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Abstract

We describe an innovative computer inter-
face designed for assisting annotators in
the efficient selection of segmentation so-
lutions for proper tagging of Sanskrit cor-
pus. The proposed solution uses a com-
pact representation of the shared forest of
all segmentations. The main idea is to
represent the union of all segmentations,
abstracting on the sandhi rules used, and
aligning on the input sentence. We show
that this representation allows an exponen-
tial saving, both in space and time. This
interface has been implemented, and has
been applied to the annotation of the San-
skrit Library corpus.

1 Generalities on Sanskrit linguistics

Sanskrit is the primary culture-vehicle language
of India. It has had a continuous production of
literature in all fields of human endeavour over
the course of four millennia, giving rise to an im-
mense corpus which is to this date only partially
digitalized. It benefits from a very sophisticated
linguistic tradition stemming from the fairly com-
plete grammar composed by Pān. ini by the fourth
century B.C.E.

During the last 15 years, a significant effort
at developing Sanskrit Computational linguistics
has been endeavoured, and considerable progress
has been achieved at providing computer assis-
tance at Sanskrit corpus processing (Scharf and
Hyman, 2009; Huet et al., 2009; Kulkarni and
Huet, 2009; Jha, 2010; Kulkarni et al., 2010; Ku-
mar et al., 2010; Kulkarni and Shukl, 2009; Goyal
et al., 2009; Hellwig, 2009; Goyal et al., 2012).
Nevertheless, there does not exist at this date a

complete analyser for Classical Sanskrit texts able
to compute reliably morphological taggings in a
completely automatic way. The main difficulty
concerns segmentation, since Sanskrit is repre-
sented in writing by continuous phonetic enunci-
ation, which demands complex processing for its
analysis in separate word forms. Although com-
plete algorithms for this segmentation preprocess-
ing have been proposed (Huet, 2005), human as-
sistance is still needed to focus on the intended so-
lution within all possible analyses.

We propose in this paper a new human-machine
interface to help a professional annotator to de-
cide quickly between all possible segmentations
in order to select a unique morphological analy-
sis among the many possible ones. Indeed, there
exist thousands of such segmentations for simple
sentences, and literally billions for complex ones.
Once a sufficient amount of tagged corpus is avail-
able using such semi-automated annotation tools,
it is hoped that it will be possible to use it for train-
ing a fully automated parser using statistical meth-
ods.

2 Segmentation analysis

We are going to formalize the segmentation prob-
lem at various levels of abstraction. Firstly, we
assume that Sanskrit text is represented as a list
of phonemes. Sanskrit may be written in all In-
dian scripts, most usually in the Devanāgarı̄ script
used by languages of North India such as Hindi,
but such syllabic representation is awkward for
morpho-phonetics computations, which operate at
the phoneme level. It is thus preferable to trans-
late the input into a list of phonemes, such trans-
lation being one-one. We assume the standard set
of 50 phonemes, already known from the time of
Pān. ini. Such low-level representation issues are



discussed at length in (Scharf and Hyman, 2009;
Huet, 2009).

We assume that the reader is familiar with the
use of finite-state methods for morpho-phonemic
computations, as explained in standard references
such as (Roche and Schabes, 1997; Kaplan and
Kay, 1994; Beesley and Karttunen, 2003). We also
assume familiarity with the lexicon-driven San-
skrit segmenter of Huet (Huet, 2005), from which
we extract the following definitions.

Definitions. A lexical juncture system on a fi-
nite alphabet Σ is composed of a finite set of words
L ⊆ Σ∗ and a finite set R of rewrite rules of
the form [x]u|v → w, with x, v, w ∈ Σ∗ and
u ∈ Σ+. Note that in the Kalpan and Kay no-
tation, the rule we write [x]u|v → w would be
written as u|v → w/x .

The word s ∈ Σ∗ is said to be a solu-
tion to the system (L,R) iff there exists a se-
quence 〈z1, σ1〉; ...〈zp, σp〉 with zj ∈ L and σj =
[xj ]uj |vj → wj ∈ R for (1 ≤ j ≤ p), vp = ε and
vj = ε for j < p only if σj = o, subject to the
matching conditions: zj = vj−1yjxjuj for some
yj ∈ Σ∗ for all (1 ≤ j ≤ p), where by convention
v0 = ε, and finally s = s1...sp with sj = yjxjwj

for (1 ≤ j ≤ p). We also say that such a sequence
is an analysis of the solution word s.

In this formalization, Σ is the set of phonemes,
R is the set of sandhi rules, and L is the vocabu-
lary as a set of lexical items. As a first approxi-
mation, one may think of L as the lexicon of in-
flected words. In a later section, we shall parti-
tion L according to lexical sorts, some of which
being morphemes such as stems and affixes, in
order to segment compound words by the same
method as we explain here sentence segmentation
into words. This extension is necessary to keep
L finite, in view of the fact that nominal com-
pounding in Sanskrit is productive to an arbitrary
depth. But all the notions defined here will ap-
ply easily to this refinement, which allows us to
keep notations simple. We shall also assume the
system (L,R) to be non-overlapping, as defined
in (Huet, 2005). This assumption is met in clas-
sical Sanskrit, except for a small number of uni-
phonemic morphemes, which are amenable to the
general treatment modulo the introduction of so-
called phantom phonemes, as explained in (Huet,
2006; Goyal and Huet, 2013).

We may think of s as a phonetically correct ut-
terance over vocabulary L, and its analysis S =

〈z1, σ1〉; ...〈zp, σp〉 as one of its possible segmen-
tations. S is completely explicit, in the sense
that s may be computed uniquely from S, apply-
ing sandhi rules σi in sequence, going from left
to right. Conversely, there may be many possi-
ble segmentations S of a given utterance s, typ-
ically thousands for a moderately long sentence,
although it is proven in (Huet, 2005) that they are
always in finite number. We write Segs(s) for the
set of segmentations of s. The algorithm described
in (Huet, 2005) shows how to enumerate in a com-
plete way the set Segs(s) from a given input string
s. In view of its possibly enormous size, attempts
have been made, e.g. (Huet, 2007), to filter out
non-sensible segmentations by a semantic analy-
sis in the manner of dependency grammars. This
method works well for simple sentences, but is not
sufficient for more complex sentences, specially in
the presence of ellipses and other anaphoric or dis-
course operators where dependencies are context-
sensitive. Furthermore the set Segs(s) is not eas-
ily amenable to sharing, and as a consequence the
segmentation cum tagging Web service of the San-
skrit Heritage site1 has not been of practical use
so far on real corpus, since it tended to generate
very long Web pages, even to the point of choking
the server. Wading through such long lists of seg-
mentations was very tedious and error-prone. The
new interface described in the present paper com-
pletely solves this problem. We shall now explain
its main concepts.

3 Aligned segmentations

The key idea behind the new interface is to repre-
sent an abstraction of the union of all segmentation
decompositions, realigned on the input utterance.
This new representation is now amenable to shar-
ing, and may thus be represented very compactly
on one computer screen.

Definition. We consider a sandhi analysis S as
above, generalized to allow empty sequences. It
may be defined inductively, as being either empty
or of the form S = 〈z1, σ1〉;S′, with S′ a similar
sequence. Let n be a natural number. We define
the alignment of S with offset n, noted as S ↪→ n,
as a set of pairs of aligned segments of the form
(k, z), with k ∈ N and z ∈ L, as follows. If S is
the empty sequence, then S ↪→ n = ∅. Otherwise,
let S = 〈z, σ〉;S′ with σ = [x]u|v → w. We
define S ↪→ n = {(n, z)} ∪ S′ ↪→ n′, where

1http://sanskrit.inria.fr



n′ = n+ |z|+ |w| − (|u|+ |v|).
If S is a segmentation analysis of utterance s,

we define its corresponding aligned segment col-
lection as the set of aligned segments S = S ↪→ 0.
Note that in this new notion we are forgetting the
precise sandhi rules used in the analysis S, keep-
ing only the tabulation information that allows us
to present its set of segments aligned with the orig-
inal input s.

Let S be a set of segmentation analyses of utter-
ance s. We define the tabulated display of S, noted
D(S), as the set of aligned segments obtained as
the union of all its corresponding aligned segment
collections:

D(S) =
⋃
S∈S

S

We say that an aligned segment (k, z) is relevant
to a segmentation analysis S iff (k, z) ∈ S. Let
S be a non-empty set of segmentation analyses of
some utterance s, and (k, z) ∈ D(S). We define
the restriction of S to (k, z), noted S ↓ (k, z), as
the set of all segmentation analyses in S to which
(k, z) is relevant:

S ↓ (k, z) = {S ∈ S | (k, z) ∈ S}

We have of course S ↓ (k, z) ⊆ S.
Fact 1. (k, z) ∈ D(S)⇒ S ↓ (k, z) 6= ∅.

Proof. Trivial compactness property of union.
Let S be a non-empty set of segmentation anal-

yses of some utterance s, and (k, z) ∈ D(S). We
say that (k, z) is critical in D(S) iff it is not rele-
vant to some S′ ∈ S. This implies that

|D(S ↓ (k, z))| < |D(S)|

Thus selecting a critical segment in the interface
will effectively reduce the search space. In prac-
tice, it will reduce it by half or more, and conver-
gence will be insured in log(N) steps, where N is
the total number of segmentation solutions. Let us
now give a sufficient condition for criticality.

Let (k, z) and (k′, z′) be two distinct aligned
segments in some tabulated display D(S). We
say that (k, z) and (k′, z′) conflict if k ≤ k′ <
k + |z| − 1 or k′ ≤ k < k′ + |z′| − 1.

Fact 2. Let (k, z) and (k′, z′) conflict in D(S).
They are both critical, in being mutually exclusive
– no segmentation may contain both.

Proof. By inspection of sandhi rules, we may
check that every rule [x]u|v → w is such that
|u| + |v| ≤ |w| + 1. Thus overlapping of a

segment with its successor in any segmentation
is at most of length one. Since every segment
is of length at least 1, overlap of a segment with
some other segment in the same segmentation so-
lution may be at most of length one. Let (k′, z′)
be an aligned segment of D(S) conflicting with
(k, z). No segmentation analysis to which (k′, z′)
is relevant may belong to S ↓ (k, z), and thus
(k′, z′) /∈ D(S ↓ (k, z)).

Note that the conflicting condition is sufficient
to show that two segments may not appear in a
common segmentation solution, but that this is not
a necessary condition, even for contiguous seg-
ments. The interest of this notion is that it is easy
to check visually, whereas the necessary and suf-
ficient criterion is not, since sandhi rules are not
shown.

We now state a fact which may not be true of all
lexical juncture systems, but is verified for San-
skrit sandhi, as we shall argue in section 6.2.

Fact 3. IfD(S) has no critical aligned segment,
S is singleton.

4 A graphical interface

4.1 A user interface using aligned segments

Let s be the utterance under consideration. Ini-
tially, we compute the set S = Segs(s) of all
its possible segmentations, and we display D(S),
where every aligned segment (k, z) is represented
as the segment z displayed with an offset of k
spaces from the left margin. When two aligned
segments overlap, we represent them in different
lines. We sort all segments, so that longer seg-
ments are listed above shorter ones. Each segment
is displayed either with a blue check sign, if it
does not conflict with any other segment or else
with two signs, a green check sign to select this
segment and a red cross sign to discard it. These
green check and red cross signs are mouse sen-
sitive, they trigger as call-back the segmentation
routine, that will compute all segmentations anal-
yses consistent with this particular choice, that is,
for which all currently selected aligned segments
with green check signs are present, and the seg-
ments discarded using red cross signs are absent.
If s is segmentable at all, S is non empty, and so is
D(S). At any point in the computation, the current
display D(S) represents the union of a non-empty
set S of segmentations of s, by repeated applica-
tion of Fact 1. Consequently, selecting or discard-
ing a segment may never fail.



Furthermore, if the user selects or discards a
critical segment, there is visible progress, since
all conflicting segments vanish on selecting a seg-
ment and a particular segment vanishes on discard-
ing it. This corresponds to the case when it con-
flicts with some other segment, which is easy to
see in the visual display, since it covers a column
which is strictly inside the conflicting segment.

When a segment is selected using the green
check sign, both the check and cross signs are re-
placed by a single blue check sign, which is mouse
insensitive, thus making the segment inert for the
rest of the interaction. On the other hand, if a seg-
ment is discarded using the red cross sign, it van-
ishes and in the particular case where it conflicts
only with one other segment, the other segment
will become inert. Note that the user cannot select
a non-critical segment since these are presented
with blue check signs, which are not mouse sen-
sitive. When there are no more critical segments,
we have reached a unique segmentation solution,
consistently with Fact 3.

At any moment, the user may, besides the selec-
tion of a segment, do a number of actions. Firstly,
he may undo the previous selections, up to an arbi-
trary depth. Secondly, he may revert to the old in-
terface giving a linear listing of all segmentations
consistent with the currently selected segments. A
counter indicates the size of the remaining number
of distinct segmentations. Optionally, he may also
use the semantic pruning mechanism in the hope
to converge more rapidly with machine assistance.
Finally, it is possible to send the set of remaining
segmentations to the more complete dependency
parser under development at University of Hyder-
abad (Kulkarni et al., 2010; Kulkarni and Ramakr-
ishnamacharyulu, 2010).

4.2 Complexity analysis

The convergence of the selection is very fast.
Since the method is dichotomic it converges in av-
erage in log(N) steps, where N is the total num-
ber of segmentation solutions. Indeed, when the
input may be split as s = s1 · s2 with s1 and s2 in-
dependently segmentable with respectively n1 and
n2 segmentations, presented with displays of sizes
respectively d1 and d2, the global display has a
size of d1 + d2 for a total of n1 × n2 segmenta-
tions. This interface gives thus an exponential im-
provement over the recursive dove-tailing of the
segmentation process. In any case the number of

selections will be less than the number of words
of the intended segmentation, i.e. of the order of
the length of the sentence divided by the average
length of a word. In practice convergence is very
fast.

Theorem. Let S be the set of segmentation
analyses of some utterance s of length n. |S| is
of asymptotic order O(Cn), whereas |D(S)| is of
asymptotic order O(n).

Proof. This theorem depends on the lexicon un-
der usage and can have at best an average com-
plexity analysis. Letm be the length of an average
segment in an utterance. For our analysis, we will
also assume that each segment in a valid solution
has length ≥ 2.

Consider s of length n. We will try to find an
upper bound on the number of segmentation so-
lutions for this utterance. Let us consider the ith

phoneme of this utterance. A valid solution can
have this phoneme participating in a segment of
length 2, 3, . . . up to m. Analysing further, a seg-
ment of length 2 can start at 2 possible offsets, i−1
or i. Similarly, a segment of length 3 can start at
3 possible offsets and so on. In general, let ofj
denote the number of offsets at which a segment
of length j may start for the ith phoneme. Then,
ofj ≤ j for j ∈ {2, 3, . . . ,m}. Every such offset k
for a segment of length j defines a set with aligned
segments (k, zl) such that |zl| = j. Thus, for the
ith phoneme, an upper bound on the number Nssi

of possible such sets is:

Nssi ≤ of2 + of3 + . . .+ ofm
≤ 2 + 3 + . . .+m

≤ m(m+ 1)

2
(1)

For each of these Nssi sets, the possible number
of segments depends on the sandhi rules R. For
any segment in such set, permutations are possible
only at the first and last phonemes because of the
sandhi rules applied at the junction. Let leftw de-
note the number of possible v’s such that u|v →
w ∈ R for an arbitrary u. Similarly, let rightw de-
note the number of possible u’s such that u|v →
w ∈ R for an arbitrary v. Now let maxleft be the
maximum of all such leftw and maxright be the
maximum of all such rightw. Thus, such a set can
contain at most |ssi| = (maxleft× maxright) seg-
ments. Then the maximum number of segments
Ni that the ith phoneme can participate in is

Ni ≤ |ssi| ·Nssi (2)



Now that we have the maximum number of pos-
sible segments for the phoneme at position i, we
can use this to obtain an upper bound on the num-
ber of segments |S| for the utterance s. We will
use the fact that the set |S| will be a subset of all
the possible segments in which phonemes at vari-
ous positions can participate. Thus

|S| ≤ N1 ×N2 . . . Nn

= (|ssi|)n ·Nssi
n

= (C · m(m+ 1)

2
)
n

(3)

Similarly, an upper bound on the number of seg-
ments in the tabulated display is the sum of all pos-
sible segments at various phonemes. Thus

|D(S)| ≤ N1 +N2 + · · ·+Nn

= (C · m(m+ 1)

2
) · n (4)

Hence, it follows from Equations 3 and 4
that |S| is of asymptotic order O(Cn) at worst,
whereas |D(S)| is of asymptotic order O(n).

From experimental evidence, it has been ob-
served that the number of solutions grows expo-
nentially with the length of the utterance and the
bound O(Cn) is actually reached for the real cor-
pus. For instance, the following sentence, ex-
cerpted from the Vikramorvaśı̄ play by Kālidāsa,
has 6 967 296 000 (≈ 232) segmentations. The
sentence has 240 phonemes and the desired solu-
tion has 40 segments. This sentence is manageable
by our interface in 17 clicks and thus, the conver-
gence is quite fast.

yā tapasviśes.apariśaṅkitasya sukumāram
praharan. am mahendrasyapratyādeśah. rūpa-
garvitāyāh. śriyah. alam. kārah. svargasya sā
nah. priyasakhyurvaśı̄ kuberabhavanāt pratini-
vartamānā samāpattidr.s. t.ena keśinā dānavena
citralekhādvitı̄yā bandigrāham gr.hı̄tā

5 Graphical rendering of the Display

The main notion behind the interface is that of
the display D(S) for a consistent set of seg-
mentations S . Initially we take S = Segs(s),
and we progressively select aligned segments
(k1, z1), ..., (kn, zn). The only data kept in mem-
ory is the initial sentence s, and the stack of
choices Cn = (k1, z1), ..., (kn, zn). The interface
interaction is implemented as a CGI coroutine,
which is transmitted arguments s and Cn in its
invocating URL. The server recomputes at every

step the sequence of all segmentations Segs(s),
keeping only the ones that are consistent with the
stack of choices Cn, sorted by alignments into a
sorted a-list of checkpoints. The display of all
consistent segmentations is stored in an array ‘dis-
play’ of size |s|. The display value at index i is the
list of all segments z such that (i, z) is an aligned
segment of some segmentation solution consistent
(i.e. not conflicting) with all the checkpoints Cn.
This test is easy, sinceCn is sorted. One may think
of the display as a shared representation of D(S),
for S, the set of segmentation solutions consistent
with the current stack of choices. Actually the ar-
ray ‘display’ may be thought of as a hashcoding
array for the set D(S), the hashcode of an aligned
segment (k, z) being its alignment k in the input
string.

What is crucial for the efficient sharing of the
tree of all segmentations as a dag is the abstrac-
tion of sandhi rules. Indeed, our methodology is
reminiscent of parsers based on tabulation meth-
ods which use such dynamic programming meth-
ods (Earley, 1983; Tomita, 1985; Billot and Lang,
1989; Stolcke, 1995).

Implementation of ‘Undo’ is trivial, since it
consists in calling the interface with a stack of
choices popped by the last choice.

Note the simplicity of this implementation: at
every step all the information is recomputed with
the standard segmenter, but since the technology
is very fast this is not noticeable to the user, the re-
action seems instantaneous (at least on a localhost
server).

Presenting the tabulated display of the aligned
segmentations in an HTML page was not entirely
trivial. The segmentation analysis gives us all
possible segments, appearing at various offsets.
Firstly, for an arbitrary offset ki, the number of
segments may be quite large. Also, the length |zi|
of the largest segment (ki, zi) at offset ki might
be such that it conflicts with the aligned segments
at the next offset ki+1. Since the objective was
to have a compact display, keeping the alignment
intact, it remains a problem as to where to fit the
aligned segments at offset ki+1 in such case, once
the HTML display has been populated with the
segments at offset ki. The second issue is related
to the fact that while the maximum size of the dis-
play array is fixed to the length of the utterance
(|s|), the size of an aligned segment (ki, zi) is |zi|,
a variable depending on the segment zi. Thus, the



problem is to show the aligned segment as a single
entity.

Now, a simplistic implementation to keep the
alignment intact would have been to list all the
segments corresponding to the offset ki+1, start-
ing from the next row to where all the segments at
offset ki have been enumerated. This, obviously,
would not lead to a compact display. Similarly,
a very simple implementation to handle variable
sized segments would be to define an array of |s|
columns and display each solution (ki, zi) in |zi|
columns starting from the kith column. The prob-
lem with this approach is that the display of a word
does not appear continuous here. Also, depend-
ing upon the transliteration scheme used, some
phonemes would require more space than others,
which will vary in various rows. And the segment
zi here cannot be treated as a single HTML entity
in this case, which is a requirement to allow a user-
friendly display of morphological tags, as well as
for the callbacks, initiating user interaction.

To alleviate these problems, we sorted the seg-
ments at each offset according to their lengths.
Thus, the longer segments appear on the top. Now,
while filling the segment (ki+1, zi+1) at offset
ki+1, we search for the first row from the top,
where the last filled segment does not conflict with
(ki+1, zi+1) and fill this segment in that row. This
gives a compact display.

Similarly, to handle the second issue, instead of
using |zi| columns for an aligned segment (ki, zi),
we used the HTML ‘colspan’ attribute to use vari-
able width columns in a row. Thus, an aligned
(ki, zi) is displayed using a |zi| width column at
offset ki. This allows us to have a continuous dis-
play of a segment, as well as to treat it as a single
HTML entity.

6 Lexical categories and tagging

6.1 Dealing with lemmatized segments

Since our method is lexicon-directed, our candi-
date forms are generated by morphological gen-
eration, and may be kept along with their lem-
mas. Furthermore, we may restrict our seg-
menter to recognise only morphologically correct
sequences, according to a regular grammar ex-
pressing morphological constraints. This refine-
ment is also necessary because the sandhi relation
after preverbs (upasarga) is different from the ex-
ternal sandhi between words or compound com-
ponents. This grammar is compiled into the state-

transition graph of a finite automaton/transducer,
which expresses the control of our lexical scanner
in the usual manner. The states of this automaton,
called phases, correspond to the lexical categories,
which we associate to colours in the interface. We
may refine the above formalization to this new sit-
uation easily, replacing the notion of aligned seg-
ment (k, z) by the finer notion of aligned lemma-
tized segment (k, (l, z)) where l is the lemmatiza-
tion of segment z.

Let us now give a concrete example. Consider
the following sentence:
satyam. brūyātpriyam. brūyānnabrūyātsatyamapriy-
am. priyam. canānr.tambrūyādes.adharmah. sanātanah. .
This is the well known saying (subhās. itam): “One
should tell the truth, one should say kind words;
one should neither tell harsh truths, nor flattering
lies; this is a rule for all times.”

When entering this sentence in our Sanskrit
reader, the initial display of our interface is given
as Figure 1 below.

As indicated in the display, this diagram sum-
marizes 120 distinct segmentations. At the right
side of the diagram, one sees the long segment
sanātanas (‘eternal’) and below it a messy alter-
native of compositions of smaller words that are
obviously over-generating items. Clicking on the
green sign under the blue segment sanātanas re-
moves all this noise, and the number of potential
solutions drops to 12, generating the display given
in Figure 2 - note the blue unlinked check sign in-
dicating the already selected segment.

Similarly one immediately notices segment
satyam (‘truth’), together with conflicting noisy
alternatives. Similarly for cana (‘and not’). These
two selections will leave us with only one choice
between segments brūyāt and brūyām (two forms
of root brū (‘to say’) in the optative mode of the
present active voice in the singular number, re-
spectively in the 3rd and 1st person). By obvious
symmetry with its other occurrences in the sen-
tence, brūyāt must be chosen, obtaining the correct
segmentation in a total of 4 easy clicks, as shown
in Figure 3.

At this point one may click on the explicit but-
ton “Unique Solution”, where fine tuning of last
morphological parameters such as ambiguities of
genders of substantival forms may be effected
through a final user interface, shown in Figure 4.
This last stage is necessary, because our lemmas
label a given form with a multi-tag factoring out



Figure 1: Initial display of the aligned segments for the sentence
satyam. brūyātpriyam. brūyānnabrūyātsatyamapriyam. priyam. canānr.tambrūyādes.adharmah. sanātanah.

Figure 2: Aligned segments after selection of segment sanātanas.

all values of morphological parameters usable to
generate this form. User can select the appropriate
options yielding the final unambiguous tagging of
the sentence as a list of lemmas, where segments
are hyperlinks to the digital lexicon, as shown in
Figure 5.

This page may be stored and the next sentence
may be read from the corpus input stream in order
to progressively annotate the digital library.

Sometimes it is useful for the annotator to see
the lemmatization of a segment in order to inform
his decision with more information than its lexi-
cal category (indicated by the color code, blue for
substantives, red for finite verb forms, purple for
adverbs and yellow for compound). This facility is
available in our interface, every segment is mouse-
sensitive, and clicking on it yields its lemma, as
shown in Figure 6 for the segment brūyāt.

Note that in this lemma the root brū is it-
self mouse-sensitive, it is a hyperlink to its lex-
ical entry, allowing access to its meaning. We
provide two aligned digital lexicons, our original
Sanskrit-to-French Heritage dictionary, and op-
tionally the more complete classical Sanskrit-to-

English Monier-Williams’ dictionary2. Thus the
annotator has all available information at his dis-
posal at any point, but with minimal cluttering of
his workspace.

It should be noted that this interface is not only
easy to use, it is actually fun to play. It may be
thought of as some kind of electronic game.

6.2 Justifying Fact 3

In the example just shown, we assumed implic-
itly that when no more choices were available to
the user, there was only one segmentation solu-
tion left, and we could then proceed to the final
disambiguation of the remaining multi-tags of this
unique solution. This assumption is precisely what
we called Fact 3 above, and that we now restate:

Fact 3. IfD(S) has no critical aligned segment,
S is singleton.
Proof. Assume that D(S) has no critical aligned
segment. In other words, all the segments are
marked with a blue mark, indicating that they

2The protocol for the non-trivial task of mutually linking
these lexical resources has been discussed in (Goyal et al.,
2012)



Figure 3: Aligned segments after 4 clicks.

Figure 6: Asking for lemma of segment brūyāt.

belong to all remaining solutions. Thus, all re-
maining solutions have the same segments. We
shall need to prove that all the aligned segments
are strictly ordered within one unique solution.
Consider any two remaining segments (k, z) and
(k′, z′), where without loss of generality we may
assume k ≤ k′. If k < k′, the z segment must
precede the z′ one. Now let k = k′. It is not
the case that both |z| > 1 and |z′| > 1, since
the two segments would be conflicting with each
other. Assume without loss of generality |z| = 1.
If |z′| > 1, the z segment must precede the z′

one. We are left to consider the case where |z| =
|z′| = 1. The only relevant mono-phonemic seg-
ments in classical Sanskrit are the privative prefix
‘a’, forming so-called nañ-tatpurus.a compounds,
and the preposition ‘ā’, used as prefix (upasarga)
to final (tiṅanta) and propositional (kr.danta) verbal
forms.3 We thus only have to consider the proper
ordering of co-aligned ‘a’ and ‘ā’ segments. The
privative particle ‘a’ can prefix only consonant-
initial nouns, since it alternates with the form ‘an’
for vowel-initial ones. The preposition ‘ā’ is as-
sumed not to be iterated, which would be redun-
dant. Thus the only possible ordering is that an
‘ā’ segment could precede an ‘a’ segment (but we
do not even know of a concrete example). This
explanation justifies Fact 3 in the case of classical
Sanskrit.

3Vedic Sanskrit offers additional difficulties, with au-
tonomous prepositions and the mono-phonemic interjection
u.

6.3 Robustness

The interface is remarkably robust for realistic
sentences, as shown in the example in section 4.2.
When the sentence from the Vikramorvaśı̄ play by
Kālidāsa, as mentioned in section 4 is processed
by the Sanskrit reader, the interface shows all the
6 967 296 000 possible solutions in a compact dis-
play. The display presents various choice points to
the user, and is manageable in 17 clicks.

7 Conclusion

We have presented a new interface for interac-
tive segmentation cum tagging of Sanskrit sen-
tences. This technology is not limited to Sanskrit.
It may be adapted to interactive feedback with a
segmenter, tagger or parser, where sentences are
presented as a finite collection of sequences of an-
notated word forms (lemmas). It may also operate
at the generative morphology level, where words
are presented as composition of morphemes.

This interface enables a human annotator to vi-
sualise a sentence as a sequence of words, read-
able from left to right in one compact hypertext
page. Word forms are vertically aligned with the
original input. This allows sharing of lemmas, and
avoids cluttering of the visual display with redun-
dant informations. Segments at a given offset are
sorted in decreasing length order, which permits
easy selection according to a heuristic of maxi-
mum overlap of segments with the input sentence.
This heuristic, which tends to minimize the num-
ber of segments, is very often correct. Small word
forms or morphemes, which agglutinate by chance
into larger chunks of the input, get relegated as



Figure 4: The interface for selecting unique tags
from multi-tags

noise in the bottom of the display screen.
Fast recomputation of solutions respecting se-

lection or rejection of a given segment achieves
exponential convergence rate. Even for long sen-
tences admitting over billions of solutions, the ef-
fect of these selections appear instantaneous. Se-
lection mistakes may be fixed rapidly using the
Undo facility. Morphological information is hid-
den in order not to clutter the screen, since appro-
priate use of colors for lexical categories usually
suffices for making the right decision. In case of
doubt, the annotator may click on any puzzling
segment and get instantly its full lemmatization,
including possible lexicon access for checking its
meaning.

The main concept behind the data structure
holding the display information is dynamic pro-
gramming, i.e. sharing a tree structure into a dag,
a standard technique in tabulated parsers. How-
ever, here the originality of our approach is that the
tree structure is not the forest of parse trees, but
the union of all possible segmentation solutions,
in which sandhi justification has been erased. This
representation allows an exponential saving, both
in space (the displayed graph) and in time (the

Figure 5: Final tagging.

number of disambiguation operations).
The main ideas of this interface have been

reused for summarizing all possible dependencies
between word forms in the dependency parser de-
veloped at the Sanskrit Studies Department of the
University of Hyderabad4. This parser may be ac-
cessed as a second pass of our segmenter, leading
to a smooth composition of the two processes -

4http://sanskrit.uohyd.ernet.in/scl



the user switches seamlessly between tagging and
parsing. When to call the parser is actually an in-
teresting trade-off. If we call it too early, it will
just choke under the enormous number of possible
taggings. On the other hand, should we use our
manual interface till the obtention of a unique tag-
ging, we would be loosing important opportunities
of automation, since the dependency analysis will
discard many inconsistent word combinations.

Our interface has been tested successfully by
the Sanskrit Library team5 for the annotation of
a variety of classical Sanskrit texts. It was used
as filter to an annotator’s interface, with great sav-
ings in manual labour, for about 800 sentences of
the Pañcatantra.
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