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Introduction

The Calculus of Constructions is a higher-order formalism for writing constructive proofs
in a natural deduction style, inspired from work of de Bruijn [4, 7], Girard [21] and Martin-
Löf [33]. The calculus and its syntactic theory were presented in Coquand’s thesis [12], and
an implementation by the author was used to mechanically verify a substantial number of
proofs demonstrating the power of expression of the formalism [15]. The Calculus of Con-
structions is proposed as a foundation for the design of programming environments where
programs are developed consistently with formal specifications[37]. This note presents
in detail an implementation in CAML[18, 44] of a proof-checker for the calculus. This
proof-checker proceeds by operating an abstract machine, called the constructive engine.

The description in this paper is close in spirit to the inference system described in
section 10.2 of [13]. The main departure is the addition of a system of constants, allowing
a form of definitional equality. The implementation shown corresponds to a simplification
of version 4.9 of the system. Differences with the actual implementation are discussed
below.

1 Technical Preliminaries

The constructive engine is an environment machine which manipulates λ-expressions with
a rich language of types. There are several sorts of variables which may appear in the terms
of the calculus. The global variables, as well as the global constants, are referenced with
their name, a concrete string of ASCII characters. The environment is looked up through a
hash table for fast access to the declaration information of the global. The locally bound
variables are represented by their binding depth, in the manner of de Bruijn[3]. Since
the constructive engine works by weaving back and forth between the environment and
the currently constructed term, we need to switch representations efficiently. Also, we
need to be able to compare two terms modulo β-reduction, in order to implement type
equality checking. This section presents various programming techniques developed for
such algorithms.

1.1 λ-calculus in the de Bruijn notation

We now recall the de Bruijn’s notation of λ-calculus. This abstract representation of λ-
expressions was originally introduced by de Bruijn[3], and later extended to Automath’s

1A preliminary version of this paper, describing version 4.5 of the engine, was presented as an invited
lecture at CAAP88. This paper describes a simplified view of the current 4.9 implementation.



Λ structures by Jutting[29].
We first consider untyped λ-calculus. We use CAML as our specification language.

The type of concrete λ-terms may be defined as:

#type concrete =

# Var of string (* x *)

# | Lambda of string * concrete (* [x]E *)

# | Apply of concrete * concrete (* (E1 E2) *);;

Type concrete defined

Var : (string -> concrete)

| Lambda : (string * concrete -> concrete)

| Apply : (concrete * concrete -> concrete)

Thus every variable, whether it is free or bound, is implemented by a concrete string.
Such representation needs complex substitution operations, in order to guarantee the
preservation of the right binding relationships. Variable renamings (called α-conversion)
may be necessary, and thus new names have to be coined. In order to avoid this naming
problem, we define the type of abstract λ-terms:

#type lambda =

# Ref of num (* variables *)

# | Abs of lambda (* lambda abstraction *)

# | App of lambda * lambda (* apply function L1 to argument L2 *);;

Type lambda defined

Ref : (num -> lambda)

| Abs : (lambda -> lambda)

| App : (lambda * lambda -> lambda)

Now each variable occurrence is represented by its binding depth, i.e. the relative depth
with respect to its binding abstraction operator. A term of type lambda containing n free
variables is valid in a context of length n, according to:

#let rec valid n = function

# Ref(m) -> m <= n

# | Abs(l) -> valid (n+1) l

# | App(l1,l2) -> valid n l1 & valid n l2;;

Value valid = <fun> : (num -> lambda -> bool)

Thus a closed λ-term is one which is valid in an empty context:

#let closed = valid 0;;

Value closed = <fun> : (lambda -> bool)

We write Λn for the set of lambdas M such that valid n M.
The recursion structure of algorithm valid is characteristic of computations on lamb-

das. The corresponding induction principle may be stated as:

Contextual Induction Principle. Let Pn be a property of lambdas, indexed by a
natural number n, and satisfying the closure conditions:

• Pn(M) ∧ Pn(N)⇒ Pn(App(M,N))



• Pn+1(M)⇒ Pn(Abs(M))

• 0 < m ≤ n⇒ Pn(Ref(m)).

Then Pn(M) for every M ∈ Λn. Here is an algorithm for translating a concrete term to
its abstract representation, given a context of free variables:

#exception Unbound;;

Exception Unbound defined

#let index_of id = search 1

#where rec search n = function

# (name::names) -> if name=id then n

# else search (n+1) names

# | [] -> raise Unbound;;

Value index_of = <fun> : (’a -> ’a list -> num)

#let rec parse_env lvars = abstract

#where rec abstract = function

# Var(name) -> Ref (index_of name lvars)

# | Lambda(id,conc) -> Abs(parse_env (id::lvars) conc)

# | Apply(conc1,conc2) -> App(abstract conc1,abstract conc2);;

Value parse_env = <fun> :

(string list -> concrete -> lambda)

#(* parsing closed lambdas *)

#let parser = parse_env [];;

Value parser = <fun> : (concrete -> lambda)

The abstract representation is not convenient for the human interface, and thus we
assume we have declared a grammar for concrete syntax, as follows[44]:

#grammar concrete =

#rule entry Lambda = parse

# Term x -> parser(x)

#and Term = parse

# "("; Term_list x; Term y; ")" -> Apply(x,y)

# | IDENT x -> Var(x)

# | "["; Binder x; "]"; Term y -> list_it (curry Lambda) x y

# | "("; Term x; ")" -> x

#and Term_list = parse

# Term x -> x

# | Term_list x; Term y -> Apply(x,y)

#and Binder = parse

# IDENT(x) -> [x]

# | IDENT(x); ","; Binder y -> x::y;;

Warning: variable(s)

curry, Apply, list_it, prefix ::, Lambda, Var, parser



will be dynamically bound

Calling Yacc ... ................................................

Value concrete = <fun> : (string -> Parsers)

Grammar concrete for programs defined

entry Lambda

We may now give examples in concrete syntax:

#<<[x](x [y](x y))>>;;

(Abs (App ((Ref 1),(Abs (App ((Ref 2),(Ref 1))))))) :

lambda

Remark that the two occurrences of x have different indexes 1 and 2, and that con-
versely the references (Ref 1) correspond to two distinct variables x and y.

The first fundamental algorithm concerns the recomputation of global references to
global variables across n levels of binding. This is computed by the algorithm lift below.

#let lift n = lift_rec 1

#where rec lift_rec k = function

# Ref(i) -> if i<k then Ref(i) (* bound variable : invariant *)

# else Ref(i+n) (* free variable : relocated *)

# | Abs(lam) -> Abs(lift_rec (k+1) lam)

# | App(lam,lam’) -> App(lift_rec k lam,lift_rec k lam’);;

Value lift = <fun> : (num -> lambda -> lambda)

Now we may program substitution, as follows.

#let subst lam =

#let lift_lam n = lift n lam in subst_lam 1

#where rec subst_lam n = function

# Ref(k) -> if k=n then lift_lam (n-1) (* the substituted variable *)

# if k<n then Ref(k) (* bound variables *)

# else Ref(k-1) (* free variables *)

# | Abs(lam’) -> Abs(subst_lam (n+1) lam’)

# | App(lam1,lam2) -> App(subst_lam n lam1,subst_lam n lam2);;

Value subst = <fun> : (lambda -> lambda -> lambda)

For instance, we may now program the conversion of a solvable λ-term to its head
normal form as:

#let rec hnf = function

# Ref(n) -> Ref(n)

# | Abs(lam) -> Abs(hnf lam)

# | App(lam1,lam2) -> let lam’=hnf lam1 in match lam’ with

# Abs(lam) -> hnf(subst lam2 lam)

# | _ -> App(lam’,lam2);;

Value hnf = <fun> : (lambda -> lambda)



These algorithms are satisfactory, as executable specifications. They are nor satisfac-
tory as efficient programs. We see two main problems with this approach. The first one
is that too much unnecessary copying of structures is effected. The second one is that
the operation of λ-reduction is in some sense not elementary enough: we would like to
substitute occurrence by occurrence, in a maximally lazy fashion. We shall not tackle the
second problem here, but will try and share as much as possible during the computation,
in order to remedy the first problem. It should be noted that this very basic problem of
efficient computation on λ-terms is still largely open. The sharing of combinatory dags
applies only to weak reduction (where one does not reduce inside abstractions). The same
is true of abstract environment machines such as the SECD, FAM or CAM machines,
which furthermore compute in applicative order (innermost) as opposed to the normal
order (leftmost-outermost) corresponding to the standardization theorem. Wadsworth’s
method[43] does not avoid unnecessary duplications. Levy’s sharing of redex families[31]
has not yet been implemented in a computationnally efficient way. We do not claim that de
Bruijn’s abstract representation will lead to the best implementations of λ-calculus. How-
ever, the sharing method which we shall now present leads to an acceptable behaviour for
our application to the constructive engine.

1.2 Sharing morphisms

Let us forget λ-calculus for the sake of the current discussion, and consider the simpler
case of terms built up from free constructors. For instance, consider the following algebra,
corresponding to the abstract syntax of terms for some simplified arithmetic:

#type term =

# Var of string

# | Plus of term * term

# | Minus of term

# | Constant of num;;

Type term defined

Var : (string -> term)

| Plus : (term * term -> term)

| Minus : (term -> term)

| Constant : (num -> term)

Now let us consider a simple-minded implementation of first-order substitution over
these terms, with substitutions represented as association lists:

#let naive_subst sig = subst_rec

#where rec subst_rec = function

# Var(name) -> if mem_assoc name sig then assoc name sig else Var(name)

# | Plus(t1,t2) -> Plus(subst_rec t1,subst_rec t2)

# | Minus(t) -> Minus(subst_rec t)

# | Constant(n) -> Constant(n);;

Value naive_subst = <fun> :

((string * term) list -> term -> term)

This method is clearly computationally absurd, since a full copy of a term is effected,
even when the substitution is empty. Worst, substitution will un-share terms naturally



shared on the underlying dags, such as let M=Constant(2) in Plus(M,M). This may be
acceptable in certain situations, for instance if we want to rewrite the two occurrences of
M above in distinct ways. But if we think of these abstract terms as applicative structures,
we want to profit of the possible sharing to represent in a shared fashion the substitution
to a non-linear term such as Plus(Var(x),Var(x)).

One solution to this problem has been proposed long time ago by Boyer and Moore[1],
and this “structure sharing” representation is now one of the classical ways to implement
PROLOG. In this method, we manipulate substitution closures rather than terms, and
this has some undesirable effects. For instance, we do not have a direct access to the top
of the term anymore, and this access gets more and more costly the further we substitute.
After a while, the whole structure may become completely inverted. For this reason, the
“structure copying” implementation is still retained in many applications.

At the other end of the spectrum, we find the representations which share through
congruence closure[40, 20]. These methods are fine for ground terms (not containing free
variables). In the case where we manipulate mostly terms with variables, congruence
closure is not really applicable, and produces more overhead than it saves.

We shall now study how to share maximally in the standard representation of terms
containing free variables. We shall not try and guess possible sharing through syntactic
coincidences. We only care to preserve existing sharing, and to share as much as possible of
a substituted version of a term with the original version. Let us first see how to implement
this idea of sharing non-substituted portions of a term. Here is a simple recursive algorithm
which reports, together with its result, a boolean value indicating whether sharing has been
possible or not.

#let subst_and_share sig = fst o subst_rec

#where rec subst_rec x = match x with

# Var(name) -> if mem_assoc name sig then (assoc name sig,false)

# else (x,true)

# | Plus(t1,t2) -> let (t’1,b1)=subst_rec t1

# and (t’2,b2)=subst_rec t2

# in if b1&b2 then (x,true) else (Plus(t’1,t’2),false)

# | Minus(t) -> let (t’,b)=subst_rec t

# in if b then (x,true) else (Minus(t’),false)

# | Constant(n) -> (x,true);;

Value subst_and_share = <fun> :

((string * term) list -> term -> term)

Again, we have a correct specification of what we exactly mean by sharing, but the
program above is very costly in storage, since the computation of the sharing relationship
builds on the side a duplicate of the structure in the shape of a tree of booleans. If the aim
is to avoid building un-necessary structure, we must clearly avoid these explicit boolean
values.

The next idea is to replace the values (true,x) above by an exception, signaling that
sharing is possible. Let us define a sharing morphism as a term morphism, which raises
a special exception Identity to signal that its result is identical to its argument. If f is
such a sharing morphism, it may be applied on an argument with possible sharing with:

exception Identity;;



let share f x = try f(x) with Identity -> x;;

and now we may implement a sharing substitution with:

#let sharing_subst sig = share subst_rec

#where rec subst_rec = function

# Var(name) -> if mem_assoc name sig then assoc name sig

# else raise Identity

# | Plus(t1,t2) -> (try Plus(subst_rec t1,share subst_rec t2)

# with Identity -> Plus(t1,subst_rec t2))

# | Minus(t) -> Minus(subst_rec t)

# | Constant(n) -> raise Identity;;

Value sharing_subst = <fun> :

((string * term) list -> term -> term)

It is clear that we now have maximum sharing of the substituted term with its original
pattern, without extra structure.

It may be objected however that the substitution algorithm is now cluttered with
extra cases, which brings two problems: readability is questionable, and mistakes may
occur in the transformation from a copying algorithm to its shared version. Note in
particular that the case corresponding to an n-ary constructor splits into 2n−1 subcases.
This objection may be overcome, by noticing that the transformation is systematic enough
to be encapsulated in a macro.

More precisely, given two arguments, one which gives the signature of the constructors
over which we want a sharing morphism effect, and the second which gives what happens
on the others, we may write without difficulty a macro morphism which generates the full
recursion. Without giving its actual code, which would be hard to understand for readers
not familiar with CAML, here is the instance of its call in our example:

#pragma let term_signature = [("Plus",2);("Minus",1)]

and replace_sig =

<:CAML<function Var(x) -> if mem_assoc x sig then assoc x sig

else raise Identity

| Constant(_) -> raise Identity>>;;

(* Macro-generated version of sharing_subst above *)

let subst sig = share #(morphism term_signature replace_sig);;

Remark 1. The macro replace_sig above is enough to illustrate the example. It is
unsatisfactory in that it assumes that the argument to the substitute algorithm is called
sig. A more satisfactory version of the macro, parameterized in an adequate fashion, is
easy to define with the mecanism of anti-quotation of CAML[44]:

#pragma let replace_sig sig =

<:CAML<function Var(x) -> if mem_assoc x {^sig^} then assoc x {^sig^}

else raise Identity

| Constant(_) -> raise Identity>>;;

and now the identifier sig is generated in its proper scope:



let subst sig = let SIG = <:CAML<sig>> (* abstract syntax of sig *)

in share #(morphism term_signature (replace_sig SIG));;

This remark applies to the other macros explained in the next section. However, we prefer
to present the more readable “unsafe” versions.

Remark 2. The sharing mechanism we present uses ML’s exceptions. Other mech-
anisms may be thought of. For instance, if one assumes the existence of a primitive eq

which tests for physical identity, we may program a sharing substitution in the following
manner:

...

match arg with

...

| App(x,y) -> let x’=subst x and y’=subst y

in if eq(x,x’) and eq(y,y’) then arg else App(x’,y’)

...

Using one mechanism or the other may be motivated by æsthetics or implementation rea-
sons (availability of primitives, efficiency). Somehow the user should not have to worry
about such low-level detail, but obviously current implementations of functional program-
ming languages lack the proper memory management primitives needed to express natu-
rally this economic use of data structures.

1.3 Binding morphisms with sharing

The ideas of the previous section may be extended to algebras where certain constructors
are binding in some of their arguments. For instance, in lambda above, Abs is binding in its
argument, whereas App is not. We indicate this information with the following descriptors:

#pragma let lambda_descr = [("Abs",[true]);("App",[false;false])];;

We now give the code for lifting Ref indexes over k levels of binding:

#pragma let lift_k =

<:CAML<function Ref(i) -> if i<n then raise Identity (* bound var *)

else Ref(i+k) (* free var is shifted *)>>;;

and the general case is macro-generated with the help of a macro binding_morphism

which generalizes the idea of sharing morphisms to binding constructors implemented
with de Bruijn indexes. Without boring the reader with the actual details of the macro
binding_morphism, let us just indicate an example of macro-expansion:

#pragma binding_morphism lambda_descr lift_k =

<:CAML<let rec f n = function

Abs(x1) -> Abs(f (n+1) x1)

| App(x2,x1) -> App(try f n x2, (try f n x1 with Identity -> x1)

with Identity -> x2,f n x1)

| Ref(i) -> if i < n then raise Identity else Ref(i+k)

in f 1>>



Now we get the lift function as:

#let lift k lam = if k=0 then lam

# else share #(binding_morphism lambda_descr lift_k) lam;;

Value lift = <fun> : (num -> lambda -> lambda)

Remark that we save exploring the term lam in the case k = 0, which we know
beforehand to be an identity.

We now iterate this idea for substitution:

#pragma let subst_lam =

<:CAML<function Ref(k) -> if k=n then lift_lam (n-1) (* substituted var *)

if k<n then raise Identity (* bound var *)

else Ref(k-1)>> (* free var *);;

#let subst lam =

# let lift_lam n = lift n lam

# in share #(binding_morphism lambda_descr subst_lam);;

Value subst = <fun> : (lambda -> lambda -> lambda)

This substitution algorithm is still far from perfect. First we should recognize the
special case when we substitute a closed term, since in that case no lifting is necessary.
Further, we should share all instances of (lift n lam) for a given n. These ideas are
implemented in the following version:

#pragma let subst_closed_lam =

<:CAML<function Ref(k) -> if k=n then lam (* lam is shared *)

if k<n then raise Identity (* bound var *)

else Ref(k-1)>> (* free var *);;

#let subst lam =

# if closed lam

# then share #(binding_morphism lambda_descr subst_closed_lam) lam

# else let instances = ref [] in

# let lift_lam n = (* local memo version *)

# if n=0 then lam

# else (assoc n !instances (* memo effect *)

# ? let new_instance = lift n lam

# in (instances:=(n,new_instance)::!instances;

# new_instance))

# in share #(binding_morphism lambda_descr subst_lam) lam;;

Value subst = <fun> : (lambda -> lambda)

Further optimizations are possible. For instance, the initial pass to check whether lam
is closed or not could set up the lifting code with maximum sharing, for any relocating
value n, since intuitively the shared areas are the same. The above version recomputes
this information p times, where p is the number of distinct levels where the substituted
variable occurs. This would not affect the quantity of sharing, it would only speed up its



computation, and since the code would be significantly more complicated we shall not do
it here.

Although in some sense we share maximally a term with its substituted versions, we
fail to propagate this sharing, since recursive exploration of a term where certain nodes
are shared does not recognize this sharing, and will therefore undo this sharing by further
substitutions. In order to preserve sharing, we ought to remember in a table pairs of
addresses (original-term-node, substituted-term-node), in the spirit of traditional graph-
copying algorithms. We shall ignore this optimization here.

Finally, a smarter use of indexes may be imagined, where lifting and substitution are
delayed as much as possible, by keeping relocation indexes in the expressions themselves.
However, this idea is not as easy as it sounds, since such relocation annotations do not
commute easily with abstraction, and very quickly we run into the problem of manipulating
complex annotations of the form “lift by n1 all variables greater the m1, and ...” Clearly,
we are not saying the last word on possible implementations of λ-calculus in the de Bruijn
style.

2 Application to the Calculus of Constructions

2.1 Term and types

The Calculus of Constructions, originally described in Thierry Coquand’s thesis[12], refers
to a family of formalisms which permit to describe both objects structured with types,
and natural deduction proofs of higher-order logic. We thus have naturally two levels of
descriptions:

#type level = Object | Proof;;

Type level defined

Object : level

| Proof : level

The two levels are intermixed in uniform term structures of a typed λ-calculus, where
types are themselves terms of the same nature. At the level of proofs, we use the Curry-
Howard isomorphism: propositions are seen as the types of their proofs.

We thus have two kinds of judgement:

• Judge(M,T,Object) means “Object M has type T”.

• Judge(M,P,Proof) means “Proof M proves proposition P”.

Such judgements refer implicitly to a global context of variable declarations and con-
stant definitions. That is, we have possibly non-closed terms of a λ-calculus with constants.
We shall come back later to the structure of the global environment. We may at this point
define our types of terms and judgements:

#type constr =

# Rel of num (* bound variables *)

# | Var of string * judgement (* free variables *)

# | Const of string * judgement (* constants *)

# | Prop (* type of propositions *)



# | Type of num (* universes *)

# | App of constr * constr (* application (M N) *)

# | Lambda of constr * constr (* abstraction [x:T]M *)

# | Prod of constr * constr (* product (x:T)M *)

#and judgement = Judge of constr * constr * level;;

Type constr defined

Rel : (num -> constr)

| Var : (string * judgement -> constr)

| Const : (string * judgement -> constr)

| Prop : constr

| Type : (num -> constr)

| App : (constr * constr -> constr)

| Lambda : (constr * constr -> constr)

| Prod : (constr * constr -> constr)

Type judgement defined

Judge : (constr * constr * level -> judgement)

The Rel variables are local variables implemented with de Bruijn indexes. The Var and
Const refer to respectively variable declarations and constant definitions. Global identifiers
are recognized by the parser as known in the environment as variable declarations or
constant definitions, and the corresponding piece of the environment is pointed to by
the corresponding term constructors Var and Const. This has the advantage of avoiding
environment searches during type-checking. It has the drawback that our term structures
are complicated dags sharing with the environment all the necessary information.

Both Prod and Lambda are operators which are binding in their second argument, the
first one being the type of the bound variable. Lambda is λ-abstraction, whereas Prod

is product formation for types, and universal quantification for propositions. Note our
ambiguous use of the word “type”, since the type of a term is either a type, i.e. a term of
type Type(i) for a certain i, or a proposition, i.e. a term of type Prop. In this last case,
we use the analogy of propositions with types, identifying a proposition with the type of
it proofs. We thus have a λ-calculus at two levels. At the level Object abstraction is used
for expressing the functionality of the mathematical objects and proposition schemes, in
the spirit of Church’s type theory. At the level Proof it corresponds to (intuitionistic)
implication introduction in natural deduction.

The following function checks that its argument is a kind, i.e. of the form Prop or
Type(_), and returns the level of terms whose types are of that kind.

#let level_of_kind = function

# Type(_) -> Object

# | Prop -> Proof

# | _ -> error "Not a proposition or a type";;

Value level_of_kind = <fun> : (constr -> level)

Note the similarity of our term structures with the linguistic structures of Automath.
In the terminology of Automath, our structure extends Nederpelt’s Λ. However, we use
it with a restricted notion of level, i.e. we have a regular language[19]. We distinguish
between Prod and Lambda, in the spirit of AutPi. This was not done in the original calculus



of Coquand[12]. We prefer to make the distinction now, because this entails unicity of
types. We have also constants and δ-rules, in the spirit of Λ∆[10]. More importantly, we
have higher-order quantification, like in Girard’s system Fω, which makes the calculus
significantly more powerful than both the Automath systems, and the Martin-Löf type
theories. We may thus develop higher-order mathematics, as advocated by Scott[42]. In
the jargon of proof theorists, the system is “non-predicative”.

2.2 Substitution

Substitution is a straightforward generalization of the ideas given in section 1.3 above.
The descriptor lambda_descr is simply replaced by the descriptor

let constr_descriptor =

[("App",[false;false]);

("Lambda",[false;true]);

("Prod",[false;true])];;

which describes the binding effect of the term constructors. The functions lift and subst

are appropriately adapted.
The main departure from pure λ-calculus is that we have a calculus with constants.

We thus have several substitution functions for various uses:

subst1 : constr -> constr -> constr

(* (subst1 c1 c2) substitutes c1 for Rel(1) in c2 *)

subst2 : string -> constr -> constr

(* (subst2 str c) substitutes Rel(1) for Var(str,_) in c *)

subst_con : string -> constr -> constr -> constr

(* (subst_con str c1 c2) substitutes c1 for Const(str,_) in c2 *)

Each of these functions is programmed with the help of the macro binding_morphism.

2.3 Equality

Equality of terms means inter-convertibility by β-conversion. Because the calculus is
confluent and nœtherian, this could be decided by comparing the normal forms of the two
terms. However this is not what we want in a calculus with constants. We want to verify
equivalence of terms with as little constant expansion as possible, i.e. to try intensional
equality before computing unfolding the constant definitions.

For instance, consider the step of proof which consists in applying a lemma L1 stating
that every reflexive relation R is cyclic. We thus have, in the current context, a constant:

L1 : (T:Type)(R:T->T->Prop)(Reflexive R)->(Cyclic R)

Assume that the current context contains declarations for a type T1, a relation R1 over T1,
and a hypothesis H1 that R1 is reflexive. Now we want to be able to apply (L1 T1 R1 H1).
The last application will involve verifying equality of two instances of the proposition
(Reflexive R1). It would be absurd here to look up the definition of the concept
Reflexive, and to expand to normal form the two propositions. We want to avoid going
back to first principles, but to do as we usually do in first-order logic, when Reflexive



is a non-analysed binary predicate. Of course, in last resort, we must allow for possible
constant expansion.

This motivates the introduction of a data type of approximations, which are used to
compute head normal forms progressively.

#(* The two kinds of variables *)

#type reference =

# Local of num

# | Global of string;;

Type reference defined

Local : (num -> reference)

| Global : (string -> reference)

#type approximation =

# Abstraction of constr * constr

# | Product of constr * constr

# | Variable of reference * constr list

# | Constant of (string * judgement) * constr list

# | Propconst

# | Typeconst of num;;

Type approximation defined

Abstraction : (constr * constr -> approximation)

| Product : (constr * constr -> approximation)

| Variable : (reference * constr list -> approximation)

| Constant :

((string * judgement) * constr list -> approximation)

| Propconst : approximation

| Typeconst : (num -> approximation)

#(* One step of approximation *)

#let rec approx stack = hnf

#where rec hnf = function

# Rel(n) -> Variable(Local(n),stack)

# | Var(name,_) -> Variable(Global(name),stack)

# | Const(n_j) -> Constant(n_j,stack) (* No expansion! *)

# | Prop -> if stack=[] then Propconst

# else anomaly "Prop cannot be applied"

# | Type(n) -> if stack=[] then Typeconst(n)

# else anomaly "Type cannot be applied"

# | App(c1,c2) -> approx (c2::stack) c1

# | Lambda(c,c’) -> (match stack with

# [] -> Abstraction(c,c’)

# | arg1::rest -> approx rest (subst1 arg1 c’))

# | Prod(c,c’) -> if stack=[] then Product(c,c’)

# else anomaly "Product cannot be applied";;

Value approx = <fun> :

(constr list -> constr -> approximation)



#let approxim c = approx [] c;;

Value approxim = <fun> : (constr -> approximation)

We are now ready to describe type equality, which proceeds by λ-conversion and con-
stant expansion. This last operation is delayed as much as possible.

#(* Constant expansion *)

#let expand = function

# Constant((_,Judge(c,_)),stack) -> approx stack c

#| _ -> anomaly "Trying to expand a non-constant";;

Value expand = <fun> : (approximation -> approximation)

#(* equality of terms modulo conversion *)

#let rec conv term1 term2 = eqappr (approxim term1,approxim term2)

# where rec eqappr = function

# (Abstraction(c1,c2),Abstraction(c’1,c’2)) -> conv c1 c’1

# & conv c2 c’2

# | (Product(c1,c2),Product(c’1,c’2)) -> conv c1 c’1 & conv c2 c’2

# | (Variable(n1,l1),Variable(n2,l2)) -> (n1=n2) &

# (length l1 = length l2) & for_all2 conv l1 l2

# | (Propconst,Propconst) -> true

# | (Typeconst(u1),Typeconst(u2)) -> u1=u2

# | ((Constant(s1,l1) as appr1),(Constant(s2,l2) as appr2)) ->

# (* try first intensional equality *)

# (eq(s1,s2) & (length(l1) = length(l2)) & (for_all2 conv l1 l2))

# (* else expand the second occurrence (arbitrary heuristic) *)

# or eqappr(appr1,expand appr2)

# | ((Constant(_) as appr1),appr2) -> eqappr(expand appr1,appr2)

# | (appr1,(Constant(_) as appr2)) -> eqappr(appr1,expand appr2)

# | _ -> false;;

Value conv = <fun> : (constr -> constr -> bool)

The next function effects one step of head normal form leading to Prop, Type, or Prod.
It is used for making explicit the type of a construction.

#let hnftype = apprec []

#where rec apprec stack = app_stack

#where rec app_stack = function

# Rel(_) -> error "Typing error 1"

# | Var(_) -> error "Typing error 2"

# | Const(_,Judge(c,_)) -> app_stack(c)

# | App(c1,c2) -> apprec (c2::stack) c1

# | Lambda(_,c) -> (match stack with

# [] -> error "Typing error 3"

# | c’::rest -> apprec rest (subst1 c’ c))

# (* Prod/Prop/Type *)



# | c -> if stack=[] then c

# else anomaly "Cannot be applied";;

Value hnftype = <fun> : (constr -> constr)

2.4 Structure of the environment

The environment contains variable declarations, constant definitions, values waiting to be
applied, and types waiting to be used as coercions. We shall explain the last two kinds of
items in the next section.

#type declaration =

# Vardecl of string * judgement

# | Constdecl of string * judgement

# | Value of judgement

# | Cast of judgement

#and context == declaration list;;

Type declaration defined

Vardecl : (string * judgement -> declaration)

| Constdecl : (string * judgement -> declaration)

| Value : (judgement -> declaration)

| Cast : (judgement -> declaration)

Type context abbreviates declaration list

We now declare the he initial state, consisting of the empty initial context, and the
initial judgement, stating that Prop is an Object of type Type(0).

#let ENV = ref ([]:context)

#and VAL = ref (Prop) (* The current construction *)

#and TYP = ref (Type(0)) (* Its type *)

#and LEV = ref (Object) (* Its level *);;

Value ENV = (ref []) : context ref

Value VAL = (ref Prop) : constr ref

Value TYP = (ref (Type 0)) : constr ref

Value LEV = (ref Object) : level ref

2.5 A digression on the meaning of inference rules

The constructive engine may be thought of as some kind of loom, where we weave back and
forth between the environnement and the current value. The fabric is produced whenever
we build a new component of the environment, by taking the current judgement to build
a new variable declaration or a new constant definition. The fabric may be taken back by
discharging variables as abstractions or products, forming arbitrary new patterns.

This “loom” implementation is in some way the spirit of natural deduction, as opposed
to sequent calculus, in which proofs may be seen as produced by cooperating machines
working in parallel. In some sense this is a deep distinction between natural deduction logi-
cal frameworks, and sequent calculus logical frameworks. For instance, compare and intro:

Γ ` A Γ ` B
Γ ` A ∧B

natural



Γ ` A ∆ ` B
Γ ∪∆ ` A ∧B

sequent

In the sequent formulation, Γ and ∆ may be thought of as sets of propositions. In the
natural formulation, Γ may be thought of as a list constructed progressively. However, the
important distinction is not so much on the structural rules. It is that the two occurrences
of Γ on the numerator of the natural rule do not denote two lists that somehow happen
to be equal structurally: they denote the same shared object. Actually, the left top
occurrence may be considered the binding occurrence of Γ, whereas the right top one, as
well as the one in the denominator, may be considered residuals, or pointers to the data
structure which was the state of the environment when applying the rule. Similarly, the
occurrences of A and B in the denominator denote pointers to the propositions that have
been bound to their respective binding occurrence on the numerator.

Thus we may regard inference rules of natural deduction formalisms as direct specifi-
cations of elementary machine operations, with registers for the environment, the current
proof, and the currently proved proposition. This is the point of view we take for our
implementation of the Calculus of Constructions.

It should be noticed that this point of view may not be adequate for theorem proving,
as opposed to theorem checking. For synthesizing proofs, the sequent formulations may
actually be preferable. The point we want to emphasize (and we believe has not been
strongly stressed before) is first that natural versus sequent formulations of logic is not a
choice based on æsthetic choice, but is important for its pragmatic use, and second that
it suggests implementation techniques, since the meaning of meta-variables in the rules is
quite different.

Once we notice that meta-variables in inference rules denote shared objects, it is nat-
ural to distinguish, in the various occurrences of such schematic variables, one binding
occurrence, instanciated by pattern-matching, the others denoting residuals in the sense
of λ-calculus, i.e. pointers to the corresponding substructure. For instance, consider the
usual natural-deduction formulation of arrow-elim, i.e. application or modus ponens:

Γ `M : A→ B Γ ` N : A

Γ ` (M N) : B

In order to make explicit the flow of information, when using this rule for proof-checking,
it is obvious that the binding occurrences of Γ, M and N are in the denominator of the
rule, whereas the binding occurrence of B is in the numerator. Concerning A, we have a
problem. The one in the right argument of the rule may be considered binding: “Let A
be the type of term N in environment Γ.” The one in the left argument, also, could be
considered binding in a system where unicity of types hold. Here, where types are only
unique up to β-conversion, it could mean: “Convert the type of term M in environment
Γ to its head normal form, check that it has the shape A → B.” But, in either case, we
do not mean that the types of M and N should share a common substructure, but merely
that the corresponding substructures ought to be equal (and here, actually, a recursive
exploration to check this fact is meant). Thus, what we mean to specify is a rule that
says: “Let C be the type of term M in environment Γ. Convert C to its head normal
form. Check that it has the shape A′ → B. Check that A and A′ are convertible.” We
are now close to a complete specification of the proof checker. Two details remain.

The first detail concerns the order in which M and N are actually typechecked in a
sequential machine. There are two possible interpretations of application as a term con-



structor: the left-sequential one (first M and then N), and the right-sequential one (the
opposite order). In either case, some explicit memorisation of the intermediate type shall
be needed. We remark that this memorisation cannot be done simply in an auxiliary stack,
since the proper scoping must be enforced. We are lead to stack the corresponding judge-
ment as an item in the environment. In our implementation, we choose the right-sequential
interpretation, and we are thus lead to an inference rule (where binding occurrences are
underlined):

Γ ` N : A Γ `M : C C �A′ → B A ≡ A′

Γ ` (M N) : B

which is in turn implemented as the composition of two unary transition rules, with explicit
stacking in the environment:

Γ ` N : B =⇒ Γ;N : B ` stack value

Γ;N : B `M : C =⇒ (C �A′ → B,A ≡ A′) Γ ` (M N) : B pop apply

In stack value, the notation Γ;N : B ` stands for stacking the current judgement in the
environment without changing it. We are thus lead to the view of elementary machine
operations (the conditional transition rules) corresponding to an explicit sequentialisation
of inference rules. The memorisation insures that these elementary commands may be
used independently of each other.

The second detail concerns conversion in the presence of the constant definitions, which
are definitional equalities; in such systems the conversion depends on these equalities, and
thus of the environment, in which they are declared. That is, in order to be completely
rigorous we ought to write Γ ` A ≡ A′ above.

To a certain extent the situation may be compared to PROLOG. The inference rules,
with suitable detail, correspond rather directly to PROLOG clauses. The relations � and
≡ are executable predicates, and the underlining of binding occurrences correspond to
input specifications à la Concurrent Prolog. This point of view is close to the one of the
logical framework Typol[30]. The transition rules correspond to the basic instructions of a
sequential PROLOG machine. One may argue that this low-level description is not really
needed for the user of the logical environment. However, this amount of detail may be
needed to derive useful meta-mathematical properties.

In the following, we shall describe our engine in terms of the CAML functions imple-
menting its basic transition rules. The higher-level inference rules are given as comments.

2.6 Initialization

2.6.1 Resetting the current judgement

#let reset_current () =

# VAL := Prop;

# TYP := Type(0);

# LEV := Object;;

Value reset_current = <fun> : (unit -> level)



2.6.2 Resetting, pushing and popping the environment

#let reset_env () =

# ENV := []

#and push_env declaration =

# ENV := declaration::!ENV

#and pop_env () = match !ENV with

# [] -> error "Empty environment"

# | decl::env -> ENV := env; decl;;

Value reset_env = <fun> : (unit -> context)

Value push_env = <fun> : (declaration -> context)

Value pop_env = <fun> : (unit -> declaration)

2.6.3 Searching the environment

Note that we do not need to relocate the judgements stacked in the environment, since we
do not use indexes, but identifiers for the globals.

#let search name = search_rec !ENV

# where rec search_rec = function

# [] -> error(name ^ " not declared")

# | decl::rest -> match decl with

# Vardecl(s,_) -> if s=name then decl else search_rec rest

# | Constdecl(s,_) -> if s=name then decl else search_rec rest

# | _ -> search_rec rest;;

Value search = <fun> : (string -> declaration)

2.7 The basic machine operations

There are few basic machine operations, partitioned into two kinds: the ones that build
up the environment, and the ones that build up the current construction. For each such
command, we give first the inference rule, then the CAML function which performs the
corresponding machine instruction.

2.7.1 Introducing a new hypothesis

Γ `M : Prop

Γ;x : M `
Γ `M : Type(i)

Γ;x : M `

#let assume name =

# let declaration =

# let typ = hnftype !TYP

# in let lev = level_of_kind typ

# in Vardecl(name,Judge(!VAL,typ,lev))

# in push_env declaration;;

Value assume = <fun> : (string -> context)



2.7.2 Introducing a new definition

Γ `M : T

Γ;x = M : T `

#let declare name =

# let declaration = Constdecl(name,Judge(!VAL,!TYP,!LEV))

# in push_env declaration;;

Value declare = <fun> : (string -> context)

2.7.3 Global Introduction

Γ = Γ1;x : Γx; Γ2

Γ ` x : Γx

Γ = Γ1;x = V : Γx; Γ2

Γ ` x : Γx

#let consider name =

# match (search name) with

# Constdecl((_,Judge(_,typ,lev)) as constant) ->

# (TYP:=typ;

# LEV:=lev;

# VAL:=Const(constant))

# | Vardecl((_,Judge(typ,_,lev)) as variable) ->

# (TYP:=typ;

# LEV:=lev;

# VAL:=Var(variable));;

Warning: 1 partial match in this phrase

Value consider = <fun> : (string -> constr)

2.7.4 Prop intro

Γ `
Γ ` Prop : Type(1)

#let proposition () = VAL:=Prop;TYP:=Type(1);LEV:=Object;;

Value proposition = <fun> : (unit -> level)

2.7.5 Type intro

Γ `
Γ ` Type(i) : Type(i+ 1)

#let universe num =

# if num<1 then error "Illegal universe level"

# else VAL:=Type(num);TYP:=Type(num+1);LEV:=Object;;

Value universe = <fun> : (num -> level)



2.7.6 App intro

Γ `M : (x : B)C Γ ` N : A Γ ` A ≡ B
Γ ` (M N) : [N/x]C

As explained above, this rule splits into two transitions rules:

#(* Stacks a value for future application *)

#let stack_value () =

# let declaration = Value(Judge(!VAL,!TYP,!LEV))

# in push_env declaration;;

Value stack_value = <fun> : (unit -> context)

#(* Extracts the last pushed value in environment *)

#let unstack_value () =

# match !ENV with

# Value(j)::rest -> ENV:=rest; j

# | _ -> error "Last item not a value";;

Value unstack_value = <fun> : (unit -> judgement)

#let pop_apply () =

# match hnftype !TYP with

# Prod(typarg,typres) ->

# let (Judge(val,typ,lev)) = unstack_value()

# in if conv typ typarg then (VAL:=App(!VAL,val);

# TYP:=subst1 val typres)

# else error "Application would violate typings"

# | _ -> error "Non-functional construction";;

Value pop_apply = <fun> : (unit -> constr)

2.7.7 Discharging definitions

We allow forgetting a constant by replacing its value in the current judgement.

Γ;x = M : T ` N : A

Γ ` [x/M]N : [x/M]A

#let pop_const () =

# match !ENV with

# [] -> error "No constant in environment"

# | Constdecl(name,Judge(val,_))::rest ->

# VAL:=subst_con name val !VAL;

# TYP:=subst_con name val !TYP;

# ENV:=rest

# | _ -> error "Last item not a constant";;

Value pop_const = <fun> : (unit -> context)

Variables may be discharged in two ways: for forming abstractions and for forming
products. Both rules use as an auxiliary:



#let unstack_var () =

# match !ENV with

# [] -> error "No hypothesis in current context"

# | Vardecl(var)::rest -> ENV:=rest; var

# | _ -> error "Last item not a variable";;

Value unstack_var = <fun> : (unit -> string * judgement)

2.7.8 Lambda Introduction

Γ;x : M ` N : P

Γ ` [x : M]N : (x : M)P

#let abs_var () =

# let (name,Judge(typ,_)) = unstack_var()

# in VAL:=Lambda(typ,subst2 name !VAL);

# TYP:=Prod(typ,subst2 name !TYP);;

Value abs_var = <fun> : (unit -> constr)

2.7.9 Product Introduction

Here we have the union of 3 inference rules:

Γ;x : M ` N : Prop

Γ ` (x : M)N : Prop

Γ `M : Type(j) Γ;x : M ` N : Type(i)

Γ ` (x : M)N : Type(max(i, j))

Γ `M : Prop Γ;x : M ` N : Type(i)

Γ ` (x : M)N : Type(i)

The last two rules appear to be binary. However, they correspond to a unary transition,
since the type of M is explicit in the judgement stored in the variable declaration. Here is
an example where the rules of inference do not carry enough information: we do not need
to use a meta theorem saying that if Γ;x : M is a well-formed environment, then either
Γ `M : Type(j) or Γ `M : Prop. This fact is actually explicit from the way the variable
declarations are structured in the machine.

#let gen_var () =

# if !LEV = Proof then error "Proof objects can only be abstracted";

# let (name,Judge(typ,kind,_)) = unstack_var()

# in (TYP:=(match hnftype !TYP with

# Prop -> Prop (* quantification : TYP stays Prop *)

# | Type(n) -> (* product *)

# Type(match kind with Prop -> n | Type(m) -> max m n)

# | _ -> error "Product allowed only on types");

# VAL:=Prod(typ,subst2 name !VAL));;

Warning: 1 partial match in this phrase

Value gen_var = <fun> : (unit -> constr)



2.7.10 Type conversion

Γ `M : A Γ ` B : Prop Γ ` A ≡ B
Γ `M : B

Γ `M : A Γ ` B : Type(i) Γ ` A ≡ B
Γ `M : B

As for application, this pair of rules splits into two transition rules:

#(* Stacking a type for future coercion *)

#let stack_cast () =

# let typ = hnftype(!TYP)

# in let lev = level_of_kind typ

# in let declaration = Cast(Judge(!VAL,typ,lev))

# in push_env declaration;;

Value stack_cast = <fun> : (unit -> context)

#let unstack_cast () =

# match !ENV with

# [] -> error "No cast in current context"

# | Cast(j)::rest -> ENV:=rest;j

# | _ -> error "Last item not a cast";;

Value unstack_cast = <fun> : (unit -> judgement)

#let cast () =

# let (Judge(typ,_,lev)) = unstack_cast()

# in if lev<>!LEV then error "Wrong level for coercion"

# if conv !TYP typ then TYP:=typ

# else error "Cannot coerce to intended type";;

Value cast = <fun> : (unit -> constr)

2.8 Higher-level commands

2.8.1 Sections

The machine is equipped of a hierarchical description mechanism which permits to declare
variables and define constants within a local scope. This mechanism is operated through
the opening and closing of named sections. Variables and constants are declared with a
certain strength controlling their lifetime as follows. When n sections are opened, the
possible strengths of notions are integers between 0 and n. A notion of strength 0 is local
to the current section, a notion of greater strength will survive the closing of the current
section. When a section is closed, the corresponding segment of the environment is popped
and processed as follows. Stacked casts and values are forgotten, with a warning. Local
constants disappear by substitution. Local variables are discharged, by abstraction in
values, and by product/quantification in types. Thus the variables and constants declared
with a positive strength will be kept, under the same name, but with added functionality.

We shall not discuss further this sections mechanism, which would require a more
precise explanation, and whose design is not considered definitive yet. For the present
paper, let us just consider this structuring mechanism as high-level commands, which



could be implemented by macro-generation of the elementary operations of the engine,
by keeping separately the strength information. In the current implementation, however,
section headers are items in the environment.

2.8.2 Inductive definitions

It is possible to describe complex inductive definitions of types, constructors of those
types, and induction/recursion principles on those types. We shall not describe further
this facility, which is described in [39], and which ought to be superseded in next versions
of the calculus by the addition, at the terms level, of (strongly positive) recursive type
definitions.

3 The mathematical vernacular

The constructive engine is generally not operated directly. Its commands are usually com-
piled from a higher level notation for mathematics, called the Mathematical Vernacular.
The idea of describing mathematical arguments in a mathematical vernacular language is
due to de Bruijn[8].

3.1 A small vernacular syllabus

Our mathematical vernacular is very rudimentary at present. Here is a succinct description
of its main constructs.

There are two sub-languages:

• a language of expressions, used to denote terms, propositions, types, proofs, etc...

• a language of commands, used to write mathematical definitions, postulate axioms
and hypotheses, state and proof lemmas and theorems.

3.1.1 Expressions

Names are identifiers in the sense of CAML. Two special identifiers “Prop” and “Type”
are reserved.

Expressions are defined recursively as follows:

• names are expressions.

• Prop is an expression.

• Type(n) is an expression, for n > 0. Type is an abbreviation for Type(1).

• (M N) is an expression whenM andN are expressions. It stands for “apply function
M to its argument N”. This notation is generalized to (M N1 N2 ... Np).

• (x : M)Nx is an expression if x is a name, and M and Nx are expressions. It stands
for the logical proposition “for every x of type M we have Nx” when Nx stands
for a proposition, and for the type “product of Nx indexed by M” when Nx stands
for a type. This notation is extended to accomodate (x1, x2, ..., xn : M)N as an



abbreviation for (x1 : M)(x2 : M)...(xn : M)N . When x does not occur in N , the
expression (x : M)N may also be written as M → N .

• [x : M]Nx is an expression if x is a name, and M and Nx are expressions. It stands
for the function which associates to its argument x of type M the value Nx. This
notation is extended to accomodate [x1, x2, ..., xn : M]N as an abbreviation for
[x1 : M][x2 : M]...[xn : M]N .

• let x = M in Nx is an expression if x is a name, M and Nx are expressions. It
stands for the expression Nx, in which every occurrence of the name x is replaced
by the expression M .

3.1.2 Commands

A mathematical text is seen as a list of commands to be executed. The type-checking of
expressions that are arguments to commands ensures that the definitions make sense, and
that the proofs prove the statements of theorems.

• Hypothesis x : T
defines a new hypothesis x of type the expression T

• Variable x : T
variant of the previous command

• Hypotheses x,y,z : T
for multiple declarations sharing the type T

• Variables x,y,z : T
idem

• Axiom x : A
the proposition A is assumed as an axiom named x

• Type x
Abbreviates Variable x : Type

• Proposition x
Abbreviates Variable x : Proposition

• Definition x M
Checks that M is well-typed, and defines it under name x

• Name x M
Local version of Definition

• Global x : T = M
Checks that M is well-typed consistently with type T, and defines it under name x

• Let x : T = M
Local version of Global



• Theorem x P Proof M
Checks that M is a proof of proposition P, and defines it under name x

• Lemma x P Proof M
Local version of Theorem. These composite commands may be broken into parts,
such as:
Lemma x
Statement P
Proof M
This permits to introduce definitions and facts local to the proof.

• Section x
Opens a section named x

• End x
Closes the section x

Other commands are useful for interactive use. We shall not list them here.
We do not explain in this note how the vernacular commands get parsed and translated

as elementary commands of the machine. The details are relatively straightforward.

3.2 A full exemple: Newman’s lemma

We give here the listing of a full exemple as written in the current system. Newman’s
lemma states that every nœtherian relation is confluent if it is locally confluent. The proof
is the same as the one explained in [25], and given in an older version of the calculus in
[15]. A discussion of the definition of induction principles in the Calculus of Constructions
may be found in [27].

This section of vernacular assumes prior loading of a standard prelude, defining logical
primitives.

We start with an auxiliary module of definitions concerning binary relations, where
notions such as transitive-reflexive closure Rstar of relation R are defined.

Variable A : Type.

Variable R : A->A->Prop.

(* Definition of the reflexive-transitive closure R* of R *)

(* Smallest reflexive P containing R o P *)

Definition Rstar [x,y:A](P:A->A->Prop)

((u:A)(P u u))->((u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)) -> (P x y).

Theorem Rstar_reflexive (x:A)(Rstar x x)

Proof [x:A][P:A->A->Prop]

[h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]

(h1 x).

Theorem Rstar_R (x:A)(y:A)(z:A)(R x y)->(Rstar y z)->(Rstar x z)



Proof [x:A][y:A][z:A][t1:(R x y)][t2:(Rstar y z)]

[P:A->A->Prop]

[h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]

(h2 x y z t1 (t2 P h1 h2)).

(* We conclude with transitivity of Rstar : *)

Theorem Rstar_transitive

(x:A)(y:A)(z:A)(Rstar x y)->(Rstar y z)->(Rstar x z)

Proof [x:A][y:A][z:A][h:(Rstar x y)]

(h ([u:A][v:A](Rstar v z)->(Rstar u z))

([u:A][t:(Rstar u z)]t)

([u:A][v:A][w:A][t1:(R u v)][t2:(Rstar w z)->(Rstar v z)]

[t3:(Rstar w z)](Rstar_R u v z t1 (t2 t3)))).

(* Another characterization of R* *)

(* Smallest reflexive P containing R o R* *)

Definition Rstar’ [x:A][y:A](P:A->A->Prop)

((P x x))->((u:A)(R x u)->(Rstar u y)->(P x y)) -> (P x y).

Theorem Rstar’_reflexive (x:A)(Rstar’ x x)

Proof [x:A][P:A->A->Prop]

[h1:(P x x)][h2:(u:A)(R x u)->(Rstar u x)->(P x x)]h1.

Theorem Rstar’_R (x:A)(y:A)(z:A)(R x z)->(Rstar z y)->(Rstar’ x y)

Proof [x:A][y:A][z:A][t1:(R x z)][t2:(Rstar z y)]

[P:A->A->Prop][h1:(P x x)]

[h2:(u:A)(R x u)->(Rstar u y)->(P x y)](h2 z t1 t2).

(* Equivalence of the two definitions: *)

Theorem Rstar’_Rstar (x:A)(y:A)(Rstar’ x y)->(Rstar x y)

Proof [x:A][y:A][h:(Rstar’ x y)]

(h Rstar (Rstar_reflexive x) ([u:A](Rstar_R x u y))).

Theorem Rstar_Rstar’ (x:A)(y:A)(Rstar x y)->(Rstar’ x y)

Proof [x:A][y:A][h:(Rstar x y)](h Rstar’ ([u:A](Rstar’_reflexive u))

([u:A][v:A][w:A][h1:(R u v)][h2:(Rstar’ v w)]

(Rstar’_R u w v h1 (Rstar’_Rstar v w h2)))).

We are now ready to develop the standard notions from rewriting theory. <A>Ex2(P,Q)>
means there exists x:A such that (P x) and (Q x).

Definition coherence [x:A][y:A]<A>Ex2((Rstar x),(Rstar y)).

Theorem coherence_intro (x:A)(y:A)(z:A)(Rstar x z)->(Rstar y z)->(coherence x y)



Proof [x:A][y:A][z:A][h1:(Rstar x z)][h2:(Rstar y z)]

[C:Prop][h:(w:A)(Rstar x w)->(Rstar y w)->C](h z h1 h2).

(* A very simple case of coherence : *)

Lemma Rstar_coherence (x:A)(y:A)(Rstar x y)->(coherence x y)

Proof [x:A][y:A][h:(Rstar x y)]

(coherence_intro x y y h (Rstar_reflexive y)).

(* coherence is symmetric *)

Lemma coherence_sym (x:A)(y:A)(coherence x y)->(coherence y x)

Proof [x:A][y:A][h:(coherence x y)]

(h (coherence y x)

([w:A][h1:(Rstar x w)][h2:(Rstar y w)]

(coherence_intro y x w h2 h1))).

Definition confluence

[x:A](y:A)(z:A)(Rstar x y)->(Rstar x z)->(coherence y z).

Definition local_confluence

[x:A](y:A)(z:A)(R x y)->(R x z)->(coherence y z).

Definition noetherian

(x:A)(P:A->Prop)((y:A)((z:A)(R y z)->(P z))->(P y))->(P x).

Section Newman.

(* The general hypotheses of the theorem *)

Hypothesis Hyp1:noetherian.

Hypothesis Hyp2:(x:A)(local_confluence x).

(* The induction hypothesis *)

Section Ind.

Variable x:A.

Hypothesis hyp_ind:(u:A)(R x u)->(confluence u).

(* Confluence in x *)

Variables y,z:A.

Hypothesis h1:(Rstar x y).

Hypothesis h2:(Rstar x z).

(* particular case x->u and u->*y *)

Section Newman_.



Variable u:A.

Hypothesis t1:(R x u).

Hypothesis t2:(Rstar u y).

(* In the usual diagram, we assume also x->v and v->*z *)

Theorem Diagram.

Variable v:A.

Hypothesis u1:(R x v).

Hypothesis u2:(Rstar v z).

Statement (coherence y z).

Proof (* We draw the diagram ! *)

(Hyp2 x u v t1 u1

(coherence y z) (* local confluence in x for u,v *)

(* gives w, u->*w and v->*w *)

([w:A][s1:(Rstar u w)][s2:(Rstar v w)]

(hyp_ind u t1 y w t2 s1 (* confluence in u => coherence(y,w) *)

(coherence y z) (* gives a, y->*a and z->*a *)

([a:A][v1:(Rstar y a)][v2:(Rstar w a)]

(hyp_ind v u1 a z (* confluence in v => coherence(a,z) *)

(Rstar_transitive v w a s2 v2) u2 (* gives b, a->*b and z->*b *)

(coherence y z)

([b:A][w1:(Rstar a b)][w2:(Rstar z b)]

(coherence_intro y z b (Rstar_transitive y a b v1 w1) w2))))))).

Theorem caseRxy (coherence y z)

Proof (Rstar_Rstar’ x z h2

([v:A][w:A](coherence y w))

(coherence_sym x y (Rstar_coherence x y h1)) (* case x=z *)

Diagram). (* case x->v->*z *)

End Newman_.

Theorem Ind_proof (coherence y z)

Proof (Rstar_Rstar’ x y h1 ([u:A][v:A](coherence v z))

(Rstar_coherence x z h2) (* case x=y*)

caseRxy). (* case x->u->*z *)

End Ind.

Theorem Newman (x:A)(confluence x)

Proof [x:A](Hyp1 x confluence Ind_proof).

End Newman.

The complete proof-checking of this example takes 4 seconds on a SUN 3-60 in the
current version 4.9 of our implementation of the calculus, using CAML version 2.6.

We would like to stress the fact that this seemingly purely declarative piece of math-



ematics is actually compiled and run on the constructive engine. This is an extremely
concrete illustration that “the mathematician builds the universe he lives in.”

Conclusion

We have presented here only a facet of our implementation of the calculus. Other uses
of the system are possible. For instance, an extractor computes the information contents
of proofs with special annotations. A theorem-prover, based on the proper adaptation of
LCF tactics, searches for proofs under the user’s guidance. The incorporation of the tactics
language in the vernacular would be a first step towards a completely formal description of
mathematical theories in a language close to the usual mathematics practice. Extensions
of the calculus are considered, principally recursive types.

We have given in this note a rather complete description of the basic bloc, the Con-
structive Engine. The algorithms presented are directly executable CAML programs, taken
from the actual implementation. This is a first attempt at using CAML as a publication
language.
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