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Abstract

We present the Zen toolkit for morphological and phonological processing of natural lan-
guages. This toolkit is presented in literate programming style, in the Pidgin ML subset
of the Objective Caml functional programming language. This toolkit is based on a sys-
tematic representation of finite state automata and transducers as decorated lexical trees.
All operations on the state space data structures use the zipper technology, and a uniform
sharing functor permits systematic maximum sharing as dags. A particular case of lexi-

cal maps is specially convenient for building invertible morphological operations such as
inflected forms dictionaries, using a notion of differential word.

As a particular application, we describe a general method for tagging a natural lan-
guage text given as a phoneme stream by analysing possible euphonic liaisons between
words belonging to a lexicon of inflected forms. The method uses the toolkit methodology
by constructing a non-deterministic transducer, implementing rational rewrite rules, by
mechanical decoration of a trie representation of the lexicon index. The algorithm is linear
in the size of the lexicon. A coroutine interpreter is given, and its correctness and com-
pleteness are formally proved. An application to the segmentation of Sanskrit by sandhi
analysis is demonstrated.

Dedicated to Rod Burstall on the occasion of his 65th birthday

Introduction

Understanding natural language with the help of computers, or computational lin-

guistics, usually distinguishes a number of phases in the recognition of human

speech. When the input is actual speech, the phonetic stream must be analyzed

first as a stream of phonemes specific to the language at hand and then as a stream

of words, taking into account euphony phenomena. Then this stream of words must

be segmented into sentences, and tagged with grammatical features to account for

morphological formation rules, then parsed into phrasal constituents, and finally

analyzed for meaning through higher semantic processes such as anaphora reso-

lution and discourse analysis. When the input is written text, it is often already

segmented into words. The complexity and mutual interaction of the various phases

vary widely across the variety of human languages.

The techniques used by computational linguistics involve statistical analysis meth-

ods, such as hidden Markov chains built by corpus data mining or by training, and
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logical analysis through formal language theory and computational logic. Despite

the variety of approaches, two components are essential: a structured lexicon acting

as a modular repository of grammatical information, and finite state automata and

transducers tools. The Xerox rational relations library (Beesley & Karttunen, 2003)

is typical of the latter.

Computational linguistics platforms fall usually in two categories. When they

strive for robust algorithmic treatment of a realistic corpus, they are usually imple-

mented in an imperative language such as C++. When they are more speculative

experiments in linguistic modeling they are often implemented in some version of

PROLOG. Although in the seventies LISP was a frequent implementation medium

for computational linguistics, nowadays very few efforts use functional program-

ming, a notable exception being Grammatical Framework (Ranta, 2003). We shall

describe here the Zen toolkit for lexical, morphological and phonological process-

ing, as the first layer in a generic computational linguistics platform in ML. We

discuss the main design principles of this functional toolkit, and give in detail the

algorithmic treatment of key structures. We present its application to a tough com-

putational problem, the segmentation and morphological tagging of Sanskrit text.

The computational problems arising from the mechanical treatment of Sanskrit

fall somewhere between speech recognition and the analysis of written text. The

Sanskrit tradition is extremely attentive to the preservation of its correct utterance.

Consequently, its written representation is actually a phonemic stream, where the

words composing a sentence are glued together by euphonic transformation pro-

cesses known as sandhi (juncture). A linguistic tradition going back more than 25

centuries was frozen by the grammarian Pān. ini in the 4th century B.C. In his trea-

tise As.t.ādhyāȳı, grammatical rules for Sanskrit are laid out in great precision, in a

formal rewriting notation that has been shown to be equivalent to context free gram-

mars. There are actually two distinct sandhi operations. Firstly, internal sandhi is

applied by morphological rules for word formation from stems, prefixes, and suf-

fixes used in noun declension and verb conjugation. Secondly, external sandhi is

applied to join words together in a sentence or stanza. Internal sandhi is a complex

combination of phonetic rules, which may cascade with long-distance effects (such

as retroflexion of nasals and sibilants). External sandhi is more regular and local.

Neither operation is one-one, leading to complex non-determinism in their analysis.

Such ambiguities are actually exploited by poets in double entendre statements.

The first analysis of a Sanskrit sentence consists thus in its segmentation into

words by inversion of external sandhi, followed by the stemming or morphological

analysis of these words into lexicon entries tagged with grammatical features. This

last process is constrained by agreement within nominal chunks and by valency re-

quirements (subcategorization) within verbal phrases. A further complication arises

from compound nouns, which may agglutinate together an unbounded number of

stems, applying at their juncture a phonetical process similar to external sandhi.

The good news however is that the resulting stream of tagged lexical entries yields a

first approximation to syntactic analysis, since word order is relatively unimportant

for the meaning, thanks to the rich inflexional morphology.

We have built a prototype tagger for Sanskrit as an interpreter for a finite state
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machine mechanically produced from a structured lexicon by a regular transducer

compiler. The lexicon contains inflected forms generated by internal sandhi from

a stem dictionary annotated with grammatical information, whereas the regular

transducer is specified with external sandhi rewrite rules. This methodology is

described in a generic manner, independent from Sanskrit, using the Zen toolkit

structures. We conclude with formal justification of the segmenting algorithm, in-

dependent of the non-determinism resolution strategy.

1 Pidgin ML

We shall describe our algorithms in a pidgin version of the functional language ML

(Landin, 1966; Burstall, 1969; Gordon et al., 1977; Paulson, 1991; Weis & Leroy,

1999). Readers familiar with ML may skip this section, which gives a crash overview

of its syntax and semantics.

The core language has types, values, and exceptions. Thus, 1 is a value of prede-

fined type int, whereas "FP" is a string. Pairs of values inhabit the corresponding

product type. Thus: (1,"FP") : ( int × string). Recursive type declarations create

new types, whose values are inductively built from the associated constructors.

Thus the Boolean type could be declared as a sum by: type bool = [True | False ];

Parametric types give rise to polymorphism. Thus if x is of type t and l is of type

( list t), we construct the list adding x to l as [x :: l ] . The empty list is [] , of

(polymorphic) type ( list α). Explicit type specification is rarely needed from the

programmer, since principal types may be inferred mechanically.

The language is functional in the sense that functions are first class objects.

Thus the doubling integer function may be written as fun x→x+x, and it has type

int→int. It may be associated to the name double by declaring:

value double = fun x→x+x;

Equivalently we could write: value double x = x+x;

Its application to value n is written as ‘(double n)’ or even ‘double n’ when there

is no ambiguity. Application associates to the left, and thus ‘f x y’ stands for

‘(( f x) y)’. Recursive functional values are declared with the keyword rec. Thus

we may define factorial as:

value rec fact n = if n=0 then 1 else n∗(fact (n−1));

Functions may be defined by pattern matching. Thus the first projection of pairs

could be defined by:

value fst = fun [ (x,y) →x ];

or equivalently (since there is only one pattern in this case) by:

value fst (x,y) = x;

Pattern-matching is also usable in match expressions that generalize case analy-

sis, such as: match l with [ [] → True | → False ], which tests whether list l is

empty, using underscore as catch-all pattern.

Evaluation is strict, which means that x is evaluated before f in the evalua-

tion of (f x). The let expressions allow the sharing of sub-computations. Thus

‘let x = fact 10 in x+x’ will compute ‘fact 10’ first, and only once. An equiva-

lent postfix where notation may be used as well. Thus the conditional expression
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‘ if b then e1 else e2’ is equivalent to:

choose b where choose = fun [ True → e1 | False → e2].

Exceptions are declared with the type of their parameters, like in:

exception Failure of string;

An exceptional value may be raised, like in: raise (Failure "div 0") and handled

by a try switching on exception patterns, such as:

try expression with [ Failure s →... ] .

Other imperative constructs may be used, such as references, mutable arrays,

while loops and I/O commands, but we shall seldom need them. Sequences of

instructions are evaluated in left to right regime in do expressions, such as:

do {e1; ... en}.

ML is a modular language (Burstall, 1984), in the sense that sequences of type,

value and exception declarations may be packed in a structural unit called a module,

amenable to separate treatment. Modules have types themselves, called signatures.

Parametric modules are called functors. The algorithms presented in this paper will

use in essential ways this modular structure, but the syntax ought to be self-evident.

Finally, comments are enclosed within starred parens like (∗ This is a comment ∗).

Readers uninterested in computational details may think of ML definitions as re-

cursive equations over inductively defined algebras. Most of them are simple primi-

tive recursive functionals. The more complex recursions of our automata coroutines

will be shown to be well-founded by a combination of lexicographic and multiset

orderings.

Pidgin ML definitions may actually be directly executed as Objective Caml pro-

grams (Leroy et al., 2000), under the so-called revised syntax (de Rauglaudre,

2001). The following development may thus be used as the reference implemen-

tation of a core computational linguistics toolkit, dealing with lexical, phonological

and morphological aspects. Readers interested in generic computational linguistics

technology may skip Sanskrit technicalities, whereas readers interested primarily in

Sanskrit tagging may skim over the Zen toolkit presentation. An extended version

of this toolkit documentation is available as ESSLLI course notes (Huet, 2002).

2 Trie Structures for Lexicon Indexing

Tries are tree structures that store finite sets of strings sharing initial prefixes.

We assume that the alphabet of string representations is some initial segment of

positive integers. Thus a string is encoded as a list of integers that will from now on

be called a word. For our Sanskrit application, the Sanskrit alphabet comprises 50

letters, representing 50 phonemes. Finite state transducers convert back and forth

lists of such integers into strings of transliterations in the roman alphabet, which

encode themselves either letters with diacritics, or Unicode representations of the

devanāgar̄ı alphabet. Thus 1,2,3,4 etc. encode respectively a, ā, i, ı̄ etc.

2.1 Words and Tries

type letter = int
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and word = list letter ;

We remark that we are not using for our word representations the ML type of

strings (which in OCaml are arrays of characters/bytes). Strings are convenient for

English words (using the 7-bit low half of ASCII) or other European languages (us-

ing the ISO-LATIN subsets), and they are more compact than lists of integers, but

basic operations like pattern matching are awkward, and they limit the size of the

alphabet to 256, which is insufficient for the treatment of many languages’ written

representations. New format standards such as Unicode have complex primitives

for their manipulation (since characters have variable width in the usual encodings

such as UTF-8), and are better reserved for interchange modules than for central

morphological operations. We could have used an abstract type of characters, leav-

ing to module instantiation their precise definition, but here we chose the simple

solution of using machine integers for their representation, which is sufficient for

large alphabets (in Ocaml, this limits the alphabet size to 1073741823), and to use

conversion functions encode and decode between words and strings. In the Sanskrit

application, we shall use the first 50 natural numbers as the character codes of

the Sanskrit phonemes, whereas string translations take care of roman diacritics

notations, and encodings of devanāgar̄ı characters and their ligatures. Thus the

anusvāra nasalization dot turns, by contextual analysis, into either one of the 5

nasal consonants, or the so-called original anusvāra marking nasalization of the

preceding vowel.

Tries (also called lexical trees) may be implemented in various ways. A node in a

trie represents a string, which may or may not belong to the set of strings encoded

in the trie, together with the set of tries of all suffixes of strings in the set having

this string as a prefix. The forest of sibling tries at a given level may be stored as

an array, or as a list if we assume a sparse representation. It could also use any

of the more efficient representations of finite sets, such as search trees (Bentley &

Sedgewick, 1997). Here we shall assume the simple sparse representation with lists1,

yielding the inductive type structure:

type trie = [ Trie of (bool × arcs) ]

and arcs = list ( letter × trie);

The boolean value indicates whether the path to the current node belongs to the

set of strings encoded in the trie. Note that letters decorate the arcs of the trie, not

its nodes. For instance, the trie storing the set of words {[1; 2], [2], [2; 2], [2; 3]}

standing for the strings {AB, B, BB, BC} is represented as

Trie(False ,[(1, Trie(False ,[(2, Trie(True ,[]))]));

(2,Trie(True, [(2, Trie(True ,[]));

(3,Trie(True ,[]))]))])

This example exhibits one invariant of our representation, namely that the integers

in successive sibling nodes are in increasing order. Thus a top-down left-to-right

1 that is actually the original presentation of tries by René de la Briantais (1959).
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traversal of the trie lists its strings in lexicographic order. The algorithms below

maintain this invariant.

2.2 Zippers

Let us show how to add words to a trie in a completely applicative way, using

the notion of a zipper (Huet, 1997; Huet, 2003c). Zippers encode the context in

which some substructure is embedded. They are used to implement applicatively

destructive operations in mutable data structures. In the case of tries, we get:

type zipper =

[ Top

| Zip of (bool × arcs × letter × arcs × zipper)

]

and edit state = (zipper × trie);

An edit state (z,t0) stores the editing context as a zipper z and the current subtrie

t0. We replace this subtrie by a trie t by closing the zipper with zip up z t defined

as:

(∗ zip up: zipper → trie → trie ∗)

value rec zip up z t = match z with

[ Top → t

| Zip(b, left ,n, right ,up) →

zip up up (Trie(b,unstack left [(n,t ):: right ]))

];

where the infix operations :: and @ are respectively the list constructor and append

operator, and unstack l r = (rev l)@ r (sometimes called rev append). We need two

auxiliary routines. The first one, given an integer n and a list of arcs l, partitions

l as l1@l2 with l1 maximum with labels less than n, in such a way that zip n l =

(rev l1,l2):

value zip n = zip rec []

where rec zip rec acc l = match l with

[ [] → (acc,[])

| [((m, ) as current ):: rest ] →

if m<n then zip rec [current::acc] rest

else (acc, l )

];

Its name stems from the fact that it looks for an element in an a-list while building

an editing context in the spirit of a zipper, the role of zip up being played by

unstack. Notice the use of an as expression for naming a sub-pattern.

The second routine, given a word c, returns the singleton trie containing c as

trie of c:

value rec trie of = fun

[ [] → Trie(True,[])

| [n :: rest ] → Trie(False,[(n, trie of rest )])

];
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2.3 Insertion and lookup

We are now ready to define the algorithm enter : trie → word → trie:

value enter trie = enter edit (Top,trie)

where rec enter edit (z,t) =

match t with [ Trie(b,l) → fun

[ [] → if b then raise Redundancy

else zip up z (Trie(True,l ))

| [n :: rest ] → let (left,right) = zip n l

in match right with

[ [] → zip up (Zip(b,left,n ,[], z)) ( trie of rest)

| [(m,u)::r ] →

if m=n then enter edit (Zip(b,left,n,r ,z),u) rest

else zip up (Zip(b, left ,n,right ,z)) ( trie of rest)

]

]];

A variant could raise an exception Redundancy when attempting to enter a dupli-

cate element.

Now, assuming the coercion encode from strings to words, we build a lexicon trie

from a list of strings by function make lex, using Ocaml’s list library fold left (the

terminal recursive list iterator).

value make lex =

List . fold left (fun lex c → enter lex (encode c)) empty

where empty = Trie(False,[]);

Conversely, we get the set of words stored in a trie by function contents, which

lists them in lexicographic order:

value contents = contents prefix []

where rec contents prefix pref = fun

[ Trie(b, l ) → let down =

let f l (n,t) = l @ (contents prefix [n :: pref ] t)

in List . fold left f [] l in

if b then [(List.rev pref ):: down] else down

];

We give one last algorithm, membership in a trie:

(∗ mem : word → trie → bool ∗)

value rec mem w = fun

[ Trie(b, l ) → match w with

[ [] → b

| [n :: r ] →

try mem r (List.assoc n l)

with [ Not found → False ]

]

];
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These recursive algorithms are fairly straightforward. They are easy to debug,

maintain and modify due to the strong typing safeguard of ML, and even easy to

formally certify. They are nonetheless efficient enough for production use. As we

shall see in the next section, using proper sharing they produce compact enough

representations for manipulating lexicons of several hundred thousand entries.

Tries may be considered as deterministic finite state automata graphs for accept-

ing the (finite) language they represent. This remark is the basis for many lexicon

processing libraries. Actually, the mem algorithm may be seen as an interpreter

for such an automaton, taking its state graph as its trie argument, and its input

tape as its word one. The boolean information in a trie node indicates whether or

not this node represents an accepting state. These automata are not minimal, since

while they share initial equivalent states, there is no sharing of accepting paths, for

which a refinement of lexical trees into dags is necessary. Let us now look at this

problem.

3 Sharing

Sharing data representation is a very general problem. Sharing identical represen-

tations is ultimately the responsibility of the runtime system, which allocates and

desallocates data with dynamic memory management processes such as garbage

collectors.

But sharing of representations of the same type may also be programmed by

bottom-up computation. All that is needed is a memo function building the corre-

sponding map without duplications. Let us show the generic algorithm, as an ML

functor.

3.1 The Share functor

This functor (that is, parametric module) takes as parameter an algebra with its

domain seen here as an abstract type. Here is its public interface declaration:

module Share : functor (Algebra:sig type domain;

value size: int ; end) →

sig value share: Algebra.domain → int → Algebra.domain;

end;

That is, Share takes as argument a module Algebra providing a type domain and

an integer value size, and it defines a value share of the stated type. We assume

that the elements from the domain are presented with an integer key bounded by

Algebra.size. That is, share x k will assume as precondition that 0 ≤ k < Max with

Max =Algebra.size.

We shall construct the sharing map with the help of a hash table, made up of

pairs (k, [e1; e2; ...en]) where each element ei in the bucket list has key k.

type bucket = list Algebra.domain;

value memo = Array.create Algebra.size ([] : bucket);
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That is, we create the memory as a hash-table array of a given size and of the

right bucket type.

We shall use a service function search, such that search e l returns the first y in

l such that y = e or or else raises the exception Not found.

value search e = List.find (fun x → x=e);

Now share x k, where k is the key of x, looks in k-th bucket l (meaningful since

we assume that the key fits in the size: 0 ≤ k <Algebra.size) and returns y in l such

that y = x if it exists, and otherwise returns x memorized in the new k-th bucket

[x :: e]. Since share is the only operation on buckets, we maintain that such y is

unique in its bucket when it exists.

value share element key =

let bucket = memo.(key) in

try search element bucket with

[Not found → do {memo.(key):=[element::bucket]; element}];

Instead of share we could have used the name recall, since either we recall a

previously archived equal element, or else this element is archived for future recall.

It is an interesting property of this modular design that sharing and archiving are

abstracted as a common notion.

3.2 Compressing tries

We may for instance instantiate Share on the algebra of tries, with a size hash max

depending on the application:

module Dag = Share (struct type domain=trie;

value size=hash max; end);

And now we compress a trie into a minimal dag using share by a simple bottom-

up traversal, where the key is computed along by hashing. For this we define a

general bottom-up traversal function, which applies a parametric lookup function

to every node and its associated key.

value hash0 = 1 (∗ linear hash−code parameters ∗)

and hash1 letter key sum = sum + letter×key

and hash b arcs = (arcs + if b then 1 else 0) mod hash max;

value traverse lookup = travel

where rec travel = fun

[ Trie(b,arcs) →

let f ( tries ,span) (n,t) =

let (t0,k) = travel t

in ([( n,t0 ):: tries ], hash1 n k span)

in let (arcs0,span) = List. fold left f ([], hash0) arcs

in let key = hash b span

in (lookup (Trie(b,rev arcs0)) key, key)
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];

value compress = traverse Dag.share;

value minimize trie = let (dag, ) = compress trie in dag;

Despite its simplicity, this algorithm is rather efficient. In our Sanskrit applica-

tion, the trie of 11500 entries is shrunk from 219KB to 103KB in 0.1s, whereas

the trie of 120000 inflected forms is shrunk from 1.63MB to 140KB in 0.5s on a

864MHz PC. A trie of 173528 English words is shrunk from 4.5MB to 1.1MB in

2.7s. Measurements showed that the time complexity is linear with the size of the

lexicon (within comparable sets of words). This is consistent with algorithmic anal-

ysis, since it is known that tries compress dictionaries up to a linear entropy factor,

and that perfect hashing compresses trees in dags in linear time (Flajolet et al.,

1990).

Tuning of the hash function parameters leads to many variations. For instance if

we assume an infinite memory we may turn the hash calculation into a one-to-one

Gödel numbering, and at the opposite end taking hash max to 1 we would do list

lookup in the unique bucket, with worse than quadratic performance.

Using hash tables for sharing with bottom-up traversal is a standard dynamic

programming technique, but the usual way is to delegate computation of the hash

function to some hash library, using a generic low-level package. This is what hap-

pens for instance if one uses the module hashtbl from the Ocaml library. Here

the Share module does not compute the keys, which are computed on the client

side, avoiding re-exploration of the structures. That is, Share is just an associative

memory. Furthermore, key computation may take advantage of specific statistical

distribution of the application domain in order to improve bucket search.

3.3 Sharing as minimization

We ramarked above that tries could be seen as deterministic automata graphs for

recognizing the language of their lexicon. Such languages being finite, their recog-

nizer state graph is acyclic. Provided the tries are not carrying spurious irrelevant

nodes, their dag minimization actually constructs the minimal automaton recog-

nizing their language. Let us make this intuition precise.

Definition. A trie Trie(b,arcs) is said to be reduced iff either arcs = [] or else

arcs = [(l1, t1); ...(ln, tn)] with all li’s distinct, and all the ti’s are reduced and

non-empty tries.

Note that tries constructed by make lex are reduced by construction.

Fact 1. Reduced tries are structurally equal iff they have the same contents (Proof

left to the reader).

Fact 2. Sharing reduced tries as dags yields the minimum automaton recognizing

the langage of their contents.

Proof

Consider a deterministic automaton recognizing the language of the contents of a
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dagified reduced trie. Every path in the dag maps a node of the trie into a state

of the automaton (by following the corresponding sequence of transitions from its

initial state). Assume two distinct paths u1 and u2 map to the same state σ. Let

T1 and T2 be the two corresponding subtries. By Fact 1, some word w belongs to

one and not to the other. Thus u1w must be accepted by the automaton and u2w

not accepted (or conversely), a contradiction, since the state obtained from σ by

transition w cannot be both accepting and non-accepting.

We shall see later another application of the Share functor to the minimization of

the state space of other finite automata, possibly cyclic, possibly non-deterministic,

and possibly transducers producing output.

4 Decorated Tries for Flexed Forms Storage

4.1 Decorated tries

A set of elements of some type τ may be identified as its characteristic predicate

in τ → bool. A trie with boolean information may similarly be generalized to

a structure representing a map, or function from words to some target type, by

storing elements of that type in the information slot.

In order to distinguish absence of information, we could use a type (option info)

with constructor None, presence of value v being indicated by Some(v). We rather

choose here a variant with lists, which are versatile to represent sets, feature struc-

tures, etc. Now we may associate to a word a non-empty list of information of

polymorphic type α, absence of information being encoded by the empty list. We

shall call such associations a decorated trie, or deco in short.

type deco α = [ Deco of (list α × darcs α) ]

and darcs α = list (letter × deco α)

The zipper type is adapted in the obvious way, and algorithm zip up is unchanged.

Function trie of becomes deco of, taking as extra argument the information associ-

ated with the singleton trie it constructs:

(∗ deco of : ( list α) → word → (deco α) ∗)

value deco of i = decrec

where rec decrec = fun

[ [] → Deco(i,[])

| [n :: rest ] → Deco([],[(n,decrec rest)])

];

Note how the empty list [] codes absence of information. We generalize algorithm

enter into add deco, which unions new information to previous one:

(∗ add deco : (deco α) → word → (list α) → (deco α) ∗)

value add deco deco word i = enter edit Top deco word

where rec enter edit z d = fun

[ [] → match d with

[ Deco(j, l ) → zip up z (Deco(union i j,l)) ]
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| [n :: rest ] → match d with

[ Deco(j, l ) → let (left,right) = zip n l

in match right with

[ [] → zip up (Zip(j,left,n ,[], z)) (deco of i rest )

| [(m,u)::r ] →

if m=n then enter edit (Zip(j,left ,n,r ,z)) u rest

else zip up (Zip(j , left ,n, right ,z)) (deco of i rest )

]

]

];

4.2 Lexical maps

We can easily generalize sharing to decorated tries. However, substantial savings

will result only if the information at a given node is a function of the subtrie at

that node, i.e. if such information is defined as a trie morphism. This will not be

generally the case, since this information is in general a function of the word stored

at that point, and thus of all the accessing path to that node. The way in which the

information is encoded is of course crucial. For instance, encoding morphological

derivation as an operation on the suffix of an inflected form is likely to be amenable

to sharing common suffixes in the inflected trie, whereas encoding it as an operation

on the whole stem will prevent any such sharing.

In order to facilitate the sharing of mappings that preserve an initial prefix of a

word, we shall use the notion of differential word. A differential word is a notation

permitting one to retrieve a word w from another word w′ sharing a common prefix,

as follows.

type delta = (int × word);

We compute the difference between w and w′ as a differential word (|w1|, w2) where

w = p.w1 and w′ = p.w2, with maximal prefix p. In ML, we compute diff w w′,

where:

value rec diff = fun

[ [] → fun x → (0,x)

| [c :: r ] as w → fun

[ [] → (length w,[])

| [c’ :: r ’] as w’ →

if c = c’ then diff r r ’

else (length w,w’)

]

];

Now w′ may be retrieved from w and d = diff w w′ as w′ = patch d w, with:

value patch (n,w2) w =

let p=truncate n (rev w) in unstack p w2;
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where truncate n w is a list library function, truncating the initial prefix of length

n from a word w.

We may now store inverse maps of lexical relations (such as morphological deriva-

tions) using the following types (where the type parameter α codes the relation):

type inverse α = (delta × α)

and inverse map α = list (inverse α);

Such inverse relations may be used as decorations of specific decos called lexical

maps:

type lexmap α = deco (inverse α);

Typically, if word w is stored at a node Deco([...; (d,r); ...],...), this represents

the fact that w is the image by relation r of w′ = patch d w. Such a lexmap is

thus a representation of the image by r of a source lexicon. This representation

is invertible, while preserving maximally the sharing of prefixes, and thus being

amenable to sharing.

As a typical application of this idea, consider the task of building the dictionary

of plural forms in a language such as English. Every regular plural form will be

labeled by a differential word of the special form (0, []), meaning “I am the plural

of the word stored in my father node”. All such forms will be shared, whenever the

plural form is not the prefix of some other word.

4.3 Lexicon repositories using tries, decos and lexmaps

In a typical computational linguistics application, grammatical information (part of

speech role, gender/number for substantives, valency and other subcategorization

information for verbs, etc) may be stored as decoration of the lexicon of roots/stems.

From such a decorated trie a morphological processor may compute the lexmap

of all inflected forms, decorated with their derivation information encoded as an

inverse map. This structure may itself be used by a tagging processor to construct

the linear representation of a sentence decorated by feature structures. Such a

representation will support further processing, such as computing syntactic and

functional structures, typically as solutions of constraint satisfaction problems.

Let us for example give some information on the indexing structures trie, deco

and lexmap used in our computational linguistics tools for Sanskrit.

The main linguistic component in our Sanskrit platform is a structured lexi-

cal database, from which various documents may be produced mechanically, such

as a printable dictionary through a TEX/pdf compiling chain, and a Web site

(http://pauillac.inria.fr/~huet/SKT) with indexing tools. The index CGI en-

gine searches the words by navigating in a persistent trie index of stem entries. In

the current version, the database comprises 12525 items. The corresponding trie

(shared as a dag) has a size of 112KB.

When computing this index, another persistent structure is created. It records in

a deco all the genders associated with a noun entry (nouns comprise substantives

and adjectives, a blurred distinction in Sanskrit). At present, this deco records

genders for 7459 nouns, and it has a size of 287KB.



14 G. Huet

A separate process may then iterate on this genders structure a grammatical

engine, which for each stem and associated gender generates all the corresponding

declined forms. Sanskrit has a specially prolific morphology, with 3 genders, 3 num-

bers and 7 cases. The grammar rules are encoded into 84 declension tables, and for

each declension suffix an internal sandhi computation is effected to compute the

final inflected form. All such words are recorded in an inflected forms lexmap, which

stores for every word the list of pairs (stem,declension) that may produce it. This

lexmap records 130885 such inflected forms with associated grammatical informa-

tion, and it has a size of 363KB (after minimization by sharing, which contracts

approximately by a factor of 10). A companion trie, without the information, keeps

the index of inflected words as a minimized structure of 154KB.

Similarly, another deco stores information about verbal roots, such as their present

class (12KB for 477 roots). A conjugation engine produces 53107 verbal root forms,

stored in a lexmap of 973KB. The corresponding trie of inflected words has size

42KB. At the time of writing, the conjugation engine generates the forms for present

indicative and passive, imperfect, optative, imperative, perfect and future. Finally,

a trie of 26KB holds information about which sequences of preverbs are used for

each root.

5 Finite State Machines as Lexicon Morphisms

5.1 Finite-state tradition

Computational phonetics and morphology is one of the main applications of fi-

nite state methods: regular expressions, rational languages, finite-state automata

and transducers, rational relations have been the topic of systematic investigations

(Mohri, 1997; Roche & Schabes, 1997), and have been used widely in speech recogni-

tion and natural language processing applications. These methods usually combine

logical structures such as rewrite rules with statistical ones such as weighted au-

tomata derived from hidden Markov chains analysis in corpuses. In morphology,

the pioneering work of Koskenniemi (Koskenniemi, 1984) was put in a systematic

framework of rational relations and transducers by the work of Kaplan and Kay

(Kaplan & Kay, 1994) that is the basis for the Xerox morphology toolset (Kart-

tunen, 2000; Karttunen, 1995; Beesley & Karttunen, 2003). In such approaches,

lexical data bases and phonetic and morphological transformations are systemat-

ically compiled in a low-level algebra of finite-state machines operators. Similar

toolsets have been developed at University Paris VII, Groningen University, Bell

Labs, Mitsubishi Labs, etc.

Compiling complex rewrite rules in rational transducers is however rather sub-

tle. Some high-level operations are more easily expressed over deterministic au-

tomata, other ones are easier to state with ε-transitions, still others demand non-

deterministic descriptions. Inter-traductions are well known, but tend to make the

compiled systems bulky, since for instance removing non-determinism is an expo-

nential operation in the worst case. Knowing when to compact and minimize the

descriptions is a craft that is not widely disseminated, and thus there is a gap be-
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tween theoretical descriptions, widely available, and operational technology, kept

confidential.

Here we shall depart from this fine-grained methodology and propose more direct

translations that place the lexicon in the center role. The resulting algorithms will

not have the full generality of the standard approach, although we shall see that

an important family of transducers, implementing non-overlapping rewrite rules, is

accommodated in a straightforward fashion.

The point of departure of our approach is the above remark that a lexicon rep-

resented as a lexical tree or trie is directly the state space representation of the

(deterministic) finite state machine that recognizes its words, and that its mini-

mization consists exactly in sharing the lexical tree as a dag. Thus we are in a case

where the state graph of such finite languages recognizers is an acyclic structure.

Such a pure data structure may be easily built without mutable references, and

thus may be allocated in the static part of the heap, which the garbage collector

need not visit, an essential practical consideration. Furthermore, avoiding a costly

reconstruction of the automaton from the lexicon data base is a computational

advantage.

In the same spirit, we shall define automata that implement non-trivial rational

relations (and their inversion) and whose state structure is nonetheless a more or

less direct decoration of the lexicon trie.

5.2 Unglueing

We shall start with a toy problem that is the simplest case of juncture analysis,

namely when there are no non-trivial juncture rules, and segmentation consists just

in retrieving the words of a sentence glued together in one long string of characters

(or phonemes). Let us consider an instance of the problem say in written English.

You have a text file consisting of a sequence of words separated with blanks, and

you have a lexicon complete for this text (for instance, ‘spell’ has been successfully

applied). Now, suppose you make some editing mistake, which removes all spaces,

and the task is to undo this operation to restore the original.

We shall show that the corresponding transducer may be defined as a simple nav-

igation in the lexical tree state space, but now with a measure of non-determinism.

Let us give the detailed construction of this unglueing automaton.

The transducer is defined as a functor, taking the lexicon trie structure as pa-

rameter:

module Unglue (Lexicon:sig value lexicon : Trie.trie; end)

First we define the relevant types and exceptions:

type input = word (∗ input phrase as a word code ∗)

and output = list word; (∗ output is sequence of words ∗)

type backtrack = (input × output)

and resumption = list backtrack; (∗ coroutine resumptions ∗)
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exception Finished;

Now we define our unglueing reactive engine as a recursive process that navigates

directly on the (inflected) lexicon trie (typically the compressed trie resulting from

the Dag module considered above). The reactive engine takes as arguments the

(remaining) input, the (partially constructed) list of words returned as output, a

backtrack stack whose items are (input,output) pairs, the path occ in the state

graph stacking (the reverse of) the current common prefix of the candidate words,

and finally the current trie node as its current state. When the state is accepting,

we push it on the backtrack stack, because we want to favor possible longer words,

and so we continue reading the input until either we exhaust the input, or the next

input character is inconsistent with the lexicon data:

value rec react input output back occ = fun

[ Trie(b,arcs) →

let continue cont = match input with

[ [] → backtrack cont

| [ letter :: rest ] →

try let next = List.assoc letter arcs

in react rest output cont [ letter :: occ] next

with [ Not found→ backtrack cont ]

]

in if b then

let pushout = [occ::output] in

if input=[] then (pushout,back) (∗ solution ∗)

else let pushback = [(input,pushout)::back]

in continue pushback

else continue back

]

and backtrack = fun

[ [] → raise Finished

| [( input,output)::back] →

react input output back [] init

where init = Lexicon.lexicon

];

Now, unglueing a sentence is just calling the reactive engine from the appropriate

initial backtrack situation:

value unglue sentence = backtrack [(sentence ,[])];

The method is complete, relatively to the lexicon: if the input sentence may be

obtained by glueing words from the lexicon, unglue sentence will return one possible

solution. For instance, assuming the sentence is French Childish Scatology:

module Childtalk = struct

value lexicon = make lex ["boudin"; "caca"; "pipi"];

end;
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module Childish = Unglue(Childtalk);

Now, calling Childish.unglue on the encoding of string ”pipicacaboudin” produces a

pair (sol,cont) where the reverse of sol is a list of words that, if they are themselves

reversed and decoded, yields the expected answer [”pipi”; ”caca”; ”boudin”].

5.3 Resumptions and coroutines: a non-determinism toolkit

Of course there may be several solutions to the unglueing problem, and this is

the rationale of the cont component, which is a resumption. For instance, in the

previous example, cont is empty, indicating that the solution sol is unique.

The process backtrack may thus be used in coroutine with a solution printer.

Assuming a service routine print out that prints solutions with their rank, we thus

define (and this now concludes the module Unglue):

(∗ resume : resumption → int → resumption ∗)

value resume cont n =

let (output,resumption) = backtrack cont

in do { print out n output; resumption };

value unglue all sentence = restore [( sentence ,[])] 1

where rec restore cont n =

try let resumption = resume cont n

in restore resumption (n+1)

with [ Finished →

if n=1 then print " No solution " else () ];

Let us test this segmenter to solve an English charade2:

module Short = struct

value lexicon = make lex

["able";"am";"amiable";"get";"her";"i";"to";"together"];

end;

module Charade = Unglue(Short);

and we get all solutions to the charade, as a “quatrain polisson”:

Charade.unglue_all (encode "amiabletogether");

Solution 1 : amiable together

Solution 2 : amiable to get her

Solution 3 : am i able together

Solution 4 : am i able to get her

2 borrowed from “Palindroms and Anagrams”, Howard W. Bergerson, Dover 1973.
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Unglueing is what is needed to segment a language like Chinese. Realistic seg-

menters for Chinese have actually been built using such finite-state lexicon driven

methods, refined by stochastic weightings (Sproat et al., 1996).

Several combinatorial problems map to variants of unglueing. For instance, over

a one-letter alphabet, we get the Fröbenius problem of finding partitions of integers

into given denominations3. Here is how to give the change in pennies, nickels and

dimes:

value rec unary = fun [ 0 → "" | n → "|" ˆ (unary (n−1)) ];

let penny = unary 1

and nickel = unary 5

and dime = unary 10;

module Coins = struct

value lexicon = Lexicon.make lex [penny; nickel; dime];

end;

module Frobenius = Unglue(Coins);

value change n = Frobenius.unglue all (encode (unary n));

change 17;

Solution 1 :

|||||||||| ||||| | |

...

Solution 80 :

| | | | | | | | | | | | | | | | |

We remark that coroutine programming is basically trivial in a functional pro-

gramming language, provided one identifies well the search space, states of computa-

tion are stored as pure data structures (which cannot get corrupted by pointer mu-

tation), and fairness is taken care of by a termination argument (here this amounts

to proving that react always terminate).

The reader will note that the very same state graph that was originally the

state space of the deterministic lexicon lookup is used here for a possibly non-

deterministic transduction. What changes is not the state space, but the way it

is traversed. That is we clearly separate the notion of finite-state graph, a data

structure, from the notion of a reactive process, which uses this graph as a compo-

nent of its computation space, other components being the input and output tapes,

possibly a backtrack stack, etc.

We shall continue to investigate transducers that are lexicon mappings, but now

3 except that we get permutations since here the order of coins matters.
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with an explicit non-determinism state component. Such components, whose struc-

ture may vary according to the particular construction, are decorations on the lexi-

con structure, which is seen as the basic deterministic state skeleton of all processes

that are lexicon-driven; we shall say that such processes are lexicon morphisms

whenever the decoration of a lexicon trie node is a function of the subtrie at that

node. This property entails an important efficiency consideration, since the sharing

of the trie as a dag may be preserved when constructing the automaton structure:

Fact. Every lexicon morphism may minimize its state space isomorphically with

the dag maximal sharing of the lexical tree. That is, we may directly decorate the

lexicon dag, since in this case decorations are invariant by subtree sharing.

There are numerous practical applications of this general methodology. For in-

stance, we shall show in section 7 below how to construct a segmenter as a decorated

inflected forms lexicon, where the decorations express application of the euphony

rules at the juncture between words. This construction is a direct extension of the

unglueing construction, which is the special case when there are no euphony rules,

or when they are optional.

But first we must explain what exactly we mean by euphony rules.

6 Rewrite Rules for Reversible Transducers

6.1 Phonetics and euphony

The utterance of a phoneme demands a certain configuration of the vocal appara-

tus: articulation point of the tongue within the mouth, opening or closing of the

nasal cavity, vibration or not of the larynx, etc. Uttering a sequence of phonemes

provokes physiological transformations and incurs an expense of energy. Minimiza-

tion of this energy leads to the smoothing of the vocal signal, and its discretization

leads to phoneme transformations. When the transformation is local to a word,

we speak of internal sandhi, a process that transforms the sequence of morphemes

from which the word originates into a smoothly euphonic stream of phonemes that

stabilises to the standard pronunciation of the word in a given state of development

of a language. Such transformations are frozen forms, at the time scale of the syn-

chronous view of a language (whereas it may continue to evolve in the diachronous

point of view). These transformations may or may not be apparent in the spelling

of the word. Thus the voiced [b] in the French verb absorber becomes the surd [p]

in the derived substantive absorption, whereas in English the [z] sound of dogs is

not distinguished from the [s] sound of cats in the written form.

Similar phonetic fusion processes occur at the juncture of successive words in

a spoken sentence, but such external sandhi is usually less permanently marked,

and seldom indicated in writing. In French external sandhi involves the liaison,

its absence with the so-called aspirated h leading to hiatus, elisions like in mâıtre

d’hôtel, and the euphonic t in “Malbrough s’en va-t-en guerre”. In Sanskrit how-

ever, such euphonic transformations have been systematically studied, standardized

in grammar rules, and applied to the written representation, which reflects faith-

fully the normalized pronounciation. Thus the demonstrative pronoun tad (this)
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followed by the absolutive śrutvā (heard) becomes tacchrutvā “having heard this”.

This merging of sounds is reflected in writing by a contiguous chain of letters4,

further glued together by complex ligatures in one continuous drawing. Thus, in

the devanāgar̄ı system, we get
�����

(tad) joined to ���	��
� (śrutvā) to form
�������� ��
��

(tacchrutvā). Retrieving the words within the sentence amounts to our unglueing

process above, aggravated by the fact that sandhi must be undone, leading to a

complex non-deterministic analysis. It is the solving of this segmentation problem

that is the central achievement of the present application.

6.2 Juncture rewrite rules

We model external sandhi with rewrite rules of the form u|v → w, where u, v

and w are words (standing for strings of phonemes). Such a rule represents the

rational relation that holds between all pairs of strings (from now on we use strings

and words interchangeably) λu|vρ and λwρ, for λ and ρ any strings. The symbol |

stands for word juncture. Some rules (terminal sandhi) pertain to the case where

u is at the end of a sentence. Using # as the symbol for end of sentence, we may

represent them as u|# → w, and they represent the relation that holds between

λu|# and λw.

In our application, we shall assume the option rule ε|ε → ε, making sandhi

optional, which has the advantage of avoiding a lot of individual identity rules

u|v → uv for the cases where there is no transformation (typically between a word

ending with a vowel and a word starting with a consonant). This has the advan-

tage that we can use our algorithm alternatively on sandhied or unsandhied text,

while it generally does not overgenerate when parsing a sandhied text. However,

let us stress that our methodology does not rely on the assumption that the rule

replacement is optional, and our algorithms can be adapted easily to the case where

this assumption is not met, as indicated in section 8.2. However, it is convenient to

expose sandhi in the presence of the option rule, since this last rule glues together

words in the precise sense that we studied above, and sandhi analysis will be seen

as a direct extension of the unglueing algorithm.

For non-option rules, we shall assume that u 6= ε, and that v = ε only for

terminal sandhi rules, alleviating the use of the special symbol #. We shall see in

the following that we shall have to assume also w 6= ε for non-terminal sandhi rules,

in order to ensure termination of our segmenter.

We shall also consider contextual rewrite rules of the form [x]u|v → w, with x

a (left context) string. They generate the relation that holds between λxu|vρ and

λxwρ. Such a rule is of course equivalent to the rule xu|v → xw, but we shall

see that contextual rules are treated in a way that optimizes their computational

treatment. Fig. 1 shows the juncture of two phonetic words, their smoothing, and

the phonemic discretization of the situation with a rewrite rule. This drawing is

4 actually word breaks are allowed at certain positions that depend on syllabic and morphological
structure, but this does not concern us here.
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more a didactic explanation of the physiologico-acoustic process than a scientifically

precise representation.

u v

wx

Fig. 1. Juncture euphony and its discretization

The sandhi problem may then be posed as a regular expression problem, namely

the correspondance between (L · |)∗ and Σ∗ by relation R, where Σ is the word

alphabet (not comprising the special symbol |), L is the set of inflected forms,

and R is the rational relation that is the concatenation closure of the union of the

rational relations corresponding to the sandhi rules. This presentation is a standard

one since the classic work of Kaplan and Kay (Kaplan & Kay, 1994), and is the basis

of the Xerox finite state morphological package (Karttunen, 2000; Karttunen, 1995;

Beesley & Karttunen, 2003). In the Kaplan and Kay notation, the rule we write

[x]u|v → w would be written as u — v → w / x . A discussion of the generality

of our approach is given in section 10.5.

Note that the sandhi problem is expressed in a symmetric way. Going from

z1|z2|...zn| ∈ (L·|)∗ to s ∈ Σ∗ is generating a correct phonemic sentence s with word

forms z1, z2, ...zn, using the sandhi transformations. Whereas going the other way

means analysing the sentence s as a possible phonemic stream using words from the

lexicon transformed by sandhi. It is this second problem we are interested in solv-

ing, since sandhi, while basically deterministic in generation, is strongly ambiguous

in analysis.

7 Construction of a Segmenting Automaton

We shall now use the inflected forms trie as the deterministic skeleton of a non-

deterministic finite-state transducer solving the sandhi problem for analysis, by

decorating it with rewrite opportunities.
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7.1 Choice points compiling from rewriting rules

The algorithm proceeds in one bottom-up sweep of the inflected forms trie. For

every accepting node (i.e. lexicon word), at occurrence z, we collect all sandhi rules

σ : u|v → w such that u is a terminal substring of z: z = λu for some λ. When we

move up the trie, recursively building the automaton graph, we decorate the node

at occurrence λ with a choice point labeled with the sandhi rule. This builds in

the automaton the prediction structure for rule σ, at distance u above a matching

lexicon word. At interpretation time, when we enter the state corresponding to

λ, we shall consider this rule as a possible non-deterministic choice, provided the

input tape contains w as an initial substring. If this is the case, we shall then move

to the state of the automaton at occurrence v (a precomputation checks that all

sandhi rules are plausible in the sense that occurrence v exists in the inflected trie,

i.e. there are some words that start with string v). When we take this action, the

automaton acts as a transducer, by writing on its output tape the pair (z, σ). Note

that we do not need to build a looping state graph structure for the automaton,

since all loops are implemented by jumps to a “virtual address” v. This allows us

to keep within the paradigm of pure functional programming, with no references

and no modifiable data structures.

The treatment of a contextual rule [x]u|v → w is similar, we check that z = λxu,

but the decorated state is now at occurrence λx. In both kinds of rules, the choice

point is put at the ancestor of z at distance u. This suggests as implementation to

compute at the accepting node z a stack of choice points arranged by the lengths

of their left component u. Furthermore, once the matching is done, the context x

may be dropped when stacking a contextual rule, since it is no more needed.

Fig. 2 illustrates the decoration of the trie by a rule, and the reading of the input

tape (along the dotted line) at segmentation time.

The current occurrence z is maintained in a stack argument, as a word occ rep-

resenting the reverse of the access string z. To facilitate matching, our sandhi rules

are represented as triples (ū,v,w) whereū is the word coding the reverse of string u,

so that matching amounts to checking that word ū is an initial sublist of word occ.

7.2 Compiling inflected tries as acyclic transducer state dags

Let us first define the relevant data types. First, the lexicon and euphony rules.

The lexicon is a trie, obtained from the inflected deco by forgetting the morphology

information, and sharing as a dag.

type lexicon = trie

and rule = (word × word × word);

The rule triple (ū, v, w) represents the string rewrite u|v → w. Now for the trans-

ducer state space:

type auto = [ State of (bool × deter × choices) ]

and deter = list ( letter × auto)

and choices = list rule ;
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z
u v

w

u

v

x

Fig. 2. Decorated lexicon

The auto state State(b,d,c) keeps the acceptance boolean b, the deterministic skele-

ton d, and the non-deterministic choices c given as a list of rules. Note that type

auto is very similar to type (deco rule), with deter playing the role of (darcs rule)

and choices playing the role of (list rule). The only difference is that we keep a

boolean information, since choice points label not words in the lexicon, but rather

initial subwords where rewriting effect is predicted.

Finally, we stack choice points sets in lists:

type stack = list choices ;

exception Conflict;

We shall minimize our autos at construction time, using exactly the same tech-

nology as we used for sharing trees into dags. Our algebra is now the state space:

module Auto = Share (struct type domain=auto;

value size=hash max; end);

We shall use the simplistic hash0 and hash1 hashing primitives already seen,

whereas we parameterize hash with one extra argument to take care of the rules

structure:

value hash b arcs rules =

(arcs + if b then 1 else 0 + length rules) mod hash max;

We are now ready to give the complete ML program that compiles the lexicon

index as a transducer, using function build auto:

(∗ build auto : word → lexicon → (auto × stack × int) ∗)
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value rec build auto occ = fun

[ Trie(b,arcs) →

let local stack = if b then get sandhi occ else []

in let f (deter,stack,span) (n,t) =

let current = [n::occ] (∗ current occurrence ∗)

in let (auto,st ,k) = build auto current t

in ([( n,auto ):: deter ], merge st stack,hash1 n k span)

in let (deter,stack,span) = fold left f ([],[], hash0) arcs

in let (h, l ) = match stack with

[[] → ([],[]) | [h :: l ] → (h,l)]

in let key = hash b span h

in let s = Auto.share (State(b,deter,h)) key

in (s ,merge local stack l ,key)

];

(∗ compile : lexicon → auto ∗)

value compile lexicon =

let (transducer,stack, ) = build auto [] lexicon

in if stack = [] then transducer else raise Conflict;

7.3 Discussion

The most striking feature of this algorithm is its conciseness and efficiency, since the

whole computation is done in one linear sweep of the inflected forms trie. We do not

give the details of the service function get sandhi that, given word occ, returns the

matching sandhi rules arranged in a stack [l1; l2; ...] where li is the list of matching

rules with |u| = i. We do not give either the library function merge, which merges

such stacks level by level, an easy list programming exercise.

The automaton structure is a tree of nodes State(b,deter,choices), where b is a

boolean indicating whether the path from the initial state is an inflected form word,

deter is its deterministic skeleton, mirroring the structure of the trie of inflected

forms, and choices is the non-deterministic part, consisting of choice points labeled

with euphony rules. These choice points are inserted exactly where the effect of the

predicted rule (on an inflected form somewhere below in the deterministic part)

starts. choices is computed by merging together the stacks of rules computed when

constructing its deterministic children. When the current node is created, this stack

is popped, and its remainder is merged with the locally matching sandhi rules in

order to initialise the choices stack for upper nodes. The main function compile

checks that at the end of the computation the stack is empty, that is no lexicon

item is a proper suffix of some left hand side u of a rewrite rule.

If we had allowed rewrite rules σ : u|v → w such that u = ε, we would have had

to provide for get sandhi to return an extra initial layer for such rules, and then

modify accordingly function build auto by replacing

let (h, l ) = match stack with
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...

in (s ,merge local stack l ,key)

by:

let (h, l ) = match (merge local stack stack) with

...

in (s , l ,key).

A few remarks on state minimization are now in order.

First of all, as the attentive reader will have noticed that there is no analogue in

build auto of the reverse operation used in compress above. This reversal of arcs

was necessary for tries in order to keep the ordering of subtries, since the terminal

recursive traversal fold left reverses the order, and since we assume that subtries are

given in increasing order of codes of siblings. We have no such invariant in our state

space representation, and thus we do not need this reversal. It is assumed that the

ordering of siblings, both in the deterministic part and in the non-deterministic part,

will be the subject of later optimization, typically by corpus training computing

frequency weights. Similarly, if we wanted to optimize lexicon lookup we would

have to go back and relax the increasing labels invariant.

Secondly, we remark that it would be incorrect to share states having the same b

and d, since the non-deterministic choices substructure may possibly depend on up-

per nodes because of contextual rules. More precisely, get sandhi occ in build auto

will pattern-match a rule [x]u|v → w by checking that z = λxu, but the decorated

auto state is at occurrence λx. That is, the decoration may depend on the path x

above the decorated lexicon subtrie, and thus build auto is not strictly a lexicon

morphism in the presence of contextual rules. We see clearly a tension between

contextual and non-contextual rules, even though they have the same rewriting

power: with contextual rules we get a potentially bigger state space, since some

suffix sharing is lost when we compile the lexicon dag. On the other hand, we ex-

plore the state space faster using contextual rules: since they label nodes deeper in

the tree than the equivalent non-contextual rule, some needless backtrack may be

avoided, for solution paths that go through the upper node but not the lower one.

Thirdly, we remark that we arrive at basically the same algorithm for state min-

imization as the one given in (Daciuk et al., 2000), but here expressed as a simple

application of a generic sharing functor. Furthermore, we obtain a natural minimiza-

tion algorithm for non-deterministic machines, since we represent such machines

state spaces as dags. The innovation here is that out of all possible transitions from

a state when reading a letter, we favor the one that explores the lexicon structure,

as opposed to the phonological transformations. The linguistic rationale is that on

average we speak words rather than twist our tongues between them in a sentence.
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8 Running the Segmenting Transducer

8.1 The reactive engine

We assume that we compiled a segmentation transducer from the inflected lexicon

trie:

value automaton = compile Lexicon.lexicon;

The transducer interpreter is a simple reactive engine reading its input tape and

making transitions in the automaton state structure, managing the non-deterministic

choices with a resumption stack and keeping track of its partial output in an output

stack storing word/transition pairs .

Let us define the various types and exceptions involved.

type transition =

[ Euphony of rule (∗ (rev u,v,w) st u|v → w ∗)

| Id (∗ identity or no sandhi ∗)

]

and output = list (word × transition);

Similarly to the unglueing situation, z is the reverse of the predicted inflected form,

but now it may be paired in the output of the transducer with either Id, indicating

mere glueing (no rewriting), or Euphony, indicating non-trivial sandhi. When we

backtrack, there are now two situations, one similar to unglueing, when we reach

the end of a word, and another one, when non-deterministic sandhi choices exist. In

this last case, we stack the list of such choices, together with the current occurrence,

needed to construct the partial solution. This gives us a backtrack algebra with two

constructors:

type backtrack =

[ Next of (input × output × word × choices)

| Init of (input × output)

]

and resumption = list backtrack; (∗ coroutine resumptions ∗)

exception Finished;

The two backtrack constructors correspond to the two kinds of resumptions in the

non-deterministic computation. Constructor Next indicates a state in which some

non-deterministic rewrite choices are still to be explored, whereas Init indicates

that we have reached the end of a word, and we continue from the initial state of

the transducer, assuming absence of sandhi.

Let us now present a few simple service routines. The first one checks the prefix

relation between words; the second advances the input tape by n characters; the last

accesses the automaton state from its initial state when doing a sandhi transition,

using its v part as a virtual address.

value rec prefix u v =

match u with
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[ [] → True

| [a :: r ] → match v with

[ [] → False

| [b :: s ] → a=b && prefix r s

]

];

(∗ advance : int → word → word ∗)

value rec advance n l = if n = 0 then l

else advance (n−1) (tl l );

(∗ access : word → auto ∗)

value access = acc automaton (∗ initial state ∗)

where rec acc state = fun

[ [] → state

| [c :: word] → match state with

[ State( ,deter, ) → acc (List.assoc c deter) word ]

];

Two things ought to be remarked. The first one is that we assume that the access

operation will not fail. As said above, this assumption is verified at the time of

compiling the sandhi rules: we checked that every rule σ : u|v → w is relevant in

the sense that there exists in the lexicon at least one word starting with v.

The second remark is that access is done in the deterministic part of the automa-

ton: we do not attempt to run through possible non-deterministic choice points.

This is justified by the non-cascading nature of external sandhi, we shall come back

to this point later.

Let us now present the transducer interpreter. It takes as arguments the input

tape represented as a word, an accumulator holding the current output (of type

output given above), the backtrack stack of type resumption, the access code in the

deterministic part occ of type word and finally the current transducer state of type

auto.

value rec react input output back occ = fun

[ State(b,det, choices) →

(∗ we try the deterministic space first ∗)

let deter cont = match input with

[ [] → backtrack cont

| [ letter :: rest ] →

try let next state = List.assoc letter det

in react rest output cont [ letter :: occ] next state

with [ Not found → backtrack cont ]

] in

let cont = if choices=[] then back

else [Next(input,output,occ,choices ):: back]

in if b then
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let out = [(occ,Id ):: output] (∗ identity sandhi ∗)

in if input=[] then (out,cont) (∗ solution ∗)

else let alterns = [Init (input,out) :: cont]

(∗ we first try the longest matching word ∗)

in deter alterns

else deter cont

]

and choose input output back occ = fun

[ [] → backtrack back

| [(( u,v,w) as rule ):: others] →

let cont = if others=[] then back

else [Next(input,output,occ,others) :: back]

in if prefix w input then

let tape = advance (length w) input

and out = [(u @ occ,Euphony(rule))::output]

in if v=[] (∗ final sandhi ∗) then

if tape=[] then (out,cont) (∗ solution ∗)

else backtrack cont

else let next state = access v

in react tape out cont v next state

else backtrack cont

]

and backtrack = fun

[ [] → raise Finished

| [resume::back] → match resume with

[ Next(input,output,occ,choices) →

choose input output back occ choices

| Init (input,output) →

react input output back [] automaton

]

];

8.2 Comments and variations

This algorithm is a natural extension of the unglueing reactive engine. When we

backtrack, we resume the computation according to the first resumption on the

stack; if it is Next, we explore the non-deterministic choices with function choose;

if it is Init, we iterate the search by calling react from the initial state automaton.

When the backtrack stack is empty, we raise exception Finished.

Function choose looks at the current choices list. If it is empty, it backtracks,

otherwise it stacks the other alternatives as a Next resumption, and checks whether

the input is consistent with the right-hand side w of the current rule. If it is, we

advance the tape accordingly, emit the corresponding transition on the output tape,

and jump to the next state by accessing the virtual address v; that is, provided the
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input tape is not exhausted, in which case we have found a solution if the sandhi

rule is final.

In the main routine react, we decide to explore the deterministic space before the

non-deterministic one, with function deter, which attempts to match the input tape

with the current lexicon continuations. Thus we stack the non-deterministic choices

for later consideration with a Next resumption. If we have reached an accepting

state, that is if we have read a full word from the lexicon, we emit the corresponding

transition on the output tape; if the input is exhausted, we have found a potential

solution with optional final sandhi. Otherwise, we just stack this partial solution,

but first look whether we may recognize a longer word from the lexicon, using deter,

similarly to the case where the state is not accepting.

For applications where the optional euphony rule o : ε|ε → ε is not allowed,

the program branch if b should be trimmed out, and acceptance would be defined

as just finishing the input with a final euphony rule. The boolean component of

states is not needed in this case, since the only accepting state is the initial one.

This means that a segmenter defined with a complete set of mandatory juncture

rules may use as state space just a decorated trie of type (deco rule) with no extra

information, but the existence of decorations at a certain occurrence in this space

has no direct relationship with this occurrence corresponding to a lexicon word.

While it should be clear that the algorithm is complete, since it explores com-

pletely the search space by proper management of the backtrack stack, the order

of the various choices is arbitrary, in the sense that it does not change the solution

set, only the order in which it is enumerated. Here we choose to explore the de-

terministic space before the non-deterministic one, favoring matching longer words

from the lexicon over doing euphony with shorter words. Also, we consider choice

points in the order in which they have been computed by the matching algorithm,

whereas we could use a more sophisticated algorithm, using priority queues with

some frequency count, or some Markov model or other statistical device issued from

corpus training. Such refinements are easy to implement as adaptations of our raw

basic algorithm.

The full justification of this transducer will be given in section 10, where the well-

foundedness of its recursion structure is formally proved, and where we show its

correctness and completeness independently from the particular non-deterministic

strategy exhibited above.

8.3 The segmenting coroutine

Let us now explain how to use our interpreter as a word segmenter. We enumerate

solutions with a resumption manager resume, which calls backtrack with its resump-

tion argument cont, and prints the n-th solution with a service routine print out.

We omit the details, since this is very similar to what we already saw in section 5.3.

Now, in order to find a possible segmentation for a sentence, represented as a

word input, we just invoke resume with an Init resumption, using the following

segment one function, which either returns as a value some pair

(solution, stack) : (output × resumption), or else raises the exception Finished:
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value segment one sentence = resume [Init(sentence,[])] 1;

Similarly, we get all solutions with the following segment all program that just

iterates resume until Finished, in the unglue all style:

value segment all sentence = segment [Init(sentence ,[])] 1

where rec segment cont n =

try let resumption = resume cont n

in segment resumption (n+1)

with [ Finished →

if n=1 then print " No solution " else () ];

Many variations are of course possible. For instance, the resume resumption man-

ager could be used in coroutine fashion with the next phase of parsing, where solu-

tions could be discarded because of lack of chunk agreement or other constraint.

We remark that our resumptions are symbolic descriptions of the part of the

search space that is yet to be explored. They are similar to continuations, but

note that they are first-order data values: we need neither laziness, nor closures;

thus this technique could be implemented directly in a non-functional programming

language.

9 Applications to Sanskrit Processing

Let us give some sample experiments with our generic morphological toolset applied

to Sanskrit.

9.1 Sanskrit segmentation

Let us illustrate our segmenting transducer by giving simple examples of its oper-

ation on the Sanskrit reading application. We use in our examples the Velthuis

transliteration scheme for representing the devanāgar̄ı Sanskrit alphabet. Since

verbs are not yet treated, we limit ourselves to noun phrases, a complex enough

issue in the presence of arbitrarily nested compounds.

value process sentence = segment all (encode sentence);

We first analyse a nominal compound praising Śiva,
� ��� �����	��
 � ��� 
 ������ �

, and we follow

with a small sentence,
� ��� ����� ���� ������
���� � (a cat drinks milk).

process "sugandhi.mpu.s.tivardhanam";

Solution 1 :

[ sugandhim with sandhi m|p -> .mp]

[ pu.s.ti with sandhi identity]

[ vardhanam with sandhi identity]

process "maarjaarodugdha.mpibati";



A Sanskrit Tagger 31

Solution 1 :

[ maarjaaras with sandhi as|d -> od]

[ dugdham with sandhi m|p -> .mp]

[ pibati with sandhi identity]

These easy problems have a unique solution. Longer sentences may overgenerate

and yield large numbers of solutions.

9.2 From segmenting to grammatical tagging

Since our segmenter is lexicon-driven, with inflected forms analysis kept in a lexmap

indexing every word with its potential lexeme generators, it is easy to combine

segmentation and lexicon-lookup in order to refine the segmentation solutions into

text tagging with grammatical information, giving for each declined substantive its

possible stem, gender, number and case. Let us run again the above examples in

this more verbose mode.

lemmatize True;

process "sugandhi.mpu.s.tivardhanam";

Solution 1 :

[ sugandhim

< { acc. sg. m. }[sugandhi] > with sandhi m|p -> .mp]

[ pu.s.ti

< { iic. }[pu.s.ti] > with sandhi identity]

[ vardhanam

< { acc. sg. m. | acc. sg. n. | nom. sg. n. | voc. sg. n. }[vardhana] >

with sandhi identity]

# process "maarjaarodugdha.mpibati";

Solution 1 :

[ maarjaaras

< { nom. sg. m. }[maarjaara] > with sandhi as|d -> od]

[ dugdham

< { acc. sg. m. | acc. sg. n. | nom. sg. n. | voc. sg. n. }[dugdha] >

with sandhi m|p -> .mp]

[ pibati

< { pr. a. sg. 3 }[paa#1] > with sandhi identity]

Thus each solution details for each inflected form segment its possible lemma-

tizations. We have obtained a grammatical tagger, with two levels of ambiguities:

a choice of segment solutions and for each segment a number of lemmatization

choices. We have thus paved the way to interaction with a further parsing process,

which will examine the plausibility of each solution with regard to constraints such
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as phrasal agreement or subcategorization by verb valency satisfaction — possibly

in cooperation with further semantic levels that may compute distances in ontology

classifications of the stems, or statistical information on co-occurrences.

In our Web implementation of this Sanskrit reader5 the lemma occurrences are

direct hyperlinks to the corresponding lexicon entries. Lexicon entries themselves

hold grammatical information in the form of hyperlinks to morphology processors,

giving a uniform feel of linked linguistic tools “one click away”.

So far we assumed that the sandhi rules were modeled as relations on the strings

representing the words in contact. Actually, some particular cases of sandhi are

more semantic in nature: special rules pertain to the personal pronoun sa, and

others to substantive declensions in the dual number. We shall deal with these

special rules by allowing these sandhis as generally allowed for the corresponding

strings, filtering out the extra solutions (such as non-dual declensions that happen

to be homophonic to dual declensions) at the tagging stage. This easy resolution of

semantic sandhi illustrates the appropriateness of a lexicon-directed methodology.

The problem of recognizing compounds words is specially acute in Sanskrit, since

there is no depth limit to such compound chunks — sometimes a full sentence is one

giant compound. We deal with this problem by recognizing compounds one piece

at a time, using the fact that compound accretion is identical to external sandhi

between words. This is indicated in the examples above by the iic. notation,

standing for in initio composi. This puts compound recognition at the level of

syntax rather than morphology, a conscious decision to keep morphology finitistic.

At the time of writing, we are able to lemmatize Sanskrit nominal phrases, as

well as small sentences with finite verb forms in the final position, in the tenses of

the present system (present indicative, imperative, optative and imperfect), redu-

plicated perfect, future, aorist and present passive. Initial experiments show that

the algorithm has to be tuned for short particle words that tend to overgenerate,

but the noise ratio seems low enough for the tool to be useful even in the absence of

further filtering. Overgeneration occurs also because of verb forms which are theo-

retically predicted by the grammarians, but which have no attested occurrence in

known corpuses. It is expected that (supervised) corpus tuning will suggest trim-

ming strategies (for instance, verbs may use either active or middle voice, but few

use both).

A specific difficulty involves the so-called bahuvr̄ıhi (much-rice=rich) compounds.

Such determinative compounds used as adjectives may admit extra genders in ad-

dition to the possible genders of their rightmost segment, and the extra inflected

forms have to be accounted for. For instance Śiva’s sign (liṅga) is a neuter substan-

tive, forming liṅgam in the nominative case. But when compounded with ūrdhva

(upward) it makes ūrdhvaliṅga (ithyphallic), typically used as a masculine adjec-

tive, yielding an extra form for the nominative case ūrdhvaliṅgah. . This difficulty is

currently handled by keeping track of all such bahuvr̄ıhi compounds occurring in

the lexicon; a extra pass over the lexicon collects such extra stems, and adds the

5 Available from http://pauillac.inria.fr/∼huet/SKT/reader.html
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corresponding inflected forms. This is not fully satisfactory, since we may segment

with our reader compounds that are hereditarily generated from root stems, except

in the case of bahuvr̄ıhi extra genders derivations, for which the full compound

must be explicitly present in the lexicon. An alternative solution would be to try

and give all genders to every compound, anticipating every possible bahuvr̄ıhi use,

at the risk of overgeneration. This extreme measure would be sweeping the prob-

lem under the rug anyway, since bahuvr̄ıhi semantics is not compositional with

compounding in general, and so specific meanings for such compounds must often

be listed explicitly in the dictionary. Thus Rāma’s father’s name Daśaratha “Ten-

chariot” does not mean that he possesses 10 chariots, but rather that he is such a

powerful monarch that he may drive his war chariot in all directions. Such “frozen”

compounds must be accommodated wholesale.

Another difficulty comes from short suffixes such as -ga, -da, -pa, and -ya, which

make the sandhi analysis grossly overgenerate if treated as compound-forming

words. Such derived forms have to be dealt with by the addition of extra morphol-

ogy paradigms. It is to be expected anyway that the status of derived words, such

as the quality substantives (neuters in -tva and feminines in -tā), the patronyms

and other possessive adjectives (obtained by taking the vr.ddhi vocal degree of the

stem with suffix -ya or -ka), the agent constructions in -in, the possessive constructs

in -vat or -mat, etc. will have to be reconsidered, and treated by secondary mor-

phological paradigms. This is after all in conformity with the Pān. inean tradition

and specially the linguistic theory of Patañjali concerning the taddhita derivations

(Filliozat, 1988).

9.3 Quantitative evaluation

Our functional programming tools are very concise. Yet as executable programs they

are reasonably efficient. The complete automaton construction from the inflected

forms lexicon takes only 9s on a 864MHz PC. We get a very compact automaton,

with only 7337 states, 1438 of which accepting states, fitting in 746KB of memory.

Without the sharing, we would have generated about 200000 states for a size of

5.65MB!

Let us give some indications on the nondeterministic structure. The total number

of sandhi rules is 2802, of which 2411 are contextual. While 4150 states have no

choice points, the remaining 3187 have a non-deterministic component, with a fan-

out usually less than 100. The state with worst fan-out concerns the form parā,

which combines the generative powers of the pronominal adjective para/parā with

its derivative parāc to produce inflected forms parāk, parāṅ, parāt, parān, parām,

parāh. , with respective contributions to their parent parā of respectively 28, 11,

33, 23, 29 and 40 sandhi choices, totalling 164 potential choices. Fortunately, even

in this extreme situation, the actual possible matches against a given input string

limit the number of choices to 2; that is, on a given string, there will be at most one

backtrack when going through this state, and this is a general situation. Actually,

the interpreter is fast enough to appear instantaneous in interactive use on a plain

PC.
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The heuristic we used to order the solutions is very simple, namely to favor longest

matching sequences in the lexicon. The model may be refined into a stochastic

algorithm in the usual way, by computing statistical weights by corpus training.

An important practical addition that will be needed at that stage will be to make

the method robust by allowing recovery in the presence of unknown words. This is

an important component of realistic taggers such as Brill’s and its successors (Brill,

1992; Roche & Schabes, 1995). A more ambitious extension of this work will be

to turn this robustified tagger into an acquisition machinery, in order to bootstrap

our simple lexicon into a larger one, complete for a given corpus. This however will

force us to face the problem of morphological analysis, in order to propose stems

generating an unknown inflected form.

It may come as a surprise that we need so many sandhi rules. For instance,

Coulson (Coulson, 1992) describes consonant external sandhi in a one-page grid,

with 10 columns for u and 19 raws for v. The first problem is that Coulson uses

conditions such as “ended by h. except ah. and āh. ” that we must expand into as

many rules as there are letters a, ā, etc. The second one is that we cannot take

advantage of possible factorings according to the value of v, since when compiling

the state space we do prediction on the u part but not on the v.

Actually, generating the set of sandhi rules is an interesting challenge, since writ-

ing by hand such a large set of rules without mistakes would be hopeless. What

we actually did was to represent sandhi by a two-tape automaton, one for the u

and one for the v, and to fill sandhi rules tables by systematic evaluation of this

automaton for all needed combinations. The two-tape automaton is a formal defi-

nition of sandhi that may be compared to traditional definitions such as Coulson’s.

Details of this compiling process are omitted here.

10 Soundness and Completeness of the Algorithms

In this last section, we shall formally prove the correctness of our methodology in

a general algebraic framework.

10.1 Formalisation

Definitions. A lexical juncture system on a finite alphabet Σ is composed of a finite

set of words L ⊆ Σ∗ and a finite set R of rewrite rules of the form [x]u|v → w, with

x, v, w ∈ Σ∗ and u ∈ Σ+ (x = ε for non-contextual rules, v = ε for terminal rules).

We note Ro for R to which we add the special optional sandhi rule o : ε|ε → ε.

The word y ∈ Σ∗ is said to be solution to the system (L, R) iff there exists

a sequence 〈z1, σ1〉; ...〈zp, σp〉 with zj ∈ L and σj = [xj ]uj |vj → wj ∈ Ro for

(1 ≤ j ≤ p), vp = ε and vj = ε for j < p only if σj = o, subject to the matching

conditions: zj = vj−1sjxjuj for some sj ∈ Σ∗ for all (1 ≤ j ≤ p), where by

convention v0 = ε, and finally y = y1...yp with yj = sjxjwj for (1 ≤ j ≤ p). We

also say that such a sequence is an analysis of the solution word y.

Let us give a more abstract alternative definition in terms of rational relations.
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Definitions. We define the binary relations R and R̂ as the inductive closures of

the following clauses:

• xu|v R xw if [x]u|v → w ∈ R (v 6= ε)

• xu| R̂ xw if [x]u|ε → w ∈ R

• | R ε

• | R̂ ε

• s R s

• x1 R y1 and x2 R̂ y2 imply x1x2 R̂ y1y2.

In the clauses above, s, u, v, w, x, y1, y2 range over Σ∗, and x1, x2 range over

(Σ ∪ {|})∗, so that R, R̂ ⊆ (Σ ∪ {|})∗ × Σ∗.

Now we say that s ∈ Σ∗ is an (L,R)-sentence iff there exists t ∈ (L · |)+ such that

t R̂ s.

It is easy to check that the existence of such t is equivalent to the existence of an

analysis showing that s is a solution as defined above. Actually, an analysis gives

a precise proof in terms of the inductive clauses above, with R modelling (parallel

disjoint) sandhi and R̂ modelling (parallel disjoint sandhi followed by) terminal

sandhi.

A rewrite rule σ : [x]u|v → w is said to be cancelling iff v 6= ε and w = ε. That

is, a non-cancelling sandhi rule is allowed to rewrite to the empty string only if it

is terminal. The lexical system (L, R) is said to be strict if ε /∈ L and no rule in R

is cancelling.

Finally we say that (L, R) is weakly non-overlapping if there can be no context

overlap of juncture rules of R within one word of L. Formally, rules [x]u|v → w

and [x′]u′|v′ → w′ yield a context overlap within z ∈ L if z = λxu = v′ρ with

|λ| < |v′| ≤ |λx|.

We shall prove that for weakly non-overlapping strict lexical juncture systems

our segmenting algorithm is correct, complete and terminating, in the sense that

it returns all solutions in a finite time. The tricky part is to measure the progress

of the exploration of the search space by a complexity function χ that defines an

appropriate well-founded ordering that decreases during the computation.

10.2 Termination

Definitions. If res is a resumption, we define χ(res) as the multiset of all χ(back),

for back a backtrack value in res, where χ(Next(in, out, occ, ch)) = 〈|in|, |occ|, |ch|〉,

and χ(Init(in, out)) = 〈|in|, 0, κ〉, with κ = 1 + |R|. κ is chosen in such a way that

it exceeds every non-deterministic fan-out of the transducer states.

χ defines a well-founded ordering, with the standard ordering on natural numbers,

extended lexicographically to triples for backtrack values and by multiset extension

(Dershowitz & Manna, 1979) for resumptions.

We now associate a complexity to every function invocation. First

χ(react in out back occ state) = {〈|in|, |occ|, κ〉} ⊕ χ(back), where ⊕ is multiset

union. Then χ(choose in out back occ ch) = {〈|in|, |occ|, |ch|〉} ⊕ χ(back). Finally

χ(backtrack back) = χ(back).
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Proposition 1. If the system is strict, every call to backtrack(cont) either raises

the exception Finished, or else returns a value (out, res) such that χ(res) < χ(cont).

Proof

By nœtherian induction over the well-founded ordering computed by χ. It is easy to

show that every function invocation decreases the complexity, we leave the details

to the reader.

Corollary. Under the strictness condition, resume always terminates, either raising

the exception Finished, or returning a resumption of lower complexity than its

argument. Therefore segment all always terminates with a finite set of solutions.

Strengthening. Since we used a multiset complexity, invariant by permutation

of the backtrack values in resumptions, we have actually proved the above results

for a more abstract algorithm, where resumptions are not necessarily organized

as sequential lists, but may be implemented as priority queues where elements

are selected by an unspecified strategy or oracle. Thus these results remain for

more sophisticated management policies of non-deterministic choices, obtained for

instance by training on some reference annotated corpus.

Necessity of the strictness conditions. If ε is in L, a call to react will loop,

building an infinite analysis attempt iterating (ε, o), with o the optional sandhi rule.

If the system contains a cancelling rewriting, such as σ : b|a → ε, with ab ∈ L, the

segmenter will loop on input a, attempting an infinite analysis iterating (ab, σ).

This shows that the strictness condition is necessary for termination.

10.3 Soundness

It remains to show that the returned results of (segment all input) are indeed

analyses of input in the sense defined above, exhibiting the property for input to

be a solution to the system in case of success.

We need first to generalize the notion of y = y1...yp being a solution to the

system, with analysis z = 〈z1, σ1〉; ...〈zp, σp〉, into a slightly more general notion

of partial solution that may be defined inductively. Using the same notations, we

do not insist any more that vp = ε, and we then say that y = y1...yp is a partial

solution anticipating vp. The empty sequence is a partial solution of segment length

0 anticipating ε; a partial solution y of segment length p anticipating vp with analysis

z may be extended into a partial solution yyp+1 of segment length p+1 anticipating

v with z; 〈zp+1, σp+1〉 provided zp+1 ∈ L, σp+1 ∈ Ro, zp+1 = vpsp+1xp+1up+1 for

some sp+1 ∈ Σ∗, yp+1 = sp+1xp+1wp+1, and v = vp+1. Note that a solution is a

partial solution anticipating ε.

Proposition 2. Assume the lexical system (L, R) is strict and weakly non-overlap-

ping, and let s ∈ Σ∗. We show that every invocation of react, choose and backtrack

met in the computation of (react s [] [] [] automaton) enjoys property P defined as

follows:

– either its execution raises the exception Finished,

– or else it returns a value (output,cont) such that rev(output) is a valid analysis

of s as a solution to (L, R) and backtrack(cont) enjoys property P .
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Proof
First of all, we note that the inductive predicate P is well-defined by nœtherian

induction on χ, the system being assumed strict. The proof itself is by simultane-

ous induction, the statement of the proposition being appropriately strengthened

for each procedure, as follows. Every tuple (input, output, occ) of values passed as

parameters of the invocations or within a backtrack value is such that s = r · input

for some r ∈ Σ∗ (the already read portion of the input tape), and rev(output) is a

valid analysis of r as a partial solution anticipating some prefix of occ. The proof is

a routine case analysis, the details of which being left to the reader. We just remark

that the proof needs two correctness assumptions on the automaton construction.

The first one is that the deterministic structure stores words in L - this follows from

the construction of automaton by compile lexicon. The second one is that its non-

deterministic structure is correct with respect to R, that is every (ū,v,w) as rule in

the choices argument of choose is such that there exists a rule [x]u|v → w ∈ R with

u the reverse of ū, and taking z as the reverse of occ, x is a suffix of z and z ·u ∈ L.

This property is part of the specification of the service routine get sandhi invoked

by build auto. The only tricky part of the proof concerns the case where a con-

textual rule would fire even though its context is not fully present in the solution.

Let us see why the non-overlapping condition is necessary to prevent this situation.

Necessity of the non-overlapping condition. Let us consider the juncture

system (L, R) with R = {σ : [b]d| → e, σ′ : a|b → c}, L = {bd, ia}. The overlap

concerns context b in word bd. The algorithm incorrectly segments the sentence

ice as [ia with sandhi a|b → c] followed by [bd with sandhi d| → e]; the second

rewriting is incorrect since context b is absent from icd after application of the first

rule.

10.4 Completeness

The segmenting algorithm is not only correct, it is complete:

Proposition 3. Under the same condition of strictness of system (L, R), the seg-

menting algorithm is complete in the sense that (segment all s) will return all the

analyses of s when s is indeed a solution to the system.

This proposition is provable along the same pattern as Proposition 2 above, of

which it is the converse. Actually, the two properties may be proved together within

the same induction, every ‘if’ being strengthened into an ‘iff’, since it is easy to

show that the algorithm covers all possible cases of building a valid partial analysis.

This of course requires the corresponding strengthening of the two properties of

build auto, namely that the deterministic structure of the automaton is complete

for L and that its non-deterministic structure is complete for R. Again we skip the

details of the proof, which is straightforward but notationally heavy.

The propositions 1, 2 and 3 may be summed up as:

Theorem. If the lexical system (L, R) is strict and weakly non-overlapping, s is an

(L,R)-sentence iff the algorithm (segment all s) returns a solution; conversely, the

set of all such solutions exhibits all the proofs for s to be an (L,R)-sentence.
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A variant of the theorem, without the closures | R ε and | R̂ ε (optional sandhi and

terminal sandhi), is obtained by the variant algorithm explained above, where we

suppress the program branch if b in algorithm react. All successes must end with

terminal sandhi, and thus the accepting boolean information in the states may

be dispensed with. If only certain rules are optional, we may use the obligatory

algorithm, complementing every optional rule [x]u|v → w with its specific option

[x]u|v → uv.

We remark that the weak non-overlapping condition is very mild indeed, since

it pertains only to contextual rules. Whenever a contextual rule [x]u|v → w forms

a context overlap with others, it is enough to replace it with the equivalent non-

contextual rule xu|v → xw in order to correct the problem. Note that non-contextual

rules may have arbitrary overlappings, since we do not cascade replacements (i.e.

we do not close our rational relations with transitivity), and thus a juncture rewrite

can neither prevent nor help its neighbourgs.

Actually in practice a stronger non-overlapping condition is met.

Definition. (L, R) is strongly non-overlapping if there can be no overlap of juncture

rules of R within one word of L. Formally, rules [x]u|v → w and [x′]u′|v′ → w′

overlap within z if z = λxu = v′ρ with |λ| < |v′|.

This condition means that the juncture euphony between two words is not dis-

turbed by the previously spoken phoneme stream. We believe that this is a mild

condition on the adequation of the euphony system. An overlap would signify that

some word is too short to be stable in speech, to the point that it deserves to

disappear as an independant lexical item. Indeed, it is the case that:

Fact. In classical Sanskrit, external sandhi is strongly non-overlapping.

This fact is easy to check, since for external sandhi the maximal length of u, v, and

x is 1, so we have only to check for words of length at most 2. The only problematic

case is the preverb ā (“toward”). We accommodate it by keeping the corresponding

forms in the inflected lexicon, as opposed to letting the particle overgenerate at

the level of external sandhi. This necessitates however a special treatment with

a notion of phantom phoneme, in order to keep left-associativity of sandhi. We

do not develop this further in the present paper, and refer the interested reader to

(Huet, 2003b), which explains how to represent preverbs. In the Vedic language, the

emphatic particle u (indeed, furthermore, now) would also be problematic, although

it seems to appear mostly at the end of verses.

In contrast, internal sandhi cascades over morphemes within one word with com-

plex retroflexions, and is not directly amenable to our euphony treatment. Obvi-

ously morphology must be treated by a layer of phonetic transformations isolated

from the juncture adjustments.

We end this section by remarking that the non-overlapping conditions considered

above are not imposing some kind of determinism on juncture rewriting, such as

confluence of the corresponding string rewriting system. Indeed they do not rule

out ambiguities of application arising from speech variants, such as two rules with

same patterns u and v, but distinct replacements w1 and w2.
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10.5 Comparison with related work

We considered in this work only a simple case of general rational relations as stud-

ied by Kaplan and Kay (Kaplan & Kay, 1994), or even of the replace operator

proposed by Karttunen (Karttunen, 1995). Our relations are binary, not n-ary. We

allow context only to the left. We consider only two relations (sandhi and terminal

sandhi), with possibly optional rules. We consider closure by concatenation, yield-

ing one-step parallel replacement, but have not studied complex strategies iterating

possibly overlapping replacements. For instance, it is not clear to us how to model

internal sandhi by cascading regular replacements - thus we are able to compute in-

flected forms with a specific internal sandhi synthesis procedure, but we do not have

an inverse internal sandhi analyzer; such an analyzer would be useful for stemming

purposes, by proposing new lemmas for lexicon completion from unknown inflected

forms encountered in a corpus. Some hints on how to treat internal sandhi by finite

transducers are given in Chapter 3 of Sproat (Sproat, 1992).

Our methodology is close in spirit to Koskenniemi’s two-level rules: our segmenter

is tightly controlled by matching the lexicon items with the surface form stream, the

sandhi rules giving simultaneous constraints on both ends. It is probably within a

general two-level regular relations processing system that this segmenting algorithm

would better fit (Karttunen & Beesley, 2001).

Conclusion

We have exhibited a consistent design for computational morphology mixing lex-

icon structures and finite automata state space representations within a uniform

notion of lexical tree decorated with information structures. These representations

are finitely generated structures, which are definable in purely applicative kernels

of programming languages, and thus benefit from safety (immutability due to ab-

sence of references), ease of formal reasoning (induction principles) and efficiency

(static memory allocation). Being acyclic, they may be compressed optimally as

dags by a uniform sharing functor. In particular, decorated structures that are

lexicon morphisms preserve the natural sharing of the lexicon trie.

An an instance of application, we showed how euphony analysis, inverting rational

juncture rewrite rules, was amenable to processing with finite state transducers

organized as deterministic lexical automata decorated with non-deterministic choice

points predicting euphony. Under a mild assumption of non-interference of euphony

rules across words, we showed that the resulting transduction coroutine produced

a finite but complete set of solutions to the problem of segmentation of a stream of

phonemes modulo euphony.

We showed application of this technique to a lexicon-driven Sanskrit segmenter,

resulting in a non-deterministic tagger, complete with respect to the lexicon. Com-

pound analysis from root stems is solved by the same process. We believe this is

the first computational solution to sandhi analysis. This prototype tagger has been

tested satisfactorily on nominal phrases and small sentences. It constitutes the first

layer of a Sanskrit processing workbench under development by the author.
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This design has been presented as an operational set of programs in the Ob-

jective Caml language, providing a free toolkit for morphology experiments, much

in the spirit of the Grammatical Framework type theory implementation of Aarne

Ranta (Ranta, 2003). This toolkit and its documentation may be freely downloaded

from site http://pauillac.inria.fr/~huet/ZEN/. This toolkit has been applied

by Sylvain Pogodalla and Nicolas Barth to the morphological analysis of French

verbs (300 000 inflected forms for 6500 verbs); see http://www.loria.fr/equipes/

calligramme/litote/demos/verbes.html. Some of the Zen concepts have been

reused in the Grammatical Framework implementation.

A systematic applicative representation of finite state machines using the ideas

of the Zen toolkit is sketched in (Huet, 2003a).
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