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Introduction

The Calculus of Constructions is a higher-order formalism for writing constructive proofs in a
natural deduction style, inspired from work of de Bruijn [1, 2], Girard [14] and Martin-Löf [20]. The
calculus and its syntactic theory were presented in Coquand’s thesis [7], and an implementation by
the author was used to mechanically verify a substantial number of proofs demonstrating the power
of expression of the formalism [10]. The Calculus of Constructions is proposed as a foundation for
the design of programming environments where programs are developed consistently with formal
specifications.

1 A summary of the Type:Type and predicativity controversy

Martin-Löf’s original 1971 theory of types [20] was a very elegant formal system postulating that
the type of all types (let us call it Type) was itself an object of type Type, that is the judgement
Type : Type was given as an axiom. Such a type inference system, however, is too permissive to
be used as a logic. Specifically, Girard showed [14] that Burali-Forti’s paradox could be encoded in
the system, leading to logical inconsistency. The argument was later simplified and mechanically
type-checked by Coquand [8]. We remark that this logical inconsistency may not preclude the
practical use of such a system for type inference in a programming language. Indeed, Pebble[3]
and Quest[4] are programming languages admitting Type : Type. There, inconsistency is not any
worse than a non-terminating recursion.

Coquand’s analysis of Girard’s paradox showed that the problematic feature of the system with
Type : Type was due to its interference with the impredicative product formation rule:

Γ, x : M ` N : Type

Γ ` (Πx : M)N : Type

since the product over all types (Πt : Type)T for any type T cannot be assumed without paradox to
be of the same “size” (or better, of the same complexity) as an ordinary type. Indeed, the paradox
appears as soon as one is allowed to abstract variables of type Type (see section 9 of [8]). On the
other hand, it is perfectly reasonable to allow the rule:

Γ, x : M ` N : Prop

Γ ` (Πx : M)N : Prop

where Prop is the type of all propositions, since this is nothing more than universal quantification
in higher-order logic. That is, we may be “non-predicative” for propositions, but must stay “pred-
icative” for types. Thus the constant “*” from the original Calculus of Constructions (OCC) [7]
has to be interpreted as Prop, not as Type.



It is possible to encode many mathematical constructions in OCC, as shown in computer ex-
periments with an implementation of the calculus [10, 12]. However, it is awkward to develop for
instance first-order reasoning over domain D in an environment [D : ∗][x : D], since there is
no reason to confuse the element x with a hypothetical proof of D seen as a proposition variable.
In other words, the very useful paradigm of “propositions as types” should not be perverted into
the reverse and misleading principle of “types as propositions” (which M. Beeson ridicules as an
intellectual version of Peter’s Principle).

In order to turn the calculus into a genuine type theory, the original notion of “context” has to
be abstracted in the notion of Type, with Prop : Type. This extension can then be considered a
genuine extension of Church’s theory of types[6], except that the basic logic is intuitionistic rather
than classical, expressed as a natural deduction system, with an explicit notation for proofs, and
with dependent product types. Such a extended system (let us call it ECC) has been studied by
Th. Coquand, who proved a normalization theorem expressing its logical consistency [9].

This very elegant formal system is however limited in its expressive power, in that quantification
over Type is not possible. Such type quantification is needed in order to have uniform proofs
(this is the notion of “typical ambiguity” from the Principia). This lead Coquand to formulate
a generalization of ECC with a predicative hierarchy of types, in the manner of Grothendieck
universes, or of the predicative theory of types of Martin-Löf [22]. Here is Coquand’s generalized
system, as it appeared in [8].

2 Coquand’s Generalized Calculus of Constructions : GCC

2.1 Terms

1. Type(i), for i non-negative integer, and Prop are terms

2. an identifier x is a term (free variables)

3. a non-negative integer k is a term (bound variables)

4. if M and N are terms, then (M N) is a term (application)

5. if M is a term, then []M is a term (abstraction)

6. if M and N are terms, then Π(M,N) is a term (product).

A word has to be said about variables. We assume that free variables are denoted by identifiers,
whereas bound variables are denoted by their binding depth, or de Bruijn’s index. The term []M
denotes functional abstraction. We shall generally use the more usual concrete notation λx · N ,
which is an abbreviation for []M , where M is N with every occurrence of identifier x replaced by the
proper index. Similarly we define abstractly the substitution operation {P}M , which substitutes
P with proper shifts for index 0 in M , and we write concretely instead [P/x]N . Thus β-reduction
may be written abstractly as ([]M N) � {N}M , or concretely as (λx ·M N) � [N/x]M . In the
following, we denote by ≡ the relation of λβ-conversion between terms. The operator Π is product
formation. It is binding in its second argument, and we shall use below the concrete notation
(x : M)N as an abbreviation for Π(M,λx ·N).
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2.2 Environments

Environments are ordered lists of bindings of the form x : M , where x is a variable and M is a
term. We assume without loss of generality that every variable occurs at most once in a given
environment Γ, and we use the notation Γx for the corresponding M . We may thinf of Γx as the
“type” of x in environment Γ. Not every environment is valid. The following rules define the valid
environments.

the empty environment is valid

Γ is valid Γ ` M : Prop x is not bound in Γ
Γ, x : M is valid

Γ is valid Γ ` M : Type(i) x is not bound in Γ
Γ, x : M is valid

These rules are defined mutually recursively with the following type inference rules, which define
the judgements Γ ` M : N , to be read “the term M is of type N in environment Γ”.

2.3 Type Inference Rules

Γ is valid
Γ ` Prop : Type(0)

Γ is valid
Γ ` Type(i) : Type(i + 1)

(∗)

Γ ` M : Type(i)
Γ ` M : Type(i + 1)

(coerce)

Γ is valid x is bound in Γ
Γ ` x : Γx

Γ, x : M ` N : P

Γ ` λx.N : (x : M)P

Γ, x : M ` N : Prop

Γ ` (x : M)N : Prop

Γ ` M : Type(j) Γ, x : M ` N : Type(i)
Γ ` (x : M)N : Type(max(i, j))

Γ ` M : Prop Γ, x : M ` N : Type(i)
Γ ` (x : M)N : Type(i)

(∗∗)

Γ ` M : (x : Q)P Γ ` N : R Q ≡ R

Γ ` (M N) : [N/x]P

The only serious departure from [8] is the addition of rule (∗), which was inadvertently ommitted,
and of rule (∗∗), which is needed to prove the following lemma.

Lemma. If Γ ` M : N is derivable, then either Γ ` N : Prop is derivable, in which case we say
that M is a proof of proposition N in environment Γ, or else Γ ` N : Type(i) is derivable for some
i ≥ 0, in which case we say that M is a realization of specification N in environment Γ.

This lemma shows that there are two distinct kinds of types in the system, in the sense of terms
appearing to the right of a colon in a derivable sequent.
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2.4 A digression on types, specifications and propositions

We say that term T is a type (in a given environment) if it is either a specification or a proposi-
tion. We remark that the rules for environment formation are that variables may be bound only to
types, not to arbitrary terms. Since these are the two kinds of bindings, we shall speak of the con-
stants Prop and Type(i) of the system as the kinds, following the MacQueen-Sethi terminology[19].
Specifications are the natural generalization of the notion of types in the sense of Church’s the-
ory of types. They are more general in that the product formation operator is dependent, like in
Martin-Löf’s theory of types [22]. When x does not occur in N , the specification (x : M)N may
be abbreviated in the more traditional M → N . For instance, the specification of a predicate over
type T would be T → Prop. Similarly, when P is a proposition and Q is a proposition in which x
does not occur, we may abbreviate (x : P )Q in P ⇒ Q. Also, we use ∀x : M ·P for (x : M)P when
M is a specification and P is a proposition. When P is a proposition and M is a specification, the
specification (x : P )M has realizations depending on the proof of P . It is not usual to consider
such types in ordinary logic. However, they are needed to formalize constructive mathematics in
Bishop’s sense, where evidence of properties is taken as computationally meaningful. Here evidence
(of properties) is internalized as proofs (of propositions). This is in contrast to the formalism LF
(logical framework) developed at the University of Edinburgh [15], where judgements (as opposed
to propositions) are types. We refer to [23] for a philosophical discussion of the issues involved.

Remark that the only specifications P which are typable of type Type(0) in the empty environ-
ment are (convertible to) the contexts, terms of the form:

(x1 : M1)(x1 : M1)...(x1 : M1)Prop.

The types of the system are more general than just specifications, since we use the paradigm
of propositions as types [16]. More precisely, the formulation of the logical part of the system in
natural deduction style allows the use of λ-abstraction for the dual purpose of building functional
realizations as well as building proofs under hypotheses.

The inference system is completed by type equality rules, as follows.

2.5 Type Equality Rules

Γ ` M : N Γ ` P : Prop N ≡ P

Γ ` M : P

Γ ` M : N Γ ` P : Type(i) N ≡ P

Γ ` M : P
.

Note that we allow λ-conversion only for types, not for other terms.

Remark 1. It might seem that the previous lemma allows to simplify the two rules in one simpler
rule:

Γ ` M : N N ≡ P

Γ ` M : P
.

However, we are careful to specify that P must be itself well-typed, since otherwise we might
introduce non-typable terms as types of other terms. Indeed, we need this restriction in order to
preserve the validity of the lemma above.

Remark 2. The types equality rules allow us to replace the rule of application by the simpler :

Γ ` M : (x : Q)P Γ ` N : Q

Γ ` (M N) : [N/x]P
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Indeed, this is the way it was formulated originally [8]. However, our formulation is more consistent
from the point of view of the meaning of the meta-variables in the rules, since several occurrences
of the same meta-variable should mean that the corresponding term or environment is shared, and
this is not the case for Q above. Furthermore, our formulation helps in the following section.

Conjecture. With the new formulation of the application rule, the following rule is sound and
sufficient :

Γ ` M : N N � P

Γ ` M : P
,

where � is λ-reduction. The soundness should come from the fact that reduction (as opposed to
conversion) preserves typeability. The completeness should come from the Church Rosser property,
and say something like Γ ` M : N in the old system implies that Γ′ ` M ′ : N ′ in the new one,
where N � N ′, M � M ′ in type subterms, and Γ � Γ′.

The system GCC is quite powerful. It extends strictly Girard’s higher order system Fω. It
permits to formalize completely the Principia’s, including the so-called “typical ambiguity” feature.
However, it is not very convenient to use, since we have to explicitly manipulate the universe
hierarchy. Furthermore, there is no unicity of types (even modulo lambda-conversion), because of
rule (coerce). It is the purpose of this paper to show how to solve this difficulty.

3 An Inconsistent Calculus of Constructions : ICC

The idea is quite simple: we just erase the integer arguments to the Type operator.

3.1 Terms

1. Type and Prop are terms

2. an identifier x is a term (free variables)

3. a non-negative integer k is a term (bound variables)

4. if M and N are terms, then (M N) is a term (application)

5. if M is a term, then []M is a term (abstraction)

6. if M and N are terms, then Π(M,N) is a term (product).

3.2 Environments

the empty environment is valid

Γ is valid Γ ` M : Prop x is not bound in Γ
Γ, x : M is valid

Γ is valid Γ ` M : Type x is not bound in Γ
Γ, x : M is valid
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3.3 Type Inference Rules

Γ is valid
Γ ` Prop : Type

(TI1)

Γ is valid
Γ ` Type : Type

(TI2)

Γ is valid x is bound in Γ
Γ ` x : Γx

(TI3)

Γ, x : M ` N : P

Γ ` λx.N : (x : M)P
(TI4)

Γ, x : M ` N : Prop

Γ ` (x : M)N : Prop
(TI5)

Γ ` M : Type Γ, x : M ` N : Type

Γ ` (x : M)N : Type
(TI6)

Γ ` M : Prop Γ, x : M ` N : Type

Γ ` (x : M)N : Type
(TI7)

Γ ` M : (x : Q)P Γ ` N : R Q ≡ R

Γ ` (M N) : [N/x]P
(TI8)

3.4 Type Equality Rule

Γ ` M : N N � P

Γ ` M : P
(TE)

The reader will notice the nice symmetry between the two “kinds” Prop and Type. He will
also notice that this system, when used without caution, will lead to inconsistency, along the lines
of Girard-Coquand [8]. Let us now see how to use it with caution.

4 Type constraints

Consider a derivation tree of some judgement Γ ` M : T in the system ICC above. We shall
associate with it the following information. First we have a finite set of formal variables {x1, ..., xn}.
We think of variable xi as ranging over integers. Next we have a set of constraints on the formal
variables, which are inequalities in terms of a partial ordering <. More precisely, we have constraints
of the form xi < xj , of the form xi ≤ xj , and of the form xi = xj . Think of these constraints
{C1, ..., Cp} as expressing the arithmetic formula

∃x1...∃xn · C1 ∧ ... ∧ Cp.

Finally we associate with every occurrence of the constant Type in the judgement Γ ` M : T one of
these formal variables. Several occurrences may be mapped on the same variable. In the following,
we indicate Typei to show that the corresponding occurrence of Type is mapped to the formal
variable xi.

We now show by induction on the derivation of the judgement how to maintain and update
this information. First, it is understood that the set of formal variables always increases along a
derivation, and that “residual” occurrences of Type keep their mapping Typei. By residual we mean
the standard notion: occurrences inside the formulas matching the meta-variables M,N,P, Q, R,Γ
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in the premisses of rules have their residuals in the corresponding occurrences in the conclusion of
the rule. Also the residuals of N in [N/x]M are the substituted occurrences, as usual. Finally,
the residuals along λ-reductions are defined in the usual way.

Now, we consider each inference rule in turn. In this analysis, we assume that the rules are
used in proof-checking fashion. We shall explain later how the consistency check may be computed
in proof-synthesis mode.

First, the rules for environment formation just preserve constraints by residuals. Next are type
inference rules. If rule (TI1) is used, we increment n by one, we add a new formal variable xn, we
derive Γ ` Prop : Typen, and we add the constraint 0 ≤ xn.

If rule (TI2) is used, we increment n by two, we add two new formal variable xn−1 and xn, we
derive Γ ` Typen−1 : Typen, and we add the constraint xn−1 < xn.

If rule (TI3) is used, we preserve the constraints by residuals, except in case x is bound to Typei

in context Γ, in which case we increment n by one, we add a new formal variable xn, we derive
Γ ` x : Typen, and we add the constraint xi ≤ xn.

If one of the rules (TI4) or (TI5) is used, we just preserve constraints by residuals.
If rule (TI6) is used, we assume that the derivation of the first premiss Γ ` M : Typei gave a

set of constraints which was used (with proper residuals in M and Γ) to derive the second premiss
Γ, x : M ` N : Typej with the current set of constraints. We then increment n by one, we add a
new formal variable xn, we derive Γ ` (x : M)N : Typen and we add the two constraints xi ≤ xn

and xj ≤ xn.
If rule (TI7) is used, we assume that the derivation of the first premiss Γ ` M : Prop gave a

set of constraints which was used (with proper residuals in M and Γ) to derive the second premiss
Γ, x : M ` N : Typei with the current set of constraints. We then increment n by one, we add a
new formal variable xn, we derive Γ ` (x : M)N : Typen and we add the constraint xi ≤ xn.

If rule (TI8) is used, we assume that the derivation of the first premiss Γ ` M : (x : Q)P
gave a set of constraints which was used (with proper residuals in Γ) to derive the second premiss
Γ ` N : R with the current set of constraints. We then assume (without loss of generality by the
Church-Rosser property) that the test Q ≡ R is effected by reducing Q and R to identical forms.
In these identical forms, every corresponding occurrence of say Typei in Q and Typej in R will
generate a constraint xi = xj . Finally, we derive Γ ` (M N) : [N/x]P with proper residuals.
There is a special case when P is Typei, in which case we increment n by one, we add a new formal
variable xn, we derive Γ ` (M N) : Typen, and we add the constraint xi ≤ xn.

Finally, if the rule (TE) is used, we keep the constraints by residual, except when P is Typei,
in which case we increment n by one, we add a new formal variable xn, we derive Γ ` M : Typen,
and we add the constraint xi ≤ xn.

[Note. Maybe this could be simplified a little bit. For instance, in TI7, do we need to consider
a new variable, or could we consider the occurrence of Type in the conclusion to be a residual of
the one in the hypothesis?]

5 Maintaining consistency

5.1 A consistency check

At every step, we may check in linear time that the set of constraints is satisfiable. This test
amounts to showing that the set of constraints defines a partial ordering which may be extended
to a linear ordering. It is well known how to do this using topological sort (see Knuth [18] section
2.2.3).
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An extended version of this paper will discuss how to maintain this check incrementally.

5.2 Mutual consistency

Theorem. If Γ ` M : N in ICC with satisfiable constraints, then Γ ` M : N in GCC. (Or
maybe with primes to take care of different equality rules) Proof: use the linear ordering given
by the constraints satisfiability test to generate actual indexes to the Type occurrences. Use the
(coerce) rule when needed. Also the rule for application may need some type equality. Conversely,
if Γ ` M : N in GCC, then Γ ` M : N in ICC (modulo type equality again). Proof: just delete all
applications of coerce.

[PB: can the consistency of GCC be established by an extension of the methods of [9]? Thierry
says this poses no conceptual problem.]

5.3 Exemples

With U = (T : Type)(x : T )T and Γ = [u : U], show that the derivation of Γ ` ((u U) u) leads to
an unsatisfiable constraint.

5.4 Discussion

What we have done is actually very simple: we have replaced the meta-variables denoting integers
in expressions such as Type(i) by formal variables. We treat these variables not by standard
pattern-matching, but rather we keep them implicit, along with a network of constraints. This
is consistent with the view of systems manipulating sets of inference rules as type constraints on
derivation operators. Constraints are more general than existential equalities (solved as usual by
unification), but involve inequalities over a linear ordering. It would be interesting to develop a
general theory of such constraint processing in the framework of meta-logical systems such as G.
Kahn’s “Natural Semantics”[17].

Remark that the important point is that we shall be able to use proofs at various type levels.
That is, the proof of a theorem is indexed with constraints pertaining to the formal variables it
introduces. Different instances of use of the theorem will correspond to distinct copies of these
variables, permitting use of the theorem at various levels simultaneously. In other words, different
occurrences of constants are treated as different copies, not as residuals as in the case of variables.
[This point has to be developed more fully. More generally, a mecanism for naming constants has
to be described.]

6 A simplified system : SCC

We now exploit the (apparent) symmetry between the two kinds Prop and Type in order to simplify
the inference rules, as seen by the user of the system. That is, we just factor together rules that
are (apparently) symmetric with respect to the kinds.

6.1 Kinds

Type and Prop are kinds. We use the meta variable K to denote one of these two constants.
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6.2 Terms

1. kinds are terms

2. an identifier x is a term (free variables)

3. a non-negative integer k is a term (bound variables)

4. if M and N are terms, then (M N) is a term (application)

5. if M is a term, then []M is a term (abstraction)

6. if M and N are terms, then Π(M,N) is a term (product).

6.3 Environments

the empty environment is valid
Γ is valid Γ ` M : K x is not bound in Γ

Γ, x : M is valid

6.4 Type Inference Rules

Γ is valid
Γ ` K : Type

(TI1)

Γ is valid x is bound in Γ
Γ ` x : Γx

(TI2)

Γ, x : M ` N : P

Γ ` λx.N : (x : M)P
(TI3)

Γ, x : M ` N : K

Γ ` (x : M)N : K
(TI4)

Γ ` M : (x : Q)P Γ ` N : R Q ≡ R

Γ ` (M N) : [N/x]P
(TI5)

6.5 Type Equality Rule

Γ ` M : N N � P

Γ ` M : P
(TE)

Remark how this system is close both from Coquand’s ECC [9], and from Martin-Löf’s original
system [20]. More precisely, it adds Type : Type to the first, and the kind Prop to the second.

Of course, the simplicity is apparent, since the symmetry exploited between the two kinds is
not true of the constraints mechanism. The point is that most of the time the user should not
have to worry about the levels of types. We have provided a global mechanism for checking the
consistency of his derivations, as opposed to encoding this information explicitly in the inference
rules. The casual user may think of Type : Type exactly in the same way as he is used to think of
set theory: in a naive way.

Of course, the problem is pushed to the situation when the user attempts a dangerous con-
struction, which violates the constraints. That is, we shall have to find ways to tell him why is
derivation is incorrect, and it may not be very easy to do so, because the problem is rather global,
it is not simply to say that some inference step is invalid. More experimentation is needed before
proposing practical solutions to this crucial problem of explaining the user what goes wrong in his
uses of types.
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6.6 A general remark on the various systems above

In all the inference systems considered above, the point of view was to describe derivation operators,
that is operators typed with judgements such as our sequents Γ ` M : N . This point of view is
sufficient to explain how to type-check the derivation of such a sequent. Thus we formulate λ-
abstraction as untyped, since from Γ ` λx.N : (x : M)P we may extract the type M of x. If the
point of view is rather to describe a proof-checker for terms, we have to regard a sequent Γ ` M : N
as the specification of an algorithm which, givem Γ and M , computes N . If we want to emphasize
this point of view, we have to change our term structure so that abstraction is now a binary operator
Λ(M,N) binding in its second argument and then (using Automath’s concrete syntax [x : M]N)
the abstraction inference rule should have as conclusion: Γ ` [x : M]N : (x : M)P .

This minor difference is of no consequence for the meta-mathematical properties of the systems
concerned, but it has occasionnally caused difficulties to readers. We do not feel that this issue is
very important, since what we are interested in practice is in still another point of view: to regard a
sequent Γ ` M : N as a non-deterministic specification for a potential proof (resp. realization) M of
a conjecture (resp. specification) N . In this view, N is given, M is computed non-deterministically,
and Γ is originally given, and dynamically augmented with a computed suffix.

[PB. How do the constraints mix with this proof synthesis point of view?]
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