't have enough
type equalities later.

We assume a fixed functiddASH(-) which takes a structured hasho a numeric hastv, whereN < H for some
setH. Typically HASH(-) would be a well-known hash function such as MD5 or SHA1, anuienic hashes would

just be long bit strings (128- or 160-bit, respectively).

With numeric hashes, runtime type safety for the languagmig probabilistically guaranteed (though with rather
high probability for reasonable usage); it depends on theraption thaHHASH(-) is injective for the set of structured

hashes in use.

The language is not intended to protect against the mafdianging of ill-formed hashes or marshalled values.

Implementation: In the implementation both and allhash(...) forms will be represented by a long bitstring

taken fromH. (Sohash(h.x) is represented by the hash of the pai.adnd the external name not the pair
of h andx.)
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In the implementation, the representations of abstractessamvill be generated randomly. More specifically:
we do not want to require that the implementation generatel andividual name randomly, as that might be
too costly — it is acceptable to generate a random start @oitite initialisation of each compilation and the
initialisation of each runtime instance, and thereafter smsme fast generation function for compile-time new
and run-time new respectively. (Ideally the generatiorcfiom would not be successor, to avoid triggering
worst-case performance ofina finite map implementations.) Nonetheless, a low-letgicker would often
be able to tell whether two names originated from the samet pand that (for making real nonces etc) a more
aggressively randorfresh would be required.

Name representations could be generated lazily: as edifeussed folFreshOCaml marshalling, we only
really need an element @ when a name is first marshalled; the implementation coulg lkeénite map
associating internal-to-this-runtime names (represkejust with pointers) and elements Hf that have been
marshalled or have been unmarshalled from the outside. \&@hetwould gain very much by this is unclear,
and we do not do it now. (However, it is important to make latennel use very cheap).

Implementation: In a production implementation, all occurrencesiofvould be implemented by occurences
of N, with HASH(-) used where necessary to compute\afrom ahash(..) form of h.

In our current implementation we support both numeric hagimel structured hashes, the latter preserving all
the structure above. A compiler option selects which areeggiad. This enables us (when using structured
hashes) to typecheck the reachable intermediate stataspbBimts in the semantics describe a typecheck that
can be performed if structured hashes are being used: initadiop when a compiled unit is imported; at
runtime when a marshalled value is unmarshalled; at rundioneng module field instantiation, when compiled
definitions are taken from a URI; and at runtime after redurctiteps (for the small-step evaluator, after every
reduction step; for the big-step evaluator, only some ofinkermediate points are reached). All these checks
should always succeed, assuming that marshalled valuesoamuiled files are not forged.

Our implementation takeslAASH(-) function that calculates the MD5 of a canonical pretty-poihstructured
hashes.

Hash equations

eq = htxT
Myt~T S
eqs = I
eq
eqs, eqs

The egs grammar is treated up to associativity, commutativitymgetence, and identity.

The
set).

domain dorfegs) of an equation set is the set of typést(or M,,.t on the left-hand sides of equations in the

Comment: We believe that in fact, any equation set will consist eithetirely of h-equations, or entirely of

M -equations; the two will never be mixed. This is becalfg-equations appear in source form, aind
equations in compiled form. However, we do not (yet) modad th the abstract syntax, because we suspect
carrying this through the type system would be painful. Wausth revisit this decision once the type system is
stable, as there might be a clarity gain.

We occasionally use the metavariabfeto stand for eitheh or M,

X = My
h C

Compiled form:TheM, case ofX is not permitted in compiled form.

Constructors The constructors are:
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—~

) @ unit

sint

: bool

: char

: string

T T list

NONEr : T option
SOME: T'— T option

— e o oI

TIECON: T namex T — T tie C
'NJ§T1+“+T” Ti—-T+.+T, n>2a1 € l.n

INTERRUPTING: thunkifymode

BLOCKING : thunkifymode

THREAD : thread name * thunkifymode — thunkkey
MUTEX : mutex name — thunkkey

CVAR : cvar name — thunkkey
THUNKED_THREAD : thread name * (unit — unit) — thunklet
THUNKED_MUTEX : mutex name * bool — thunklet
THUNKED_CVAR : cvar name — thunklet

RESOLVE FAILURE : exn

MATCH_FAILURE : string * int * int — exn

LIBRARY _ERROR: string — exn
MARSHAL_FAILURE : exn

UNMARSHAL _FAILURE : string — exn

FAILURE : string — exn

INVALID _ARGUMENT : string — exn

NOT_FOUND : exn

SYS_ERROR: string — exn

END_OF_FILE : exn

DIVISION_BY _ZERO: exn

SYS_BLOCKED_IO : exn

NONEXISTENT_.THREAD : exn
NONEXISTENT-MUTEX : exn

NONEXISTENT_-CVAR : exn

MUTEX_EPERM: exn

EXISTENT_NAME : exn

THUNKIFY _EINTR : exn

THUNKIFY _SELF: exn

THUNKIFY _KEYLISTS_MISMATCH : exn

THUNKIFY _THREAD_IN_DEFINITION : exn
UNIXERROR: unixerrorcode * string * string — exn

[ONeNeQ]

The unix error codes, all constructors of typéxerrorcode, are:

E2BIG

EACCES
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
EAGAIN
EWOULDBLOCK
EALREADY
EBADF
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EBADMSG
EBUSY
ECANCELED
ECHILD
ECONNABORTED
ECONNREFUSED
ECONNRESET
EDEADLK
EDESTADDRREQ
EDOM

EDQUOT
EEXIST

EFAULT

EFBIG
EHOSTUNREACH
EIDRM

EILSEQ
EINPROGRESS
EINTR

EINVAL

EIO

EISCONN
EISDIR

ELOOP

EMFILE

EMLINK
EMSGSIZE
EMULTIHOP
ENAMETOOLONG
ENETDOWN
ENETRESET
ENETUNREACH
NFILE
ENOBUFS
ENODATA
ENODEV
ENOENT
ENOEXEC
ENOLCK
ENOLINK
ENOMEM
ENOMSG
ENOPROTOOPT
ENOSPC
ENOSR
ENOSTR
ENOSYS
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ENOTCONN
ENOTDIR
ENOTEMPTY
ENOTSOCK
ENOTSUP
ENOTTY
ENXIO
EOPNOTSUPP
EOVERFLOW
EPERM

EPIPE
EPROTO
EPROTONOSUPPORT
EPROTOTYPE
ERANGE
EROFS
ESPIPE
ESRCH
ESTALE
ETIME
ETIMEDOUT
ETXTBSY
EXDEV
ESHUTDOWN
EHOSTDOWN
EUNKNOWN_UNIX_ERROR

Herei ranges over integer literals (the same as the underktieghOCaml ints), s ranges over strings of characters,
andp ranges oveftrue, false}.

In addition tos, we letMK also range over string constants.

Note that constructors are all of arity 0, arity 1 (C), or equal ta: or (_, .., -). The typing and reduction rules treat
thecy andc; cases uniformly and have special rules for the others.

Concrete source languagé:he type annotation subscripts are optional. If they arkuded (both here and in later
forms), the linear ASCII rendering is e Xone %[T].

Thestring * int * int in the v’ for the MATCH_FAILURE case gives the position in the source file of the match code.
Many of the exception constructors are raised by embe@dednl library functions, as follows:

INVALID _ARGUMENT is raised by library functions to signal that the given arguats do not make sense.
FAILURE is raised by library functions to signal that they are undsfion the given arguments.

NoOT_FOUND s raised by search functions when the desired object catldanfound.

SYS_ERRORIs raised by the input/output functions to report an opegasystem error.

END_OF_FILE is raised by input functions to signal that the end of file hearbreached.

DivISION_BY_ZEROIs raised by division and remainder operations when thense argument is null.
SYS_BLOCKED_IO is a special case of¥$_ERRORraised when no I/O is possible on a non-blocking I/O chan-
nel.

UNIX ERRORCcarries the errors raised by the TCP libraries.

e LIBRARY_ERRORCcarries any unrecognised error raised byFag, .

Comment:The Unix error codes above are the set of all those on ourmiukiaux install, and the translation
from integers to constructors is hard-wired into thaite implementation (inLibrary.mlp). This should be
made more portable — at the least, that parttérary.mlp should be automatically generated from the C
header file.
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Comment:Note that the polymorphic constructors exist as indexedli@srather than using explicit polymor-
phism. This is a historical artifact.

Comment:We are not entirely consistent about the type annotatioreoastructors, operators, and expression
forms. Acute was originally monomorphic, though with type inference foese annotations; the semantics
was originally written to ensure that all values have unityges. That is no longer the case: thse is not
type-annotated (as to maintain that annotation duringatmluwould require notationally-heavy annotation of
evaluation contexts and the other expression forms), sctiimvalues with araise in the body may not be
uniquely typable.

Standard Library

We suppose there is a fixed collection of special constapis,;, which is a finite partial map from internal value
identifiers to types. Each is equipped with a natural-nunaloiy, writtenz™ if » has arityn. The special constants
are partitioned by a predicates(z™) into the OS calls, which have labelled transitions in the aets, and the
internal built-in library calls, which have delta rules. @S calls are further partitioned by a predichie (z™)
specifying whether each is a fast or slow call.

Their internal identifiers are never shadowed, as specifiémbwhen we discuss binding.
The types ofE,,.sS must be first order.

Comment:Before the addition of concurrency we permitted highereoil. ... S, €.9. to automatically embed
the FreshOCaml List .map into Acute, but with concurrency that would be unduly complex.

Suppose further that there is a fixed list of library defimtidefinitions,;;,, a finite list of module definitions. These
have a special status in that their code can mention spegiatants from doif¥...s;) whereas user-defined modules
cannot (the running expression can also mention them, akedpu

Note that the internal identifiers @kfinitions,;, are fixed globally.

We generate names for these modules in the usual way wheratbeegompiled (note there will be free internal
identifiers inside, but that is not a problem).

Let Ey;, be the partial map from module external/internal identifp&irs to signatures such thdf.,.s; +
definitionsy, > Eip.

The upshot of this is that all types defined idatinitions;,, module must have representation types that are expressible
within the language, but the code can make usB.gfs;. We do not require thatefinitions);;, terms are puréons:S.
Programs can rebind to user-land replacementslé@initions;;, modules if needed, and can use themuiithspec
andlikespecs.

Implementation: In the implementation definitionsy;;,, is composed of two parts. The first
(definitions_lib_auto.ac) is automatically generated from a collection@Eaml interface files; each value
component in these gives rise to &h,,s;. These interfaces are described in Section 21. Most ardesiingy-
ments ofOCaml standard library interfaces, and are linked to those; somdirgked to hand-writter©Caml
modules. Type embeddings and projections are dealt withnzatically. The second part consists of various
hand-writtenAcute modules. The two are combined indefinitions_1ib.ac as below.

includesource "definitions_lib_auto.ac"
(* includesource "io_template.ac" (* simple IO for tcp *) %)
includesource "io_persist.ac" (* simple I0 for persistent store *)

E.onstS Of arity0 are now supported by the automated generation tool but tlkeyngn-value expressions in the
definitions_lib.ac structures rather than the actual values, so we usk=tkte! mode for these modules.

Comment: Note that the semantics has immutable strings, whe@gasnl has mutable strings. Our string
library contains only the non-mutating part of tB€aml string library.

Operators Takeoperatorsop™
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ref : T — T ref

(=71) : T — T — bool

(<),(2),(>),(>) : int — int — bool

(4+), (=), (x),(/),(mod) : int— int—int

(land), (lor), (Ixor) :int — int — int

(Isl), (Isr), (asr) ©int = int — int

— :int —int

(@r) : T list— T list— T list

) :  string — string — string
compare_name : T name — T name — int
create_thread :  thread name — (T — unit) — T — unit
self : unit — thread name

kill :  thread name — unit

create_mutex :  mutex name — unit

lock :  mutex name — unit

try_lock :  mutex name — bool

unlock :  mutex name — unit

create_cvar :  cvar name — unit

wait : cvar name — mutex name — unit
signal : cvar name — unit

broadcast : cvar name — unit

thunkify’ : thunkkey list — (thunkkey list — unit)
unthunkify : thunklet list — thunkkey list — unit C
exit 7 :oint— T

The superscript is the arity of the operator. Note in palticthatthunkify has arity 1, not 2.

Concrete source languag&he binary operators in brackets may be written infix, e.g.7 ¢’ for (=7) e ¢’; we use
Ocaml’s precedence rules. tef 7 is not saturated, then it must be enclosed in parenthesesiicesforms. Same for
mod, land, lor, Ixor, Isl, Isr, asr. The type subscripts can be omitted, as above.

Comment: With locally-unique naming, there is no point in parametieiy thecreate_thread function
argument on its identity.

CommentThe type ofcompare_name follows the type ofcompare in OCaml.

The operators come in two families: thge indexedconsisting of those bearing a type subscript, and the ex@xl
We write op™ for both.

CommentThe definition does not at present follow a consistent pa&yo what should appear as an operator
and what as an expression form (cf. the treatment of coloargdments by the atomic evaluation contexts).
Ultimately it should. The distinction between operatord &h,,,s;S comes from the implementation: the former
are implemented within th&cute runtime; the latter by calling out tBreshOCaml.

Expressions

e u= Cy Co a constructor of arity 0
Ci e C; a constructor of arity 1
e1:: e Cons
(e1,..,en) Tuple(n > 2)
function (z: T) — ¢ Function
op™ ey ... en op an operator
" er ... ey z™ an external constant
x Identifier
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MM.X

h.x

if e; then ey else e3
while ¢; do e¢; done

€1 && €2
€1 H €2
€1, €
€1 €2
!Te
€1:=7 €2
€1 ::/T €9

l
match e with mitch
let rec z;:
raise e
try e with mitch
marshale; e : T
marshalzse : T
unmarshal eas T
fresh
cfreshr
hash(X.x) T’
hash( T, 61)7‘/
hash(T, ey, e2) 7
nr
swap e; and e; in e
e1 freshfor e
support e
MM@X
name_of _tie e
val_of _tie ¢
At—e
eT
{T,e}as T’
let {t,z} =€ in e
namecase e; with
{t,(21,22)} when z; = e — e
otherwise — e3
function mich
fun pi..p, — €
let p==¢ in ¢
let z: T p1..p, =€’ in €”
let rec z: T = function mich in e
let rec z: T p1..p, = ¢ in ¢”
erfe2
op(op™)™ € .. ey,
op(z™)" e .. e,

1"

T = function (22 : T') — e; in e

O00OOOOOO

Module projection

Module hash projection

Conditional

Loop

Boolean short-circuit and

Boolean short-circuit or

Sequence

Application

Deref

Assign

Assign uncoloured

Location

Pattern match

Recursive definition

Raise exception

Handle exception(s)

Marshal

Marshal (expression in uncoloured context)
Unmarshal

run-time fresh name generation
compile-time fresh name generation
create name from module value field
create name from type and string
create name from type, string, and name
abstract name

polytypic swap

polytypic freshness test

polytypic typed-name support

tie construction

tie inspection

tie inspection

type abstraction

type application

existential package

unpackaging

unpackaging and name equality

mich # (' : T — e))
n>1)

—~

(n>1)
(mtch # (¢' : T' — ¢'))

(n>1)

spawne;

Primitive application of an operator
Primitive application of an external constant
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[e] 2 C Coloured brackets

resolve(M;.x, M’ s/, resolvespec) C resolvespec in progress
resolve_blocked (M ;.x, M’ y;/, resolvespec) C  resolvespec blocked waiting for data
RET C Await return from a ‘fast’ OS routine
SLOWRET 1 C Await return from a ‘slow’ OS routine

We writez™ to denote air € E.,5 that has arityn.
Sometimes we writep(e)™ ... and in this case the ranges ovepp™ andz™ only.

Concrete source languag&he type annotations it e, e; ;=7 e, function (z : T) — e andlet rec z;: T =
function (2 : T') — e; in ey are all optional. In ASCII a type abstractidnt — e is written asFunction t
-> e and a type application T is writtene %[T].

Sugared source internal languag&he: T type annotation ilet z : T py..p, andlet rec =z : T pi..p,
is prohibited (to be compatible with Ocaml). These type aatians are inserted by type inference and used in the
desugaring process.

Sugared source internal languag&he hash(M,.x) 7 andMy;@x forms are only permitted within structures, not
in the main expression. (This is not essential, but simglifiee hashify semantics.)

Compiled form:Module hash projections.x may only occur within other hashes (they are not executable)

Sugared source internal languagkt source programsg, =, ||, and&& may all be written as prefix functions by
wrapping them in parentheses, €& 7). In source programs, operators, external constépis= r, ||, and&& can

be partially applied. The desugaring process is respafibleta-expanding these. Type annotations in these sligare
forms are likewise optional.

See Section 16.4 for details of the desugarings.

Comment: It is an invariant that constructible values? satisfy compiledform(v©?*) and in addition con-
tain none ofRET r, SLOWRET r, resolve(...), or resolve_blocked(...) Values can contain the fornis
[e]equ, nr, and also the (transient) :="; e2, marshalz s ¢ : T, op(e)” e .. e,. (See the semantics for
thunkify, which cannot create a thunk containing the first group.)ebike, marshalled and stored values
contain none of the first group.

Marshalled values

mv == marshalled(E,, Es, s, definitions, e, T) Marshalled value

We suppose a fixed partial functiaaw_unmarshal from strings to marshalled values that includes all matstal
values in its range.

Syntactic requiremenfThe component8 of a marshalled value all satisépmpiledform(9).

Comment: Heree is the core value being shipped, its type, s a store,E, a store typingdefinitions is a
sequence of module definitions, afg is a name environment.

The E,, and E, would not be shipped in an production implementation, betreseded to state type preservation
and for runtime typechecking of reachable states. Theytappesd in our implementation only if literal hashes
are not being used.

As with the other syntactic objects, marshalled values akert up to alpha equivalence. Here: the name
environmentE, binds in everything to the right and internally contains nales; the store environmeii,
binds in everything to the right and may contain internalegrthe store and thedefinitions bind to the right
and may mutually refer to each other; thenay contain internal cycles.

Implementation: The implementation of marshalled values should includechajltype name for the Acute
implementation representation type. As we are not boqiging, we should do this manually.
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Matches

mtch == p—e
p — e|mich

Concrete source languagén initial bar may be added.

Patterns
p o= (-:T) Wildcard
(z:T) Identifier
Co Cop a constructor of arity 0
Cip C; a constructor of arity 1

D1 p2 Cons
(p1,..,pn) Tuple(n > 2)
(p:T) Typed pattern

Syntactic requiremenftThese are subject to the condition that all identifiers doguin a pattern are distinct.

Concrete source languagthe type annotations on wildcard and identifier patternsbeaomitted.

Signatures
sig = empty Empty signature body
val x, : T sig  Signature body extended with val spec
type t; : K sig Signature body extended with type spec
Sig = sig sig end Signature

Concrete source languag&Ve writet : TYPE ast, write t : EQ(T') ast = T, and allow optional;; between each
non-empty spec in ag. We write a single identifier in place af, andt;.

Structures
str = empty Empty structure body
type ty = T str Structure body extended with type component
let x, = e str Structure body extended with expression component
let x,: Tpr.pn=¢" G (n>1)
Str = struct str end Structure

Concrete source languag#Ve allow optional ;; between each non-empty spec ista. We write a single identifier
in place ofx,, andt;. To match Ocaml the T is prohibited (but inserted by the type inference system).

Resolve specs

atomicresolvespec ::= atomic resolve spec
STATIC_LINK code should be statically linked
HERE_ALREADY code should be here already, fail if not
URI load module from file or web
resolvespec = resolve spec (nonempty list of atomic ones)
atomicresolvespec
atomicresolvespec, resolvespec
URI := a string literal of a URI...

(a subgrammar of RFC2396®so0luteURI)

Implementation: The current implementation suppoftsle, http, andftp URIs.
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Version languagesie define version number and constragrpressionas follows.

avne = Atomic version number expression
n natural number literal ifNys:
N numeric name literal ifil
h C structured name literal
myname the compiler will write the name of this module in as a literal

une = Version number expression
avne atomic version
avne.vne dotted version

ahvce = Atomic hash version constraint expression

N numeric name literal ifil
h C structured name literal
Ms the compiler will write the hash dfl,, in as a literal

avee = Atomic version constraint expression
ahvee atomic name version constraint expression
n natural number literal ifNys:

dvce = Dotted version constraint
avce atomic constraint
n—n' closed interval
-n left-open interval
n— right-open interval
* anything
avce.dvce dotted version constraint

vee = \ersion constraint
dvce dotted version constraint
name = ahvce exact-name version constraint

Syntactic requirementWe define the version number and constraialues avn, vn, ave, ahve, dve, ve to be the
relevant subgrammars with theyname andM ,,; clauses removed.

Source internal form:A user source program may not have an exact-name constfaim dorm name = N, or
name = h, only name = M,,, as an in-scope module is required to provide the data tammsiikestr.

Comment:There is an important distinction betwegérand V. In the semantics a structured namean be
supplied only by the compiler, and thus we may ensure andvas#uis generated from a well-formed and
well-typed module or import. A numeric nani€ in a version expression may be supplied by the user as an
arbitrary element oHl (e.g.,0#60139C0047463B6261112944981EBF92), and thus (for type-safety purposes)
cannot be assumed to arise from a well-formed structurecer(am be either thélASH(-) of a well-formed
structured hash or be an appropriate abstract name).

CommentNote that the semantics of an exact-name version consiiaiile = ahuvce is rather different from
the othervces in that it is a constraint on the name, not the version, ofnleelules and imports that can be
linked to an import with this constraint.

CommentThe basic part of the version grammar should be improvedntikevals are not very useful as given
here.

Define an equivalence relation overc (note thatavn andave coincide) as the least equivalence such that N’ if
HASH(h) = N'. More explicitly:

~

s —

n=n n=n
N=N < N=N’
h=h < h="n
h=N' <= HASH(h) =N’
N=h <« N =HASH(I)
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Define the set ofn denoted by eachivc as follows.

IN] = {avn|avn = N}
[r] = {avn]avn = h}
[r] = {n}
[n—n,] = {nln; <n <n,}
[n-] = {nln, <n}
[n] = {nln<n,}
[x] = {vn|true}
lave.dve] = {avn.vn|avn = ave A vn € [doc]} U {avn|avn = ave A dve = *}

We writevn € dvc for vn € [dvc].

Sayve C wc if either (1) ve = dvc, v/ = dvc’ and[dvc] C [dvc’], or (2) vc = (name = ahvc) and
ve’ = (name = ahvc’) andahve = ahvc’.

Modes and Valuabilities

mode 1=
hash hash the structure of the module or import
cfresh calculate a fresh name at compile time
fresh  calculate a fresh name at run time
hash!  hash the structure of the module or import, ignoring valligbi
cfresh! calculate a fresh name at compile time, ignoring valuapbilit

vub = valuable is statically determined
cvaluable is statically determined after compile-time new
nonvaluable can only be calculated at run-time

We write vubs for a pair of valuabilities. The first element of the pair msféo the status of the terms, the second to

the status of the types.

Definitions Source definitions and compiled definitions (the latter eghgver bydefinitions) are as follows.

sourcedefinition ::=

module mode M, : Sig version wne = Str withspec Module declaration

import mode M) : Sig version wvce likespec by resolvespec = Mo Module import

mark MK Mark

module M, : Sig = M/ Module alias declaration

definition ::=

cmoduley,; os;5ig, vubs My @ Sig; version wvn = Str Module declaration
cimport,g;, vubs My : Sig; version vc like Str by resolvespec = Mo Module import
module fresh M), : Sig version wne = Str withspec ... (initialisation-time fresh)
import fresh M, : Sig version wvce likespec by resolvespec = Mo ... (initialisation-time fresh)
mark MK Mark
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In the cmodule the egs are any equations arising from theith ! clause; theSig, is the semicompiled signature,
not name-selfified but otherwise normalised as far as pessihtSig, is the fully compiled signature.

weqs = O user coercion spec
Myt = T, wegs
withspec = with lwegs
likespec  ::= empty like spec
like MM
like Str
Mo == My linked toM ,,
UNLINKED unlinked

Syntactic requirementderewegqs is up to associativity, commutativity and identity.

Concrete source languageThe version wne in @ module can be omitted, in which case it defaults to
version myname. The withspec in a module is either empty (in which case it defaults tawvith !&) or
with lwegs in which casewegs is not empty. Theversion wvce in animport can be omitted, in which case
it defaults to version x. The by resolvespec in animport can be omitted, in which case it defaults to
by HEREALREADY. The= Mo in animport can be omitted, in which case it defaultstoUNLINKED. If
animport has an exact-name constraitime = M, then thelikespec must beempty.

Compilation Units

compilationunit = eo
sourcedefinition ;; compilationunit
includesource sourcefilename ;; compilationunit
includecompiled compiledfilename ;; compilationunit

compiledunit = (E,, definitions eo)

definitions = empty
definition ;; definitions

eo = empty
€5

Concrete source languag#ve allow optional and repeateqd (different rules apply for structures and signatures).
Compiled form:All ;; are omitted.

There must be at most one finglwhich may be e.g. at the end of an include at the end of théetogd-compilation
unit.

In the current implementation, programs with no final expi@s are not executed; in particular, no module initialisa-
tion is performed for such programs. This restriction stidé relaxed.

Filesystems

Say afilesystemb is a finite partial map fronsourcefilename to compilationunits and fromcompiledfilename to
compiledunits.

Conventionally,sourcefilenames are of the fornfoo . ac and compiledfilenames are of the fornfoo. aco.
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Processes
P == 0
Py| P,
n : definitions e
n: MX(d)
n:CvV

We work up to the structural congruence on processes whitheideast congruence forcontaining P|0 = P,
P1|Py = Py| Py, and Py |(P2|P3) = (P1|P2)|Ps.

Write dom(P) for the set of names of entities 1, i.e. don{0) = @, dom(P;|Pz) = dom(P;) U dom(Pz), domn :
...)={n}.

Stores

Say astores is a finite partial map from locationsto @-coloured values (values are defined on page 125).

Configurations (or States)

Take tuplesF;, s, definitions, P) of some modulelefinitions, a store typingEs, a stores, and a proces®. The
store typing is not needed in an implementation. Note tratv@have module initialisation) th&,, s scope ins, P
anddefinitions, and thedefinitions scope ins and P.

16.2.1 Binding

Syntactic requiremeniVe work up to alpha equivalence throughout.
Syntactic requiremenfThe external constants® € dom( E..,s;) may not appear in a binding position.

Syntactic requiremengor expression and type identifiers we have internal idensifi and¢ as normal binders rather
than the external/internal pair a binder (as in [BHS]). For module identifiers we have thé&,; pairs be binders.

We writefv(...) for the set of free identifiers, ¢, andM,, in ....

Syntactic requirementtn expressiorfunction (z : T) — e thez binds ine. In expressiodet rec z; : T =
function (zz : T') — e; in e thex; binds ine; andey, and thex, binds ine;.

Syntactic requirementin sugar expressiolet p = e; in e the internal value identifiers gf bind in e;. In
sugar expressiolet rec z : T = function mich in e thez binds inmtch and ine. In sugar expression
fun p;..p, — e the internal value identifiers gf;..p,, bind in e. In sugar expressidat = p;..p, = e; in e, the
identifierz binds ine;, and the internal value identifiers pf..p,, bind in e1. In sugar expressibet rec z p;..p, =
e1 in e the identifierz binds ine; andes, and the internal value identifiers pf..p,, bind in el.

Syntactic requirementtn A ¢ — e the ¢ binds in thee. Inlet {¢,2} = e; in ey thet andz bind in thees. In
namecase e; with {¢,(z,22)} when z; = e — ey otherwise — e3, type identifiert, expression identifier
22, and the first occurrence of expression identifieall bind in e;; the second occurrence of is bound by the first
occurrence. Note thaf, e, andes all live in the outer scope (no extra bindings).

Syntactic requirementn matchp — e the internal expression identifiers phind in e
Syntactic requirementn signatures, ival x, : T sig thez binds insig and intype t; : K sig thet binds insig.

Syntactic requirementn structures, ilet x, = e str thez binds instr, inlet (x, : T)p1..pn, = e str the internal
value identifiers op; ..p,, bind in e and the: binds instr; and intype t; = T str thet binds instr.
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Syntactic requirementFor any occurrence of aourcedefinition or definition, the M, binds in subsequent defi-
nitions. It also binds in any subsequent store typig stores and expression or procegsor P, e.g. when the
definitions appear in a configuration or marshalled body.

Comment: Note thatmark MK does not involve any binding — marks are just strings, as staukst be shared
across programs.

We've (arbitrarily) chosen not to have the store bind thatmms of its domain, as would have to chose whether
the E; or the s bind, or agglomerate the two.
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16.3 Typing

The typing judgements are listed in the contents pages. Viadg rules are in Figures below, with particularly
interesting rules flaggesk.

Most judgements are parameterised on acgedf type equations. These are kept as a subscript insteadpairasf
E so they be be easily removed when one passes through braaketike binders, they are not additive.

There is noE + compilationunit ok as we need to substitute file contents in (recursively) leefigpechecking, not
having introduced separate interfaces.

The source language type system must be considered togethethe checks performed by compilation: several
checks are not carried out in the type system because thelvénthe representation types of abstract types, and
version data, from previous modules; these are not recandgge environments and so are not accessible in the type
system. Specifically: (i) formation of the equatiéh- M ,.t ~ T ok (used especially for theegs in themodule

rule), and (ii) link-checking of a loaded import in thenport rule, are only weakly constrained by the source type
system.

The compiled language type system checks these expliaitly,enforces additional facts, e.g. that in compiled form
occurrences oM .t have been hashified to thet form. Also, theh.x form appears only within hashes.

The dynamic semantics is only intended to make sense forguoafions that typecheck in the compiled language
type system.

16.3.1 Typing for Source Internal and Compiled Forms
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n ¢ dom(Ey) n ¢ dom(Ey)
E.bge T :TYPE n ¢ dom(E,) E, Fnmodule.; M : Sig, version vne = Str ok
En,n: T namel ok En,n: TYPEF ok E,,n : nmodule.; M : Sig, version wvne = Str - ok
n ¢ dom(E,)

E, + nimport M : Sig, version vc like Str ok

empty - ok En,n : nimport M : Sig, version wvc like Str - ok

E.,E+ ok

z ¢ dom(E) l ¢ dom(F)
E.F ok E.EFg T:TYPE E.,Etg T :TYPE
E,,empty - ok E.,,E,x: TkF ok Ey,E,l: T reft ok
My ¢ dom(E) t ¢ domE)
E,,E+ Sig ok E.,,E+ K ok

Ea, E, My : Sig - ok E.,E,t: KF ok

’ E, Fnmodule.; M : Sig, version vne = Str ok | E, - nimport egs M : Sig, version vc like Str ok

E, b Str: limitdom (Sig,)

Ey, Econst egs Str = Sig, E, F Sig, ok
F Str flat F Str flat
F Sig, flat F Sig flat
E, F nmodule., M : Sig, version vne = Str ok E, F nimport egs M : Sig, version wvc like Str ok
E,+h ok
h=mn
h = hash(hmodule., M : Sig, version wvne = Sir) (n : nmodule.y M : Sig, version vne = Str ok) €
En, Econst Fegs Str = Sig, En, Econst Fegs Str = Sig
F Str flat F Str flat
F Sig, flat F Sig, flat
E.+h ok E.+ h ok
h=mn
h = hash(himport M : Sig, version vc like Str) (n : nimport M : Sig, version vc like Str) € E,
E, F& Str: limitdom (Sig,) E, g Str: limitdom (Sig,)
E, - Sig, ok E. - Sig, ok
F Str flat F Str flat
F Sig flat F Sig flat
E. + h ok E.+ L ok

Figure 1: Typing Rules — Type Environments, Hashes
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EFE ok Elg T:TYPE
E F TyYPE ok E+EQ(T) ok
E}—equ%K'

E|_€q8 ok E'_eqs T%T,

E Fogs TYPER TYPE E Fegs EQ(T) =~ EQ(T)

Ebes K <: K’

Etg T:TYPE
E F eqs ok

EFes EQ(T) <: TYPE

Eles K~ K’
El_cqs K <: K/

trans is derivable

Figure 2: Typing Rules — Kinds

We define a metafunctioiimitdom ( ) that limits a signature to its abstract type fields as follows:

limitdom (type t: : TYPE sig) = type t;: TYPE limitdom (sig)
limitdom (type t; : EQ(T) sig) = limitdom (sig)

limitdom (val x, : T sig) = limitdom (sig)

limitdom (empty) = empty

We definet abstracting, h to hold if for somet’ we have(type ty

E..

selfifysig y (type t: : TYPE sig) = (type t:: EQ(X.t)) selfifysig (sig)
selfifysig i (type t: : EQ(T) sig) = (type t: : EQ(T)) selfifysigy (sig)
selfifysig y (val x, : T sig) = (val x, : T) (selfifysig y (sig))

selfifysig y (empty) = empty

selfifysig  (sig sig end) = sig selfifysig  (sig) end

TYPE) €
hash(hmodule. M : Sig, version wvne = Sir), h = nand(n : nmodule., M : Sig, version wvne = Sir) € E,,
h = hash(himport M : Sig, version wvc like St¢r), orh =nand(n : nimport M : Sig, version wvc like Sir) €

Sig, where eitherh =

Figure 3: Typing Rules — Auxiliaries

93



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

Etes T: K

Ebegs T : TYPE
Etegs Ti: TYPEG =1..n,n > 2 s,
E + egs ok E ey T : TYPE ¢ = Etegs T': TYPE

- - Eltegs Thx..x Ty : TYPE T
Eles TCo: TYPE  Elbeys T TCp: TYPE Bl Ti+ .+ Ty : TYPE Eles T — T : TYPE

E,t:TYPEFg T : TYPE
EF eqgs ok

ElesVt.T:TYPE
Eles3t.T:TYPE

(n: TYPE) € namepart(E)
Etesn: TYPE

F+ K ok
E+K ok E ‘g5 h: Sig
E Fegs My 2 Sig (t: : K) € Sig
(t: : K) € Sig t abstract ipamepart(5) P
EFeg Mart: K E e ht: K *

Note thatM ,; andh are treated similarly, here and elsewhere, exceptithatan only be formed if is abstract ir.

The later uses ohbstract in could be replaced by uses of type formation, but it seems clearer totzeanplicit.

E,t:TYPEFg T : TYPE
EF eqs ok

ElesVt.T:TYPE
Ete3t.T:TYPE

E,t: K,E' + eqs ok
Et:K,E Fegs t: K

Etes T:K
El_eqs K < K/ E l_eqs T~ T/

Ebtes T:K' E e T:EQ(T)

Ebe TaT

E,t:TYPEbes T = T’

Bt Vt.T =Y. T
Ebes 3t.T~3t.T

E e T:EQT)
Ebe T~ T

plus sym, trans and congruence over arrow, tuple, list, option, edf.igrderivable)

E eq,eqs ok
EFegeqs €9

Figure 4: Typing Rules — Types, Type Equality
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EF egs ok

E+ ok
EF eq ok E = Ei,Myuy : Sig, B>
E F egs ok (type t:: TYPE) € Sig
EF- ok = 3(Mp.t) € dom(eq) N dom(egs) Eibe T:TYPE «
EF ook EF eq,eqs ok EF-Muyt~T ok

Et+ ok

namepart(E) - h ok

h = hash(hmodule., M : Sig, version vne = Str)
t abstract inyamepart(2) P

(type t: = T) € Str

Etrht~T ok *
EF ok
namepart(E) - h ok
h=n

(n : nmodule. M : Sig, version vne = Str) € namepart(E)
t abstract inyamepart(2) P
(type t, = T) € Str

ErFht=T ok *
E+ ok
namepart(E) - h ok
h=n
(n: nimport M : Sig, version vc like Str) € namepart(E)
t abstract inamepart(2) P
(type t, = T) € Str

*

ErFht=T ok

EF ok
namepart(E) - h ok
h = hash(himport M : Sig, version vc like Str)
t abstract inpamepart(z)
(type t: = T) € Str
Erht~T ok

Figure 5: Typing Rules — Equation sets

95



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

E | sig ok

E,z: Tt sig ok E t: Kt sig ok
EF ok x ¢ dom(sig) t ¢ dom(sig)
E + empty ok Etval x;: T sig ok E I type t:: K sig ok

E by sig <: sig’ ‘

Ebe T T Eto K <K'
E,x: T ey sig <: sig’ E,t: K by sig <: sig’
EF egs ok x ¢ dom(sig) t ¢ dom(sig)

E bogs empty <: empty  E begs val x, 1 T sig <:val x, : T' sig’  E bops type t, : K sig <: type t,: K’ sig/

refl and trans are derivable

E b5 sig = sig’

Etus T T Etus K~ K’
E,x: T by sig = sig’ E,t: K by sig = sig’
E b egs ok x ¢ dom(sig) t ¢ dom(sig)

E by empty ~ empty  E ks val x, : T sig = val x; : T’ sig’  E b type t:: K sig =~ type t: : K’ sig’
refl and trans are derivable

E t=oqs str: sig

E,z: T ey str: sig E,t:EQ(T) begs str: sig
Etesv: T Eteg T:K
Et egs ok x ¢ dom(sig) t ¢ dom(sig)
E t-¢4s empty : empty Etegs let x; = v str:val x; : T sig Etogs type t; = T str: type t; : K sig

EbysT~TH — .. —T,— T
E,z: Tk str: sig

E7E1,..,En Feqs 6ITO

x ¢ dom(sig)

n>1

Eteslet x0T pr..pp, =estr:val x; : T sig

Figure 6: Typing Rules — Signatures, Subsignaturing (part 1
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EF Sig ok

E F sig ok
E +sig sig end ok

E togs Sig <: Sig’

E bogs sig <: sig’

E b5 sig sig end <: sig sig’ end

E Feoys Sig = Sig' | E Fegs Str = Sig

E b oygs sig = sig’

E ts sig sig end ~ sig sig’ end

refl and trans are derivable

E togs str: sig

E g5 struct str end : sig sig end

Perhaps we should collapse thg /Sig andstr/ Str distinction. It is needed with functors, which we do not have at presg

ent.

Figure 7: Typing Rules — Signatures, Subsignaturing (part 2

F str flat | - Str flat
t ¢ ftv(str)
F str flat - str flat F str flat
F empty flat Flet x, = v str flat Ftype t. = T str flat F struct str end flat

F sig flat |- Sig flat

F sig flat

t ¢ fv(sig)
F sig flat

F sig flat

F empty flat

F sig flat
F sig sig end flat

Fval x; : T sig flat

F type t, : EQ(T) sig flat

Ftype t; : TYPE sig flat

Figure 8: Typing Rules flat predicates
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E Fegs My Sig

El,MM : Sig7E2 = eqs ok
E1,MM . Sig,EQ I—qu MM . Sig

E Fegs My 2 Sig
E Fegs My : sig sig, type t: : K sig, end E togs Sig <: Sig’
E Fegs My : sig sig, type t; : EQ(M.t) sig, end E tegs My 2 Sig’

E s b2 Sig

h = hash(hmodule.,s M : Sig version wvne = Str)
namepart(E) - h ok
E I egs ok

E s b Sig

h=n
(n: nmodule.,s M : Sig version vne = Str) € namepart(E)
namepart(E) - h ok

E I egs ok
- *
E s b2 Sig
h = hash(himport M : Sig version vc like Sir)
namepart(E) - h ok
E | egs ok
- *
E s b2 Sig
h=n
(n: nimport M : Sig version vc like Str) € namepart(E)
namepart(FE) - h ok
E |- egs ok
- *
Etegs b2 Sig
E Fegs h @ sig sig, type t; : K sig, end Etegs b2 Sig
t abstract inpamepart(5) P N E Fegs Sig <: Sig’
E Fegs h:sig sig, type t: : EQ(h.t) sig, end E bogs bt Sig

Again h behaves much lik&1,,.
For both this and;, there is a stylistic choice as to how much selfification we do in one go; the redgswvith just a single
field at a time. This judgement is wrt @ for uniformity (see thé:.x rule).

Figure 9: Typing Rules — Signatures of module identifiers laashes
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Etg T:TYPE Ete T — T :TYPE

Co: T Ci:T—=1T Ebese: T Ebeser: Tk € 1.n
E F egs ok Ebtese: T Etegs e2: T list n>2

ElesCo: T EtegscCie: T Elbegseie: T list Elegs (e1yonen): Trxx Ty
z ¢ dom(Econst) E Fegs My @ sig sig val x, : T sig’ end

Ey,z:T,E | egs ok Etrg T:TYPE Ey,l:T,E>F egs ok

Eiz: T, Esbegx: T EtesMyx: T El:T Eobel: T

E t¢4 €1 : bool
Etese:T E g5 €1 : bool E Fegs €1 @ unit
Etegse3: T E Fegs €2t unit Elregse: T

E s if e1 then e else e3: T E t¢4s while e; do ez done : unit Elegse;e: T

E tc4s €1 : bool

Eleser:T— T
E Feys e : bool eqs
o Q&ZL ool E,IL‘ZT"GQSGZT/ E|_eq562:T
eqs €1 €2 : bOO . B . ’ . !
E Fup eq|| 2 : bool E begs function (z: T) —e: T — T Ebeseiea: T
Opn : T1 — .. Tn — T x" S dorT(Econst)
E I eqs ok Ei,z" : T Eabes T' Ty — .. > T, — T
Ebese;:Tj j € lun Ei,2" : T Esbes e 2 T;  j € 1on "
Etegs op™er..en: T * Ei,2" : T  Eabegs €1 ..en: T
EF eqgs ok
Etge:Ti—..— Tp— T Ete Ti+ ..+ Tn: TYPE
EbFgze:T; j € lun % Etese: T
Etecpsop(en)” er..en: T E Fegs INJ§T1+”+T”)6 T+ ..+ Tn
E l_gqs T1 ~ T2 — T3
El_eqseiT E,x1:T17I25T2 }—eqs 631T3
E Fegs mich : T — T’ E,z1: Tibegs ea: Ta
E tos match e with mitch : T’ E Fegs let rec 2 : Th = function (22 : T2) — e3 in eq: Ty
Etg T:TYPE
Bfese: T EF eqs ok
E Fegs € exn E s mtch :exn — T 5T RE T *
T - Tr:
. . €qs
E ey raise e: T E oy try e with mtch: T E Fv SLOWRET, : T
E \-c4s €1 : string
Elese:T % E ¢ys € : string % Etrge: T
E t¢ys marshal e; ex : T : string Et¢ys unmarshal eas T : T E s marshalz s e : T : string
E |- egs ok
Etg T:TYPE Etese: T
Elegse: T * Ebes T T
EFegs [e]z;sl : T Etgse: T

Figure 10: Typing Rules — Expressions (part 1)
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Etregse: T continued..

Etes e T ref
Eteyse: T

E Feqs er =1 e

: unit

Eteger: T ref
Eblge: T Elegs er: T ref
E Fegs €1 =" e2 1 unit Eles!rer : T

E tegs My 2 Sig

Elres Myx: T
Eteogs My@x 0 T tie

EF eqs ok
E,t:TYPElegs e: T

Elegs At—e: VLT

Ebegse:3LT

Et:TYPE,x: T legs e2: T
Etlet {t,z} =e in ex: T
EF egs ok
Etrgs T:TYPE

E toys freshr : T name

Etrgs T:TYPE
E Feqs € @ string

E begs hash(T,e)r : T name

E boys h:sig sigval x, : T sig’ end EFep Myrx: T
Etgy T:TYPE *
Pr hx T *  E b resolve(Mu.x, My, resolvespec) : T
egs X E 45 resolve_blocked (M .x, M’ y1, resolvespec) : T
Etcgs e1: T name
E Feqs €2 ! T name E |_eqs el : T name FE '_g T : TYPE
Eteses: T Eltegse: T Etege: T
E t-¢4s e1 freshfor e; : bool E t-¢4s support e : T name list

Ets swap e; and ez in e3: T’

Ebepe: T tie
T

E +.s name_of tie e : T name
E Fegs valof tiee: T

E teqs €1t unit E s e2:
Ebegs eilea: T

Etg Ty : TYPE
FE Feqs e {Tg/t}T1

E Feqs {T27€} as J tTl .3 tTl

E e e: VT
Etg Ty:TYPE

E Feqs e T2 : {Tg/t}T1

E Feqs e: T' name
Elegs e :3t.t namex T
E,t:EQ(T'),z1: T name, x> : T Fegs €2

E Feqs €3 . T2

Ty

E I namecase e; with {¢, (z1,22)} when z; = e — e; otherwise —

E | egs ok
Etg T:TYPE

E t¢4s cfreshr : T name

Eles Xx: T
E bFegs hash(X.x)r : T name

Etg T': TYPE

E egs €1 :string

E s e2: T name Ei,n: T name, E> - egs ok
Ei,n: T name, B3 F¢egs n7 : T name

E t4s hash(T’ e1, e2) 7 : T' name

Figure 11: Typing Rules — Expressions (part 2)
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E Fes e: T Sugared source forn#s

E g mtch : T — T’
E t.4 function mitch: T — T’

EFEQS T1 ~ T2 — T3
E,z: Ty begs mtch: To — T3

Etreg Tx T, —..— T, — T
El—pi:Ti > EZ‘
E,xz:T,FE,..,Ey Fegs e T

E,$Z T1 '—Eqs €4

Ty

E Fegs let rec z: T = function mich in es: Ty

Etp:Ty > E
El—eqs [ T1
E,E/ '_eqs €2 T2

E}_eqs let p=ea in e:

op" :T1 —..— T, > T
EF eqs ok
EFeqSej:Tj

j € l.kk e 0.n—1

E,x:These :T"

Eteslet rec z: T pr..p, =€ in e’ : T"

E Fegs TxT —.. —T,— T
E"pl T > E;
E,Ei, . Eybegs e : T
Ex:Thlese T

i=1.n

Etegslet z: T pi.p, = e in e’ : T"

" € don‘(Econst)
Ei,z": T, B Fegs T"~Ti—. —>T,—T

E Fegs op™er ..

et Thy1 — .. > T — T

*

Ei,z" : T, B2 Fegs € :

7;

j € l.kk € 0.n—1

n ., / n
El,{l? T ,EQ |_eqs T e

veg:Thyr —..—>Th =T

*

Figure 12: Typing Rules — Sugared Forms

Erp:T > F

Etg T:TYPE

Co :
FE+ ok

Etrgy T:TYPE

T

C12T—>T’
Erp: T > E

EF(C:T): T > empty

Erp:T > E
EFp22T|iSt[> Es

Er(z:T): T > z:T

E}—pki
n>2

T, > Exk € 1..n

ErFco: T > empty

Ercip: T > E

Er-p: T > E

Ebpiape: T list > Ei, FEa

E by mtch : T — T’

Erbp:T > E
E E Foge: T

Ebtesp—e: T — T
E begs mtch: T — T’

El—eqsp—>e:T—>T'

Etesp— e|mtch: T — T’

Etr(pr,.pn): Th®..x Ty > Ei,..

» En

Er-(p:T): T 1> FE

Figure 13: Typing Rules — Patterns, Matches
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E, - h ok
E,Fn ok E, N ok E. +h ok E, F myname ok
E, F avne ok
FE, F avne ok En - vne ok
E. F avne ok E, F avne.vne ok

&S|
T
e
>
S
(@)
1Y)
(<]
=3

namepart(E) - h ok

EF ok E+ ok N Ey, My : Sig, Es - ok
EFN ok EF h ok By, My : Sig, B> F My, ok

E + avce ok

F+ ok E + ahvce ok
EFn ok E + ahvce ok

E F dvce ok
FE + avce ok L?k
FE - avce ok B+ doce ok g :: %n_’ﬂ o}c:k
FE + avce ok FE + avce.dvce ok Er Ei ok
E+ % ok

E + vce ok

FE + dvce ok FE + ahvce ok
FE + dvce ok F + name = ahvce ok

Figure 14: Typing Rules — Version number and constraintesgions
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E F likespec ok

EF ok Ei, My @ Sig, B2 - ok * E g str: sig
E + empty ok Ei, My 2 Sig, E2 - like My ok E  like struct str end ok

E = Mo : Sig

*

Etg Sig <: Sig’
E |- Sig ok E1, My : Sig, B2 - ok E =My : Sig
FE F= UNLINKED : SZg ElaMM : SZ_(],EQ = MM . S’Lg E b= MM . S'Lgl

Figure 15: Typing Rules — Definition auxiliaries

E \ sourcedefinition > E’

E + vne ok
E Feqs Str = Sig

E F module My, : Sig version wvne = Str with lwegs > My : Sig

*

E I vce ok
E + likespec ok
E = Mo : Sig

E F import My, : Sig version vce likespec by resolvespec = Mo > My : Sig

We could additionally check that for all abstract type field§'in there is a corresponding type in an in-lifikestr, or a type
(which could reasonably be required to be abstract) iNaxy: likestr. At present this is left to compilation.

EF ok
E Fmark MK > empty

El,MIM/ : Slg, Ey - ok
Sig’ = selfifysigyy | (Sig)

*
Ei, My : Sig, B> - module My, : Sig’ = M’y > My @ Sig’

Note that we have to selfify in the alias rule to avoid introducing new abstraestyWe do not allow subsignaturing as we do
not want to think about sealing here. We could allow sig equality.

(selfifysig () is defined on page 93.)

Figure 16: Typing Rules — Source Definitions
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16.3.2 Typing for Compiled and Executing Forms
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E \ definition > E’

namepart(E) - h ok

namepart(E) F egs ok

namepart(E) - Sig, ok

eqs, = eqs-of sign_str(h, Sig,, Str)
Sig, = typeflattensig(selfifysig, (Sig,))
E Fegsg,eqs Str: Sigy

F Str flat

compiledform(egs, Sig,, Sig,, Str)

E = cmodulep,; es;5ig, vubs My : Sig; version vn = Str > My : Sig,

The Sig, is now computable from thé and Sig,. We keep it in the data for the time being, however, as it has a clear
conceptual role.

An alternative rule here (corresponding to that for user moduleseghoould haveE .., Str : Sig} and E Fegsg,eqs
Sigy ~ Sig,.

In typing compiled and hashed modules there is a stylistic choice as to hoyvafidne properties that compilation establishes
are captured in the typing rules. Here we choose to be rather tight, at $hefceome baroqueness. Note that in the
E Fegs Str : Sig premise theE allows term components of earlier modules to be used (as is requiredj|souallows
type components to be used. We prevent the latter withcéhepiledform(...) premise, as they have been hashified py
compilation.

namepart(E) F h ok

Sig, = typeflattensig(selfifysig, (Sig,))

namepart(E) - Sig, ok

namepart(E) g Str : limitdom (Sig,)

F Str flat

compiledform(Sig,, Sig,, Str)

E = Mo : Sig,

E  cimport, g, vubs My : Sig, version vc like Str by resolvespec = Mo > My : Sig,

Note that compilation has cut down tt$#r in likespec. The fact that this ensures it doesn'’t include any code (or exjra-
neous types) legitimizes theanpty. This rule does not explicitly check type coherence betweeriithepec and the Mo
implementation, as the latter is not availablefinbut note thatSig, is hashified.

EF ok
E +Fmark MK > empty

definition = module fresh M), : Sig version wne = Str with lwegs
nocfreshr

E F vne ok

E teqs Str = Sig

*

E & definition > M) @ Sig

definition = import fresh My, : Sig version wvce likespec by resolvespec = Mo
E - vce ok

E F likespec ok

E = Mo : Sig

E = definition > My : Sig

whereeqs_of _sign_str(h, Sig,, Str) = {h.t = T|3 t.(type t; : TYPE € Sig, A (type t, = T) € Str}

Figure 17: Typing Rules — Compiled Definitions

105



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

Definelinkok ( E,, definition’, definition) if
1. definition is of the formcimport,.g;, vubs My : Sig, version vc like Sir by resolvespec = Mo
2. definition’ is either acmodule or acimport as below.

cmoduley, . s5ig/ vubs’ M’y ¢ Sigy version wn' = Str’
cimport,,. g, vubs’ M/ ¢ Sig| version vc’ like Str’ by resolvespec’ = Mo’

3. the external names matchl’ = M.
Itis unclear whether we always want to require the above.
4. the interfaces matchg, 4 Sigy <: Sig,. In an implementation, we check ondyntacticsubsig Sigj Sig,-
5. the versions match:
+ Case: thec is not an exact-name constraint, ive.= dvc for somedvc. If definition’ is acmodule
checkvn’ € duvc, otherwise ifdefinition’ is acimport checkve’ C wvc.
 Case: theyc is an exact-name constraint, ilame = ahwvc for someahve. Checkh’ =2 ahvc.
6. the representation types matstitype t, = T) € Str.3t', T'.(type ty = T') € Str' AT = T'.

Definelinkok (E,, definitions) if whenever

definitions = definitions; ;; definition ;; definitions,
definition = cimport.g;, vubs My : Sig, version wvc like Str by resolvespec = M/

there exists alefinition’ for M’ in definitions, with linkok ( By, definition’, definition).

Define (on flattened signatures ondyitacticsubsig Sigy Sig,, a weak version ofZ, -4 Sig, <: Sig,:
T =T
syntacticsubsig sig’ sig syntacticsubsig sig’ sig

syntacticsubsig (val x, : T” sig’) (val x, : T sig)  syntacticsubsig (sig sig’ end) (sig sig end)

syntacticsubsig sig’ sig

syntacticsubsig (type t; : TYPE sig’) (type t;: TYPE sig)  syntacticsubsig empty empty

=T
syntacticsubsig sig’ sig

syntacticsubsig (type t; : EQ(T’) sig’) (type t: : EQ(T) sig)

syntacticsubsig sig’ ({T"/t}sig)
syntacticsubsig (type t; : EQ(T”) sig’) (type t; : TYPE sig)

CommentThe substitution is required in the case of a concrete typgaeteft and an abstract on the right,
order that inequalities such as the following are treatetectly: sig type ¢ = inttype u = int end <:

sig type ttype u = t end. There is no need to apply the substitution in the other @inarase
because compilation has already flatteSég, andSig,. An implementation may avoid the type substitut
by carrying a type environment. We don’t check that the exkvalue and type names are distinct, si
compilation has already ensured that both signatures dfdosmed.

Comment:Note that an implementation need not refefipwhile doing the subsignature check. Thgis

required only to provide type equalitiast : EQ(T') for concrete type fields of freshly-named modules.

hashify (step 3, page 119) has ensured that all concretdiglge in Sig, have already been substituted g
Thus only abstract type field references remain; and in esg @ is sufficient to assumet : TyPE for all n,

t. The same reasoning confirms that an implementation neddspeict the body of hash(..)-form hashh.

Comment:Note that this does not permit@mport to be linked to amodule fresh. This is slightly
unpleasant from the user’s point of view, thougB&uch ingpcan usually be written with a#RE ALREADY

resolvespec. The restriction avoids the need to checkgudisire or version of module fresh, which (as
they have no name) is problematic.

n

nce

But

Figure 18: Link Checking
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‘E;Esl—s store‘

dom(E;) contains only locations
Il e dom(E;) <= | € dom(s)
Vi:T ref € Eo.E,Es s s(l): T A compiledform(s(1))

E; E; s store *
‘ E + definitions > E’
E + definition > E'
E, E' & definitions > E”
EF ok dom(E’), dom(E") disjoint
E I empty > empty E + definition ;; definitions > E',E"

‘ FE F definitions eo ok

E & definitions > E’
E & definitions > E’ E,E're:T
E + definitions ok E + definitions e ok

‘F En; (Es, s, definitions, e) : T‘

By, Econst, s b definitions > FE
linkok ( E,, definitions)

Ena Econst, E ’ Es s store
En7Econst7E,Es Fg e: T
compiledform(e)

b En; (Es, s, definitions, €) : T

*

"— E, ; (Es, s, definitions, P) : T’

By, Econst, Fs | definitions > FE
linkok (En, definitions)

Enu ECOI]St: E;, E; s store

Eny Econst, E, Es = P ok
compiledform(e)

F E. ; (Es, s, definitions, P) : unit *

Time-stamp: <2004/10/12 08:14:29 GMT leifer>

Figure 19: Typing Rules — Store, Configurations
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E,, Econst, Es - definitions > E’
linkok (En, definitions)

EH7 Eoonsh Ely Es Fe e: T
compiledform(e)

Eytbg T:TYPE

Eru Eoonsh E’ ) Es s store

F marshalled(E,, Es, s, definitions, e, T') ok

*

Figure 20: Typing Rules — Marshalled Values

EF P ok

EF Py ok
EF ok don'(Pl)ﬂdon'(Pg):@
EFO0 ok E+ Py|P> ok

E F n: thread name

E & definitions > E’

E,E'Fg e unit E F n : mutex name E Fn:cvar name
E I (n: definitions e) ok EF (n: MX(b)) ok EF (n:CV)ok

CommentThe implementation optionally allows a namit thread for testing convenience.

Figure 21: Typing Rules — Processes
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16.4 Typed Desugaring

Desugaring is a function that takes a source expressioniafdsya source expression with all sugared forms elimi-
nated. It is applied after type inference and typecheckmjlefore hashification. Thus we assume that type annota-
tions have been inserted that did not appear in user soungeguns.

Desugaring behaves as follows:

desugar(e; ||| e2)
= create_thread freshye.q (function () — desugar(e;)) () ; desugar(ez)
desugar(function mtch)
= function (z : T) — match z with desugarmtch(mtch)
wheremich # (z' : T’ — e), x fresh, T = matchty (mich)
desugar(fun p;..p, — €’)
= (function (z; : T1) — match z; with p; — ..
function (z, : T,,) — match z, with p, — desugar(e’))
wheren > 1, T; = patty (p;) for 1 < i < n, andz, ..z, fresh
desugar(let p =e; in ep)
= match desugar(e;) with p — desugar(es)
desugar(let z: T py..p, = ¢’ in €”)
= match (function (z; : T1) — match z; with p; — ..
function (z, : T,,) — match z, with p, — desugar(e’))
with (z : T) — desugar(e”)
wheren > 1, T; = patty (p;) for 1 < i < n, andz; ..z, fresh
desugar(let rec z : T = function mtch in e)
= let rec z: T = function (2’ : T7’) — (match 2z’ with desugarmtch(mich)) in desugar(e)
wheremich # (2" : T" — €’), 2’ fresh, T = matchty (mtch)
desugar(let rec z: T py..p, = ¢’ in ")
= let rec z: T = (function (z; : T;) — match z; with p; — ..
function (z,, : T,,) — match z, with p, — desugar(e’))
in desugar(e”)
wheren > 1, T; = patty (p;) for 1 < i < n, andz; ..z, fresh
desugarmtch(py — e1]..|pn — en)
= p; — desugar(ey)|..|p, — desugar(e,)

Desugaring of structure items:

desugar(let x, : T p1..p, = ¢€')
= let x,: T = function (z; : T1) — match z; with p; — .
function (z,, : T,,) — match z, with p, — desugar(e’))
wheren > 1, T; = patty (p;) for 1 <4 < n, andz;..z,, fresh

Desugar also saturates operators, by performing eta-expen

desugar(e e; .. e,)
= function (2,41 : Tipy1) — .. — function (z, : 7)) — (e e1 .. e Tyt - Tn)
wheree: Ty — ... » T,, — Toandm < n

foreanopore € FEeonst.

Likewise, we saturate partial applications(cf ) : T ref — T — unitand(!7) : T ref — T and(&&) : bool —
bool — bool and(]|) : bool — bool — bool.
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In all other cases, it merely descends recursively intoehm tvithout altering its structure. In particular,

desugar(function (z : T) — e) = function (z : T') — desugar(e)

Comment:We diverge from Ocaml in alternating between “function” d&nthtch”; the expression ‘let f (Some

X) (y:int) = x+1 in f None’ raises MTCH_FAILURE in Acute while Ocaml returns a thunk.

desugar(.) makes use of a functiomatchty (.) that determines the argument type of a match:

matchty (p — e|mtch)
matchty (p — e)
patty (-: T
patty (z : T)
patty (Co)
patty (C1 p)
(p1 2 p2)
patty (pi, - ,pn)
patty (p : T')

matchty (p — e)
patty (p)

T

T

T wherecy :
T wherec; :

patty (p1) list

patty (p1) * .. x patty (pn)
T
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16.5 Errors

The possible outcomes of compilation and execution arelksvis

SUCCESS
DEADLOCK
LIBRARY
FAILURE

COMPILE

LEX

PARSE

TYPE

INCLUDE
CvyCLE
SYSTEM_ERROR

NONFINAL_EXPRESSION

HASHIFY
WITHSPEC EQUATION_FROM_IMPORT
WITHSPECWRT_BAD _TYPE_FIELD
WITHSPECTYPES NOT_EQUAL
LIKESPECMISSING_TYPE_FIELDS
LINKOK _NOT
BAD_SOURCEDEEVALUABILITY
NENV_MERGE_OF_COMPILEDUNIT

TYPECHECK.OF_COMPILEDUNIT

RUNTIME _MISMATCH

RUN
TYPECHECK.OF_CONFIGURATION
TYPECHECK.ON_MARSHAL
TYPECHECK.ON_UNMARSHAL
TYPECHECKON_GET._URI

INTERNAL
NEVER_HAPPEN
STUCK
UNIMPLEMENTED

with the appropriate additional data (respectively a caméitjon, a set of definitions , or further information abdé t
failure).

Ofthese, RILURE.COMPILE. TYPECHECK OF_ COMPILEDUNIT, FAILURE.RUN.TYPECHECK OF_CONFIGURATION,
FAILURE.RUN.TYPECHECK ON_UNMARSHAL, and FAILURE.RUN.TYPECHECK ON_GET_URI, are signalled if a
compile-time compiled module typecheck or a run-time tyygek fails. They should never happen (assuming that
marshalled values and compiled files are not forged), angro@duction implementation using numeric hashes these
typechecks cannot be performed. They are therefore natrtlymmapped to internacute exceptions.

The FAILURE.INTERNAL.x errors should never happen.
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The FAILURE.COMPILE.RUNTIME _MISMATCH error occurs when we try and parse something (a marshalled,\am
included file, or an imported file) which was created with amtime incompatible with the current one — for example
one created using literal hashing when we are using stegttuashing. If a resolvespec meets this error Acute fails
immediately rather than proceeding to the next resolvespec

Only some kinds of deadlock are detected by Acute.

Individual threads may exit cleanly, be killed, or raise aneption; none of these (in themselves) result in program
termination, although they may cause a debugging messdggevtoitten to the console.
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16.6 Valuability helper functions

CommentThese definitions should be disentangled.

We define find_valuabilities(definitions, Mj;) which looks up the valuabilities vubs of Myy;
check _valuability _expr(definitions, e, vub) which checks whethere can have valuability vub; and
derive_valuabilities(definitions, sourcedefinition) which calculates the valuabilitieg:bs of the sourcedefinition
for sourcedefinition not of the formmark MK.

As usual, we conflate théefinitions with a finite mapC from module names to definitions.

First, we defindind_valuabilities(definitions, M) as follows.

To do this, we perform case analysis 61iM ) to calculatevubs’:
» Casecmoduley,;cys;sig, vubs My : Sig; version wvn = Str: let vubs’ = vubs.
* Casecimport,g;, vubs My : Sig; version vc like Str by resolvespec = Mo: let vubs’ = vubs.
» Casemodule fresh M, : Sig version vne = Str withspec: let vubs’ = (nonvaluable, nonvaluable).

» Caseimport fresh M, : Sig version wce likespec by resolvespec = Mo: let vubs’ =
(nonvaluable, nonvaluable).

Now we definecheck_valuability -expr(definitions, e, vub), which checks where can have valuabilityub.

Comment: The valuabilities are linearly ordered, witlluable implying cvaluable and cvaluable implying
nonvaluable.

Say acval contexiis a linear expression context of the grammar defined fromthgrammar by taking all clauses
with a subv? metaveriable, replacing one by and all others by am, i.e. :

CVAL := _
c; CVAL
CVAL:: e
e:: CVAL
(CVAL, .., e,)..(e1,.., CVAL)
hash(T, CVAL) 1
hash(CVAL, T7 6>T/
hash(e, T', CVAL) 1
{T,CVAL}as T’

The cval contexts are used in the following to limit occumes ofcfresh to unguarded positions.
We perform case analysis amb:
» Casevub = valuable: check that
— e is aterm of the grammar consisting of
= the clauses of the® grammar
* together withM ;.x
* together withM ,, @x

* together withz (such as might occur if the expression is in a module strecind refers to an earlier
field)

(This list allowsM , .z, etc., to occur in unguarded positions, which is not allowfezhe confinese to
just the value grammar.)
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— for all M;.x andM , @x occurring ine we havefst(find_valuabilities(definitions, M )) = valuable;
— for all M.t occurring ine we havesnd(find_valuabilities(definitions, M s)) = valuable.
— there are no occurrencesdfresh 7.
* Casevub = cvaluable: check that
— eis aterm of the grammar consisting of the clauses of
» thev? grammar

* together withcfresh where all occurrences affresh give a decomposition oé of the form
CVAL.cfreshr (i.e. all are in unguarded positions)

* together withM ;.x
* together withM , @x
* together withz (i.e. an earlier field)

— for all M;.x and M;@x occurring in e we have fst(find_valuabilities(definitions, My;)) €
{valuable, cvaluable};

— for all M.t occurring ine we havesnd (find_valuabilities(definitions, M) € {valuable, cvaluable}.

e Casevub = nonvaluable: check that all occurrences efresh give a decomposition oé of the form
CVAL.cfreshr.

Comment:Note that we impose conditions on the valuabilityadif M ), .x andM ; @x occurring ine, not just
the ones in unguarded positions, since we need to be surev¢hedn replace these by an appropriate in
hashification during compilation.

Now we definederive_valuabilities(definitions, sourcedefinition) by case analysis ospurcedefinition:

» Casesourcedefinition = (module mode My, : Sig version wne = Str withspec). We consider several
subcases:

— Case mode = hash: Check for all ¢ on the rhs of Str we have
check_valuability expr(definitions, e, valuable). ~ Check that for allM’, .t occurring anywhere
we havesnd(find_valuabilities(definitions, M’ 5;:))) = valuable. The result igvaluable, valuable).

— Casemode = hash!: Check for allM,;.x andM,;@x occurring in ane on the rhs ofStr we have
fst(find_valuabilities(definitions, Ms)) = valuable. Check that for alM’ ..t occurring anywhere we
havesnd(find_valuabilities(definitions, M’ 3s/))) = valuable. The result i{valuable, valuable).

— Case mode = cfresh: Check for all e on the rhs of Str we have
check_valuability_expr(definitions, e, cvaluable). Check that for allM’,;,.t occurring anywhere
we havesnd(find_valuabilities(definitions, M’ py/))) € {valuable, cvaluable}.

The result igcvaluable, cvaluable)

— Casemode = cfresh!: Check for alle on the rhs ofStr: (a) for all M,;.x and M, @x occurring in
e we havefst(find_valuabilities(definitions, Mps)) € {valuable, cvaluable}; and (b) all occurrences
of cfreshr give a decomposition of of the form CVAL.cfreshr (i.e. all are in unguarded positions).
Check that for allM’ ..t occurring anywhere we hawed(find_valuabilities(definitions, M p1/))) €
{valuable, cvaluable}. The result ifcvaluable, cvaluable)

— Case mode = fresh: Check for all e on the rhs of Str we have
check_valuability _expr(definitions, e, nonvaluable). The result inonvaluable, nonvaluable)

Comment:For thehash! case we do not ignore valuability checking altogether, dsuital (at compile-
time) a hash for this module requires names for any refecemoalules and imports. There is an alternative
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possibility, deferring the hash construction until rumdi if necessary, but it seems that that would be
confusing (too different from thhash semantics). We do similarly for thefresh! case.

» Casesourcedefinition = (import mode M), : Sig version wvce likespec by resolvespec = Mo):
CommentThe valuabilities oM" y;/, whereMo = M" ;. are unimportant.
— Casemode = hash andmode = hash!: We perform case analysis on thgespec:
x Caselikespec = empty: true.

» Caselikespec = like Str: Check that for allM’,, .t occurring anywhere in those fields Str
that are in the domain dimitdom (Sig) we havesnd(find_valuabilities(definitions, M’ ps/)) =
valuable.

» Caselikespec = like M’y : checksnd(find_valuabilities(definitions, M’ ys/)) = valuable
The result igvaluable, valuable).
— Casemode = cfresh andmode = cfresh!: We perform case analysis on thgespec:
x Caselikespec = empty: true.

» Caselikespec = like Str: Check that for allM’,,,.t occurring anywhere in those fields Str
that are in the domain dimitdom (Sig) we havesnd(find_valuabilities(definitions, M’ p/)) €
{valuable, cvaluable}.

» Case likespec = like M'p: check snd(find_valuabilities(definitions, M'31/)) €
{valuable, cvaluable}.

The result ig cvaluable, cvaluable)
— Casemode = fresh: The result iSnonvaluable, nonvaluable).

Comment:We used to regard expression projections from an importvayahonvaluable (as there is
no unique value they are guaranteed to reduce to, in themres# rebinding, except in the exact-name
version constraint case). Now, we regard the expressiorygedvaluabilities as the same, and so could
return to a single valuability rather than a pair throughout

* Casesourcedefinition = (module My, : Sig = M’ /) CheckC'(M' ) is not of the formcimport .
The result ifind _valuabilities(definitions, M’ 51/) if neither element of this pair is equal t@nvaluable.

If any of these checks fail, we have the exceptiabMPILE.HASHIFY.BAD _SOURCEDEEVALUABILITY .

16.7 Compilation

Formally, compilation is a relation from a name environment a sourcefilename, and a filesysten® to either a
tuple of a source type environmehg, a compiled type environmetit;, and acompiledunit, or an error.

Note thatcompiledunit includes a name environmef,: this environment containsfresh names created during
compilation. This name environment has no implementatignificance: its sole purpose is to allow included com-
piled units to be appropriately typechecked and the cordigun produced by compilation to be typechecked. These
two checks are both necessary for runtime typecheckingydiuttherwise.

Note that compilation is not a function because the choicramfie environment in theompiledunit is nondeter-
ministic. This nondeterminism is common in many of the helfienctions” throughout, thus we take them all to be
relations. For convenience, though, we write them as fanstbf their inputs, and use rather than= to relate the
“input arguments” to the “results”.
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Compilation has the form

compileg, (sourcefilename) E, ~ (E}, E{, compiledunit’)

defined to be

3 ty En Econst Econst (3 . - -/
compileg > onst Zeenst (includesource sourcefilename ;; empty) ~ (Ej), E1, compiledunit’)

where the latter relation

definitions E, Eg E,

compileg’s o cofitenames  (compilationunit) ~ (Eg, Ef, compiledunit’)

is defined inductively on theompilationunit. Here sourcefilenames is the flenames we've been through (used to
detect cyclic includes)efinitions is the accumulated compiled definitiors, is the accumulated name environment
(all names created during compilation will be disjoint fradem( E,, )), E; is the accumulated source type environment
(including E.ost at the start)E; is the accumulated compiled type environment (includifyg,s; at the start), and
compilationunit is what we have left to do.

It uses auxiliarie®o (definitions), E1 (definitions), derive_valuabilities( definitions, sourcedefinition), ptefinitions,
hashify_ties_and_hashes(definitions, e), andhashify j.4,ti0ns (En, sourcedefinition, vubs) defined in the rest of
this section.

Consider the cases ebmpilationunit:
¢ Caseempty.
1. (Ey, E1, (E,, (definitions empty)).
» Casee.
1. Check that for som& we haveF, 4 e : T (otherwise @MPILE. TYPE).
2. CalculateE,” = E, ande’ = desugar(e).

3. An expression is just like a field in a fresh module. Thusdiglisation time, when we have shunted all
modules across, we should then apply rho and rewiitg. @z, etc, ine’. For now we don't do that, so
we have to be very conservative:

— Check thate’ has nocfresh subexpressions.

— Check that for all all M,@x and all hash(M'p/.x)r  subexpressions,
fst(find_valuabilities(definitions, M’ p;/)) € {valuable, cvaluable}.

— Check that for all M'y/.t, we have snd(find valuabilities(definitions, M’ 1)) €
{valuable, cvaluable}.

4. (Ey, By, (E./, (definitions (hashify_ties_and_hashes(definitions, p?efinitions(¢/))))))
 Case(sourcedefinition ;; compilationunit).
1. Check that for som&/ we haveE, b sourcedefinition > E| (otherwise @MPILE.TYPE).

2. Now we perform case analysis on the structure ofwfrcedefinition. Each case constructs,” and
definition’.

— Casesourcedefinition = mark MK: Let definition’ = mark MK andE,’ = E,.
— Otherwise:

(a) Calculatevubs wherevubs = derive_valuabilities(definitions, sourcedefinition) (otherwise
COMPILE.BAD_SOURCEDEEVALUABILITY ).
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3.
4,

(b) Now we do case analysis omode:

*» Case mode € {hash, cfresh, hash! cfresh!}: Calculate (E,’, definition’) where
hashify j. anitions (En, desugar (sourcedefinition), vubs) ~ (Ey', definition”) (otherwise any
of the COMPILE.HASHIFY.x).

x Casemode = fresh: CalculateE,’ = E, anddefinition’ = sourcedefinition.

CalculateF] = E; (definition’).

(definitions ;; definition’) Eyn' (Eo,E{) (E1,Ey)
P sourcefilenames

Calculate a result afompile
of the compilation errors).

(compilationunit) (otherwise any

* Case(includesource sourcefilename ;; compilationunit).

1.
2.
3.

. Calculate a result afompile

Checksourcefilename ¢ sourcefilenames (otherwise @MPILE.INCLUDE.CYCLE).

Look upcompilationunit’ = ®(sourcefilename) (otherwise @MPILE.INCLUDE.SYSTEM_ERROR)

’ / / L. / ’ -1 .. definitions Ey Eo Ej
Calculatd Ey, E, (Ey', definitions’ eo’)) wherecompileg (sourcefilenames,sourcefilename)

(ES, Ef, (E,', definitions” eo’)) (otherwise any of the compilation errors).

(compilationunit’) ~

. Checkeo’ = empty vcompilationunit = empty (otherwise @MPILE.NONFINAL_EXPRESSION.

definitions’ By’ B} E| . . . .
;f::;;%?emmes“ ! (compilationunit ;; eo’) (otherwise any of the compila-

tion errors).

* Case(includecompiled compiledfilename ;; compilationunit)

1.

. Calculate a result afompile

Look up (B, (definitions’ eo’)) = O (compiledfilename) (otherwise
COMPILE.INCLUDE.SYSTEM_ERROR

. Checkeo’ = empty vcompilationunit = empty (otherwise @MPILE.NONFINAL_EXPRESSION.

. If using structured hashes,

— CheckE,’ I definitions’ eo’ ok.
— Check thateo’ has nocfresh subexpressions.
— Check thateo’ has no tiedV’ ,;,»@x and no unhashified hashkash(M’ y;.x) 7.

(otherwise @MPILE.TYPECHECK. OF_COMPILEDUNIT).

. Let E,” = merge nenvs(E,, E,’), raising ®MPILE.NENV_MERGE OF_COMPILEDUNIT in case of an

error. The funtionmerge_nenvs merges two name environments, checking that their rangeilantical
where their domains intersect.

. Let E} = Eo(definitions’).
. LetE| = E1(definitions’).

definitions ;; definitions’ En" (Eo,E() (E1,E7)
O sourcefilenames

wise any of the compilation errors).

(compilationunit ;; eo’) (other-

Note that compilation as defined here operates on abstratebsyT he implementation operates on bytestrings, and so
can result also in HLURE.COMPILE.LEX and RAILURE.COMPILE.PARSE. We do not specify where these can arise
in any more detail.

The definition is given rather algorithmically — it might bie@ to rephrase it in a way that makes explicit use of type
normalization.

Now we describe the helper functions and relations.
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Eo(definitions) and E; (definitions) extract the bindings for, respectively, the source and dlemhsignature of a
definition

Ei(cmoduley,;es;sig, vubs My : Sig, version wn = Str;; definitions) = Muy : Sig,, Ei(definitions)
E;(cimport,, g, vubs My : Sig, version vc like Str by resolvespec = Mo ;; definitions) = My : Sig;, Ei(definitions)
E;(module fresh My, : Sig version wvne = Str withspec ;; definitions) My : Sig, E;(definitions)
Ei(i
Ei(
Ei(

import fresh My, : Sig version wvce likespec by resolvespec = Mo ;; definitions) My : Sig, Ei(definitions)
mark MK ;; definitions) E:(definitions)
empty) = empty

In what follows we letC range overdefinitions.

The substitutiomp®efinitions or )¢ is defined by

C(M ) = cmoduleh/;eqs/;gi% vubs’ My ¢ Sigh version wn/ = Str’

A(type t;: EQ(T)) € Sigy end

C(M' ) = cimport,, g;q vubs’ M’y ¢ Sigy version vc’ like Str’ by resolvespec’ = Mo’ }
A(type t;,: EQ(T)) € Sig; end

{M/M/.t — T ‘

@] {M/M/.tl—> T ‘

Comment;p© does have any affect dvi’ /.t if M/, is amodule fresh or import fresh definition in C.
These cases will never arrive (thanks to valuability chegkivhenp® is used in hashification.

The relatiorevalcfresh nondeterministically transforms a pair of a name environtra@d an expression. This expres-
sion is a value modulo the presencecfifeshs in cval contexts.

evalcfrebh( m, € ) ~ (Enly 6/)

It replaces altfresh used in a cval context (se@9 by a fresh name and is extended in a standard way to strgcture

evalcfresh(E,, cfreshr) ~  ((En,n: T name),n) forn ¢ dom(E,)
evalcfresh(Ey, Cy e) ~ (B, ,cq1€) for evalcfresh(E,, e) ~ (E,’', ¢')
evalcfresh(E,, hash(T, ¢)) ~ (E,',hash(T,¢")) ditto
evalcfresh(E,, {T etas T') ~ (B, {T,e'}as T') ditto
evalcfresh(E,, e; :: e3) ~ (Bny, € i €)) for evalcfresh(EI17 e1) ~ (Eul,el)
evalcfresh(Ey ], e2) ~ (Enb, €b)
evalcfresh(E,, hash(T, e1, e2)7/) ~ (Eng, hash(T,e], eb)7) ditto
evalcfresh(Ey, (eq, ..., ;) ~ (Buy, (el oesef) for E,g = E,
evalcfresh(Ey, 1) ~ (En}, e])
evalcfresh(En(y,_1), ek) ~ (Eul, €3)
evalcfresh(E,, struct str end) ~ (B, struct str’ end) for evalcfresh(E,, str) ~ (E,’, str')
evalcfresh(Ey, (let x, = e) str) ~ (B, (let x, =€) str') for evalcfresh(En e) ~ (B, e
evalcfresh(E,', str) ~ (E,", str')
evalcfresh(E,, (type t; = T) str) ~ (B, (type t; = T) str’) for evalcfresh(E,, str) ~ (E,’, str’)

Now we define a helper functidmshify_ties_and_hashes(C, e) which compiles all ties and hashes as follows: in
e eachM’; @x is replaced by TECON(hash (o ¢ (M’ .x)) 7/, M 3-.x) and eacthash(M’ . .x) 7 is replaced by
hash (o (M’ .x)) 7, whereo is defined below and’ is the type ofM’ ;- .x in the relevant signature i@i. We extend
the domain to structurehashify_ties_and_hashes(C, sir), by applying the expression-level version pointwise to the
fields of str.
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The relationhashify ~ ( E,, sourcedefinition, vubs) is defined by case analysis as follows. HeFeis a list of
definitions, which we also regard as a partial function mapping eslgh to a definition. It returns a news,’
(containingE,, and any new names) andiafinition, or fails with one of RILURE.COMPILE.HASHIFY .x.

Note that it is used
* during compilation fohash andcfresh modules and imports;
* during run time for initialisation ofresh modules and imports.
We consider the following cases:

e Casesourcedefinition = module mode My, : Sig version wvne = Str withspec, where Sig =
sig sig end andStr = struct str end.

(Convention: things subscripted lyare roughly the result of the-th step.)
1. Remove other-module type dependencies phthLet (str; : sig;) = p© (str : sig).

This replaces referencesXd ..t by the manifest type from the compiled module or import sigrea—
and in compiled modules and imports, all types in fli¢, have been made manifest.

2. Letstr] = hashify_ties_and_hashes(C, stry).
3. Then, remove same-module type dependencies, i.e. mefseto previous type fields, as far as possible,
with typeflattenstruct( ) andtypeflattensig( ).

typeflattenstruct(type t; = T str) = (type t: = T) typeflattenstruct({T/t}str))
typeflattenstruct(let x, = v str) = (let x, = v%°) typeflattenstruct(str)
typeflattenstruct(empty) = empty

typeflattensig(type t; : TYPE sig) = (type t; : TYPE) typeflattensig(sig)
typeflattensig(type t; : EQ(T) sig) = (type t; : EQ(T)) typeflattensig({T/t}sig)
typeflattensig(val x, : T sig) = (val x, : T) (typeflattensig(sig))
typeflattensig(empty) = empty

Let stry : sig, = typeflattenstruct(str}) : typeflattensig(sig; ).

This typeflattensig( ) leaves internal references to abstract type fields — tharceé, as we cannot yet
calculate the: required to build their replacements.

This type normalisation (both theand type flattening here, and selfification below) amountseating
modules up to type equality when makibgnodule s andnmodule s, instead of using exactly the
abstract syntax. Working up to type equality seems intiigipreferable, though it makes compilation
seem even more algorithmic.

4. Generatefresh names if needed. We proceed by case analysia@fe and establishitr; and £, 5:
— Casemode € {hash, fresh, hash!}:
Let strg = stro andE, 5 = Ey.

Comment:Note thathashify (, , ) is called at run time, not compile time, fatiodule fresh.
For such modules, thefresh subexpressions are thus eliminated by compilation anderat h

— Casemode = cfresh, cfresh!:

Calculate E,3,str3 by applying evalcfresh to eliminate all cfresh expressions:
evalcfresh(E,, stra) ~ (Eys, strs).
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5. Check thewithspec (see-through semantics).
Supposewithspec = with lwegs.
Letegs = {M'ppt = pCTIM ppt = T € wegs}.
ForallM'pp .t = T € wegs, if C(M'y)isanimport then fail (WTHSPEC EQUATION_FROM_IMPORT).

Otherwise, suppose

C(M'pv) = cmoduley s, cqer;5igr vubs’ My 2 Sigy version vn’ = Str' a (type t, : TYPE) € Sig;
A(type t; = TrepfromC) € Str'’

CommentM’,, .t exists and is abstract, since the source definition is wpkd. It's unclear whether
abstractness is forced but there does not seem to be any tegsermit seeing through a non-abstract

type.
Check TrepfromC = p© T (or fail with WITHSPECTYPES NOT_EQUAL).

Comment: TrepfromC was already closed by thefrom an earlier stage, so applying (the currgnt)
to the T' in weqs means that syntactic type equality is the appropriate check

Comment: There are two possible semantics for see-throwgjlth !. Currently we permiegs to be
used anywhere in typing the structure part; alternativeky could allow it to be used only in a final
subsignature step. Unclear which is preferable in practice

We need to construct a closed set of equations for use insidenhodule or hmodule .
Let egs’ = {p® (M’ ppr.t) = pC T|(M'pprt = T) € wegs}.
6. Remove other-module term dependencies with=

{M/M/.X — h/.X

C(M'y) = cmoduley,, o1 sig1 vubs’ M’y ¢ Sigy version wn' = Str’

A(val x, : T) € Sig,

C(M'p) = cimport,,. g;,r vubs’ My ¢ Sigy version vc’ like Str’ by resolvespec’ = Mo’ }
A(val x,: T) € Sigj

U My x— b x

Let strs = 0% str.
7. We do case analysis on the mode, calcutirramd E,".
— Casemode = hash:

Let E,' = E,; andh = hash(hmodule egs’ M : sig sig, end version wne =
struct str; end).

Comment: A possible alternative semantics would be to substitutegh@ut in the body of the
hash, making hash equality slightly coarser. It is uncldaetiver that would be preferable or not.

— Casemode = cfresh, fresh:

Letn be a fresh name not in the domainigf; (to serve as the new name of this module). We extend
E, 5 to E,” accordingly:

/ . . .
E," = E,3,n : nmodule.,s M : sig sig, end version vne = struct str; end

Leth = n.

8. Selfify with respect to thdt, to remove same-module type referencedfifysig ( ) is defined on page?.)
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Let sig; = typeflattensig(selfifysig;, (sig,)).

Comment: Note thathmodule andnmodule generation happens before abstract-type selfifica-
tion (and evaluation ofne). That is forced, as we need thdo selfify abstract type components (and
to do that evaluation). However, manifest type componeotgad substituted out before.

Comment: Stylistic choice: you have to flatten the sig again, eithehidefinition ofselfifysig, ( )
(as we used to), or withypeflattensig(...) again. We do the latter, so thadfifysig, ( ) can be used
in the module alias typing rule.

Comment: In previous versions, and in [Sew01], selfify not only regcTypPe by EQ(h) in the
signature, but also replacedy A.t in the structure (letting range over hashes and new names). In
[Sew01] that was because functors took type fields and tehds fieom their argumergtruct, not their
argument sig, and so to not replacey h.t would have been broken. An unfortunate consequence
of doing that{A.t/t} in the struct, however, is that you need to keep ttesewhere (in [Sew01],
formally in the global type environment) for representatigpe checking ofwith !|. Now we realise
that that was not really forced. As signatures have alwags elly EQified before you apply a
functor (one case) or construcpé to use later (the other case), we can have both functorg and

out type fields from sigs instead of structs.

CommentWith respect to marshalling (or fresh name generation gtsidle an abstraction boundary
(cf. 88.5), however, doindh.t/¢} in the structure might well be preferable. That would reguir
changes to the construction efs, for which one might want to do the substitution in expressio
fields but not in the definitions of abstract types.

9. Evaluate the version number expression.
Let vn = {h/myname}(vne).
10. Finally, put that all together, writing in tHeand the equations.

Let deﬁm’tion/ = cmoduley;cys/;sig sig, end vubs My : sig sig; end version wn =
struct stro end and letE,’ be as built above.
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o Casesourcedefinition = import mode My, : Sig version wce likespec by resolvespec = Mo and
Sig = sig sig end.

Comment: Note we have aih subscript orcimport . s too, for convenience during compilation.
1. Normal case: thece is not an exact-name constraintiez = dvce for someduvce.

(@) Calculate dikestr’ without internal type dependencies or other-module typeddencies. There are
three cases: eithéikespec wasempty, or an in-line structure, or a module identifier (in the leste,
we allow import-bound identifiers, as there seems no reaserdlude them).

— Caselikespec = empty. If this import is linked toM’ ., then theempty likespec defaults to
like M’ ;. (see below). Otherwise, tak&estr = empty.

— Caselikespec = like struct str end.

Use the auxiliargypeflattenstruct( ) to substitute out occurences of internal type field naies
within str.

Let likestr = typeflattenstruct(p® str).
— Caselikespec = like M’ ;. Either

C(M'y) = cmoduley,cgs;sigy vubs’ M’y ¢ Sigy version wn' = Str’
Str’ = struct likestr end
or
CM'pyr) = cimporth/ﬁg/0 vubs’ My ¢ Sigh version wc' like Str’ by resolvespec’ = Mo’
Str’ = struct likestr end

Comment:These are the only two cases we need consider: if we are bellegl @t compile
time thenmode € {valuable, cvaluable}; valuability then ensures that’ ;. cannot be a fresh
module or import. If we are being called at run time, thenfal previous definitions have been
hashified already.

Comment: In the second case it might be more intuitive to insist that/tkestr has exactly the
needed fields, rather than (as here) permit it to have more.

Now calculate dikestr’ by cutting down thdikestr to the abstract type part ¢fig. To do that we
define the auxiliary functiofilter str sig which calculates the subsequencesafwith the external
type fields ofsig. It is assumed thatig contains no value fields. It is a partial function, failing if
there are not enough type fieldsdtr, and only constructs a sensible struct if the struct argiisen
type-flattened.

filter(type t: = T str)(type ty : K sig) = (type t: = T) (filter str sig)
filter(type t: = T str)(type t'v : K sig) = (filter str(type t'y : K sig)) if t £t/
filter(let x, = v°?° str)sig = filter str sig
filter(type t; = T str)empty = empty

filter empty empty = empty

filter empty sig undefined ifsig is non empty

Let likestr’ = filter likestr(limitdom (sig)) (or fail with LIKESPECMISSING_TYPE_FIELDS if this
is undefined).

Comment: This semantics permits thécestr to contain more fields than are required (or will
appear in the constructétkestr’ of this import when compiled). Inelegant?

Comment: Because we cuikestr down to alikestr’, a structure containing only type fields, we
have no need to worry abolitestr’ containing uses affresh or fresh.
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(b) Letsig, = typeflattensig(p® sig). Let Sig, = sig sig, end.

(c) Letwc be the result of evaluatingce with respect toC, replacing anyM’ ;. by the hash associated
with the module or import irC, i.e. vc = p©wvce.

(d) ** Now we do case analysis omode to constructh andE,":

— Case mode € {hash,hash!}: Let » = hash(himport M
Sig, version vc like struct likestr’ end) and letE,’ = E,.

— Casemode € {cfresh, fresh, cfresh!}: Letn be a fresh name not in the domain Bf. Let
h =nand let

E,' = E,,n : nimport M : Sig, version wvc like struct likestr’ end

Comment: We choose not to includeesolvespecs in hmodule s or nmodule s of imports.
This is debatable — the argument against including themaisitlis useful to be able to change
location without breaking code (local code mirror, chaiggiveb site to avoid MSBlast.exe, etc.).

(e) Selfify the sig. LetSig, = sig typeflattensig(selfifysig, (sig,)) end.

(f) Calculatedefinition’ =
cimporth;sl-g0 vubs My : Sig, version vc like struct likestr’ end by resolvespec = Mo.

(@) If Mo = M" s then checKinkok (E,’, definition”, definition’) where C (M pr) = definition”
(or fail with LINKOK _NOT). Otherwise if/{o = UNLINKED check true.
(h) The resultigE,’, definition’).
2. exact-name case: if thee is an exact-name constrainhme = M’,,, then we must havékespec =
empty (this is enforced by a syntactic requirement).

The name of this import will be exactly the nameMdf,,.

Construct

sourcedefinition, = import mode M, : Sig version name =
My like M’y by resolvespec = Mo

and use the normal-case algorithm as above except that weltak to be the one associated with the
module or importM’ ;- in C' in the step marked **.

Comment: You could hash this import instead of usidn definition’. This gives a slightly coarser
type equality, which might sometimes be handy, but when ymue make up exact-name imports
the choice is forced: for type preservation those have te leaactly the hash of the module they are

made up from.
 Casesourcedefinition = module My, : Sig = M/ /.
Note that by typing\’ ;- cannot be anodule fresh or import fresh.

— CaseC(M'y) = cmoduley,,or;5ig1 vubs’ M’y : Sigy version wn/ = Str’
Takedefinition’ = cmoduley g 5ig1 vubs’ My @ Sig} version vn’ = Str’ (identical except for the
Myy).

— CaseC(M' ) = cimport g, vubs’ M"y : Sigy version wc’ like Str' by resolvespec’ =
Mo’
Takedefinition’ = cimport,,, g, vubs’ My @ Sig} version wvc’ like Str’ by resolvespec’ = Mo’
(identical except for tha&1,,).
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Comment: There are two options here: either copy thginition from M’ — but that is semantically
odd when one does any rebinding — or just keep the alias inethgtng code — but then boti and
runtime lookup need to go through aliases transparently.

However, as aliases are present just to get module namesciope for with ! and version annotations, to
avoid formalising a filesystem containing modules, for nbig not worth doing anything more elaborate
than the above, even though it is strange to copy modulesnapairis across marks.

» Casesourcedefinition = mark MK.

Takedefinition' = sourcedefinition.
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16.8 Operational semantics

16.8.1 The judgements

We define a labelled transition system over configuratioris judgements as follows.

e E.; (E, s, definitions, P) nt g i (E's, §', definitions’, P') Process reduction.

* E,; (Es, s, definitions, P) — TERM Progam termination.

o E,; (Es, s, definitions, e) ieqs B (E's, s, definitions’, e) Expression reduction.
L ’

® € —egs €

. L AN
'Enye_’equn , €

-PLP
where

{ = empty internal reduction step
" vP .. v? forz" € dom(Econst) A 0s(z™) invocation of OS call
Ok(v?) return from OS call
Ex(v?) return from OS call
GetURI(URI) request for code a/R]
DeliverURI(definitions) resulting code
CannotFindURI nothing found atUR !

. t, .
We write 222, simply as—.

In addition the runtime implementation might fail with th& R or INTERNAL errors, though it should not.

16.8.2 Values

The set of values is indexed by a colour, to control the adimgtige bracket-pushing reductions, as follows. Note that
colour is a spectral phenomenon — two entities have the safoardff they are indexed by the same set of equations

eqs ..

v = Cq
Cy ves
PEas -: geas

(0 g
function (z: T) — e
[

nn

At—e

{T,v%*}as T’
[veqs:]el;slref

[,Ueqs };spame

[vees’)t whereh.t € dom(egs’) andh.t ¢ dom(egs)

eqs’

Comment:The different families of values collapse into a single orewthere are no coloured brackets, such
is the case with user source programs.
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This just says that within values, brackets may only appeigpas with no visible structure or at& ref or 7' name
type. This is achieved by the bracket-pushing reductiot@beFor discussion of these and of the possible design
choices for thel' ref and T name cases, see §16.8.4 (page 130).

16.8.3 Reduction contexts and closure rules

We use redex-time instantiation for module identifiers,dsnve have marks only between the (second-class) modules,
there is no need to be anything other than conventionalbgallalue A, within the running expression. Evaluation
contexts are therefore conventional, except that we mask tolours.

Single-level evaluation contexts and colour-changing elwation contexts

Ceqgs = Ci- C; a constructor of arityt
_ue
08
(€1, s em—1s o U1, V%) n>21<m<n
if _ then e; else e
_&& e
e
_, €
_e
v _

€gqs eqs
€€l ... p—1 - Um-l—l e Uy

I'r -
_=7 €
€95

1<m<n,e=o0p”ore=zg"

=T _

match _ with mitch
raise _

try _ with mich
marshal MK _ : T
marshal _e; : T
unmarshal _as T
swap _ and e; in es
swap v " and _ in e;

swap v, and v,% in _

_ freshfor e

vy " freshfor _

support ;_

name_of _tie _

val_of _tie _

_T

let {t,z} =_ in ey

namecase _ with {¢,(21,125)} when z; = e — e; otherwise — e

namecase v°® with {¢, (2;,22)} when z; = _ — e; otherwise — e;
€qs o _
C’equ1 EREa Ce%sl €4Sy = €qSo
[—] €qsq
marshalz MK _ : T €qsy = I
— —
=ro- eqsy = J
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op(eg)™ €1 .. €;_1 - fo wvf 1<i<n,eqsy =0

hash(T,_) eqs, = @
hash(T,vZ, T) eqsy =
hash(T, _, e3) 1 eqsy =

It is sometimes convenient to refer to bracket contextsuseces of nested brackets).

Bracket contexts
BC =

BC.[T

eqs

We follow the evaluation order ofcamlopt (not ocamlc), except thabcamlopt treats saturated applications of
operators (such a&+)) specially, whereas we treat all functions and operatoifoumly. Specifically, we evaluate
applications from left to right in all cases, whereasamlopt evaluates a saturated operator (either+ e2 or
(+) el e2,butnot((+) el) e2)from right-to-left, andocamlc evaluates all applications from right-to-left. Note
that in both, tuples are evaluated right-to-left.

Evaluation contexts and Colour changing evaluation contets

CCeys == CCr =

- eqsq

CC ogs. Cogs CCast. ceas

eqs eqsq

Structure evaluation contexts and thread evaluation contets

TC eqs = _

(cmoduley,; s, 559, vubs My = Sig, version vn = struct SC ., end) definitions e
TCCeqs = -

TC eys,-COLL2
SC eqs = let x, = _str

let x, = v°?” SC.ps Wherez ¢ fv SC .4

type t; = T SCys

strvalegs = let x, = v°% strvalegs
type t; = T strvalegs

Module and definition values Say acmodule valueis a definition of the formcmoduley,; c4s;5ig, vubs My :
Sig, version vn = struct strval.,; end where there are no internal expression field dependencigsui ., .

Say adefinition valuds acmodule value, acimport, or amark MK.
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These induce the following reductions.

if definition is a definition value

E, ; (Es, s, definitions,, Pn : (definition definitions e))
E, ; (Es, s, definitions, definition, P|n : (definitions €))

n:empty
R

if definition is of the formmodule fresh or import fresh
andhashify ;. nisions, (En, definition, (nonvaluable, nonvaluable)) ~ (E,', definition’)

n:empty
R —

E,; (Es, s, definitions,, P|n : (definition definitions e))
E.' ; (E,, s, definitions,, P|n : (definition’ definitions e))

E, ; (Es, s, definitions, e) Lequ E) ; (E',, s, definitions’, e')

. . eqs 4 /. ’ ’ . / eqs ’
E, i (Es, s, definitions, Cegs,) .€) —eqs, En' 3 (B's, s', definitions’, Ceys, .€")

E, ; (Es, s, definitions, e) qus E) ; (E's, §', definitions’, e')

E, ; (Es, s, definitions, Pln: TC c4s.€) nt, E) ; (E's, s', definitions’, Pln: TC oys.¢’)

P2 pr
E, ; (Es, s, definitions, P) nt, E, ; (Es, s, definitions, P')

If the hashification of fresh definitioniefinition in rule 2 above fails, the error is reported at toplevel as
FAILURE.COMPILE.HASHIFY and the program terminates. This is unpleasant, but unabtddn the absence of
exception handlers around threads.

16.8.4 Simple expression forms

Eliminating internal field dependencies When performing module initialisation we evaluate each fieldrder,
and for each replace all later uses of it by its value. Thisisrswe do not need to consider marshalling or placing in
the store a thunk containing a free For simplicity, we do this systematically to @linodules even when it is not
forced (which could be detected by looking at their valuitibg).

This stategy has some impact on rebinding: if one has a madule.. = struct let x, = 3let y, =
function () — z end before initialisation then the will be eliminated in they, field. Thus later externally
instantiatingM »;.y givesfunction () — 3 rather tharfunction () — My, .x.
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The strategy also has implication fewap — as there’s no need to follow uses in a value.

E, ; (Es, s, definitions, P|n : (definition definitions’ e))
E, ; (E, s, definitions, P|n : (definition’ definitions’ e))

n:empty
_

where

definition = (cmoduley,; es. 559, vubs My @ Sig; version vn = struct str end)
definition’ = (cmoduleh;eqs;gigo vubs My : Sig; version wvn = struct str’ end)
str = strvaleqs let x; = v strg

str! = strval .qs let x, = v {v°% [z} strg

z € fv(stry)

dom(strval.s) does not intersect the free expression identifiergof

Note thex € fv(stry) condition to prevent divergence.

CommentThis rule is terminating because of thee fv(str) condition. This condition, in combination with
the free identifier side condition o$iC ., contexts used in module field initialisation forces the twduction
rules to be disjoint. It might be more tasteful to work witicmmodule that is split into the post- and pre-
evaluation parts, but it would be notationally heavy.

Matching Define a partial functiomatchsub.4s (-, -) taking a value of colouegs and a pattern (in which all identifiers
are distinct) and giving a set of substitutions, addingadlé brackets:

matchsubegs (v, (- T)) = O

matchsubeg (0°0°, (2 5 T)) = (o), /o}

matchsubeqs (v, (p : T)) = matchsub.q (v, p)

matchsubqs(Co, C ) = @

matchsubeqs (C1 v, Cy p) = matchsubq (v, p)

matchsubggs (v] eqs' eqs,pl i p2) = matchsubgs(v/? S,pl) U matchsub,gqs(vy? 5,p2)
matchsubggs ((vy 245, (p1, .-, pn)) = matchsubegs (07", p1) U.. U matchsubegs (0%, pn) n > 2
matchsub g (v eqs ) undefined otherwise

Reduction Axioms

if true then e; else e —regs €1

if false then e; else e —egs €2

false && e —es false

true && e —regs €

false || e —eqs €

true H e —eqs true

() , e —egs €

while e; do e; done —egs if e1 then (ez ; while e; do ez done) else ()
(function (z : T) — e) v°% —egs {[0 eqé/ﬂ?}e

match v with p1 — ei]..|prn — en —egs  matchsubegs (v, pr) ek (a)
match v°* with p1 — ei]..|pn — en —eqs Taise MATCH_FAILURE v’ (b)

let rec z; : T = function (72 : T') — €1 in ez —egs
{[{[let rec =z : T = function (22 : T") — e1 in z]%./z }function (72 : T') — e1]l /1 }es

Cegs.raise v —egs raise v (c)
. ' . !

[raise v ] —eqs  raise [veT 5L

try raise v°” with p1 — ei]..|pn — en —egs  matchsubegs (v, pr) ek (a)

try v with p1 — ei1]..|pn — en —reqs VP

marshal MK v¢% . T —¢qs marshalz MK [Ueqs]equ : T

(a) matchsub.gs(v°%, p) is defined and there is g < k with matchsub.q(v%, py/) defined
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(b) (i) notexistsk € 1..n such thatmatchsub.,(v°?, py) is defined, and
(i) v’¢e is an arbitrary value such thiatv’¢? : string * int  int

(c) there does not exighy — ei|..|p, — e, andk st Coys = try _ with p1 — e|..|pn — e, and
matchsub.qs (v, py) defined

Comment:Note that in several places the semantics involves noeeuilue substitutions: substitutions of a
value surrounded by an extra pair of brackets. Bracket temtuis effect-free and terminating, so this is not a
problem — it would be notationally awkward to reduce befaressituting.

Bracket-pushing (administrative) reductions

Brackets are used to represent abstraction boundarieghamdocation is carefully controlled during evaluation.
Brackets are purely annotations, however, and the sersasitimined by erasing them corresponds precisely to the
given (coloured) semantics. An implementation will typigaise the erased semantics; the coloured semantics and
the correspondence property serve to give confidence thatlementation respects abstraction boundaries.

Frequently desired reductions will involve subterms orhtsides of an abstraction boundary - for example, applying a
module functiorM .z to a value outside that module will yield a teffanction z : 7' — e]Z.~7" v. Rather than
give reduction rules for each permutation of brackets, we geduction rules only for the bracket-free case, and add
administrative reductions to move brackets out of the waec8ically, erased-values (that is, terms that correspond
to values in the erased semantics) may not yet be values iootbared semantics; to make them so, we push the
brackets inwards by application of the bracket-pushingsuln the example above, we may push the brackets inwards
through the lambda, to obtaifiunction = : T’ — [{[z]%**/z}e]L") v, and now the ordinary function application

rule yields[{[v]5%* /z}e] 2" . These administrative reductions apply only to erasedesal

The bracket-pushing rules are as follows:

pushing through constructors:

[HT'}g;sl’iSt . —eqs HT
[NONE/] [ oPten —eqs  NONE7
[INJ(T{+--+T/n,) veqs’]Tl-’-..—&-Tn — ogs INJ(_T1+--+Tn) [Ueqs']Tz ,

Y ’ . €qs v, , egs
o )T o e [T o5 T

eqs’ eqs'\1T1..x Ty eqs’ 1T eqs’1Tn > 9
[(1}1 e U, )]eqs’ egs ([vl ]e s [vn ]eqs’) n=-

’ ’

cn e vee]To, s C )T, T ],

c": Ty — .. — T, — Ty any other constructor
pushing through lambda:

[function (z: T) — e]eTq/s?T” —egs function (z: T7) — [{[x]gzs,/x}e]zq/;,
pushing through type-lambda and pack:

[A t— EJXqZ}T , —egs At— [e](gs/ .

{T,ve }as T']35T —egs T, 0% ]iqj;,/t}T tas 3¢.7"
bracket type revelation:

[veqsl]gg, — egs [veqs']g;s, (ht~T)€ egsnht €domiegs)
bracket elimination:

[ i )it g [0l i ¢ domegs')

It is straightforward to show that all these rules are typesprving.

Comment: Note that brackets are handled specially in the case of namésstore locations; there are no
bracket-pushing rules for these forms.

Comment:Note that type revelation does not introduce non-termimatbecause the equation formation rules
ensure that for any equation.t ~ 7', T is well-formed in the environment prior to the definition &t
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These rules ensure that any erased-value can be reduceddlmaréd) value, by pushing brackets inward as far as
they can go, and eliminating double brackets.

Note that the rule for pushing brackets througimaction depends on the fact that functions bind a single argument
identifier, functions with more complex patterns being tedaas syntactic sugar for a single-argument function with a
match as the body. Without this, bracket pushing would have to belmmiore elaborate.

Store- and name-related bracket-pushing

Bracket handling for locations, dereferencing, assigriimemd names is subtle. Notice, for example, that a module
may return a location to its caller at an abstract type, atwivathe caller to store abstract values in it, and then
internally pull them out at the concrete one. Worse, a modudg create a ref cell, and return its location twice,
once at an abstract type and once at a concrete type. Thens seegood reason to prohibit this arbitrary aliasing of
pointers, where each alias may have different type traesggrdepending on the locally availakigs. In this respect

we differ from Zdancewic et al. [GMZ00, 84.2]. For names th&uie is simply that a name records its type as that at
which it was created, but use at multiple types, accordirgptdext, must be permitted.

Since ref is treated as a vanilla operator (brackets are not invo)wee)do not discuss its semantics here.

In the value grammar we allow names and locations to be wrhpplerackets in order to express the variety of type
transparency that aliases of the name or location may hakias,Tif we have a brackettdd)) or (:=), we pull the
brackets outside, changing the type annotations accdydifidhe goal is to peel away the brackets surrounding a
location so as to expose the location itself to dereferenessignment:

!T ['UEqS,]g;Is/ref —eqs [!T/ UEqS/}g;Is/

R e I Ui Tl L M e
CommentWhen bracket pulling throughr it is not immediately obvious why the bracket on the RHS i§'at
and notT'. Itis correct (even though the type of the whole expressiastheT) because we may deduce from
the LHS thatF t-.,, T ~ T, and it is necessary because we cannot deduee,,s T ~ T, which would be
needed in order to type the alternative.

Values in the store are always blaak’(). When we get a raw locatioh; can dereference it:
Ey ; (Es, (s,1— v9), definitions, |7 1) —eqs  En; (Es, (s,1— v?), definitions, v7)

Comment:Note that the correctness of this rule relies on the facttifing is monotonic with respect to the
egs set. By hypothesis,, E; o v? : Ty whereE (1) = T, andE,, E; - eqgs okandE,, Es begs To~ T.
This impliesE,, E, .4 v : T, since having more equalities can't hurt, hede E +.,s v° : T as desired.

When we get a raw locatiors r prepares the value to be put in the store; when that valuenbexa value i (see
the discussion of operator reduction below), we can ingtaillthe store:

— eqs — eqs|T
l =7 v —egs | =0 v ]eqs

Ey i (Es, (s,1— v'"?), definitions, | :="p v?) —eps  En; (Es, (s, 10— v?), definitions, ())

For names there is no other argument to which the bracketsbraugansferred; instead, we define all operators which
operate on names to ignore brackets surrounding those names

Comment:In the current semantics, we tre[meqs']eTq's,“Ef as a value iregs for arbitrary instantiations of the
metavariables (and similarly fomame). This is not desirable because it fails to distinguish leemthose
T’ ref brackets that are really necessary and those that are ndtaVéesome ideas of how to proceed, but for
the present leave the removal of this technical infeliaitjuture work.

Operators and Special Constant8efore evaluating the application of a primitive operatooba primitive constant,
we make the arguments ke coloured values. Once this is done, we perform the actwzliation by a delta-rule.

eqs eqs 1T T,
e” v U:‘;qs _ —egs Op(6n>n [Ul ]eqls . [U'sqs]eqs
wheree™ : Ty — .. —» T, — Tisz™ in Ecoygt OF 0p™
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Note the rule includes the casé : T.
For simple operators the delta rules are as follows:

2 —egs  true erase_brackets(v?) = erase_brackets(v'?)

op(=r) v
V"7 s false otherwise

’Ug
OP(ZT)2 v?

with similar rules for the other arithmetic and logical ogirs (noting that equality raiseS\ALID _ARGUMENT if

used on a function or existential package and division cese I2VISION_BY _ZERO).

The delta rule for the reference operator is:

E. ; (Es, s, definitions, (op(ref ) v2))  —.ps  En; (Es,1: T ref), (s,1 — v?), definitions, ) | ¢ dom(s)

Note that the rule forref introduces nondeterminism. That could be avoided by warkimto cyclic bindings — seems
slightly simpler without, but there is little in it.

Special constants from,,,s; are of two classes. Some have are internal to the languagthefse we should have
further delta rules, but do not write them here. The otherdwe=t' such thabs(z™), which are all of function type
— are calls to OS routines. For these we have labelled tiansifor invocations and returns:

" v . v?
E,;op(z™)" vZ .02 —""s o E,;RETr (z": Ty — ..Tp — T) € Econst A0s(z™) afast(z™)
E,; RET¢ M’eqs Ey; v? if By, Econst Fo v?: T
X ’Ug .
E,; RET, B, o Ba;raise (09) if By, Beonst Fo 07 ¢ exn
and

n 2 z
T ’Ul Uy

E,;op(z™)" vZ . 0P —""s s E,;SLOWRETr (2":T)— .Ty — T)E€ Econst n0s(z"™) A~ fast(z")
E, ; SLOWRET OKC), o Ea; 0? if By, Econst Fos 07 : T

X 'Ug .
E,; SLOWRET 7 B, o By raise (v9) if B, Beonst For 07 ¢ exn

Comment: The semantics allows the OS return values to be typed withetdso F,,, E.onst, though for the
extant OS call types this makes no difference.

Termination For program termination we have the axiom below.
E, ; (Es, s, definitions, P) — TERM

where either (a) there are no threads definitions e in P, or (b) there is at least one thread definitions e in P
but for all such we hava internally blocked inP.

Case (b) is a useful and sound but very coarse approximatideddlock detection. In this case the implementation
prints a warning.

In addition the programmer can force termination wettit as below.
E. ; (Es, s, definitions, Pln: TCC .s.op(exit ) v) — TERM

Comment:At present we do not distinguish between successful andcaeasaful termination — cf. the thread
exception semantics, which specifies that threads thatestua value or to a raised exception silently exit.
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16.8.5 Marshalling and unmarshalling

Marshalling

Here we define the reduction step 8 ; (Fs, s, definitions, marshalz MK v? : T), where

definitions = definitions, ;; mark MK ;; definitions,
mark MK ¢ definitions,

that constructs a marshalled value.
If there is nomark MK in definitions, we fail with E,, ; (E, s, definitions, raise MARSHAL_FAILURE).

In outline, what we do is prunéefinitions,, omitting any modules that are not needed and on the way lasioy
which modules fromiefinitions, we refer to. We then go througlefinitions,; making up an import for each of those
(this does not unload imports iefinitions, that point withindefinitions,, instead generating an additional import
at the boundary).

Note that this does not involve arml¢finitions of the executing thread.

Write fmv(...) for the set of free module external/internal identifier paira gadget (note hashes arefail: -closed).
We make explicit some interesting casegmof (first on terms, then oi/os):

finv (M .x) = {Muy}
fmv(h) = o
fmv (M) = {Muy}
fmv(UNLINKED) = &

Write locs(...) for the set of locations occurring in a gadget.

Now, given the configuration above, with ifgfinitions ands, define a reachability relatiom over the union of the
set ofM,, defined by thelefinitions and thel in the domain of the store.

* ForM), defined indefinitions, by definition = (cmoduley,; sy, ;vubs M : Sig; version wvn = Str):
My ~ M/M/ if M’M/ € me(St’l“)
Mpy o~ if ¢ € locs(definition)
« For My defined in definitions, by definition = (cimport, g, vubs My
Sig, version wvc like Str by resolvespec = Mo):
MMWMIM/ if MOZM/M/
M~ 1 if ¢ € locs(definition)
» Forl,

Las My if My € fmv(s(l))
I~ if ' € locs(s(l))
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(Note there are no clauses for,, defined indefinitions,. Note that in the import case the free module identifiers of
the Str will always be empty, as it is a struct that consists exckigiof hashified types, and, similarly, in both cases
the free module identifiers of the signatures will be emgtef A be the smallest set containifigv(v?) U locs(v?)

and closed undes.

Let 51, S2, and L be the partition ofA into its module identifiers defined byefinitions,, those defined by
definitions,, and the locations.

Let definitions, be the subsequence dtfinitions, containing the definitions of modules i} together with all
mark s.

Now makeimports definitions S constructs imports for the needed modules based on thepitEtilefinitions, .

makeimports(definitions ;; cmoduley;eys;sig, vubs My : Sig; version vn = Str)S =
if My, € S then
(makeimports(definitions)(S — {Mum}) 5
cimporth;smo My, : Sig; version name = h like filter Str(limitdom (Sig,))
by HERE_.ALREADY = UNLINKED
)
else
makeimports definitions S
makeimports(definitions ;; cimport,, My, : Sig, version vc like Str by resolvespec = Mo)S =
if My, € S then
(makeimports(definitions)(S — {Mar}) i
cimport,.g;, My : Sig; version vc like Sir by resolvespec = UNLINKED
)
else
makeimports definitions S

Sigg

makeimports(definitions ;; mark MK)S =
makeimports(definitions)S
makeimports(empty)S = empty

Comment:You might think that in the module-initialisation world,aehability would need to go via earlier
fields of this module (occurrences ofunder a lambda, say) and via top-levefinitions (M, .x, say). How-
ever, see module field instantiation, internal field casehaxe chosen am-substitution semantics, and so the
former case does not arise llas been substituted away by the time we reach it).

Let definitions’ = makeimports(definitions,)S; ;; definitionss
Below we writeX | L for X restricted toL. LetFs, = E; | L. Lets’ = s | L.

Let E,’ be the smallest subsequenceRfincluding all the abstract names éf,, s’, definitions’, v2, T and all
nmodules in E,’.

The E,,’ can be omitted in a production implementation.

Note that marshalling preserves all the original marks wes garough indefinitions,, putting them indefinitions’
and thus in the marshalled value. It does not includeMiiewe are marshalling with respect to.

Finally, then, we have:

E, ; (E, s, definitions, marshalz MK v? : T)
—egs Ey; <E57 S, deﬁmtions, §>
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where

raw_unmarshal(s) = marshalled(E,’, E,, s, definitions’, v2, T)

If marshal-time typechecking is specified, additionallgck- marshalled(E,’, E,, s, definitions’, v', T) ok.
Fail with RUN.TYPECHECK.ON_MARSHAL otherwise.

Unmarshalling

Choosing here to do linking as late as possible, so not daigdieking at unmarshal-time.

E, ; (Es, s, definitions, unmarshal sas T)
cs B ((Bs,0 Ey), (s,(0 s").071), (definitions ;; definitions’), (o (v'?)))

—

where

raw_unmarshal(s) = marshalled(E,’, Ey, s, definitions’, v'?, T")

the module binders afefinitions’ are distinct from those afefinitions

o is a location injection with domain dof¥') and with rario) disjoint from donts)
T=T

E,” = merge nenvs(E,, E,’)

(writing o X for the result of applyingr as a substitution t&, and sos s’ for the result of doing that pointwise to
the range of’).

As usual, the calculation df,,” is superfluous if we are not doing run-time type checking.

Note that marshalled modules are always fully evaluated smmarshal-time they can be added to the per-runtime
definitions not to the thread definitions.

If marshal-time typechecking is specified, additionallgck- marshalled(E,’, Ey/, s', definitions’, v'?, T') ok,
and check that theerge_nenvs(E,, E,") above succeeds. Fail withdR.TYPECHECK ON_UNMARSHAL otherwise.

E, ; (Es, s, definitions, unmarshal sas T)
—egs  En; (Es, s, definitions, raise UNMARSHAL_FAILURE s)

whereraw_unmarshal(s) undefined, oraw_unmarshal(s) = marshalled(E,’, E,/, s', definitions’, v'?, T")
and—- T = T’. s’ is a string describing the cause of the unmarshal failure.

Comment: Note that unmarshalling will cause existing marks to be shadl by the marks contained in
definitions’. This is sometimes desirable, but not always — really, thia defect of the linear mark/module
structure.

CommentNote that marshalling permits one to see through abstrabtondaries in limited fashion, by equal-
ity testing (or even more detailed examination) of the malteld strings for abstract types.

16.8.6 Module field instantiation
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Module field instantiation — module case, via import sequence

E, ; (Es, s, definitions, My .X) —egs  En; (Es, s, definitions, [v’]g;s,>
where
definitions = definitions, ;; definition ;; definitions; ;; definition, ;; definitionsy ;; ... ;; definition,, ;, definitions,,

definition = cmoduley,; eys; 559, Vubs Moy, : Sig; = Str

Vi € l.n. definition; = cimport,, ., M;y, : Sig,; version wvc; like Str; by resolvespec; = M1y, |
M = My, 5 definitions, doesn’t_define My

(val x,: T) € Sig,,,

(let x, = v°%0) € Str

v =

eqs’ = eqs, eqs_of _sign_str(h, Sig,, Str), eqs_of sign_str(h,,, Sig,,, Stry,)

Comment: Note that we includeqs_of _sign_str from thecmodule and from the ultimateimport (if any),
not from any intermediate imports.

Comment: There are two choices here, dependent on the module is#ttadh semantics. Before, module
values could have an expression value field containing fxpesgsion identifiers of earlier fields. Then tihle
here had to be mutated, takimgvith eachy free inv replaced by, , .y (if n > 0) or by M.y (if n = 0).
Now module initialisation substitutes out fields as it g@esthis is no longer needed.

Note that in the earlier semantics that term selfificatiorheftaluev depends on that fact that the signature
check inlinkok does not allow width subsignaturing. What the behaviour khoe if one allowed width
subsignaturing is unclear.

Module field instantiation — unlinked import case; start looking

Ey ; (Es, s, definitions, My .xX) —eqs  En; (Es, s, definitions, resolve(Mys.x, Moy, , resolvespec))

where
definitions = definitions, ;; definition, ;, definitions, ;, definition, ;, definitions, ;; ... ;; definition,, ;; definitions,,
definition = cimport,, g, Moy, : Sig; version wcg like Strg by resolvespecy = UNLINKED
Vi € l.n. definition; = cimport, g, M;y, : Sig,; version vc; like Sir; by resolvespec; = Mi_1y,,
Ma = My,
definitions,, doesn’'t_define My,
(val x,: T) € Sig,,,

Module field instantiation — resolve URI

E, ; (Es, s, definitions, resolve(Ms.x, M/ py/, (URI, resolvespec)))

G“LI(URI),W E, ; (Es, s, definitions, resolve_blocked (M y;.x, M’ y;/, resolvespec))

Module field instantiation — resolve case, lHERE_ALREADY

E, ; (E, s, definitions, resolve(My.x, M, (HERELALREADY, resolvespecy))) —eqs En i (Es, s, definitionsg, e)

where
definitions = definitions, ;; definition ;; definitions,
definitions, doesn’t_define M’
definition = cimport, g, M’y : Sig; version wvc like Sir by resolvespec = UNLINKED
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Let Ms be the sequence of theM”, defined by a definition’ in definitions, satisfying
linkok ( E,, definition’, definition @© (= M'pp/)), where definition @ (= M’yv) iS as definition but with
= M’ replacing= UNLINKED.

If Msis nonempty then, takin§I” ;. to be its last element,

definitionsg = definitions, ;, definitiong ;; definitions,
definitiong = cimport;. g, M’y : Sig, version wvc like Str by resolvespec = M ypi
e = MM.X

otherwise ifMs is empty take

definitionsq = definitions ande = resolve(M;.x, M’ 1/, resolvespecy).

Module field instantiation — resolve case, $ATIC _L INK

E. ; (Es, s, definitions, resolve(Mys.x, M/ py/, (STATIC_LINK, resolvespec)))
—egs  En; (Es, s, definitions, raise RESOLVEFAILURE)

The intention for imports with 8ATIC_LINK resolvespecs is that they should have been statically linked, so if we
reach one at runtime it is an error. We do not yet define a sepstatic linking phase, however, so they are not yet
very useful.

Module field instantiation — resolveblocked case, got soméefinitions’

E, ; (Es, s, definitions, resolve_blocked (M ;.x, M’ s/, resolvespecy))

DeliverURI(E,’,definitions’) . ..
eqgs  Eng; (Es, s, definitionsg, e)

where
definitions = definitions, ;; definition ;; definitions,
definitions, doesn’t_define M’
definition = cimport; g, M’y : Sig, version vc like Str by resolvespec = UNLINKED

Let E,g = merge_nenvs(FE,, E,"). This is superfluous if we are not doing run-time type chegkin

Note that we disallow module field instantiation with norieeadefinitions. This ensures the nelsfinitions’ can
be inserted into the existing per-runtindefinitions before thecimport which must be linked to them, without
breaking the invariant that the per-runtiniefinitions are always fully evaluated. To relax this would need adddlo
mechanism to block instantiation from a linked but not-gretduated module.

If
* definitions’ consists only of definition values.
E = Ey(definitions”)
dom(definitions’) N dom(definitions) = @ (achievable by alpha equivalence)

» Letting Ms be the sequence of thél”,,» defined by a definition’ in definitions’ satisfying
linkok ( E,g, definition’, definition @& (= M), we haveMs nonempty with a last elemeM” 7.

then
definitionsq = definitions, ;; deﬁnitions/ 5 definitiong ;; definitions,
definitiong = cimport; g, M’y 2 Sig, version wve like Str by resolvespec = M ppn
e = MM.X
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else
definitionsq = definitions ande = resolve(M;.x, resolvespec).

In the implementation, if a byte string that does not lex aspaas alefinitions’ is returned for this URI it is treated
as aCannotFindURI transition.

If doing run-time type checking, check additional,,..; - definitions’ > E andlinkok (E,’, definitions’) and
that themerge_nenvs succeeds (or fail with YPECHECK. ON_GET_URI).

Module field instantiation — resolveblocked case, didn’t geainy definitions’

E, ; (Es, s, definitions, resolve_blocked(M;.x, M’ 1/, resolvespec))

CannotFindURI .-
— s E, ; (Es, s, definitions, resolve(Ms.x, M/ p/, resolvespec))

Module field instantiation — run out of resolvespec

E, ; (Es, s, definitions, resolve(Mps.x, My, empty))  —egs  En ; (Es, s, definitions, raise RESOLVE FAILURE)

16.8.7 Name operations

We write fn (v) for the set of namea occuring inv andfns (v) for the set of simple nhamasn occurring inv. The
primitive swapping functio$Swap,,,(BC1.nn;, BCa.nny) in v yields the result of replacing, i, all occurrences

of nn; with revbe.,(BC;).BC2_;.nny_;. These are defined homomorphically through the abstrattsysave
that they danot propagate thoughash(...). (Note thatmarshalled(...) does not occur (hereditarily) in the abstract
syntax for expressions). The auxiliary functiofvbce reverses the sequence of brackets in a bracket contextsand i
defined as follows:

revbceegs(-) =
revbeegs ([ L, .BC)

eqs’*

revbe, e (BC).[JT

eqs

Given a configuration withiefinitions ands, define a reachability relation over the domain of the store
. I~1 if 1" € locs(s(l))
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Let the reachable locations from a valu®® be the smallest set containinglocs(v?*) and closed under-.

n ¢ dom(E,)

E, ; (E, s, definitions, freshr) —cqs Ey,n: T name; (Es, s, definitions, nr)

L is the set of locations reachable frarff®

o is a location injection with domaif and with rario) disjoint from donts)
Ey =o(E, | L)

s’ = Al eran(o).SSwap,,,(BC.nn, BC'.nn') in o s(o~ (1))

0, " = SSwap,,,(BC.nn, BC.nn') in o~! v°%*

E, ; (Es, s, definitions, swap (BC.nn) and (BC'.nn’) in v°®) — s By ; ((Es, Ey), (s, '), definitions, vy®®)

L is the set of locations reachable fraff”
b = (erase_brackets(v;*") € fns (v,%*) U fns (ran(s | L)))

E, ; (E, s, definitions, v;** freshfor v,*") — ;s Ey ; (Es, s, definitions, b)

L is the set of locations reachable frarft®
nset = fns (ve%*) U fn (ran(s | L))

{ny,...,n;} = filter (An. typeof(n) = T) nset
Vi 7& ]1’11 # n;

' =nq oL nng []T name

E, ; (E, s, definitions, support ;v°?) — .. E, ; (Es, s, definitions, v'°?)

hash(7’, s, v?) —egs hash(T’,s,m)  erase_brackets(v?) =nnrv? #n
compare name v vy —egs 0 erase_brackets(v ) = erase_brackets(vy )
compare name v_ vy | erase_brackets(v]) < erase_brackets(vy )
compare name vy vy —egs 1 erase_brackets(v) > erase_brackets(vy )
name_of tie TIECON(v; %, v,%)  —egs 0%

eqs eqs

val_of _tie TIECON(v/ ", vy%) —regs Uy

CommentNote that (in contrast téreshOCaml) reachability here does go through the store.

Comment:Note that this makes the semanticssofpport potentially surprising:support ;e is the set of
names ine that wereconstructed atype 7', not all those that have typ€ in the present context. A positive
consequence is that the reduction rule dapport is simple to implement because it is independent of the
presence of brackets, thus the same reductions are obtieedbracket erasure.

A negative consequence is that the rule fails to accountiitype equalities introduced by the brackets sur-
rounding a name, thus possibly not collecting all the releveames; the rule can also see through abstraction
boundaries, thus possibly collecting too many names.

Comment:With module initialisation, one has to decide whether reddity goes throughiefinitions, e.g.

if you have a store location containifgnction () — Mj;.x and M, .x has either a store location or a
function () — M’y.x". Here we choose not — note that this is a different notion a€hability from that
used in marshalling.

CommentNote that we treat fresh and hash-generated names uniftvendy allowing swapping etc. over (and
between) both.

Comment:We can (indirectly) send and receive modules, but we haveayofswapping over them. This is
clearly suspicious and is one more point in favour of more-fitass modules.

CommentNote that the polytypiewap , support and freshfor can see through abstraction boundaries.
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Comment:One might wansupport to return a duplicate-free list w.r.t. the embedded simplmes, not just
w.r.t. n equality.

16.8.8 Concurrency

Basic thread operations: termination,create_thread, self, kill

Below we writen =graseq 1’ fOr erase_brackets(n) = erase_brackets(n’), n Egrased nset for erase_brackets(n) €
erase_brackets(nset) and similarly foré¢erased

Pln:v? — P|0

Pln: TC os.raise v — P|0

Pln: TCC .s.op(create_thread)® n’ v vy — Pln: TCCs.()n’ : (v v5) n’ ¢erasea{n}, dom(P)

Pln: TCC cys.0p(self)! () — Pln: TCC cys.m

Pln’ : e1|n : TCC os.0p(kill)! n’ — P|0|n : TCC oys.()

Pln : TCC cs.0p(kill)! n — P[0

P|n : TCC s.op(create_thread)® n’ v? vZ — Pln: TCC s.raise EXISTENT_NAME n’ Eerasea{n}, dom(P)
Pn: TCC os.0op(kill)! n’ — Pn: TCC .4s.raise NONEXISTENT.THREAD n' erasea{n}, dom(P)

Comment: At present threads terminate silently, in both value andehiexception cases. An alternative to
the latter would beP|raise v“ — 0, which is more fail-stop (a good thing, in principle) but pitdy more
annoying. At very least, a thread dying by with a raised etioapshould currently generate a warning to the
console. Ultimately we should perhaps arrange some waw déveception handlers around threads.

Comment:We allow a thread can kill itself — may not make much differenbut this seems slightly more
intuitive than the alternative of raising an exception.slisia difference from thehunkify semantics.

Commentkill andthunkify are both dangerous operations in that they can remove threlaich hold mu-
texes, which will then never be released. We expect them tsbe only within the implementations of libraries
that provide botlkill- or thunkify-like operations together with safe thread interactiorstartts. Otherwise,
the preferred idiom for killing a thread should be to ask ikitbitself; it can then exit cleanly.

Thunkify

Say ane is anatomic internal blocked fornn P if e is eitherop(lock)! n’ with n” : MX(true) also in P for
1'1// —erased n/, or 0p(waiting)2 1'1/ 1’1”.

Say ane is anatomic blocked fornm P if e is eitherSLOWRET 7, op(lock)! n’ with n” : MX (true) also in P

for somen” =eraseq n’, Or op(waiting)? n’ n”, orresolve_blocked(M y;.x, M’ s, resolvespec).

Sayn is internally blockedn P if there is amn : TCC’ZJ ,-€ in P wheree is an atomic internal blocked form iR.

S

Sayn is blockedin P if there is an : TCC'? . .ein P wheree is an atomic blocked form it.

eqsy”
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Sayn isin afastcallin P ifthereis an : TCC'?  .ein P whereeis RET 1 orresolve(M s .x, M’ yy/, resolvespec).

eqsy

Pn : TCC os.op(thunkify)' thks — P'|n: TOC os.c if Thunkify tks P = (e, P’)
Pn: TCC os.op(thunkify)' tks — P|n: TCC . .raise e if Thunkify tks P = FAIL(e)
Pn: TCC os.op(unthunkify)' thks — Pn: TCC e4s.()| P’ if Unthunkify thks ({n} Udom(P)) = P’

Pn : TCC os.op(unthunkify)' thks — Pln: TCC .s.raise e if Unthunkify thks ({n} Udom(P)) = FAIL(e)

The auxiliaries are defined iklL-like pseudocode belowI'hunkify takes a listtks of thunkkeys and the process
state. It gives eitheBLOCK, if this thunkify cannot execute now (there is no transition rule in this ctugs
blocking progress until thunkification is possible) JoXIL(e), if it should raise an exception, or the abstract syntax of
anAcute function that takes a list of names (of the right shape) asdBhHzody that unthunkifies the thunked mutexes,
cvars and threads with those names and the remaining (nmkifled) objects. It useBoThunkify, which is defined
recursively ontks, Py andi, building up the pattern and body Atute function as it goes.

Unthunkify calculates arcute process to be added to the running program, or retbifal.(e) if an exception
should be raised.

There is no syntactic distinction between the pseudocodeobject-language constructors; hopefully the context
makes it clear.

Thunkify tks P =
match DoThunkify tks P P 0 with
BLOCK — BLOCK
| FAIL(e) — FAIL(e)
|(197 6,.f)2) -
(function z —
match z with
p — unthunkify e
| - — raise THUNKIFY _KEYLISTS_MISMATCH), Py

DoThunkify tks P P i =
match tks with
(1= 10,0. P
| th = thsg —
match tk with
MUTEX ng —
if 3n, Py, b.P1 =n:MX(b)|PoArng =erased n then
let p,e, P, = DoThunkify tkg P Py (i +1) in
(MUTEX(z; : mutex name)) :: p, THUNKED_-MUTEX(x;, D) :: e, Py
else
FAIL(NONEXISTENT.MUTEX)
|CVAR ng —
if 3n,Py,v?.P;=n:CV|PjAng =erased n then
let p,e, P, = DoThunkify tkg P Py (1 +1) in
(CVAR(z; : cvar name)) :: p, THUNKED_CVAR(z;) :: e, Po
else
FAIL(NONEXISTENT.CVAR)
|THREAD(ng, tmode) —

141



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

if 9dn, Py, e0.P1 =n: eg|PoAng =erased 1 then
let p,e, P, = DoThunkify tko P Py (i + 1) in
if n not blocked inP and not in a fast call ilP then
(THREAD(z; : thread name,, thunkifymode)) :: p,
THUNKED_THREAD(z;, function () — ¢) :: €, Py
else if ¢y = CC”quQ.el and e; is an atomic blocked form i®
and tmode = INTERRUPTING then
(THREAD(z; : thread name,. thunkifymode)) :: p,
THUNKED_THREAD(z;, function () — CC’qug.raise EINTR) :: e, Py
else
BLOCK
else if 3 Py, definition, definitions, eg. Py = n : definition definitions eg| Py then
FAIL(THUNKIFY _THREAD_IN_DEFINITION)
else
FAIL(NONEXISTENT.THREAD)

where ther; are all fresh.
Unthunkify thks ns = match thks with
[]—0
|thk :: thksg —
(Unthunkify thksg ns)
|

(match thk with
THUNKED_MUTEX(n, b) — if n ¢erased ns then n: MX(b) else FAIL(EXISTENT_NAME)

|THUNKED_CVAR(n) — if n &erased ns then n: CV else FAIL(EXISTENT_NAME)
|THUNKED THREAD(n, v?) — if n ¢erased ns then n: (v? ()) else FAIL(EXISTENT_NAME)

)

Comment:There is a stylistic choice as to how a thunkified value is egped. In principle it might just be a
normal function in the language so far, but this requirestivial coding to ensure atomicity, e.g. to ensure one
thread does not start before all the other threads are spleavitemutexes recreated. We therefore have a single
semantic step, using some non-source-internal-languzgstractors to code the thunked state.

CommentMaybe one would want ehunkifymode to apply also to mutexes and condition variables, eg to block
until they reach a certain state.

Commentif a thread tries to thunkify itself the BINEXISTENT_-THREAD exception is raised.

Commentif you feed the wrong things to a thunk you just get a matchufail not an unthunkify failure, which
is slightly unpleasant.
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Mutexes: create_mutex, lock, try_lock, unlock.

Pn: TCC .s.op(create_mutex)' n’ —  Pln: TCCs.()|n' : MX (false) n’' Zeraseadom(P), {n}
P|n’ : MX (false)|n : TCC'.qs.0p(lock)' n} —  P|n’: MX(true)|n : TCC ¢s.() n} =crased 0’
Pn’ : MX (B)|n : TCOC oys.0p(try lock)' n} —  Pln’ : MX(true)|n : TCC cgs.(— b) n} =crased 0’

P|n’ : MX (true)|n : TCC4.op(unlock)' nj|n” : TC' . .op(lock)' nj
—  Pln' : MX(true)|n: TCC es.()n" : TC’ o4sr.() N} =erased N’ A N5 =erased

P|n’ : MX (true)|n : TCC.op(unlock)! nf — Pln’: MX(false)|n: TCC ys.() (%) n} —erased N’

P|n’ : MX (false)|n : TCC4.0p(unlock)’ nj — Pln’: MX(false)|n : TCC ys.() n} =crasea '

Pln: TCC s.op(create_mutex)' n’ —  Pln: TCC.4.raise EXISTENT_NAME n’ Eeraseadom(P), {n}

Pn: TCC os.0p(lock)’ n’ —  Pln: TCC s.raise NONEXISTENT-MUTEX n' eraseadom(P), {n}
P|n : TCC cs.op(unlock)! n’ —  Pln: TCC ¢s.raise NONEXISTENT-MUTEX n' &eraseadom(P), {n}
Pn : TCC os.0p(try lock)' n’ —  Pln: TCC ¢s.raise NONEXISTENT-MUTEX n' &eraseadom(P), {n}

(*) = 3" : TCC' oysr.op(lock)! nb) € P.n) =erasea 0’

Comment: These rules give an error if oleck, unlock, or try_lock for a nonexistent mutex — which
situation couldn't arise in the single-machine case, batisaurs. The simplest thing to do seems to be to have
mutex and condition variable names global (which seemsptyfsensible, really), and to raise exceptions if
one tries to use a nonexistent one.

CommentDo we want to distinguish in the semantics betwedodk m that has actually blocked and one that
has not yet attempted to execute (introducing explicitW&lstates for them)? Can not see any need.

Condition variables: create_cvar, wait, signal, broadcast.

P|n: TCC .s.op(create_cvar)' n’ —  Pln: TCCs.()|n’ : CV
Pln’ : CV|n” : MX (true)|n : TCC .s.0op(wait)? nj nf|n”’ : TCC’ ,,..op(lock)' nf
— Pln’ : CV|n"” : MX(true)|n : TCC .s.0op(waiting)® n’ n”|n"’ : TCC’ 4. .()
N} =erased N’ ANT =erased N A N5 =erased
P|n’ : CV|n” : MX (true)|n : TCC os.op(wait)® nj nf
—  PJn’: CV|n” : MX(false)|n : TCC .4s.op(waiting)? nj n¥
(n": TCC' ,4er.0p(lock)! nf) ¢ P
nll —erased n’ A nlll —erased n’ A nl2l —erased n”

P|n’ : CV|n: TCC .4s.0p(signal)’ nj —  restart_one(P,n’)|n’ : CV|n: TCC ys.() n) =erased N

P|n’ : CV|n : TCCs.op(broadcast)’ n} — restart_all(P,n’)|n: TCC os.() N} =erased N
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Pln :
Pln:
Pln:
Pln :

Pln:

Pln

TCC s.0p(create_cvar)' n
TCC 4s.0p(wait)® n’' n”
TCC cys.0p(wait)? n’ n”

!

TCC .ys.0p(signal)’ n

TCC ¢ys.0p(broadcast)’ n’

/

—
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Pn: TCC.ys.raise EXISTENT_NAME n' Eeraseadom(P), {n}

Pln: TCC .ys.raise NONEXISTENT-MUTEX V1! =ecrased 0”07 : MX(b) ¢ P
Pln: TCC .ys.raise NONEXISTENT_CVAR V1n] =emsean’.n) :CV ¢ P
Pln: TCC .y;.raise NONEXISTENT_CVAR Vn] =easean’n’:CV ¢ P

Pln: TCC .ys.raise NONEXISTENT.CVAR Vn] =easean’n’:CV ¢ P

. CV|n" : MX (false)|n : TCC .s.op(wait)? nj n”

The auxiliaries are as follows:

—

P|n’ : CV|n” : MX (false)|n : TCC os.raise MUTEX_.EPERM n} =crasea 0’

restart_one(P,n’) gives P but with a singlen : TCC!) . .op(waiting)? n) n, if one exists withn’ =craseq 0,

eqs,

replaced byn : 7CCY  .op(lock)! n”. If none exist, themestart_one(P,n’) = P.

restart_all(P,n’) gives P but with alln :
rcc)

16.8

eqs,

.op(lock)! n”.

eqs,

TccY

eqsy”

op(waiting)? n)| nf for n’ =gaseq 1 replaced byn :

CommentHereop(wait)? n’ n” for nonexisteni’ andn” nondeterministically gives one or the other error.

Comment:POSIX specifies that waiting without holding the mutex pdssean error. LinuxThreads appears
(from the man page) not to implement this check; replace (M¥e) with MX(b) above and remove the
MX(false) rule above to mimic this. (If you do this, it is alstacertain that your code has a race, so it is nice for

the OS to let you know).

CommentThe “mutex handover” rule that atomically performs an ukltmgether with a lock is necessary for
a sane and fair implementation.

Comment:Should a restartedrait atomically lock its mutex or not?

Comment:Applications may rely on some fairness property that thieaatics does not express. Specifically,

the threads waiting on a mutex or condition variable sho@dmMoken in FIFO order (i.e., for mutexes and

signal, the first waiting thread should be woken; feroadcast, threads should be woken in such a way that
the first waiting thread is first to be scheduled. Schedulmeschot have to be this strict, but something like the
fairness this implies is assumed by application prograramer

.9 Polymorphism

We have not yet addressed the abstraction-preserving semfor polymorphism, which will entail adding coloured
brackets to the reduction axioms below and adding bracksitipg rules for these constructs.

Without runtime type names or coloured brackets, the réguetxioms would be as below.

At—e)T

let {¢t,2} = ({T,e}as T')in e

—es {T/t}e

—eqs {T/t,e/z}en

namecase ({7, (n’,e)} as T') with {¢, (z1,72)} when 71 = ¢ — e; otherwise — e3
—es 1T/t e/z}es if erase_brackets(n) = erase_brackets(n’)
—egs €3 if erase_brackets(n) # erase_brackets(n’)
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Adding runtime type names, but still without coloured bratsk the unpack rule should be more like the rule below,
which generates a fresh type name at each unpack to mirretdtie semantics.

E, ; (Es, s, definitions, let {t,z} = ({T,e}as T')in e2) —eps FEn,n:EQ(T); (Es, s, definitions, {n/t,e/z}es)
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16.9 Type Preservation and Progress

We have not attempted to prove type preservation and pregesslts, as the definition is of a size where either a hand
or machine proof would be a very major undertaking (and a Ipgiadf would probably contain many errors). Indeed,
there may well be problems in the definition. However, it i wiorth while stating precisely the properties that we
believe should hold.

Some confidence in the soundness of the definition comes franirg the implementation with runtime typecheck-
ing, typechecking the configuration after every reductieps

The statements of the conjectures are the basis for thigremygpechecking, and are also a useful guide to the intuitio
while developing the definitions.

Conjecture 16.1 (Typed Compilation)

1. If compileg (sourcefilename)E, ~ (E}, E{, compiledunit’) and compiledunit’ = E,’ ; definitions’ eo’
then for someT and forn ¢ dom(E,’) we havel E,.' nhipead ; (empty, empty, definitions, Dipread
compiledunit’) : T.

Conjecture 16.2 (Type Preservation) If

1.v E, ; (Es, s, definitions, P) : T and

2.E, ; (Es, s, definitions, P) Lg E) ; (E',, s', definitions’, P')
then E," ; (E',, s, definitions’, P') : T.

Conjecture 16.3 (Progress) If - E,, ; (Es, s, definitions, P) : T and there exists a thread: definitions e in
P with n neither blocked inP nor in a fast call inP then there existd,’ ; (definitions’, E',, s’, P') such that

E, ; (Es, s, definitions, P) L B (E',, s, definitions’, P').

Comment:One could also formulate a result saying the compilatioragwsucceeds for well-typed source
programs that do not include files or involve linking erith ! etc. It would not be very informative, though.

CommentThe progress property should in principle be strengthemedsure that in a well-typed configuration
everynon-blocked thread can make progress. To do so would require data in the semantics, however, e.g.
to track the threads involved in multi-thread reductiomsit $s not worth doing now.

16.10 Runtime type checking

The main check is, for each configuration reached by the at@iuthat

F E.; (Es, s, definitions, P) : unit

(or indicate RILURE.RUN.TYPECHECK OF_CONFIGURATION).

We can also run typechecks during compilation on compiled itsun (or indicate
FAILURE.COMPILE.TYPECHECK OF_COMPILEDUNIT), at unmarshal time (or indicate
FAILURE.RUN.TYPECHECK.ON_UNMARSHAL), and when compiled definitions are taken from a URI during
module field instantiation (or indicateAR URE.RUN.TYPECHECK ON_GET_.URI). These are described in §16.7,
816.8.5, and §16.8.5 respectively.

Failure of any of these checks indicates an error in the fgiem or the implementation.

The implementation has switches to control whether thesekshare done. They all require structured names to be
enabled.
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16.11 Vacuous bracket optimization

The semantics above constructs coloured brackets in mesynestances where they are not required — where they
do not change the colour. A production implementation warkise all brackets. For our implementation, while we
need to keep the colour-changing brackets in order to damnentypechecking, for execution speed it is useful to
optimize away as many vacuous brackets as possible.

Accordingly, we define here an optimized variant semantitsgch can, optionally, be used in our implementation.

1.

in the ruleModule field instantiation — module case, via import sequencéage 136), omit the brackets on
the rhs ifeqs’ = egs.

. inthe rule forfraise v°#*']” , (page 129), omit the brackets on the rhegf’ = egs.

eqs

3. inthe rule formarshal MK v¢?* : T (page 129), omit the brackets on the rhggf = @.

N

. in each of the 5 rules for pushing brackets through notanutonstructors (page 130), omit the brackets on the

rhs if eqs’ = eqgs.

5. in the rule for pushing brackets through lambda (page, 180it the outer brackets on the rhseifs’ = egs.
6.
7

in the rule for bracket type revelation (page 130), ongthirackets on the rhs #;s’ = egs.

. in the rule for bracket elimination (page 130), omit thadiets on the rhs ifgs”’ = egs.
8.

in the two rules fowp™ andz™ (page 131), omit the brackets on the rhsgf = .

Note that brackets constructed to be used in a substitutidhg definition ofmatchsub, thefunction rule, and the
let rec rule) cannot be optimized away without analysis of the $tmgcof the expression in which they are being
substituted. We do not do this.

The Type Preservation property should still hold.
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16.12 Closures

16.12.1 Value closures

For efficiency, the implementation uses an environmeneadbf substitution. This requires function values to be
represented as closures. In this section we extend the-steplkemantics given above to model this. We remain in
the style of a calculus, rather than an abstract machine.

The reduction arrow now gains another index, the environmgn addition to the colouegs it already carries:

p I
e =g €

We must also introduce a term form to change the environmesttall that a closure replaces the environment, rather
than extending the existing one. This same form can be usedaimplement other forms of binding that only extend

the environment. We writtnenv o’ do e to denote that is evaluated in the environmept (Recall that colour
changes are already handled by brackéisenv itself is an environment-changing evaluation context.

Evaluation contexts now carry an inner and an outer enviegmiras well as an inner and outer colawrenv p’ do e
is an environment-changing context. This has the sameteféetbhe following rule:
li

’
P
€ —egs €

inenv p' do e —%  inenv p’ do ¢

Let p be an environment, i.e., a list of paiff“?*] 7 /x}, such that earlier pairs scope over later ones. Observe that
is both closed and colour-closed: the environment has rademntifiers, and since every value is enclosed in brackets,
it is valid at any colour.

Comment: This definition is not entirely correct as stated — below wevala recursive closure to contain
an environment that includes a pair whose second elemehe isriginal closure. This is expressible in our
implementation languagé&f{eshOCaml, following OCaml, allows recursive value bindings of the form required)
but is not well-formed in the naive set-theoretic model & $iemantics below. The definition should be adapted.

The new expression and value forms are as follows:

€ =
inenv p do e

ClOS(p, T Ty, BCQ, e, NONE)

ClOS(p, T T, BCQ, €1, SOME(Z‘l AR BCl))

v = ..exceptforfunction z — e
ClOS(p, T Ty, BCQ, €1, NONE)
ClOS(p, To Ty, BCQ, e, SOME(Il AR BCl))

Note that these new expression and value forms appear oniyining programs; that ifunction z — e remains
a source value (and is allowed to appear as a value in a stouaxample), but is no longer a value in a running
program (the corresponding closure is, instead).

Identifier lookup uses the environment (this is the delaydssstution in action). We may incorporate the vacuous
bracket optimisation, since every binding in the environties an outermost bracket:
x =P s if p(z) = [ves] T identifier lookup, bracket eliminated

eqs eqs

z =0 [vees|T i p(z) = [veqs/]equ/ andeqs’ # egs identifier lookup, bracket required

eqs eqs’
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The normal binding constructsiatch , try ) useinenv in the obvious way:

match v°* with p; — e|..[p, — e, —%,; inenv (p+ matchsube (v, pr)) do e, match success (a)
match v with p; — e|..|p, — e, —%,, raise MATCH_FAILURE v’ match failure (b)
try similarly

everything else is straightforward

Elimination ofinenv occurs when evaluation within it is complete:

inenv p' do v —f v scope exit

Recall the existing rules for functions:
[function (2 : T2) — 6];2;/—”5, —egs  function (z2: Ty) — [{[Ig]z;i,/ﬁg}e]z;i, bracket pushing through functi
(function (zp : T2) — e) v —egs {12 /:2}e function application

let rec z; : T = function (72 : T') — e1 in e2  —egs recursive function application
{[{let rec z : T = function (2> : T") — e1 in @]k, /= }function (72 : T') — e1]l. /71 }es

It may seem that a closure should carry its colour as wellsasrivironment. In fact, however, it shouldn’t — just as a
function doesn’t. Colour change is effected by binding, @edake care in substitution (directly or with environménts
to insert sufficient brackets to get this right. Thereforemerely have to get bracket pushing correct for closures.

Thus, a closure carries the function argument, functiorypadd the environment it was defined in. It also carries a
bracket contexBC, discussed below, and for recursive closures it carriesidimee and type of the recursive binder,
also discussed below. On application, we reintroduce thiz@rment, and bind the argument. On pushing a bracket
through a closure, the environment is untouched (it is aebbosed); the bracket is accumulated in the bracket contex

The rules for closures are as follows (notice that the typitgs imply 7, ~ Ty — T3).

function (22 : T2) — ¢ —tys  Clos(p, x2 : T2, -, e, NONE) closure formation

let rec z;: Ty = function (z2: T2) > €1 in e2 —%,, inenv p’ do e recursive closure formation
wherep’ = p + {[Clos(p’, 22 : Tb, , e1, SOME(z1 : T, )] 5L /= }

Clos(p, 22 : T2, BC2, e, 70) v°% o —0,s inenv (p’ + {BCQ.[U“““]fZ,i/zg})/do e closure application

[Clos(p/, w2 : Ta, BCa, e, NONE)];QST’-3 —%s  Clos(p/,z5: T3, BC2.[]12,, [e]jqi,, NONE)  bracket pushing through closure

TN
To—Tg

[Clos(p', 2 : T2, BC2, e, SOME(z1 : T1, BC1))l, 2

—0,s Clos(p', 2 = T3, BC2.[ 112, [e] 1, Some(ar : T3 — T3, BC1[)11,)
Notice thatlet rec is similar tofunction , and recursive and non-recursive closures share the saptieation
rule. For flattening purposes, however, we must store thesreard typer; : T of the recursive binder so that we are

able to reconstruct the appropridtg rec ; otherwise néve application of the would fail to terminate.

bracket pushing through recursive closure

In the original bracket pushing through function rule, wefpen a substitution on the bound variable(s). We would
like to delay this substitution as well. In order to do thig simply accumulate a sequence of pushed brackets within
the closure, adding them to the environment only at apjdinatme. This means that bindings in the environment
may now be to values surrounded by arbitrary bracket cositexther than values only; administrative reductions may
be required in order to reduce these to a value. We do notammiis an important difficulty.

We may perform the vacuous bracket optimisation when appgrad bracket contexts in closure application and
bracket pushing through closure, as follows:

maybe_cons_bs,, [] g;JS _ , = _ , if egsy = eqs
maybe_cons_bs,g, [-] g;JS BC.[] 3;300 = BC.[_](ZISU0 if egsgy = egs
maybe_cons_bsg, [-]¢qs BC = BC.[]T otherwise

eqs

Here we only append the bracket if it differs from the innestmeolour of the existing bracket context (or the ambient
colour egs,, if the bracket context is empty).

149



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

To correctly define flattening in the recursive case, we mustel the codomain gf to include bracket-context forms
BC'.x (denoted by a literat), in addition to the usual expressions. Flattening can newedfined as follows:

flattenclos, () = flattenclos, p(z) wherep(z) # BC .x
flattenclos,(x) = BC.x wherep(z) = BC .x

flattenclos,(inenv p’ do e) = flattenclos, (e)

flattenclos,(Clos(p’, 7, : T2, BC32, e1,NONE)) = function (zy : To) — flattenclos, y{Bc,.2,/2,) (€1)
flattenclos,(Clos(p’, 22 : T2, BC3, €1, SOME(z; : Th, BC1)))

=let rec z; : T} = function (5 : T5) — flattenclos(, (B¢, .«/a1,BCs.4/2,1)(€1) IN 11
everything else is just recursive descent

The new codomain form is used where a identifier must be wippee, rather than recursively expanded.

The new constructs may be typed directly. We make use of ailiayXunction, envenv, defined as follows:
envenv(Q) = O
envenv({[v*®*]L /z,p'}) = z: T, envenv(p)

Then the type rules are as follows:

Ey, Ey,envenv(p) Fegs €0 T
E., By, B Fegs inenv p do e: T

En,Eo,.TQ : Tg l_eqs BCQ..I’Q : T2/
E,, Eg,envenv(p), mp : T5 Fegs €11 T

E., Ey, FE l_eqs (leS(p7 T : To, BCo, e, NONE) Ty — Ty

En,Eo,Il : T1 Feqs BCl.l’l : Tll
En,Eo,SCQ : T2 |_eqs BCQ.ZL’Q : TQ/

Ey, Ey,envenv(p) begs 21 1 T}

Ey, Eg,envenv(p), me : T4 Fegs €11 T
EH,EO }_eqs T1 ~ T2 — T3

Ey, Eo, E Fegs Clos(p, z3 : To, BCo, €1, SOME(z; : Th, BC1)) : T}

whereEj is that prefix of the environment which arises frdin,,s; and the enclosingefinitions.

16.12.2 Type closures

A naive implementation of polymorphism would perform a sulosititn for each instance of type application, negating
much of the benefit of value closures. We therefore introdyie closures as well.

The environmenp now contains pairsl’/t as well as[v“*]7 /z. The reduction arrow, value closures, and the
inenv form all remain the same. We add a new fdliClos(p, ¢, ¢) with the obvious meaning; a type abstraction
is no longer a value, and instead reduces to the obvious tgsere. inenv is used everywhere instead of type
substitution flattenclos_ _ is extended in the obvious way. Brackets and type closurgsomaommuted freely.

Care must be taken to ensure that whenever a type is psethken into account; if the type is taken out of its context
(as in reduction of anarshal expression for example) it must be flattened first.
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Part IV

Communication Infrastructure Example

Here we give théAcute code for the communication infrastructure example oudiime811. It consists of modules
Tcp_padded, Tcp_connection_management, Tcp_string messaging, Local_channel, Distributed_channel,
Npil, Npi2, andNpi, followed by two simple clients of thgpi library, npi-recv andnpi-mig.

(* tcp.ac *)
(* This file contains Tcp_padded, Tcp_connection_management and Tcp_string _messaging modules *)

(* These use the Sockets API and local concurrency - threads and mutexes. *)
(* Both are hash modules, providing abstract types of handles. *)
includesource "util.ac"

(* 3k 3k >k 3K 3k 3k 3k 5k %k 5k 3K 5k 3k 5k 5k %k 3k 3k 3k 3k 5k %k >k 3K 3k 3k 3k %k %k 3k 3k 3k 5k 5k % >k 3K 3k 3k 5k %k %k 5k 3k 3k 5k %k %k >k 3K 3k 3k %k %k >k 5 3k 3k >k %k % >k 3k %k %k %k Xk *)

(% %% *% k)
(* *x Tcp_padded -
(% %% *k k)

(* 3k 3k >k 3k 3k 3k 5k ok >k >k 3k 5k 3k %k >k >k 3k 3k 3k 3k 5k %k >k 3k 5k 3k 5k >k >k 3k 3k 3k 5k %k >k >k 3k 5k 3k %k %k >k >k >k 5k >k %k %k >k 3k 3k %k %k %k >k >k >k %k >k %k %k > >k %k %k % *k *)

(* The Tcp_padded module implements a wire-format send and receive for
arbitrary strings.

The wire format encoding of a string consists of 21 bytes
containing an ASCII pretty-print of its length followed by the
string itself. This is not efficient(!) but is conveniently
human-readable.

*)

module hash Tcp_padded :
sig
val send : Tcp.fd -> ((Tcp.ip * Tcp.port) option) -> string -> unit
val recv : Tcp.fd -> string
end =
struct
let send fd ippo data =
let pad data n =
let padding =
String.make ( n - (String.length data)) ’ ’ in
(data "~ padding) in
let data_length = String.length data in
let data_length_string =
pad (Pervasives.string_of_int data_length) 21 in
let rec send_all s =
let no_options = [] in
let s’ = (Tcp.send fd ippo s no_options) in
if 0 = (String.length s’) then () else send_all s’
in
send_all (data_length_string ~ data)
let recv fd =

let rec recv_n_bytes = function n ->
let no_options = [] in
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let (s,_) = Tcp.recv fd n no_options in

let _ = I0.print_string ("Tcp_padded.recv got " ~ Pervasives.string of_int (String.length s)
“" bytes; expecting " ~ Pervasives.string_ of_int (n - String.length s) ~ " more
n") in
(* let _ = I0.print_string ("in particular, Tcp_padded.recv got ---" "~ s = "-—-
n") inx)

let 1 = String.length s in
if 1 = 0 then (Tcp.close fd; raise (Failure "socket closed by the other party") )
else if 1 >= n then s else s ~ (recv_n_bytes (n-1)) in

let data_length_string = recv_n_bytes 21 in

let first_space = String.index data_length_string ’ ’ in

let data_length_string’ = String.sub data_length_string O first_space in

let data_length = Pervasives.int_of_string data_length_string’ in

recv_n_bytes data_length

end

(* 3k >k >k 3k 3k 3k 3k k >k >k 3k 5k 3k %k >k >k 3k 3k 3k 3k %k >k >k 3k 5k 3k 5k %k >k 3k 3k 3k 5k %k >k >k 3k 5k %k 5k %k >k >k >k 5k >k >k %k 3k 3k 3k %k %k %k >k >k >k %k >k %k %k > % %k %k % *k *)

(k *% *k k)
(* ** Tcp_connection_management *k %)
(% %% *% k)

(5 skokok ok ok ok K o ok ok oK K oK oK oK K oK oK oK 3K oK oK ok 3 3 oK ok ok 3 K oK oK K K K oK oK K K oK KoK K KoK Kok ok K kR kK kK K )

(* The Tcp_connection_management module manages collections of TCP
connections.

daemon takes a local address (an Tcp.ip option * Tcp.port option)
and an incoming-connection-handler function and creates a listening
socket on that address, spawning a thread that invokes the supplied
function for any incoming connection and then adds the connection
to a list. daemon returns a handle which must be passed in to the
other functions. (Using handles rather than module state allows a
single runtime to have multiple instances with different local
addresses.)

establish_to takes a handle and remote address. If there is
already a connection to that address it returns its file
descriptor, otherwise it tries to establish one (and returns the
new file descriptor).

disestablish_to takes a handle and remote address, closing and
removing a connection to that address if one exists.

connection_failed takes a handle and remote address (one for which
a connection has failed) and removes it from the stored list.

shutdown closes and removes all connections and closes the
listening socket.

local_addr takes a handle and returns the local address.
*)
(* TODO: Deal more sensibly with TCP errors and the REUSEADDR semantics, here and in the clients *)

(* TODO: Think about efficiency *)
(* TODO: Have shutdown cleanly terminate the associated thread *)
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module hash Tcp_connection_management
sig
type fd = Tcp.fd
type handle
val daemon : Tcp.ip option * Tcp.port option ->
((Tcp.ip option * Tcp.port)->Tcp.addr->fd -> unit) -> handle
val establish_to : handle -> Tcp.addr -> fd
val disestablish_to : handle -> Tcp.addr -> unit
val shutdown : handle -> unit
val connection_failed : handle -> Tcp.addr -> unit
val local_addr : handle -> Tcp.ip option * Tcp.port
end =
struct
type fd = Tcp.fd
type handle =

(Tcp.ip option * Tcp.port) (* local address *)
* fd (* listening socket *)
* ((Tcp.ip optionx*Tcp.port)->Tcp.addr->fd->unit) (* incoming conn handler  *)

* mutex name (* current connections mutex *)
* (Tcp.addr * fd) list ref (* current connections *)

let daemon (ipo,po) f =
let conn_mutex = fresh in
create_mutex conn_mutex;
Pervasives.print_endline ("Created TCP mutex " ~ name_to_string conn_mutex);
let conn = ref [] in
let fd = Tcp.tcp_socket () in
let _ = Tcp.bind fd ipo po in
let (ipo,p) = match Tcp.getsockname fd with
(Some ip, Some p) -> (Some ip, p)
| (None, Some p) -> (None,p)
| _ -> raise (Failure "no local port after bind()") in
let _ = let backlog = 5 in Tcp.listen fd backlog in
(while true do
let (fd’,(ip’,p’)) = Tcp.accept fd in
let p’’ = (unmarshal (Tcp_padded.recv fd’) as Tcp.port) in
f (ipo,p) (ip’,p’’) fd’ ; (* note that f terminates before adding this to conn *)
Utils.locked_by_stmt conn_mutex
(function () ->
conn := ((ip’,p’’),fd’) :: !conn)
done |||
(((ipo,p) ,fd,f,conn_mutex,conn)

))

let establish_to h (ip’,p’) =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
Utils.locked_by_stmt2 %[fd] conn_mutex (function ()->
try
List.assoc %[Tcp.addr] %[] (ip’,p’) !conn
with
Not_found ->
let fd = Tcp.tcp_socket () in
Tcp.bind fd ipo Nonme;
Pervasives.print_endline ("Establish connecting to p’ = "
Pervasives.string_of_int(Tcp.int_of_port p’) );
Tcp.connect fd ip’ Some p’;
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let d = (marshal "StdLib" p : Tcp.port) in
Pervasives.print_endline ("Establish p = " ~ Pervasives.string_of_int(Tcp.int_of_port p));
(* Pervasives.print_endline ("Establish string = " =~ d ); *)
Tcp_padded.send fd None d;
f (ipo,p) (ip’,p’) fd;
conn := ((ip’,p’),fd) :: !conn;
fd

let disestablish_to h (ip’,p’) =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
Utils.locked_by_stmt conn_mutex (function ()->

try
let fd = List.assoc %[] %[] (ip’,p’) !conn in
conn := List.remove_assoc %[] %[] (ip’,p’) !'comn;
Tcp.close fd

with

Not_found -> ()

let shutdown h =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
Utils.locked_by_stmt conn_mutex (function ()->
List.iter %[] (function ((ip,p),fd) -> Tcp.close fd) !conn;
conn := [];
Tcp.close fd_listen)

let connection_failed h (ip’,p’) =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
Utils.locked_by_stmt conn_mutex (function () ->
conn := List.remove_assoc %[] %[] (ip’,p’) !conn )

let local_addr h =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
(ipo,p)

end

(% okokok kKoK ok okok ok ook ok ok ok ok ok o ok KoK ok ok ok ok ok KoK ok ok ok ok ok kKoK oK ok ok ok kK Kok ok ok KKk KKKk kR Kk k)

(k k% *k k)
(% %% Tcp_string_messaging *% k)
(k k% —_—

(* 3k 3k >k 3k 3k 3k 3k 5k >k >k 3K 3k 3k 5k 5k %k 3k 3k 3k 3k %k %k >k 3K 3k 3k 5k %k >k 3k 3k 3k 5k 5k %k >k 3K 3k 3k 5k %k >k 3k 3k 3k 5k %k %k >k 3K 3k 3k %k %k >k 5 3k %k >k %k %k > 3 %k %k % % *)

(* The Tcp_string messaging module provides asynchronous messaging of
strings to TCP addresses, using Tcp_connection_management.

daemon takes a local address (an Tcp.ip option * Tcp.port option) and
a function to handle incoming strings, of type

(Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit

and creates a Tcp_connection_management.daemon, returning a handle.

send takes a handle, a remote TCP address and a string, uses
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Tcp_connection_management.establish_to to ensure there is a
connection, and sends the string (encapsulated in a wire format).

shutdown takes a handle and shuts down (calling
Tcp_connection_management.shutdown) .

local_addr takes a handle and returns the local TCP address.

The wire format is implemented by Tcp_padded.
*)

(*x TODO: handle send/recv errors and call connection_failed as required *)

(* TODO: need more locking to stop different send/recvs interleaving *)

(* TODO: one might want to pass the handle as another argument to the
function argument to daemon *)

module hash Tcp_string_messaging :
sig
type handle
val daemon : Tcp.ip option * Tcp.port option ->
((Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit) -> handle
val send : handle -> Tcp.addr -> string -> unit
val shutdown : handle -> unit
val local_addr : handle -> Tcp.ip option * Tcp.port
end =
struct
type handle = Tcp_connection_management.handle

let daemon (ipo,po) f
let g ipop addr’ fd
create_thread fresh (function () ->
while true do
let data = Tcp_padded.recv fd in
f ipop addr’ data
done

) O
in
Tcp_connection_management.daemon (ipo,po) g
let send h (ip,p) data =

let fd = Tcp_connection_management.establish_to h (ip,p) in
Tcp_padded.send fd (Some(ip,p)) data

let shutdown h = Tcp_connection_management.shutdown h

let local_addr h = Tcp_connection_management.local_addr h
end

(% sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K o o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok KoK K K K KKk ok Rk Rk skokok k)
(k *% *k k)
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(* *x Local_channel *k %)
(k k% *k k)
(% skokokok sk ok ok okokok ok ok ok o ok ok sk ok sk ok ok o ok sk sk sk ok ok ok ok ok sk sk sk ok ok ok o ok sk sk sk ok ok ok o ok okskokskok ok sk ok kokokokok ok ok ok ok k)

(* Module Local_channel provides simple typed asynchronous local
channels.

Function send : forall t. t name -> t -> unit sends a message
on the specified name, returning immediately.

Function recv : forall t. t name -> (t -> unit) -> unit
registers a receiver on the specified name, returning immediately.

As soon as there is both a message and a receiver for a name the
receiver is applied to the message. The receiver is then removed.

The interface uses (T name) as the type of channels carrying values
of type T. Exposing the fact that this is a name type allows
clients to use any of the methods for constructing shared typed
names that Acute provides.

One might instead think of using ML-style references as channel
‘names’. For a local implementation that would be fine, but one
one marshalled values mentioning channels the whole channel data
structure would be copied, which is not our desired semantics.

Internally, the pending messages and receivers on the channels are
stored in a list of existential packages, of type

(exists t. t name * (t list ref * (t->unit) list ref)) list
with the Acute namecase operation used in lookups.

This is a hash! module. There is module state: the handle h
consists of a mutex name and a pointer to the channel data
structure. (Here h is exposed, abstractly, in the interface,
purely to work around the current lack of width subsignaturing.)
Nonetheless, rebinding to local instances of Local_channel.send and
Local_channel.recv should just work, so we use the hash! mode to
give an exact-hash version (and, as part of that workaround, to
make the abstract type of h hash-generated).

One might think of passing the handle explicitly as an argument to
send and recv, doing without module state. That again would lead
to the wrong semantics for marshalling values that use this
library.

*)

(x  NB: fields marked by (*A*) will be removed from the interface *)
(*  when width subsignaturing is added *)

module hash! Local_channel
sig
type handle (xAx)
val h : handle (xAx)
val send : forall t. t name -> t -> unit
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val recv : forall t. t name -> (t -> unit) -> unit
end

struct
type handle = mutex name * (exists t. t name * (t list ref * (t->unit) list ref)) list ref
let h = (let n = fresh in create_mutex n; n, ref [] )

(* A handle consists of a mutex and a reference to a list of
channel structures. Each channel structure is an existential
package containing a name, a reference to a list of pending
messages and a reference to a list of pending receptors. We
maintain the invariant that at most one of those two is
nonempty.

Channel structures are added to the list as necessary. At
present they are never removed; we could remove them when they
become empty.

The pending messages and pending receptors are kept with the
oldest at the heads of the lists.
*)

(* Note the use of namecase below *)

let send = Function t -> fun (cn: t name) (v: t) ->
let (m,csr) = h in
Utils.locked_by_stmt m
(function () —>

let rec lookup cs’ = match cs’ with
[T -> csr :=
( {t,(cn,(xef (v::[1),ref [1))} as exists t. t name * (t list ref * (t->unit) list ref) )
lcsr

| (c: exists t’. t’ name * (t’ list ref * (t’->unit) list ref))::csO ->
namecase c with
{t’,(cn’,xyz)} when cn’=cn ->
let ((msgs: t list ref),rcvrs)=xyz in
match !rcvrs with (* in this branch the typechecker needs to know t=t’ *)
[0 -> msgs := ('msgs @ (v::[1))
| revr::rcvrsO -> (
rcvrs:=rcvrs0; (* could remove this whole channel if it’s become empty*)
create_thread fresh rcvr v)
otherwise ->
lookup csO
in lookup !csr

)

let recv = Function t -> fun (cn: t name) (f: t -> unit) ->
let (m,csr) = h in
Utils.locked_by_stmt m
(function () ->

let rec lookup cs’ = match cs’ with
[0 -> csr := ({t, (cn,(ref [I,ref (£::[1)))} as
exists t. t name * (t list ref * (t->unit) list ref)) :: !csr

| (c: exists t’. t’ name * (t’ list ref * (t’->unit) list ref))::csO0 ->
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namecase ¢ with
{t,(cn’,x)} when cn’=cn ->
let ((msgs: t list ref),rcvrs)=x in
match !msgs with
[1 -> rcvrs := lrcvrs @ (£f::[])
| vi:vsO => (
msgs:=vs0;
create_thread %[t] fresh f v)
otherwise ->
lookup csO
in lookup !csr

)

end

mark "LChan"

(* TODO: Extend with replicated input and with blocking receive. *)

includesource "tcp.ac"
includesource "local_channel.ac"

(5 skokok ok ok ok ok o ok ok ok K oK oK oK K oK oK oK 3K oK oK ok 3 oK oK ok 3 K K oK oK K K oK oK K K K oK oK oK ok Kok ok kKK Kok ok kK kKK K )

(k k% *k k)
(* ** Distributed_channel —
(% *x *% %)

(* 3k 3k >k 3K 3k 3k 3k 5k %k >k 3K 3k 3k 5k 5k %k 3k 3k 3k 3k 5k %k >k 3K 5k 3k 5k %k >k 3k 3k 3k 5k 5k %k 3k 3K 3k 3k 5k %k >k 3k 3k 3k 5k %k %k >k 3K 3k 3k %k %k >k 3k 3k %k >k %k %k > 3 %k %k % Xk *)

(* Distributed_channel provides simple typed asynchronous distributed
channels, above Tcp_string_messaging and Local_channel.

Function init : Tcp.ip option * Tcp.port option -> unit initialises
a Tcp_string_messaging daemon with the specified port and IP
address.

Function send : forall t. string -> (Tcp.addr * t name) -> t -> unit
sends a message (marshalled wrt the mark specified) to the

specified channel at the specified TCP address, returning
immediately. It does a case split depending on whether the target
is local or not, for efficiency.

Function recv : forall t. +t name -> (t -> unit) -> unit registers
a receiver on the specified name, returning immediately.

Function local_addr : unit -> Tcp.ip option * Tcp.port option
returns the registered local address.

As soon as there is both a message and a receiver for a name the
receiver is applied to the message. The receiver is then removed.
These are _non-mobile_ distributed channels: the receivers cannot
be moved from one Tcp.addr to another. See npi.ac for a mobile
extension.

158



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $

Similarly to Local_channel, this is a hash! module.
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The module state

consists of an ho field, recording the Tcp_string_messaging handle

in use.

To allow client code to determine the local TCP address

this is set by the init function (it is stored as an option

reference and can be set at most once).
gives the module an exact-hash version.

Use of the hash!
Use of module state

mode

(rather than explicitly-passed handles) ensures the right semantics

when marshalling client code.

Internally, the wire format consists of marshalled values of type

exists t’.t’ name * t’

marshalled with respect to whatever mark is supplied to the send
function. This mark should usually be at or below the mark "DChan"
just below the module, so that the Distributed_channel code itself is

not marshalled.

*)

(* NB: fields marked by (*A*) will be removed from the interface *)

(* when width subsignaturing is added

module hash! Distributed_channel :

*)

sig
type tf (xAx)
type tho (kA*)
val £ : tf (kA*)
val ho : tho (*Ax)
val init : Tcp.ip option * Tcp.port option -> unit
val send : forall t. string -> (Tcp.addr * t name) -> t -> unit
val recv : forall t. t name -> (t -> unit) -> unit
val local_addr : unit -> Tcp.ip option * Tcp.port
end
struct

type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit

type tho = Tcp_string_messaging.handle option ref

let f ipop_local addr_remote data =

let {t,x} = unmarshal data as exists t’. t’ name * t’ in
let (c,v) = x in
Pervasives.prerr_endline("Got v: " ~ (marshal "StdLib" (v) : t));
Local_channel.send %[t] c v
let ho = ref None
let init (ipo,po) =
match 'ho with
Some _ -> raise (Failure "Distributed_channel already initialised")

| None -> ho

:= Some (Tcp_string_messaging.daemon (ipo,po) f)

let send = Function t -> fun mk -> fun (addr,(c: t name)) (v: t) ->

let h = Utils.the %[] 'ho in
let (ip, port) = addr in

if (Some ip, port) = Tcp_string_messaging.local_addr h then

Local_channel.send %[t] c v
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else
(Pervasives.prerr_endline("marshalling");
let data = marshal mk ({t, (c,v)} as exists t’.t’ name * t’)
exists t’.t’ name * t’ in
( Pervasives.prerr_endline("sending " ~ data);
Tcp_string_messaging.send h addr data))
let recv = Function t -> fun (c: t name) (f: t -> unit) ->
Local_channel.recv %[t] c £

let local_addr () = Tcp_string messaging.local_addr (Utils.the %[] !'ho)
end

mark "DChan"

(* TODO: Extend with replicated input and with blocking receive *)
(* Note that with this code the local-send optimisation will only be
effective if the local daemon IP was set explicitly, not

wildcarded. To deal properly with hosts with multiple interfaces one
should check against getifaddrs. *)

includesource "tcp.ac"

(* 3k >k >k 3k 3k 5k 5k ok >k 3k 3k 5k 3k %k >k >k 3k 3k 5k 3k %k >k >k 3k 5k 3k 5k >k >k 3k >k 5k >k >k >k >k >k >k %k 5k %k >k >k >k 5k >k >k %k >k 5k 3k %k %k %k >k >k >k %k >k %k %k > >k %k >k k *k *)

(k k% *k k)
(x ** Npi, consisting of Npil and Npi2 *k k)
(k k% *k k)

(5 skokokokok ok ok ok o ok ok ok K oK ok ok K oK oK ok 3K oK oK ok 3 oK oK ok 3 K K oK oK K K K oK oK K K oK KoK K K KoKk ok Kok Kok Kk kKoK K )

(* The Npi module manages groups of threads in a single acute process,
implementing the key primitives of the Nomadic Pict language.

A thread can either be registered with the Npi module or not.

If it is registered, it belongs to exactly one group thoughout its
execution.

Local communication within a group and inter-group communication

via typed channels is supported.

Furthermore, there is a "migrate_group" command, which when called by
one member of the group, migrates the whole group to a new Tcp address.
For this to work, the other end also needs to have an initialised

Npi module running.

The correct operation of this module depends on the client code not
using any low-level primitives - thread operations, thunkify, etc.

Most important functions:
init : (Tcp.ip option * Tcp.port option) -> unit
initialise group infrastucture to handle inter-group communication

and group migrations.

create_group : forall t. (t -> unit) -> t -> unit
create a new group containing one (new) thread.

create_gthread : forall t. (t -> unit) -> t -> unit
add a new thread to the current group.
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recv_local : forall t. t name -> t
receive information from a named typed channel

send_local : forall t. t name -> t -> unit
send information to a named typed channel (of current group)

send_remote : forall t. string -> (Tcp.addr * group name * t name) -> t -> unit
send information to a named typed channel of another group at a
known Tcp address.

migrate_group : Tcp.addr -> unit

migrate current group to a new Tcp address.

As is Local_channel and Distributed_channel, (T name)s are used for
channels carrying values of type T, allowing any of the Acute
methods for establishing shared typed names to be used.

Internally, migration uses thunkify. Migration and send_remote
both use marshal, with a wire format of marshalled values of type

(group name * (exists t. t name * t)) + migration

for the message and migration cases, where

type migration = group name
group
mutex name * cvar name

(thunkkey list -> unit)

* % ¥

The recv_local and send_local use namecase (as in Local_channel).
Marshalling of migrations is with respect to the mark "Npi_end" set
below; marshalling for send_remote is with respect to the supplied
mark, which should usually be below "Npi_end". There is some
delicate use of local concurrency with mutexes and cvars.

*)
(* NB: fields marked by (*A*) will be removed from the interface *)

(* when width subsignaturing is added *)

(* Note the use of hash! (instead of fresh), as we need to rebind to
this interface on migration with type "group" being compatible *)

module hash! Npil
sig

type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit
type tho = Tcp_string_messaging.handle option ref

type channel = (exists t. t name * (t list ref * cvar name))

type group = thread name list ref (* threads in group *)
* mutex name list ref (* mutexes in group *)
* cvar name list ref (* cvars in group *)
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* channel list ref (* local channels *)

type migration = group name
group

(thunkkey list -> unit)

* %

val groups_mutex : mutex name

val groups : (group name * group) list ref

val threadmap : (thread name * group name) list ref
val ho: tho

end

struct

type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit
type tho = Tcp_string_messaging.handle option ref

type channel = (exists t. t name * (t list ref * cvar name))

type group = thread name list ref (* threads in group *)
* mutex name list ref (* mutexes in group *)
* cvar name list ref (x cvars in group *)
* channel list ref (* local channels *)

(* The group data structure is more generous than its usage:
it allows also mutexes and condition variables to be associated
with a group (and be migrated propely).
At the moment there is no create_gmutex/create_gcvar, although
their implementation would be trivial.

*)

type migration = group name

group
(thunkkey list -> unit)

* *

let groups_mutex = hash(mutex, "Npi global mutex") ¥ [mutex] (* fresh *) (*x global mutex *)

(* Locking strategy:
- There is a global mutex ("groups_mutex") at each running acute process.
- Functions acting on the group data structures are all protected by this
global lock.
- When a thread wants to receive a message and there are none in the
channel, the thread waits on the channel’s condition variable.
- When a new message is sent on empty channel, its condition variable is
signalled so that a waiting receiver is unblocked.
NB: This does not in principle guarrantee a FIFO delivery order, but will in
fact have a FIFO ordering with the current version of Acute as threads
in a condition variable are stored in a FIFO queue.

The locking strategy is quite coarse; a more fine-grained scheme would be
possible, where besides the global lock, a lock per group is also kept.
*)

let groups = ref [] (* group name -> group *)
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let threadmap = ref [] (* thread name -> group name *)

(* threadmap exists to find in which group a thread belongs to
These maps are simply implemented as linked lists, but a production
implementation would use a hashtable instead.
Simillarly the list of channels should really be a hashtable.

*)

let ho = ref None
end
mark "Npil"

module hash! Npi2 :
sig

val find_my_group : unit -> Npil.group name * Npil.group

val gthread_wrapper : forall t. (t->unit) -> t -> unit
val create_group : forall t. (t -> unit) -> t -> unit
val create_gthread : forall t. (t->unit) -> t -> unit

val recv_local : forall t. t name -> t

val my_send_local : forall t. Npil.group -> t name -> t -> unit
val send_local : forall t. t name -> t -> unit

val £ : Npil.tf

val init : (Tcp.ip option * Tcp.port option) -> unit

val send_remote : forall t. string -> (Tcp.addr*Npil.group name*t name) -> t -> unit
val migrate_group : Tcp.addr -> unit

val local_addr : unit -> Tcp.ip option * Tcp.port

end

struct

(* returns which group the calling thread belongs to *)
let find_my_group () = Utils.locked_by_stmt2 %[] Npil.groups_mutex
(function () ->
Pervasives.print_endline "In find_my_group lock...";
let gn =
try List.assoc %[] %[l (self ()) !Npil.threadmap
with Not_found ->
raise (Failure "find_my_group:assoc")
in
let group_info =
try List.assoc %[] %[] gn !Npil.groups
with Not_found -> raise (Failure "find_my_group:assoc[2]")
in
(gn, group_info)
)
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(* Ensure that thread exits gracefully by unregistering itself from
* the group data structure.

*)
let gthread_wrapper = Function t -> fun (f: t -> unit) (v: t) ->
fv
(* let unregister_my_gthread () =

let tn = self() in
let rec remove_me Xxs = match xs with

[ -> raise Not_found
| (x::xs8) -> if x = tn then xs
else x :: remove_me Xs in
let (gn, (ths, _, _, _)) = find_my_group () in

Utils.locked_by_stmt Npil.groups_mutex
(function () ->
Npil.threadmap := List.remove_assoc %[] %[] tn !Npil.threadmap;

ths := remove_me !ths
)
in
(try £ v
with e -> (try unregister_my_gthread () with _ -> ()); raise e);

unregister_my_gthread ()
*)
(* create a new group *)
let create_group = Function t -> fun (f: t -> unit) (v : t) ->
let gn = fresh %[Npil.group] in
let tn = fresh %[thread] in
Utils.locked_by_stmt Npil.groups_mutex
(function () —->
let group_info = (ref (tn::[]), ref [1, ref [], ref []) in
Npil.groups := (gn, group_info) :: !Npil.groups;
Npil.threadmap := (tn, gn) :: !Npil.threadmap;
create_thread tn (gthread_wrapper %[t] f) v )

(* create a new thread in the current group *)
let create_gthread = Function t -> fun (f: t -> unit) (v: t) ->
let (gn, (ths, _, _, _)) = find_my_group () in
let tn = fresh /[thread] in
Utils.locked_by_stmt Npil.groups_mutex
(function () ->

Npil.threadmap := (tn, gn) :: !Npil.threadmap;
ths := tn :: !ths;

create_thread %[t] tn (gthread_wrapper %[t] f) v
)

(* receive a value from a local channel, blocking if there is none *)
let recv_local = Function t -> fun (cn: t name) ->
let (gn, group_info) = find_my_group () in
let (_,_,_,csr) = group_info in
Utils.locked_by_stmt2 %[t] Npil.groups_mutex
(function () ->
let rec lookup cs’ = match cs’ with
[1 -> let my_cvar = fresh J[cvar] in
create_cvar my_cvar;
csr := ({t, (cn, (ref [1, my_cvar))} as Npil.channel) :: !csr;
wait my_cvar Npil.groups_mutex;
lookup !csr
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| (c: Npil.channel)::csO ->
namecase ¢ with
{t,(cn’,x)} when cn’=cn ->
let ((msgs: t list ref), my_cvar) = x in
let rec ww () =
match !msgs with

0 -> wait my_cvar Npil.groups_mutex; ww ()
| vi:vs -> msgs := vs; Vv
in
ww ()
otherwise ->
lookup csO

in lookup !csr

)

let my_send_local = Function t -> fun group_info (cn: t name) (v: t) ->
let (_,_,_,csr) = group_info in
Utils.locked_by_stmt Npil.groups_mutex
(function () ->
let rec lookup cs’ = match cs’ with
[J -> let my_cvar = fresh %[cvar] in
create_cvar my_cvar;
csr := ({t,(cn, (ref(v::[]),my_cvar))} as Npil.channel) :: !csr
| (c: Npil.channel)::csO ->
namecase ¢ with
{t,(cn’,x)} when cn’=cn ->
let ((msgs: t list ref), my_cvar) = x in
(match !msgs with

[l -> msgs := v :: !msgs; signal my_cvar
| _ ->msgs := v :: !msgs)
otherwise ->
lookup csO

in lookup !csr

)

let send_local = Function t -> fun (cn: t name) (v: t) ->
let (gn, group_info) = find_my_group () in
my_send_local %[t] group_info cn v

(* We have a single site daemon listen for messages and migrating things.

- for messages, it uses the group name to look up in the group data structure
to find the appropriate (local) channel handle, then use that to propagate
the message.

- for migrating things, it’1l unthunkify and extend the group data structure.

*)
let f ipop_local addr_remote data =
Utils.locked_by_stmt Npil.groups_mutex
(function () ->
Pervasives.print_endline "npi daemon received something";
try
match (unmarshal data) with
inj 1 %[(Npil.group name * (exists t. t name * t)) + Npil.migration] (gn, channel)
-> (x a normal value *)
Pervasives.print_endline "npi daemon received a value";
let group_info = try List.assoc %[] %[] gn !Npil.groups
with Not_found -> raise (Failure
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"Received a value for a group not present at this TCP address")
in
let {t, x} = channel in
let (cn, v) = x in
send_local %[t] cn v
| inj 2 %[(Npil.group name*(exists t. t name*t))+Npil.migration] (gn,groupinfo,unthunk)
-> (*x a migration *)
Pervasives.print_endline "npi daemon received a migration";
let (ths, mtxs, cvs, csr) = groupinfo in

if List.mem_assoc %[] %[] gn !'Npil.groups then
(* NB: this should never occur as group names are only created with
fresh %[group] and the only operation involving group names
is migration which is linear.
This check prevents a type of maliciously forged migrations.

*)
raise (Failure "A group with this same name is already present at this site")
else (
Npil.groups := (gn, groupinfo) :: !Npil.groups;
List.iter %[] (fun tn -> Npil.threadmap := (tn, gn) :: !Npil.threadmap) !ths;

let tks = List.map %[] %[] (fun n -> Thread (n, Blocking)) !ths
@ List.map %[] %[] (fun n -> Mutex n) !mtxs
@ List.map %[] %[] (fun n -> CVar n) !cvs
@ List.map %[] %[] (fun (p: Npil.channel) ->
let {t,x} = p in let (_,(_,n)) = x in CVar n) !csr
in
unthunk tks;
Pervasives.print_endline ("unthunked")
)
with e -> Pervasives.print_endline "An exception was raised in the npi daemon";
raise e

let init (ipo,po) =
create_mutex Npil.groups_mutex;
Pervasives.print_endline ("Created NPI mutex " ~ name_to_string Npil.groups_mutex);
match !Npil.ho with
Some _ -> raise (Failure "Npi already initialised")

| None -> Npil.ho := Some (Tcp_string_messaging.daemon (ipo,po) f)

let send_remote = Function t -> fun mk (addr,gn,cn) (v: t) ->
let h = Utils.the %[] !Npil.ho in
let (ip, port) = addr in
if (Some ip, port) = Tcp_string _messaging.local_addr h then
(* note this local-send optimisation will only take effect if the
IP was set explicitly *)
let group_info = Utils.locked_by_stmt2 %[] Npil.groups_mutex (function () ->
try List.assoc %[] %[] gn !Npil.groups
with Not_found -> raise (Failure "send_remote:List.assoc")

) in
my_send_local %[t] group_info cn v
else

let channel = {t, (cn, v)} as exists t’.t’ name * t’ in

let data = inj 1 %[(Npil.group name*(exists t.t name*t))+Npil.migration] (gn, channel) in
let mar_data = marshal mk data in

Tcp_string_messaging.send h addr mar_data
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(* Migrate the current group to a new Tcp address.
All threads except for the calling thread are thunkified with Blocking mode.
The called thread is blocked with a mutex/cvar. As it is marshalled with
Interrupting mode, it is woken up at the other end with a Thunkify_ EINTR
exception.

*)

let migrate_group = fun addr ->
Pervasives.print_endline("migrate_group: started");
let (gn, group_info) = find_my_group () in
Pervasives.print_endline("migrate_group: found my group");
let (ths, mtxs, cvs, csr) = group_info in
let my_cv = fresh in
create_cvar my_cv;

lock Npil.groups_mutex;
(* First remove the group and its threads from the global data structures *)
Npil.groups := List.remove_assoc %[] %[] gn !Npil.groups; (* remove gn -> group_info mapping *)
List.iter %[]
(fun tn -> Npil.threadmap := List.remove_assoc %[] %[] tn !Npil.threadmap)
Iths; (*x remove tn -> gn mapping *)
Pervasives.print_endline("migrate_group: removed gn,tn data");
let initiating_thread_name = self() in
(* make new thread to perform thunkify, otherwise will thunkify self x*)
create_thread fresh
(function () ->
Pervasives.print_endline("migrate_group: thunkify thread started");
Utils.locked_by_stmt Npil.groups_mutex
(function () ->
Pervasives.print_endline("migrate_group: thunkify thread got lock");
let get_tmode tn =
if compare_name tn initiating_thread_name = O then
Interrupting
else Blocking in
let tks = List.map %[] %[] (fun n -> Thread (n, get_tmode n)) !ths
@ List.map %[] %[] (fun n -> Mutex n) !mtxs
@ List.map %[] %[]1 (fun n -> CVar n) !cvs
@ List.map %[] %[] (fun (p: Npil.channel) ->
let {t,x} = p in let (_,(_,n)) = x in CVar n) l!csr
in
Pervasives.print_endline("migrate_group: thunkify thread going to thunkify");
let thunked = thunkify tks in
Pervasives.print_endline("migrate_group: thunkify thread done thunkify");
let data = inj 2 %[(Npil.group name * (exists t. t name *
t)) + Npil.migration] (gn, group_info, thunked) in
let mar_data = marshal "Npi_end" data in
Pervasives.print_endline("migrate_group: going to send marshalled: ... "
(* ~ mar_data *) );
let h = Utils.the %[] !'Npil.ho in
Tcp_string_messaging.send h addr mar_data

)
) O
(* must block thread initiating migration, until thunkify has completed *)
try
wait my_cv Npil.groups_mutex (* Block here - thunkify will cause Thunkify EINTR *)
with Thunkify_EINTR -> () (* Migration completed -- we can now continue execution *)

let local_addr () = Tcp_string_messaging.local_addr (Utils.the %[] !Npil.ho)
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end

mark "Npi2"

module hash! Npi
sig

type group

val create_group : forall t. (t -> unit) -> t -> unit
val create_gthread : forall t. (t->unit) -> t -> unit

val recv_local : forall t. t name -> t
val send_local : forall t. t name -> t -> unit

val init : (Tcp.ip option * Tcp.port option) -> unit

val send_remote : forall t. string -> (Tcp.addr * group name * t name) -> t -> unit
val migrate_group : Tcp.addr -> unit

val local_addr : unit -> Tcp.ip option * Tcp.port

end

struct

type group = Npil.group

let create_group = Npi2.create_group
let create_gthread = Npi2.create_gthread
let recv_local = Npi2.recv_local

let send_local = Npi2.send_local

let init = Npi2.init

let send_remote = Npi2.send_remote
let migrate_group = Npi2.migrate_group
let local_addr = Npi2.local_addr

end

mark "Npi_end"

(5 skokok ook ok ok ok o ok ok oK K o ok oK oK K 3 ok ok ok K ok ok ok K ok ok ok K K 3K ok ok K K 3 ok oK K K ok koK K ok koK ok ok kK kKR kK kK K )

(k k% *k k)
(* *x npi-recv client Kk k)
(k *% *k k)

(* 3k 3k >k 5K 3k 3k 3k 3k >k 5K 5K 5k 3k 5k 5k %k 5k 3k 3k 3k 3k %k 5k 5k 5k 3k 3k 5k >k 5k 3k 3k 3k 5k %k 5k 3k 3k 3k 5k %k >k 5k 3k 3k 5k 5k %k 5k 3k 3k 3k >k % >k 5k 3k %k >k %k %k >k >k %k >k %k Xk *)

(* example npi client, initialising an npi daemon *)

includesource "npi.ac"
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let addr (ip, port) = (Tcp.ip_of_string ip, Tcp.port_of_int port) in

let _ = Npi.init (Some(Tcp.ip_of_string "127.0.0.1"),
Some (Tcp.port_of_int 6401)) in

Pervasives.prerr_endline("npi-recv done initialising")

(* 3k >k >k 3k 3k 3k 3k ok >k >k 3k 5k 3k %k >k >k 3k 3k 3k 5k %k >k >k 3k 5k 3k %k %k >k 3k 3k 3k 5k 5k %k >k 3k 5k 3k %k %k >k >k 3k 5k >k >k %k 3k 3k 3k %k %k %k >k >k >k %k >k %k %k > % %k %k % *k *)

(k k% *k k)
(* ** npi-mig client *k k)
(* %% *% k)

(o skokokokokok ok ok sk ok sk ok ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk sk ok sk ok sk ok sk sk ok sk sk sk ok sk ok sk sk ok skoksk sk ok skokok sk okok k)
(* example npi client, migrating an npi group there and back *)
includesource "npi.ac"

let addr (ip, port) = (Tcp.ip_of_string ip, Tcp.port_of_int port) in

let _ = Npi.init (Some(Tcp.ip_of_string "127.0.0.1"),
Some (Tcp.port_of_int 6400)) in

Pervasives.prerr_endline("npi-mig done initialising");

let _ = Npi.create_group %[]
(fun O ->
Pervasives.prerr_endline("group created");
Npi.migrate_group (addr ("127.0.0.1", 6401));
Pervasives.prerr_endline("group migrated");
Npi.migrate_group (addr ("127.0.0.1", 6400));
Pervasives.prerr_endline("group migrated back")

) O in

O
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Part V
Implementation

17 Overview

The implementation is written iRreshOCaml [SPGO3], currently around 25 000 lines of code. It has beeeldped
together with the language definition. By and large the didimhas led, with extensions and changes to the definition
being followed by implementation work to match. This exgbsgany ambiguities and errors in the semantics. In a
few cases the implementation led, with changes propagatekiibto the definition afterwards. An automated testing
framework helps ensure the two are in sync, with tests of datign and execution that can be re-run automatically.

The main priority for the implementation was to be ratherseldo the semantics, to make it easy to change as the
definition changed, and easy to have reasonable confideatéhthtwo agree, while being efficient enough to run
moderate examples. The runtime is essentially an intempoeer the abstract syntax, finding redexes and performing
reduction steps as in the semantics. For efficiency it usesigds (as described in §16.12) and represents terms as
pairs of an explicit evaluation context and the enclosem fgoughly as in [RmO02, §1.3.1, Ex. 1]) to avoid having to
re-traverse the whole term when finding redexes. Marshalietesmarshalled(E,, Es, s, definitions, e, T) are
represented simply by a pretty-print of their abstractayntNumeric hashes use a hash function applied to a pretty-
print of their body; it is thus important for this pretty-ptito be canonical, choosing bound identifiers appropsiatel
Acute threads are reduced in turn, round-robin. A pool of OS thsesudhaintained for making blocking system calls.
A genlib tool makes it easy to import (restricted versions@€aml libraries, takingDCaml .m11i interface files and
generating embeddings and projections betweerDtheml and internalAcute representations. It does not support
higher-order functions, which would be challenging in theggnce of concurrency.

To give averycrude idea of performance, the initialisation phase obtheckhead . ac game performs about 220000
steps (roughly corresponding to reduction steps) in 4.6reds; without runtime typechecking and with the vacuous
bracket optimisation. The naive Fibonacci function of 25

let rec fib:int->int = function (x:int) ->
if x <=2 then
1
else
(fib (x-1)) + (£ib(x-2))
in
let x = fib 25
involves about 1.6 million steps and takes 18 seconds, ag#iout runtime typechecking and with vacuous bracket
optimisation. Running the same code in tB€aml toplevel takes 0.0056 seconds, so Rwite implementation is
around 3000 times slower. Turning on runtime typecheckirgydute (and usingdefinitions_1ib_small.ac) for
Fibonacci of 15 takes the execution time from 0.16 second93seconds (11000 steps), a slowdown of another factor
of 3000. These figures are all for a 3.20GHz Pentium 4. In jm@achis level of performance has been reasonable
for the examples we have considered to date. The blockhehtharesweeper games are playable, and three sample
communication infrastructures, based on Nomadic Pictyibiged Join Calculus, and Ambients, all execute tolgrabl
well. Runtime typechecking, while it would be good to havadiele for these larger examples, in fact is mostly useful
for more focussed test cases, for which one wishes to ob#iesvadividual reduction steps in any case.

170



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

18 Command line options

acute <options> <filename>
where

the <level>s are:

none

expression

expression, store

> W N O

and options are:
-definitionslib <filename>

expression, store, userdefns
expression, store, userdefns, libdefns

semantic: Read the standard definitions from <filename>

(default: definitions_lib_small.ac
but use definitions_lib.ac for full set)

-nodefinitionslib

-o <filename>

-df <filename>

—err <filename>
-writefinal <filename>
-checkfinal <filename>
-emitobjectfile <filename>
—emitsourcefile <filename>
-debugs <class>[,<class>..]

(default: default,flattenclos,desugar,tcopt,mkhash,lexer,evalstep,marshal,hashify,tcquant,linkok,namecase,nameval

-dumpstepinterval <n>
-dumpfrom <n>
-printstepinterval <n>
-noprintstepinterval
-production

semantic: No standard definitions

phase: Output to <filename> (default: <stdout>)

phase: Print final state dump to to <filename> (default: <stdout>)
phase: Print debug output to <filename> (default: <stderr>)

phase: Pretty print result to <filename> (default: <stdout>)
phase: Check result against contents of <filename> (default: None)
phase: Emit compiled (object) code after compilation

phase: Emit source code after compilation

output: Which classes of debug output to display

output: Print the configuration (at dumptrace level) every <n> steps

output: Only print the configuration (at dumptrace level) after <n> steps

output: Print the reduction step count every <n> steps
output: Do not print the reduction step count
rttc: Set options used for a production implementation

<norttc><nomttc><notypecheckcompiled><lithash><nolinkok_sig_typecheck><hack_optimise>

-noproduction

rttc: Set options used for a non-production implementation

<rttc><mttc><typecheckcompiled><nolithash><linkok_sig_typecheck><nohack_optimise>

-tcdepth <depth>
-dumpparse <level> (0-4)
—-dumppreinf <level> (0-4)
—-dumppostinf <level> (0-4)
-dumpdesugared <level> (0-4)
—-dumpcompiled <level> (0-4)
-dumptrace <level> (0-4)
-dumpfinal <level> (0-4)
—-dumptypefail <level> (0-4)
-[no] showpasses

-[no] showtimes

-[nol showprogress
-[nolshowlocs
-[nolshowtrailer
-[nolsuffixall

-[no] shownames
-[nolglobalhashmap
-[nolshow_options

-[no] showtcenv
-[nolemitobject
-[nolprintenv
-[nolprintenvbodies
-[nolprintclos
-[nolprinterrordeath

(4) output: Context depth for typechecking errors

(0) output: Dump result of parse

(0) output: Dump input to inference

(0) output: Dump output of inference

(0) output: Dump output of desugaring

(3) output: Dump output of compilation

(1) output: Dump traced execution steps

(1) output: Dump final state (if no type failure)

(3) output: Dump on type failure (or unmarshalfail)
(*) output: Show names of compilation passes

(%) output: Show time taken per pass

( ) output: Show progress during type inference

( ) output: Show locations in dump output

(%) output: Show trailer information (e.g., hash values) when printing
() output: Always suffix names, even when unshadowed

( ) output: Show internal representation of bound names

(%) output: Use a common map for abbreviating hashes and abstract names
() output: Show the command line used, including default options

( ) output: Show environment in typecheck errors

( ) output: Emit compiled (object) code after compilation

() output: Print runtime environments

( ) output: Print runtime environment bodies (RHSs)

( ) output: Print closures as closures (rather than expanding)

(*) output: Print error message when a thread exits with an exception
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-[nolprintcleandeath ( ) output: Print message when a thread exits cleanly
-[noldebug ( ) output: Generate debug output (on stderr)
-[nolshowfocussing ( ) output: Show focussing process in dumptrace
-[no]dumptex ( ) output: Dump in tex format

- [no] dumphuman ( ) output: Dump for humans (no type annotations)
-[no]dumpall () output: Don’t ever abbreviate traces to
-[nolparsetest ( ) phase: Parser - pretty printer identity test
-[noldesugar (%) phase: Desugar

-[no]compile (*) phase: Compile

- [nol typecheckcompiled (*) phase: Typecheck the compiled program

-[no]run (%) phase: Run program

-[nollithash () rttc: Emit literal O#123ABC hashes in certain places
-[nolrttc (*) rttc: Do runtime typechecking

-[nolmttc (%) rttc: Do unmarshaltime typechecking
-[nolterminate_on_tc (*) rttc: Terminate if typecheckcompiled or rttc is on and fails
-[noldefault (%) semantic: Default underspecified types to unit

-[noldisable_import_typecheck ( ) semantic: Disable typechecking of import links
-[noldisable_eqgsok_typecheck  ( ) semantic: Disable typechecking of |- egs ok

-[nolinternal_wegs (%) semantic: Allow use of with! equations inside modules
(not just at boundary)

-[no]linkok_sig_typecheck (*) semantic: Do full subsignature typecheck in linkok

(not just syntactic check)

-[nolhack_optimise (%) semantic: Perform vacuous-bracket optimisation
-[no]really_hack_optimise () semantic: Erase all brackets

-[nolabstract_existentials (%) semantic: Dynamically-abstract existentials
-[nolnonunitthread ( ) semantic: Threads do not have to evaluate to unit
-[nolmarshaltex ( ) semantic: Marshal in tex format (cannot be unmarshalled)

-help Display this list of optioms
--help Display this list of optiomns
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19 Concrete user source grammar

This is the concrete source grammar, automatically exddaitom the implementatiosicamlyacc source.

coretype
compilationunit_definition

compilationunit_definitions
nameenv
nameennon.empty
nameenventry

definitions
optionalmode
definition

sourcedefinition

modulebody
valuability

valuabilities
cmodulebody

hmodulebody
amodulebody
import.body

cimportbody

himportbody
hash

hashor_.modnamedot.ident
namevalue

egs
egsbody nonempty
egsbody.item
versionopt

versionval
versionnonopt
versionconstraintval
versionconstraintnonopt
versionconstraintopt

coretype_pri

[ sourcedefinition| includesource STRING|
includecompiled STRING ]

{ compilationunit_definition semisemi$

{ (} | nameenwmonempty} )

[{ nameenwentry , } nameenventry ]

[ ABSTRNAME : ( nmodule modnameextern hmodulebody|
nimport modnameextern himportbody| Type | coretype.pri)

]{ definition }

[hash | hash! | cfresh! | cfresh | fresh]

[ cmodule modnamebinder cmodulebody| cimport
modnamebinder cimportbody | module fresh
modnamebinder modulebody| import fresh
modnamebinder importbody| mark STRING ]

[module optionalmode modnaméinder modulebody |
amodule modnamebinder amodulébody| import
optionalmode modnamdinder importbody| mark STRING ]
: moduletype versionopt= moduleexpr withspeoopt
valuable

cvaluable

nonvaluable

( valuability , valuability )

hash eqs modulaype valuabilities modulgype versionval =

moduleexpr
: egs moduletype versionnonopt= moduleexpr

: moduletype= modnameuse
: moduletype versionconstraintopt likespec resolvespeaapt

moo.moduleopt
hash moduletype valuabilities modulgype

versionconstraintval likestr resolvespenonopt moomodule
: moduletype versionconstraintnonopt likestr

hash ( hmodule modnameextern hmodulébody)

hash ( himport modnameextern himportbody)

LITHASH

ABSTRNAME

[ (hash modnameuse ). identextern ]

[name_value ( (hash ( hash. identextern) appty ) | hash (
coretypepri , STRING) ) | hash ( coretypepri , STRING,
namevalue) ) | ABSTRNAME appty ) )]

{(} | eqsbody.nonempty} )

[ eqsbodyitem [, eqsbody nonempty ]]

[ ( hash modnameuse ). typnameextern= coretype.pri]
[version version ]

version version

version version

version versionconstraint

version versionconstraint

[ version versionconstraint ]
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withspecopt m= [with! weqgs]

wegssingle =  modnamaise. typnameextern= coretype pri

weqs n= weqgev

weqsrev = [{weqgssingle, } weqgssingle]

likespec =  [like modnameuse| likestr ]

likestr = [1like struct structureend ]

resolvespeamonopt = [by resolvespemonempty ]

resolvespeopt = [resolvespemonopt ]

moa.moduleopt »=  [[moamodule ]]

moa.module = [=(unlinked | modnameuse )]

moduleexpr ’= struct structureend

moduletype = sigsignaturesnd

structureitems = [structurdtem (; ; structureitems| structureitems ) ]
structure = [structurétem (; ; structureitems| structureitems) ]
structureitem = let identbinder= typedexpr

type typnamebinder= coretype pri
[ signaturatem ( ; ; signatureitems| signatureitems ) |
[ signaturéem ( ; ; signatureitems| signatureitems ) |
val identbinder: coretype pri
type typnamebinder
type typnamebinder= coretype pri
type typnamebinder: kind
marshallechameenwpt , { definitions} , { loctyp.list } , {
store} , simpleexpr, coretypepri

| 1let identbinder nonempty patternlist = typedexpr
|

signatureitems
signature
signatureitem

marshalledoody

marshalledhameenvopt -

nameenv
marshalled ( marshalledbody)

marshalledvalue pri

store = [ storenonempty ]
storenonempty = [{ storeitem , } storeitem ]
storeitem = (location:= expr)

hashin_version hash ( hmodule modnameextern hmodulébody)
hash ( himport modnameextern himportbody )
LITHASH

ABSTRNAME

INT

hashin_version

atomioversion [ versiondotted suffix ]

{ . atomicversion} . atomicversion

versionliteral

version
versiondottedsuffix

atomicversion = myname

| versionliteral
atomic hashversionconstraint = [ modnamese| hashin_version ]
atomicversionconstraint = [atomicashversionconstraint INT ]
atomicversionconstraintsnonempty ::= [{ atomicversionconstraint. } atomicversionconstraint ]
tail_versionconstraint = atomigzersionconstraint

| INT - INT

| —INT

| INT -

| =
versionconstraint = [name = atomichashversionconstraint tail_versionconstraint

| atomicversionconstraintsnonempty . tail_versionconstraint

resolvespemon empty

[ resolvespeitem [, resolvespemonempty | ]
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Static_Link

Here_Already

STRING

[expr [ (5 |]]) seqexpr]]

simpleexpr

| simpleexpr simpleexpror_appty_list

| let pattern=typedexprin seqgexpr

| let identinternalbinder nonempty patternlist = typedexprin
seqgexpr

| 1let rec identinternalbinder nonempty patternlist =
typedexprin seqexpr

| let recidentinternalbinder optionalcolon coretype pri =
function mtchwhensugaryin seqgexpr

| match segexprwith mtch

| function mtchwhensugary

| fun nonempty patternlist -> segexpr

| trysegexprwith mtch

| ref optty simpleexpr

| ref optty

| raise simpleexpr

| if seqexprthen exprelse expr

| while segexprdo seqgexprdone

| expr:: expr

| expr&& expr

| expr|| expr

| expr:=optty expr

| expr=optty expr

| expre optty expr

|

|

|

|

|

|

|

|

|

|

|

|

|

resolvespedtem

seqgexpr
expr

expr+ expr
expr- expr
expr* expr
expr> expr
expr < expr
expr INFIXOPO expr
expr INFIXOP1 expr
expr INFIXOP2 expr
expr INFIXOP3 expr
expr INFIXOP4 expr
exprfreshfor expr
- expr
Function typnameinternalbinder-> seqexpr
let { typnameinternalbinder, identinternalbinder} =
typedexprin seqexpr
| namecase exprwith { typnameinternalbinder, (
identinternalbinder, identinternalbinder) } when identuse=
expr-> exprotherwise —> expr
segexpr
segexpr: loc_coretype
segexpras loc_coretype
typedexprl
segexpr; typedexprl
seqexpr||| typedexprl
{ coretypepri , expr} as coretypepri

typedexpr

typedexprl
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simpleexpr

simple.expror_appty_list

optty

appty
optionalcolon.coretype pri
location

loctyp._list
loctyp_list_.non.empty
loctyp_pair

mtch
mtch.whensugary
matchcases
patternmatchaction
matchaction
expr.commalist
standalonénfixop

standalonénfixopstr

pattern
patternpri

simple pattern

patterncommalist
nonempty patternlist
nonempty rev_patternlist
kind

loc_coretype
coretypepri

fun_coretype

{ constrQ| identuse| econstuse| modnameuse. identextern|
hash. identextern| location| ( typedexpr) | (
expr.commalist ) | ! optty simpleexpr| constrl simpleexpr|
standalonénfixop | fresh optty | cfresh optty | hash (
hashor_-modnamedot.ident) appty | hash ( coretypepri,
expr) appty | hash ( coretypepri , expr, expr) appty |
namevalue| swap exprand exprin simpleexpr| support
optty simpleexpr| modnameusee identextern| name_of _tie
simpleexpr| val_of_tie simpleexpr| PREFIXOP|
PREFIXORTYP optty | marshal simpleexpr simpleexpr|
unmarshal }

simpleexpr

appty

simple.expr simpleexpr.or_appty_list

appty simple expror_appty_list

[[ %[ coretypepri]]]

[%[ (coretypepril|]1)]

[[ : coretypepri]]

{<INT >}

[ loctyp_list_nonempty ]

{ loctyp_pair , } loctyp_pair

(location: coretype.pri)

[[|]1matchcases]

[ mtch (identinternalbinder: coretypepri ) matchaction ]

pattermatchaction{ | patternmatchaction}

pattern matchction

-> seqexpr

(‘exprcommalist | expr ), expr

( ( standalonénfixopstr) | && ) | || ) | ! optty ) | = optty ) |
:=optty ) | @optty) )

[+]-]x*|<|>|INFIXOPO| INFIXOP1| INFIXOP2|
INFIXOP3 | INFIXOP4 ]

patterpri
simplepattern
constrl simplepattern
patternpri : : patternpri

ideninternalbinder

constr0

- INT

( patternpri )

( patternpri : coretype.pri)

( patterncommalist )

( patterncommalist | patternpri) , patternpri
non.empty rev_patternlist

{ patternpri } patternpri

Type

Eq ( coretypepri)

coretype._pri

fun_coretype

forall typnameinternalbinder. coretype pri
exists typnameinternalbinder. coretype pri
tupcoretype{ -> tup_coretype }
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tup_coretype
coretypelist_tuple
coretypelist_.sum
constr0

baseconstr0

constrl

identuse
econstuse
identbinder
ident.internalbinder
identextern
typnameconstruse0
typnameconstrusel
typnamebinder
typnameextern

typnameinternalbinder

modnameuse
modnamebinder
modnameextern
semisemis
semisemislus
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( coretypepri)
typnameconstruseO
modnameuse. typnameextern
hash. typnameextern
simplecoretyperef
simplecoretypename
simple coretype typnameconstrusel
simplecoretype [ * coretypelist_tuple| + coretypelist.sum ]
simplecoretype{ * simplecoretype }
simplecoretype { + simplecoretype }
[ 1 optty
None optty
baseconstrO

o)
INT
false
true
CHAR
STRING
BASECONO
inj INT app.ty
Some
tiecon
NODE
BASECON1

LIDENT

ECONST

LIDENT

LIDENT

LIDENT

LIDENT

LIDENT

LIDENT

LIDENT

LIDENT

[UIDENT ]

UIDENT

UIDENT

[[ semisemiglus ] ]

[({::}55]
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20 Concrete compiled-form grammar

This is the concrete compiled-form grammar, automaticaityacted from the implementati@eamlyacc source.

coretype
compilationunit_definition

compilationunit_definitions
nameenv
nameennon.empty
nameenventry

definitions
optionalmode
definition

sourcedefinition

modulebody
valuability

valuabilities
cmodulebody

hmodulebody
amodulebody
import.body

cimportbody

himportbody
hash

hashor_.modnamedot.ident
namevalue

egs
egsbody nonempty
egsbody.item
versionopt

versionval
versionnonopt
versionconstraintval
versionconstraintnonopt
versionconstraintopt

coretype_pri

[ sourcedefinition| includesource STRING|
includecompiled STRING ]

{ compilationunit_definition semisemi$

{ (} | nameenwmonempty} )

[{ nameenwentry , } nameenventry ]

[ ABSTRNAME : ( nmodule modnameextern hmodulebody|
nimport modnameextern himportbody| Type | coretype.pri)

]{ definition }

[hash | hash! | cfresh! | cfresh | fresh]

[ cmodule modnamebinder cmodulebody| cimport
modnamebinder cimportbody | module fresh
modnamebinder modulebody| import fresh
modnamebinder importbody| mark STRING ]

[module optionalmode modnaméinder modulebody |
amodule modnamebinder amodulébody| import
optionalmode modnamdinder importbody| mark STRING ]
: moduletype versionopt= moduleexpr withspeoopt
valuable

cvaluable

nonvaluable

( valuability , valuability )

hash eqs modulaype valuabilities modulgype versionval =

moduleexpr
: egs moduletype versionnonopt= moduleexpr

: moduletype= modnameuse
: moduletype versionconstraintopt likespec resolvespeaapt

moo.moduleopt
hash moduletype valuabilities modulgype

versionconstraintval likestr resolvespenonopt moomodule
: moduletype versionconstraintnonopt likestr

hash ( hmodule modnameextern hmodulébody)

hash ( himport modnameextern himportbody)

LITHASH

ABSTRNAME

[ (hash modnameuse ). identextern ]

[name_value ( (hash ( hash. identextern) appty ) | hash (
coretypepri , STRING) ) | hash ( coretypepri , STRING,
namevalue) ) | ABSTRNAME appty ) )]

{(} | eqsbody.nonempty} )

[ eqsbodyitem [, eqsbody nonempty ]]

[ ( hash modnameuse ). typnameextern= coretype.pri]
[version version ]

version version

version version

version versionconstraint

version versionconstraint

[ version versionconstraint ]
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withspecopt m= [with! weqgs]

wegssingle =  modnamaise. typnameextern= coretype pri
weqs = weqgev

weqsrev = [{weqgssingle, } weqgssingle]
likespec =  [like modnameuse| likestr ]
likestr = [1like struct structureend ]
resolvespeamonopt = [by resolvespemonempty ]
resolvespeopt = [resolvespemonopt ]
moa.moduleopt ;= [ moamodule ]

moa.module = [=(unlinked | modnameuse )]
moduleexpr ’= struct structureend
moduletype = sigsignaturesnd

structureitems := { structureitem }
structure = [ structurétem structureitems |
structureitem let identbinder= typedexpr

type typnamebinder= coretype pri
{ signatureitem }
[ signaturéem signaturdgtems |
val identbinder: coretypepri
type typnamebinder
type typnamebinder= coretype pri
type typnamebinder: kind
marshallechameenwpt , { definitions} , { loctyp.list } , {
store} , simpleexpr, coretype.pri

signatureitems
signature
signatureitem

marshalledbody

nameenv
marshalled ( marshalledbody)

marshalledhameenwopt

marshalledvalue pri

store .= [ storenonempty |
storenonempty = [{ storeitem , } storeitem ]
storeitem = (location:= expr)

hashin_version hash ( hmodule modnameextern hmodulébody)
hash ( himport modnameextern himportbody )
LITHASH

ABSTRNAME

INT

hashin_version

versionliteral

version atomicversion [ versiondotted suffix ]
versiondotted suffix := { . atomicversion} . atomicversion
atomicversion = myname
| versionliteral
atomic hashversionconstraint = [ modnamese| hashin_version ]
atomic versionconstraint = [atomicashversionconstraint INT ]
atomicversionconstraintsnonempty = [{ atomicversionconstraint. } atomicversionconstraint ]
tail_versionconstraint = atomicrersionconstraint
| INT - INT
| —INT
| INT -
| =
versionconstraint = [name = atomichashversionconstraint tail_versionconstraint

| atomic versionconstraintsnon.empty . tail_versionconstraint

resolvespemonempty = [resolvespeitem [, resolvespemonempty]]
resolvespedtem Static_Link
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| Here Already
| STRING
segexpr = [expr[(; | ]]]) seqexpr]]
expr = simpleexpr
| simpleexpr simpleexpror_appty_list
| let recidentinternalbinder optionalcolon.coretype pri =
function mtchwhensugaryin seqgexpr
| match segexprwith mtch
| function mtchwhensugary
| trysegexprwith mtch
| ref optty simpleexpr
| raise simpleexpr
| if segexprthen exprelse expr
| while segexprdo segexprdone
| expr:: expr
| expr&& expr
| expr]|| expr
| expr:=optty expr
| expr=optty expr
| expre optty expr
| expr+expr
| expr-expr
| expr* expr
| expr> expr
| expr< expr
|  expr INFIXOPO expr
| expr INFIXOP1 expr
| expr INFIXOP2 expr
| expr INFIXOP3 expr
| expr INFIXOP4 expr
| exprfreshfor expr
| -expr
| Function typnameinternalbinder-> seqgexpr
| let { typnameinternalbinder, identinternalbinder} =
typedexprin seqexpr
| namecase exprwith { typnameinternalbinder, (
identinternalbinder, identinternalbinder) } when identuse=
expr-> exprotherwise —> expr
segexpr
segexpr : loc_coretype
segexpras loc_coretype
typedexprl
segexpr; typedexprl
seqgexpr||| typedexprl
{ coretypepri , expr} as coretypepri

typed.expr

typedexprl
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simpleexpr

simpleexpror_appty_list

optty

appty

optionalcolon coretype pri
location

loctyp._list
loctyp_list_nonempty
loctyp_pair

mtch
mtch.whensugary
matchcases
patternmatchaction
matchaction
expr.commalist
standalonénfixop

standalonénfixopstr
pattern

patternpri

simple pattern

patterncommalist
kind

loc_coretype
coretypepri

fun_coretype

{ constrQ| identuse| econstuse| modnameuse. identextern|
hash. identextern| location| ( typedexpr) | (
expr.commalist ) | ! optty simpleexpr| constrl simpleexpr|
standalonénfixop | fresh optty | cfresh optty | hash (
hashor_-modnamedot.ident) appty | hash ( coretypepri,
expr) appty | hash ( coretypepri , expr, expr) appty |
namevalue| swap exprand exprin simpleexpr| support
optty simpleexpr| modnameusee identextern| name_of _tie
simpleexpr| val_of_tie simpleexpr| PREFIXOP|
PREFIXORTYP optty | [expr]l_[ }~{ coretypepri} | [ expr
1_[ egsbody.nonempty}~{ coretypepri } | marshal
simple expr simpleexpr| marshalz STRING simpleexpr]|
unmarshal }

simpleexpr

appty

simple.expr simpleexpror_appty_list

appty simpleexpr.or_appty_list

[ %[ coretypepril ]

[ %[ coretypepril ]

[ : coretypenpri]

{<INT >}

[ loctyp_list_nonempty ]

{ loctyp_pair , } loctyp_pair

(location: coretypepri)

[ matchcases |

[ mtcH (identinternalbinder: coretype pri) matchaction ]

pattermatchaction{ | patternmatchaction}

pattern matchction
-> seqexpr
(‘exprcommalist | expr ), expr

( ( standalonenfixopstr) | &&) ||| ) | ! optty ) | = optty ) |
:=optty ) | @optty) )

[+]-]*|<]|>]|INFIXOPO| INFIXOP1| INFIXOP2|
INFIXOP3 | INFIXOP4 ]

pattermpri
simple pattern
constrl simplepattern
patternpri : : patternpri

ideninternalbinder

constrO

- INT

( patternpri )

( patternpri : coretypepri)

( patterncommalist )

( patterncommalist | patternpri ) , patternpri
Type

Eq ( coretypepri)

coretype._pri

fun_coretype

forall typnameinternalbinder. coretype pri
exists typnameinternalbinder. coretype pri
tupcoretype{ -> tup_coretype }
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tup_coretype
coretypelist_tuple
coretypelist_.sum
constr0

baseconstr0

constrl

identuse
econstuse
identbinder
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identinternalbinder

identextern

typnameconstruse0
typnameconstrusel

typnamebinder
typnameextern

typnameinternalbinder

modnameuse
modnamebinder
modnameextern
semisemis
semisemislus

leifer Exp $

( coretypepri)
typnameconstruseO
modnameuse. typnameextern
hash. typnameextern
simplecoretyperef
simplecoretypename
simple coretype typnameconstrusel
simplecoretype [ * coretypelist_tuple| + coretypelist.sum ]
simplecoretype{ * simplecoretype }
simplecoretype { + simplecoretype }
[ 1 optty
None optty
baseconstrO
o)
INT
false
true
CHAR
STRING
BASECONO
inj INT app.ty
Some
tiecon
NODE
BASECON1
LIDENT
ECONST
[LIDENT [ LIDENT 1]
LIDENT
LIDENT
LIDENT
LIDENT
[LIDENT [ LIDENT 1]
LIDENT
LIDENT
[UIDENT [ UIDENT 1] ]
[UIDENT [ UIDENT ] ]
UIDENT
[[ semisemiglus ] ]
[({::}55]
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21 Library interfaces

The following libraries are semi-automatically importedri OCaml — see the OCaml documentation for their seman-
tics. For the moment, for historical reasons, the types argtljnconcretized. They are subject to frequent change.

(* Automatically generated by genlib.ml. Do not edit directly! *)

module hash!Pervasives : sig
val min : int -> int -> int
val max : int -> int -> int
val not : bool -> bool
val abs : int -> int
val Inot : int -> int
val int_of_char : char -> int
val char_of_int : int -> char
val string_of_bool : bool -> string
val bool_of_string : string -> bool
val string_of_int : int -> string
val int_of_string : string -> int
val print_char : char -> unit
val print_string : string -> unit
val print_int : int -> unit
val print_endline : string -> unit
val print_newline : unit -> unit
val prerr_char : char -> unit
val prerr_string : string -> unit
val prerr_int : int -> unit
val prerr_endline : string -> unit
val prerr_newline : unit -> unit
val read_line : unit -> string
val read_int : unit -> int

end

module hash!Agraphics : sig
val open_graph : string -> unit
val close_graph : unit -> unit
val set_window_title : string -> unit
val clear_graph : unit -> unit
val size_x : unit -> int
val size_y : unit -> int
val rgb : int -> int -> int -> int
val set_color : int -> unit
val background : unit -> int
val foreground : unit -> int
val black : unit -> int
val white : unit -> int
val red : unit -> int
val green : unit -> int
val blue : unit -> int
val yellow : unit -> int
val cyan : unit -> int
val magenta : unit -> int
val plot : int -> int -> unit
val plots : (int * int) list -> unit
val point_color : int -> int -> int
val moveto : int -> int -> unit
val rmoveto : int -> int -> unit
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unit -> int

unit -> int

unit -> int * int
int -> int -> unit

int -> int -> unit

int * int -> int * int
draw_rect -> int -> int -> int
draw_poly_line : (int * int) list -> unit
draw_poly : (int * int) list -> unit
draw_segments (int * int *
draw_arc int -> int -> int -> int
draw_ellipse int -> int -> int
draw_circle -> int -> int
set_line_width int -> unit
draw_char char -> unit
draw_string : string -> unit
set_font string -> unit
set_text_size int -> unit
text_size string -> int * int
fill_rect int -> int -> int -> int
£ill_poly : (int * int) list -> unit
fill_arc int -> int -> int -> int
fill_ellipse int -> int -> int -> int
fill_circle int -> int -> int -> unit
transp -> int
wait_next_event int list
unit -> int * int
-> bool
char

-> bool

-> unit

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

current_x
current_y
current_point
lineto

rlineto
curveto
int

int -> unit

unit

mouse_pos
button_down
read_key
key_pressed : unit
sound -> int
auto_synchronize : bool -> unit
synchronize : unit -> unit
display_mode : bool -> unit
remember_mode : bool -> unit

unit
unit ->

val
val
val
val
val
val
val
val
end

int

module hash!Char : sig

val code char -> int

val chr int -> char

val escaped : char -> string

val lowercase char -> char

val uppercase char -> char

val compare char -> char -> int
val unsafe_chr int -> char

end

module hash!String : sig

val length : string -> int

val get string -> int -> char

val create : int -> string

val make int -> char -> string

val copy : string -> string

val sub : string -> int -> int -> string

val concat string -> string list -> string
val escaped : string -> string

val index : string -> char -> int

-> int * int
-> unit

-> unit

-> int -> int
=> unit
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val rindex : string -> char -> int
val index_from : string -> int -> char -> int
val rindex_from : string -> int -> char -> int
val contains : string -> char -> bool
val contains_from : string -> int -> char -> bool
val rcontains_from : string -> int -> char -> bool
val uppercase : string -> string
val lowercase : string -> string
val capitalize : string -> string
val uncapitalize : string -> string
val compare : string -> string -> int
end

module hash!Sys : sig
val file_exists : string -> bool
val remove : string -> unit
val rename : string -> string -> unit
val getenv : string -> string
val command : string -> int
val chdir : string -> unit
val getcwd : unit -> string
val catch_break : bool -> unit
end

module hash!Tcp : sig
type fd : Type
type ip : Type
type port : Type
type addr : Eq(ip * port)
type netmask : Type
type ifid : Type
type msgbflag : Eq(int)
type sock_type : Eq(int)
val ip_of_string : string -> ip
val string_of_ip : ip -> string
val port_of_int : int -> port
val int_of_port : port -> int
val fd_of_int_private : int -> fd
val int_of_fd : fd -> int
val ifid_of_string2 : string -> ifid
val string_of_ifid2 : ifid -> string
val netmask_of_int2 : int -> netmask
val int_of_netmask2 : netmask -> int
val accept : fd -> fd * (ip * port)
val bind : fd -> ip option -> port option -> unit
val close : fd -> unit
val connect : fd -> ip -> port option -> unit
val dup : fd -> fd
val dupfd : fd -> int -> fd
val getifaddrs2 : unit -> (ifid * ip * ip list * netmask) list
val getsockname : fd -> ip option * port option
val getpeername : fd -> ip * port
val getsockerr : fd -> unit
val getsocklistening : fd -> bool
val listen : fd -> int -> unit
val pselect2 : fd list -> fd list -> fd list -> (int * int) option -> fd list * (fd list * fd list)
val recv : fd -> int -> msgbflag list -> string * ((ip option * port option) * bool) option
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val send :
val shutdown : fd -> bool -> bool -> unit
val sockatmark fd -> bool
val socket : int -> fd
val tcp_socket : unit -> fd
val udp_socket : unit -> fd

end

module hash!Persist : sig
val write : string -> unit
val read : unit -> string
val write2 : string -> unit
val read2 : unit -> string
end

module hash!Digest : sig
val string : string -> string
val substring : string -> int -> int -> string

val file : string -> string
val to_hex string -> string
end

module hash!Filename : sig
val concat string -> string -> string
val is_relative string -> bool
val is_implicit string -> bool
val check_suffix : string -> string -> bool
val chop_suffix : string -> string -> string
val chop_extension : string -> string
val basename : string -> string
val dirname : string -> string
val temp_file string -> string -> string
val quote : string -> string
end

module hash!Unix : sig
val sleep : int -> unit
end
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22 The IO module

For writing concise examples we use either the persisterd 58 module or the following network0 module, which
implementssend andreceive with loopback TCP and provides brief aliases fetrvasives.print_string and
Pervasives.print_int.

module IO :

sig
val print_int : int->unit
val print_string : string -> unit
val print_newline : unit -> unit
val send : string -> unit
val receive : unit -> string

end =

struct
let print_int = function x ->

Pervasives.print_int x

let print_string = function s ->
Pervasives.print_string s

let print_newline = function () ->
Pervasives.print_newline ()

let send = function data ->
let fdesc = Tcp.tcp_socket () in
let _ = Tcp.connect fdesc (Tcp.ip_of_string "127.0.0.1") (Some (Tcp.port_of_int 6666)) in
let pad =
function s ->
function n ->
let padding =
String.make ( n - (String.length s)) ’ ’ in
(s ~ padding) in
let data_length = String.length data in
let data_length_string =
pad (Pervasives.string_of_int data_length) 21 in
let rec send_all = function s ->
let no_options = [] in
let s’ = (Tcp.send fdesc None s no_options) in
if 0 = (String.length s’) then () else send_all s’ in
send_all (data_length_string ~ data);
Tcp.close fdesc

let receive = function () ->
let fdesc = Tcp.tcp_socket () in

let _ = Tcp.bind fdesc (Some (Tcp.ip_of_string "127.0.0.1"))
(Some (Tcp.port_of_int 6666)) in
let _ = Tcp.listen fdesc 5 in

let (fdesc2,(_,_))= Tcp.accept fdesc in
let rec recv_n_bytes = function n ->
let no_options = [] in
let (s, _) = Tcp.recv fdesc2 n no_options in
let 1 = String.length s in
if 1 >= n then s else s = (recv_n_bytes (n-1)) in
let data_length_string = recv_n_bytes 21 in
let first_space = String.index data_length_string ’ ’ in
let data_length_string’ = String.sub data_length_string O first_space in
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let data_length = Pervasives.int_of_string data_length_string’ in

let data = recv_n_bytes data_length in
Tcp.close fdesc;

Tcp.close fdesc2;

data
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Appendix

of the type annotations, and theode, withspec, likespec, vee, vne, andresolvespec annotations oimodule andimport

(1715 .1 e e e i A N o .1

Constructors cg ::= ... Cy = ...
Operators
op u= refr|(=7)|(<)[(<)[(>)](>)|mod|land|lor |lxor|Isl|Isr|asr|(+)[ (=) [(x)| (/)| — [(@7)| ()]

create_thread r | self | kill | create_mutex |lock | try_lock | unlock | create_cvar | wait | signal |

broadcast | exit 7 | unthunkify
Expressions

e=Co|Cy e]|er::ex|(e1,.., e,) | function mich|fun mich|l|op™ €1 ... en|2" €1 ... en |z | Mp.x|
if e; then e; else es|while e; do e; done|e; && ex|ei || ex|er; e2|er ea|lre|er:i=res|
match e with mtch|let p=-¢' in e’ |let z: T p1..p, = ¢’ in e”|let rec z: T = function mitch in
let rec z: T p1..p, = ¢’ in e”|raise e|try e with mtch|At —e|le T|{T,e}as T |let {t, 2} = e

nr | h.x|ei =" ez |marshalz s e : T|RET 7 |SLOWRET | TERM |op(op™)” é1 .. e |

op(z")" e1 .. en | [€] s | resolve(Mas.x, M’ 7, resolvespec) | resolve_blocked (Mus.x, M’ 7, resolvespec)

Matches and Patterns

mtch == p—e|(p— e|mich)
p o= (:T)[(z:T)|colCiplpizpz|(pr,pn)[(p: T)

Signatures and Structures

sig == empty |val x;: T sig|type t:: K sig Sig sig sig end
str = empty |let x;: T p1..pn = e str|type t, = T str Str == struct str end

Version and version constraint expressions

default to reasonable values if omitted. The internal paftst and = of identifiersM,, t; andx, are inferred by scope

resolution.
Novel source features a_ and novel non-source construct: highlighted in yellow .
Abstract names n Store locations! Standard library constants (with arity) z"
Kinds
K == TyPe|EQ(T)
Types
T == int|bool|string|unit|char|void | Th *..x T | Th + ..+ Tp| T — T'| T list| T option| T ref|exn|Mu 4|

This appendix gives most of thecute syntax for reference. This is the fully type-annotated source languadeding sugaredi
forms, together with other non-source constructs that are needegresexhe semantics. The implementation can infer many

in e |
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Source definitions and Compilation Units

Compiled Definitions and Compiled Units

definition := cmodule...|cimport...|module fresh...|import fresh...|mark MK
compiledunit = empty | e| definition ;; compiledunit

Marshalled value contents(marshalled values aggrings that unmarshal to these)
mv = marshalled(E,, E, s, definitions, e, T)
Module names (hashes and abstract names)

h = hash(hmodule.; M : Sig, version vne = Str) | hash(himport M : Sig, version vc like Str)|n
X = Muylh

Expression name values

n == ng|hash(h.x)r|hash(7’,s)r |hash(T’,s,n)r
(In the implementation alt andn forms can be represented by a long bitstring taken fibmanged over by .)
Type equation setgthe M, forms occur in the source language)

eqs = Olegs, Xt~ T

Type Environments (for identifiers and store locations — not required at run-time in the impiéatien)

E = empty |E,z: T|E,l: T ref|E,t: K|E, My : Sig
Type Environments (for global names — not required in the implementation)

E, ::=empty | Ey,n : nmodulec, M : Sig, version vne = Str| Ey,n : nimport M : Sig, version wvc like Str|
En,n:TYPE|Ey,n: T name

Processes
P = 0|(Pi|P2)|n: definitions e|n: MX(b) |n: CV
Single-Machine Configurations

config = Eu; (Es, s, definitions, P)

190




$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

References

[Ali03]

The Alice project, 2003http://www.ps.uni-sb.de/alice/.

[AVWW96] J. Armstrong, R. Virding, C. Wikstrom, and M. William€oncurrent Programming in ErlangPrentice

[BCF02]
[BHS+03]

[Bou03]
[Car95]
[DEW99]

[dot03]

[Fes01]
[FGL*96]
[GMZ00]
[HL94]
[HP]
[HP9]
[HRYO04]
[HS00]
[JoC]
[LBRO3]
[Lero4]
[LPSWO03]

[MCHPO4]

Hall, 1996. 2nd ed.

N. Benton, L. Cardelli, and C. Fournet. Modern camency abstractions forCIn Proc. ECOOP, LNCS
2374 2002.

G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansigto Dynamic rebinding for marshalling
and update, with destruct-time In Proc. ICFP, 2003.

Gérard Boudol. ULM: A core programming model for global cortipg. Draft, 2003.
L. Cardelli. A language with distributed scope.Froc. 22nd POPLpages 286—-297, 1995.

S. Drossopoulou, S. Eisenbach, and D. Wragg. A fragraoulus towards a model of separate compi-
lation, linking and binary compatibility. IRroc. LICS pages 147-156, 1999.

Packacking and deploying .net framework applaai (.net framework tutorials), 2003.
http://msdn/microsoft.com/library/default.asp?url=/library/en-us/dnanchor/
html/netdevanchor.asp.

Fabrice Le Fessant. Detecting distributed cydemibage in large-scale systems.Hroc. Principles
of Distributed Computing(PODC2001.

C. Fournet, G. Gonthier, J.-Jély, L. Maranget, and D. &ny. A calculus of mobile agents. RFroc.
7th CONCUR, LNCS 1119996.

D. Grossman, G. Morrisett, and S. Zdancewic. Syiitagpe abstractionACM TOPLAS22(6):1037—-
1080, 2000.

R. Harper and M. Lillibridge. A type-theoretic apfrch to higher-order modules with sharing.Rroc.
21st POPL.1994.

R. Harper and B. C. Pierce. Design issues in advancedilaaystems. Chapter ikdvanced Topics in
Types and Programming Languagés C. Pierce, editor. To appear.

Haruo Hosoya and Benjamin C. Pierce. How good is logae inference? Technical Report MS-CIS-
99-17, University of Pennsylvania, June 1999.

M. Hennessy, J. Rathke, and N. Yoshida. Safedpi: Wgleage for controlling mobile code. Proc.
FOSSACS, LNCS 2987004.

R. Harper and C. Stone. A type-theoretic interpretaedf standard ML. IrProof, Language and Inter-
action: Essays in Honour of Robin Milne2000.

JoCamlhttp://pauillac.inria.fr/jocaml/.

Didier Le Botlan and Didier Bmy. MLF: Raising ML to the power of System-F. Rroceedings of
the International Conference on Functional Programmin@KP 2003), Uppsala, Swedgpages 27-38.
ACM Press, aug 2003.

X. Leroy. Manifest types, modules, and separategitation. InProc. 21st POP|.1994.

J. J. Leifer, G. Peskine, P. Sewell, and K. Wanshmnouglobal abstraction-safe marshalling with hash
types. InProc. 8th ICFR 2003.

T. Murphy, K. Crary, R. Harper, and F. Pfenning. Arsyetric modal lambda calculus for distributed
computing. InProc. LICS 2004.

191



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

[OK93]
[0ZZ01]
[PT98]
[PTOO]
[Rem02]

[Rep99]
[Ros03]
[Sew00]

[Sew01]
[SLWT]
[SPGO03]
[SWP99]
[SY97]

[TLK96]
[USO01]

[ves]
[Wei02]

Atsushi Ohori and Kazuhiko Kato. Semantics for conmication primitives in a polymorphic language.
In Proc. POPL, pages 99-112, 1993.

Martin Odersky, Christoph Zenger, and Matthias gem Colored local type inferencACM SIGPLAN
Notices 36(3):41-53, March 2001.

Benjamin C. Pierce and David N. Turner. Local typemehce. 1998. Full version &&KCM Transactions
on Programming Languages and Systems (TOPL2X}), January 2000, pp. 1-44.

B. C. Pierce and D. N. Turner. Pict: A programming laage based on the pi-calculus. MPmoof,
Language and Interaction: Essays in Honour of Robin Milrg£00.

Didier Rmy. Using, understanding, and unraveling the ocaml laggua Gilles Barthe, editoApplied
Semantics. Advanced Lectures. LNCS 23@fes 413-537. 2002.

J. H. ReppyConcurrent Programming in MLCambridge Univ Press, 1999.
A. Rossberg. Generativity and dynamic opacity fisteact types. IfProc. 5th PPDR August 2003.

Peter Sewell. Applied — a brief tutorial. Technical Report 498, Computer Labamgttniversity of
Cambridge, August 2000. An extract appeared as Chapterfgr&ethods for Distributed Processing,
A Survey of Object Oriented Approaches.

P. Sewell. Modules, abstract types, and distribuezsioning. InProc. 28th POP1.2001.

Peter Sewell, James J. Leifer, Keith Wansbrough, MairmNgilliams, Francesco Zappa Nardelli, Pierre
Habouzit, and Viktor Vafeiadis. Acute: high-level prograing language design for distributed compu-
tation. Draft availabléwvttp://www.cl.cam.ac.uk/users/pes20/acute.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshWrogramming with binders made simple. In
Proc. 8th ICFR pages 263-274, 2003.

P. Sewell, P. T. Wojciechowski, and B. C. Pierce. ltiocaindependent communication for mobile
agents: a two-level architecture. limernet Programming Languages, LNCS 16g8&ges 1-31, 1999.

T. Sekiguchi and A. Yonezawa. A calculus with code ititgh In Proc. 2nd FMOODSpages 21-36,
1997.

Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Fadiiéorial. InCONCUR’96, LNCS 1119996.

A. Unyapoth and P. Sewell. Nomadic Pict: Correct camioation infrastructure for mobile computa-
tion. In Proc. POPL, pages 116-127, January 2001.

Vestahttp://www.vestasys.org/.

Stephanie WeirichProgramming With TypedhD thesis, Cornell University, August 2002.

main text:$Id: paper2.mng,v 1.172 2004/10/12 11:42:56 leifer Exp $
definition: $Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $

192



Acute High-level programming language design for distributedhgaitation Design rationale and language definitid@th October 200493

Index

abstractin, 93
atomic internal blocked form, 140
atomic blocked form, 140

blocked, 140

canonical type, 44
compile, 45, 116
compiledform, 74

desugar, 109
dom(E), 75
dom(eqs), 77

Eo, 118

E1, 118

envenv, 150
egsof_signstr, 105
evalcfresh, 118

fast call, 141
filter, 122
flattenclos, 150
fmv, 133

fn, 138

fns, 138

HASH, 76
hashifyCN, 118

internally blocked, 140

limitdom, 93
linkok, 106
locs, 133

makeimports, 134
matchsub, 129
matchty, 110
maybeconsbs, 149

namepart, 75
patty, 110

raw_.unmarshal, 135
revbc, 138
p¢, 118

selfifysig, 93

sourceinternalform, 74
SSwap, 138

RR n° 5329

sugaredsourceinternalform, 74
syntacticsubsig, 106

typeflattensig, 119
typeflattenstruct, 119
typeof, 76



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le CheSadgx (France)

Unité de recherche INRIA Lorraine : LORIA, Technopoéle de siaBrabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-dyabedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitde Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I'Raro38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route dasibles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Ledbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



