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Abstract

We present in this course a few fundamental structures useful for computational
linguistics.

The central structure is that of lexical tree, or trie. A crucial observation is that
a trie is isomorphic to the state space of a deterministic acyclic automaton. More
complex finite-state automata and transducers, deterministic or not, and cyclic or not,
may be represented as tries decorated by extra information. Thus we obtain a family
of structures underlying lexicon-directed linguistic processes.

First we describe plain tries, which are adequate to represent lexicon indexes. Then
we describe decorated tries, or decos, which are appropriate to represent symbol tables,
and dictionaries associating with the lexicon grammatical or other informations. We
then describe how to represent maps and more generally invertible relations between
lexicons. We call these structures lexical maps or lexmaps. Lexmaps are appropriate
for instance to associate flexed forms to lexicon stems and roots, using morphological
operations. Such lexmaps are invertible in the sense that we may retrieve from the
lexmap entry of a flexed form the stems and operations from which it may be obtained.
Finally we show how lexicon directed transducers may be represented using tries dec-
orated with choice points. Such transducers are useful to describe segmentation and
taggings processes.

All data structures and algorithms are described in a computational metalanguage
called Pidgin ML. Pidgin ML is a publication language for the ML family of program-
ming languages. All the algorithms described here could be described as well in Stan-
dard ML or in Objective CAML, to cite two popular ML implementations, or in the lasy
functional language Haskell. They could also be described in a programming language
such as LISP or Scheme, but the strong typing discipline of ML, supporting polymor-
phism and modules, is an insurance that computations cannot corrupt data structures
and lead to run-type errors. An initial chapter of these notes gives a quick overview of
Pidgin ML.

The resulting design may be considered as the reference implementation of a Free
Computational Linguistics Toolkit. It may turn useful as an “off the shelf” toolkit for
simple operations on linguistics material. Due to its lightweight approach we shall talk
of the Zen CL Toolkit.

This toolkit was abstracted from the Sanskrit ML Library, which constitutes its first
large-scale application. Thus some of this material already appeared in the documen-
tation of the Sanskrit Segmenter algorithm, which solves Sandhi Analysis [14]. The
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Sanskrit Library Documentation, a companion to this document, is available at http:
//pauillac.inria.fr/"huet/SKT/DOC/doc.ps under format postscript, doc.pdf un-
der format pdf, and doc.html under format html.

This document was automatically generated from the code of the toolkit using the
Ocamlweb package of Jean-Christophe Fillidtre, with the Latex package, in the literate
programming style pioneered by Don Knuth. The Html version uses the Hevea Tex-to-
Html translator of Luc Maranget.

1 Pidgin ML

We shall use as meta language for the description of our algorithms a pidgin version of the
functional language ML [10, 8, 22, 30]. Readers familiar with ML may skip this section,
which gives a crash overview of its syntax and semantics.

Module Pidgin

The core language has types, values, and exceptions. Thus, 1 is a value of predefined type
int, whereas "CL" is a string. Pairs of values inhabit the corresponding product type. Thus:
(L,"CL") : (nat x string). Recursive type declarations create new types, whose values are
inductively built from the associated constructors. Thus the Boolean type could be declared
as a sum by:

type bool = [True | Falsel;

Parametric types give rise to polymorphism. Thus if = is of type ¢ and [ is of type (list 1),
we construct the list adding x to [ as [z :: []. The empty list is [], of (polymorphic) type
(list o). Although the language is strongly typed, explicit type specification is rarely needed
from the designer, since principal types may be inferred mechanically.

The language is functional in the sense that functions are first class objects. Thus the
doubling integer function may be written as fun z — 2z + x, and it has type int — int. It
may be associated to the name double by declaring:

value double = funz — z + x;
Equivalently we could write:
value double x = x + x;

Its application to value n is written as (double n) or even double n when there is no ambiguity.
Application associates to the left, and thus f = y stands for ((f z) y). Recursive functional
values are declared with the keyword rec. Thus we may define factorial as:

value rec fact n = n x (fact (n —1));

Functions may be defined by pattern matching. Thus the first projection of pairs could be
defined by:
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value fst = fun | (z,y) — z|;
or equivalently (since there is only one pattern in this case) by:
value fst (z,y) = uz;

Pattern-matching is also usable in match expressions which generalize case analysis, such
as: match [ with | [| — True | - — Fulse |, which tests whether list [ is empty, using
underscore as catch-all pattern.

Evaluation is strict, which means that z is evaluated before f in the evaluation of (f z).
The let expressions permit to sequentialize computation, and to share sub-computations.
Thus let z = fact 10 in 2+ will compute fact 10 first, and only once. An equivalent postfix
where notation may be used as well. Thus the conditional expression if b then el else e2 is
equivalent to:

choose b where choose = fun | True — el | False — e2];
Exceptions are declared with the type of their parameters, like in:

exception Failure of string;

An exceptional value may be raised, like in: raise (Failure "div,,0") and handled by a try
switch on exception patterns, such as:

try ezpression with | Failure s — ... ]; ]

Other imperative constructs may be used, such as references, mutable arrays, while loops
and I/O commands, but we shall seldom need them. Sequences of instructions are evaluated
in left to right regime in do expressions, such as: do {el; ... en}.

ML is a modular language, in the sense that sequences of type, value and exception decla-
rations may be packed in a structural unit called a module, amenable to separate treatment.
Modules have types themselves, called signatures. Parametric modules are called functors.
The algorithms presented in this paper will use in essential ways this modularity structure,
but the syntax ought to be self-evident. Finally, comments are enclosed within starred parens
like:

value s = "This,isgay,string"; (* This is a comment *)

Readers not acquainted with programming languages may think of ML definitions as recur-
sive equations over inductively defined algebras. Most of them are simple primitive recursive
functionals. The more complex recursions of our automata coroutines will be shown to be
well-founded by a combination of lexicographic and multiset orderings.

Pidgin ML definitions may actually be directly executed as Objective Caml programs
[20], under the so-called revised syntax [24]. The following development may thus be used
as the reference implementation of a core computational linguistics platform, dealing with
lexical, phonemic and morphological aspects.

2 Basic Utilities

We present in this section some basic utilities libraries.
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2.1 Miscellaneous primitives

Module Gen

This module contains various utilities of general use.

value dirac b = if b then 1 else 0;

value optional f = fun [ None — ()| Some(d) — f d|;
Dump value v on file.

value dump v file =
let cho = open_out file
in do {output _value cho v; close_out cho};

Retrieve value dumped on file; its type should be given in a cast.

value gobble file =
let chi = open_in file
in let v = input_value chi in do {close_in chi; v};

UNIX touch.
value touch file = close_out (open_out file);

value notify_error message =
do {output_string stderr message; flush stderr};

2.2 List processing

We shall use lists intensively. We assume the standard library List.

Module List2

We complement List here with a few auxiliary list service function.
unstack I r = (rev 1)@ r
unstack = List.rev_append

value rec unstack 11 12 =

match [7 with

[[] — (2

| [a = 1] — unstack [ [a :: 12]

Ji
value non_empty = fun [[| — False | - — True |;
Set, operations with lists

value unionl e list = if List.mem e list then list else [e ::list];
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value rec union 1 12 =
match /7 with
[[] — 2
| [e:: 1] — wunion | (unionl e (2)
)
value set_of | = List.fold_left (fun acc x — if List.mem z acc then acc else [z :: acc]) [] [;

last : list o — «

value rec last = fun
[ [] — raise (Failure "last")
(2] — =

I L] — last |

i

truncate n | removes from [ its initial sublist of length n.
truncate : int — list a — list «

value rec truncate n | =
if n = 0 then [ else match [ with
[ [] — failwith "truncate"
| [ r] — truncate (n—1) r
I;

type ranked o = list (int X «);

zip n | assumes [ sorted in increasing order of ranks; it returns a partition of [ as (11, 12)
with /7 maximum such that ranks in /1 are < n. [I is reversed, i.e. we enforce the invariant:
zip nl = (l1,12) such that [ = wunstack 11 12.

zip : int — (ranked o) — ((ranked o) x (ranked «))

value zip n = zip_rec ||
where rec zip_rec acc | = match [ with
[[] = (ace,[])
| [((m, -) as current) :: rest] —
if m < n then zip_rec [current :: acc| rest
else (acc, )
Ji
Coercions between string and list char.
explode : string — list char

value ezplode s =
let rec expl i accu =
if © < 0 then accu else expl (i — 1) [s.[i] == accul
in expl (String.length s — 1) []:

implode : list char — string
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value implode | =
let result = String.create (List.length 1)
in let rec loop i = fun
[[] — result
| [c iz es] — do {String.set result i ¢; loop (i + 1) cs}
| in loop 0 I;

Process a list with function pr for elements and function sep for separator.
process_list_sep : (a — wunit) — (unit — unit) — list « — unit

value process_list_sep pr sep =
let rec pri = fun
[l =0
5] — prs
| [s ::ls] — do {pr s; sep (); prl s}
| in pri;

2.3 Words

We assume that the alphabet of string representations is some initial segment of positive
integers. Thus a string is coded as a list of integers which will from now on be called a word.

For instance, for our Sanskrit application, the Sanskrit alphabet comprises 50 letters,
representing 50 phonemes. Finite state transducers convert back and forth lists of such
integers into strings of transliterations in the roman alphabet, which encode themselves
either letters with diacritics, or Unicode representations of the devanagari alphabet. Thus
1,2,3,4 etc encode respectively the phonemes /a/, /a/, /i/, /1/ etc.

In these notes, we shall assume rather a roman alphabet, and thus 1,2,3,4 etc encode
respectively letters a, b, ¢, d etc.

Module Word

type letter = int
and word = list letter; (x word encoded as sequence of natural numbers )

encode : string — word
decode : word — string

value encode string = List.map int_of _char (List2.explode string)
and decode word = List2.implode (List.map char_of _int word);

We remark that we are not using for our word representations the ML type of strings (which
in OCaml are arrays of characters/bytes). Strings are convenient for English texts (using the
7-bit low half of ASCII) or other European languages (using the ISO-LATIN subsets of full
ASCII), and they are more compact than lists of integers, but basic operations like pattern
matching are awkward, and they limit the size of the alphabet to 256, which is insufficient
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for the treatment of many languages’ written representations. New format standards such as
Unicode have complex primitives for their manipulation, and are better reserved for interface
modules than for central morphological operations. We could have used an abstract type
of characters, leaving to module instantiation their precise definition, but here we chose
the simple solution of using machine integers for their representation, which is sufficient for
large alphabets (in Ocaml, this limits the alphabet size to 1073741823), and to use conversion
functions encode and decode between words and strings. In the Sanskrit application, we use
the first 50 natural numbers as the character codes of the Sanskrit phonemes, whereas string
translations take care of roman diacritics notations, and encodings of devanagari characters.
Lexicographic ordering on words.

lexico : word — word — bool

value rec lexico [1 12 = match I with
[[] — True
| [c1 = r1] — match [2 with

[[] — False
| [¢2 = r2] — if ¢2 < cl then False
else if ¢2 = c1 then lexico 11 12
else True

I
Differential words.
A differential word is a notation permitting to retrieve a word w from another word w’
sharing a common prefix. It denotes the minimal path connecting the words in a trie, as a
sequence of ups and downs: if d = (n, u) we go up n times and then down along word w.

type delta = (int x word); (x differential words x)
Natural ordering on differential words.
value less_diff (n1,wl) (n2,w2) = nl <n2 V (nl =n2) A lexico wl w2,

We compute the difference between w and w’ as a differential word diff w w' = (Jwl|, w2)
where w = p.w! and w’' = p.w2, with maximal common prefix p.
diff : word — word — delta

value rec diff = fun
[[] = funz — (0,2)
| [c = r]asw — fun
— (List.length w,[])
r'l as w' — if ¢ = ¢ then diff r v’
else (List.length w, w')

]

Now w’ may be retrieved from w and d = diff w w’ as w’ = patch d w.
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patch : delta — word — word

value patch (n, w2) w =
let p = List2.truncate n (List.rev w)
in List2.unstack p w2;

3 Zippers

Zippers encode the context in which some substructure is embedded. They are used to
implement applicatively destructive operations in mutable data structures.

3.1 Top-down structures vs bottom-up structures

We understand well top-down structures. They are the representations of initial algebra
values. For instance, the structure bool has two constant constructors, the booleans T'rue
and False. The polymorphic structure list o admits two constructors, the empty list ||
and the list constructor consing a value x : « to a homogeneous list [ : list o to form
la 2 1] : list a.

Bottom-up structures are useful for creating, editing, traversing and changing top-down
structures in a local but applicative manner. They are sometimes called computation con-
texts, or recursion structures. We shall call them zippers, following [11].

Top-down structures are the finite elements inhabiting inductively defined types. Bottom-
up structures are also finite, but they permit the progressive definition of (potentially infinite)
values of co-inductive types. They permit incremental navigation and modification of very
general data types values. We shall also see that they model linear structural functions, in
the sense of linear logic.

Finally, bottom-up computing is the right way to build shared structures in an applicative
fashion, opening the optimisation path from trees to dags. Binding algebras (A-calculus
expressions for inductive values and Bohm trees for the co-inductive ones) may be defined
by either de Bruijn indices or higher-order abstract syntax, and general graph structures may
be represented by some spanning tree decorated with virtual adresses, so we see no reason
to keep explicit references and pointer objects, with all the catastrophies they are liable for,
and we shall stick to purely applicative programming.

3.2 Lists and stacks

Lists are first-in first-out sequences (top-down) whereas stacks are last-in first-out sequences
(bottom-up). They are not clearly distinguished in usual programming, because the under-
lying data structure is the same : the list [x1; z5;... x,] may be reversed into the stack
[z, ...; 22; 1] which is of the same type list. So we cannot expect to capture their difference
with the type discipline of ML. At best by declaring:

type stack o = list a;
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we may use type annotations to document whether a given list is used by a function in
the role of a list or of a stack. But such intentions are not enforced by ML’s type system,
which just uses freely the type declaration above as an equivalence. So we have to check
these intentions carefully, if we want our values to come in the right order. But we certainly
wish to distinguish lists and stacks, since stacks are built and analysed in unit time, whereas
adding a new element to a list is proportional to the length of the list.

A typical exemple of stack use is List2.unstack above. In (unstack | s), s is an accu-
mulator stack, where values are listed in the opposite order as they are in list [. Indeed, we
may define the reverse operation on lists as:
value rev | = unstack 1 [|;

In the standard Ocaml’s library, unstack is called rev_append. Tt is efficient, since it
is tail recursive: no intermediate values of computation need to be kept on the recursion
stack, and the recursion is executed as a mere jump. It is much more efficient, if some list
[; is kept in its reversed stack form s;, to obtain the result of appending [; to [ by calling
rev_append s; ls than to call append [ Iy, which amounts to first reversing /; into s;, and
then doing the same computation. Similarly, the List library defines a function rev_map
which is more efficient than map, if one keeps in mind that its result is the stack order. But
no real discipline of these library functions is really enforced.

Here we want to make this distinction precise, favor local operations, and delay as much
as possible any reversal. For instance, if some list [; is kept in its reversed stack form s;, and
we wish to append list [5 to it, the best is to just wait and keep the pair (s1,[3) as the state
of computation where we have [, in the context s;. In this computation state, we may finish
the construction of the result [ of appending [y to l; by “zipping up” [; with unstack sy Iy, or
we may choose rather to “zip down” [, with unstack Iy s; to get the stack context value rev [.
But we may also consider that the computation state (si,ly) represents [ locally accessed
as its prefix [; stacked in context value s; followed by its suffix /5. And it is very easy to
insert as this point a new element z, either stacked upwards in state ([z :: s1],l2), or consed
downwards in state (s, [z :: l2]).

Once this intentional programming methodology of keeping focused structures as pairs
(context, substructure) is clear, it is very easy to understand the generalisation to zippers,
which are to general tree structures what stacks are to lists, i.e. upside-down access repre-
sentations of (unary) contexts.

3.3 Contexts as zippers

Module Zipper

We start with ordered trees. We assume the mutual inductive types:

type tree = | Tree of arcs |
and arcs = list tree;
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The tree zippers are the contexts of a place holder in the arcs, that is linked to its left
siblings, right siblings, and parent context:

type tree_zipper =

[ Top

| Zip of (arcs x tree_zipper x arcs)

i
Let us model access paths in trees by sequences on natural numbers naming the successive
arcs 1, 2, etc.

type access = list int
and domain = list access;

We usually define the domain of a tree as the set of accesses of its subterms:
dom : tree — domain

value rec dom = fun
| Tree(arcs) —
let doms = List.map dom arcs in

let f (n,d) dn = let ds = List.map (fun v — [n:: u]) dnin
(n+ 1, List2.unstack ds d) in
let (_,d) = List.fold_left f (1,[[]]) doms in List.rev d
i
Thus, we get for instance:
value tree0 = Tree [Tree [Tree ||; Tree [||; Tree [|];

dom(tree0);
(¢ = ([ [1]; (15 1]; [15 2f; [2]] : domain )

Now if rev(u) is in dom(t), we may zip-down ¢ along u by changing focus, as follows:
type focused_tree = (tree_zipper X tree);

value nth_context n = nthe n []

where rec nthe n | = fun
[ [] — raise (Failure "out of domain")
| [x 7] — if n = 1then ({,z,7) else nthe (n —1) [z =[] r
i

value rec enter u t = match u with
[[] — ((Top,t) : focused_tree)
| [n 1] — let (2,t1) = enter | tin
match ¢7 with
[ Tree(arcs) — let (1,12, r) = nth_context n arcs in

| (Zip(l, z,7),12)

I;



Module Zipper §1 12

and now we may for instance navigate tree(:
enter [2;1] tree0;
(Zip ([Tree []], Zip ([], Top, [Tree []]), []), Tree []): focused_tree

3.4 Structured edition on focused trees

We shall not explicitly use these access stacks and the function enter; these access stacks
are implicit from the zipper structure, and we shall navigate in focused trees one step at a
time, using the following structure editor primitives on focused trees.

value down (z,t) = match ¢ with
| Tree(arcs) — match arcs with
[[] — raise (Failure "down")
| [hd o tl] — (Zip([], 2, tl), hd)
]
)
value up (z,t) = match z with
| Top — raise (Failure "up")
| Zip(l,u,r) — (u, Tree(List2.unstack [ [t :: 7]))

)

value left (z,t) = match z with
| Top — raise (Failure "left")
| Zip(l,u,r) — match [ with
[[] — raise (Failure "left")
| [elder :: elders| — (Zip(elders,u, [t :: 1]), elder)

]
)
value right (z,t) = match 2z with
| Top — raise (Failure "right")
| Zip(l, u,r) — match r with
[[] — raise (Failure "right")
| [younger :: youngers] — (Zip([t :: [], u, youngers), younger)
]
i
value del_l (z,_) = match z with
[ Top — raise (Failure "del_1")
| Zip(l,u,r) — match [ with
[[] — raise (Failure "del_1")
| [elder :: elders] — (Zip(elders, u,r), elder)

]
I;
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value del_r (z,_) = match z with
[ Top — raise (Failure "del_r")
| Zip(l, w,r) — match r with
[[] — raise (Failure "del_r")
| [younger :: youngers] — (Zip(l, u, youngers), younger)
]
l

value replace (z,-) t = (2,1);

Note how replace is a local operation, even though all our programming is applicative.

3.5 Zipper operations

The editing operations above are operations on a finite tree represented at a focus. But we
may also define operations on zippers alone, which may be thought of as operations on a
potentially infinite tree, actually on all trees, finite or infinite, having this initial context.
That is, focused trees as pairs (context,structure) refer to finite elements (inductive values),
whereas contexts may be seen as finite approximations to streams (co-inductive values), for
instance generated by a process. For example, here is an interpreter that takes a command
to build progressively a zipper context:

type context_construction =
| Down | Left of tree | Right of tree |;

value build z = fun

[ Doun — Zip([], z,[])

| Left(t) — match z with
[ Top — raise (Failure "build Left")
| Zip(l,u,r) — Zip([t = 1], u,r)
]

| Right(t) — match z with
| Top — raise (Failure "build, Right")
| Zip(l,u, 1) — Zip(l,u, [t 2 1))
]

I;

But we could also add to our commands some destructive operations, to delete the left or
right sibling, or to pop to the upper context.

3.6 Zippers as linear maps

We developed the idea that zippers were dual to trees in the sense that they may be used
to represent the approximations to the coinductive structures corresponding to trees as
inductive structures. We shall now develop the idea that zippers may be seen as linear
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maps over trees, in the sense of linear logic. In the same way that a stack st may be thought
of as a representation of the function which, given a list [, returns the list unstack st [, a
zipper z may be thought of as the function which, given a tree ¢, returns the tree zip_up z t,
with:

value rec zip_up z t = match 2z with

[ Top — t
| Zip(l, up, ) — zip_up up (Tree(List2.unstack [ [t :: r]))
J;
Thus zip_up may be seen as a coercion between a zipper and a map from trees to trees,
which is linear by construction.
Alternatively to computing zip_up z t, we could of course just build the focused tree (z, ),
which is a “soft” representation which could be rolled in into zip_up z t if an actual term is
needed later on.
Applying a zipper to a term is akin to substituting the term in the place holder represented
by the zipper. If we substitute another zipper, we obtain zipper composition, as follows.
First, we define the reverse of a zipper:

value rec zip_unstack z1 22 = match z1 with
[ Top — 22
| Zip(l,z, ) — zip_unstack z (Zip(l, 22, 1))

)

value zip_rev z = zip_unstack z Top;
And now composition is similar to concatenation of lists:

value compose z1 22 =
zip_unstack (zip_rev 22) z1;

It is easy to show that Top is an identity on the left and on the right for composition,
and that composition is associative. Thus we get a category, whose objects are trees and
morphisms are zippers, which we call the Zipper category of linear tree maps.

We end this section by pointing out that tree splicing, or adjunction in the terminology
of Tree Adjoint Grammars, is very naturally expressible in this framework. Indeed, what
is called a rooted tree in this tradition is here directly expressed as a zipper zroot, and
adjunction at a tree occurrence is prepared by decomposing this tree at the given occurrence
as a focused tree (z,t). Now the adjunction of zroot at this occurrence is simply computed
as:

value splice_down (z,t) zroot = (compose z zroot, t);
if the focus of attention stays at the subtree ¢, or
value splice_up (z,t) zroot = (z, zip_up zroot t);

if we want the focus of attention to stay at the adjunction occurrence. These two points of
view lead to equivalent structures, in the sense of tree identity modulo focusing:

value equiv (z,t) (2/,t") = (zip_up z t = zip_up 2’ t');
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3.7 Zippers for binary trees

We end this section by showing the special case of zippers for binary trees.

Module Bintree

type bintree =
[ Null
| Bin of (bintree x bintree)

Ji
Occurrences as boolean lists (binary words).

type binocc = list bool
and domain = list binocc;

binlexico : binocc — binocc — bool

value rec binlexico 11 12 = match [1 with
[[] — True
| [b1 = r1] — match [2 with
[|] — False

[
| [b2 = 2] — if b1 = b2 then binlexico r1 12 else b2
]

J;
occurs : binocc — bintree — bool

value rec occurs occ bt = match occ with
[[] — True
| [b:: rest] — match bt with
| Null — False
| Bin(bl, br) — occurs rest (if b then br else bl)

]
I;

paths : bintree — domain

value paths = pathrec [] []
where rec pathrec acc occ = fun
[ Null — [List.rev occ :: acc]
| Bin(bl, br) — let right = pathrec acc [True :: occ| br

in [List.rev occ :: pathrec right [False :: occ] bl]
Ik
occurs occ t = List.mem occ (paths t). We assume paths t to be in binlexico order.
bintree_ofl : binocc — bintree
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value rec bintree_ofl = fun
[[] — Null
| [b:: 0occ] — if b then Bin(Null, bintree_of1 occ)
else Bin(bintree_of1 occ, Null)

i
Zippers
binary contexts = linear bintree maps

type binzip =

[ Top

| Left of (binzip X bintree)
| Right of (bintree x binzip)
)

zip_up : binzip — bintree — bintree

value rec zip_up z bt = match 2z with

[ Top — bt

| Left(up, br) — zip_up up (Bin(bt, br))
| Right(bl, up) — zip_up up (Bin(bl, bt))
i

extend : bintree — binocc — bintree

value extend tree = enter_edit Top tree
where rec enter_edit z t occ = match occ with
[[] — =zip_up 2z t
| [b:: rest] — match ¢ with
| Bin(bl, br) — if b then enter_edit (Right(bl, z)) br rest
else enter_edit (Left(z, br)) bl rest
| Null — zip_up z (bintree_of1 occ)

]
I;

We maintain extend t occ = if occurs occ t then t else bintree_of [occ ::

bintree_of : domain — bintree

value bintree_of = binrec Null
where rec binrec acc = fun
[[] — acc

| [occ :: dom] — binrec (extend acc occ) dom
)

Invariants:
e paths (bintree_of dom) = {occ | binlexico occ o with o € dom}

e bintree_of (paths tree) = tree

paths t).
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e bintree_ofl occ = bintree_of [occ]

4 'Trie Structures for Lexicon Indexing

Tries are tree structures that store finite sets of strings sharing initial prefixes.

4.1 'Tries as Lexical Trees

Tries (also called lexical trees) may be implemented in various ways. A node in a trie
represents a string, which may or may not belong to the set of strings encoded in the trie,
together with the set of tries of all suffixes of strings in the set having this string as a prefix.
The forest of sibling tries at a given level may be stored as an array, or as a list if we assume
a sparse representation. It could also use any of the more efficient representations of finite
sets, such as search trees [3]. Here we shall assume the simple sparse representation with lists
(which is actually the original presentation of tries by René de la Briantais (1959)), yielding
the following inductive type structure.

Module Trie

Tries store sparse sets of words sharing initial prefixes.

type trie = [ Trie of (bool x arcs) |
and arcs = list (Word.letter x trie);

Trie(b,[) stores the empty word [] iff b, and all the words of arcs in [, while the arc (n, t)
stores all words [n :: ¢] for ¢ a word stored in t.

Note that letters decorate the arcs of the trie, not its nodes. For instance, the trie storing
the set of words [[1]; [2]; [2; 2]; [2; 3]] is represented as
Trie( False, [(1, Trie( True, [])); (2, Trie( True, [(2, Trie( True,[])); (3, Trie( True,[]))]))])-

This example exhibits one invariant of our representation, namely that the integers in
successive sibling nodes are in increasing order. Thus a top-down left-to-right traversal of
the trie lists its strings in lexicographic order. The algorithms below maintain this invariant.
Zippers as Trie contexts.

Let us show how to add words to a trie in a completely applicative way, using the notion
of a trie zipper.

type zipper =
[ Top
| Zip of (bool x arcs x Word.letter X arcs X zipper)

]

and edit_state = (zipper X trie);

An edit_state (z, t0) stores the editing context as a zipper z and the current subtrie t0. We
replace this subtrie by a trie ¢ by closing the zipper with zip_up t 2 as follows.
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exception Redundancy;
Zip_up : zipper — trie — trie

value rec zip_up z t = match 2z with

[ Top — t

| Zip(b, left, n, right, up) —

zip_up up (Trie(b, List2.unstack left [(n,t) :: right]))

i
We need two auxiliary routines. The first one, zip, was given in module List2. Its name
stems from the fact that it looks for an element in an a-list while building an editing context
in the spirit of a zipper, the role of zip_up being played by unstack. The second routine,
given a word w, returns the singleton filiform trie containing w as trie_of w.
trie_of : word — trie

value rec trie_of = fun

[[] — Trie(True,[])

| [n:: rest] — Trie(False, [(n, trie_of rest)])
]

)

Insertion and lookup.
We are now ready to define the insertion algorithm:
enter : trie — word — trie

value enter trie = enter_edit Top trie
where rec enter_edit z t = fun
[ [] — match t with [ Trie(b,l) —
if b then raise Redundancy
else zip_up z (Trie( True,l)) |
| [n:: rest] — match ¢ with
[ Trie(b,l) — let (left, right) = List2.zip n l
in match right with
[ [] — =zip_up (Zip(b,left,n,[], z)) (trie_of rest)
| [(m,u) = r] —
if m = n then enter_edit (Zip(b, left, n,r, 2)) u rest
else zip_up (Zip(b, left, n, right, 2)) (trie—of rest)
]
]
i

contents : trie — list word
Note that contents lists words in lexicographic order.

value contents = contents_prefix ||

where rec contents_prefix pref = fun
[ Trie(b,l) —
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let down = let f [ (n,t) = [ Q (contents_prefix [n :: pref] t)
in List.fold_left f [] (
in if b then [(List.rev pref) :: down] else down

I;
mem : word — trie — bool

value rec mem w = fun
| Trie(b,l) — match w with
= b
| [n 1] — trylett = List.assoc n |
in mem 7t
with [ Not_found — False |

]
i

Tries may be considered as deterministic finite state automata graphs for accepting the (fi-
nite) language they represent. This remark is the basis for many lexicon processing libraries.
Actually, the mem algorithm may be seen as an interpreter for such an automaton, taking
its state graph as its trie argument, and its input tape as its word one. The boolean in-
formation in a trie node indicates whether or not this node represents an accepting state.
These automata are not minimal, since while they share initial equivalent states, there is no
sharing of accepting paths, for which a refinement of lexical trees into dags is necessary. We
shall look at this problem in the next section. First we give the rest of the Trie module.

value empty = Trie(False, []);
next_trie returns the first element of its ¢rie argument.

value next_trie = next_rec []
where rec next_rec acc = fun
[ Trie(b,l) — if bthen List.rev acc
else match / with
[ [] — raise (Failure "next_trie")
| [(n,u) 2 ] — next_rec [n :: acc] u
]

)
last_trie returns the last element of its {rie argument.

value last_trie = last_rec []
where rec last_rec acc = fun
[ Trie(b,l) — match [ with
[ [| — if bthen List.rev acc else raise (Failure "last_trie")
| - — let (n,u) = List2.last [
in last_rec [n :: acc] u
]
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J;
size trie is the number of words stored in trie.

value rec size = fun
[ Trie(b, arcs) —
let s = List.fold_left count 0 arcs
where count n (_,t) = n+ size t
in s + Gen.dirac b

J;

A {irie iterator

iter : (word — wunit) — trie — wunit

value iter f t = iter_prefiz [| t
where rec iter_prefiz pref = fun
[ Trie(b, arcs) — do
{if b then f (List.rev pref) else ()
s let phi (n,u) = idter_prefix [n :: pref]| u
in List.iter phi arcs
¥

l;

4.2 Implementing a lexicon as a trie

Now, assuming the coercion encode from strings to words, we build a lexicon trie from a list
of strings by function make_lex, using Ocaml’s fold_le ft from the List library (the terminal
recursive list iterator).

Module Lexicon
make_lex raises Redundancy if duplicate elements in its argument.
make_lex : list string — trie

value make_lex =
List.fold_left (fun lex ¢ — Trie.enter lex (Word.encode c¢)) Trie.empty;

strings_of : trie — list string
value strings_of t = List.map Word.decode (Trie.contents t);
strings_of (make_lex ) gives [ in lexicographic order.

assert (strings_of (make_lex ["a";"b";"ab"]) = ["a"; "ab"; "b"]);
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4.3 Building a trie lexicon from an ASCII stream

The following function reads on its standard input a stream of ASCII strings separated by
newline characters, builds the corresponding trie lexicon, and writes its representation on its
standard output.

Module Make_lex

value lexicon = ref Trie.empty;

value trie_of _strings =
let lexicon = ref Trie.empty in process_strings
where rec process_strings () =
try while True do
{ let str = read_line ()
in lezicon.val :== Trie.enter lexicon.val (Word.encode str) }
with [ End_of _file — output_value stdout lexicon.val |,

trie_of _strings ();

For instance, with english.1st storing a list of 173528 words, as a text file of size 2Mb,
the command make_lex < english.lst > english.rem produces a trie representation as
a file of 4.5Mb. Obviously we are wasting storage because we create a huge structure which
shares the words along with their common initial prefixes, but which ignores the potential
space saving of sharing common suffixes. We shall develop such sharing in a completely
generic manner, as follows.

5 Sharing

Sharing data representation is a very general problem. Sharing identical representations is
ultimately the responsibility of the runtime system, which allocates and desallocates data
with dynamic memory management processes such as garbage collectors.

But sharing of representations of the same type may also be programmed by bottom-up
computation. All that is needed is a memo function building the corresponding map without
duplications. Let us show the generic algorithm, as an ML functor.

5.1 The Share functor

This functor (that is, parametric module) takes as parameter an algebra with its domain
seen here as an abstract type. Here is its public interface declaration:
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Interface for module Share

module Share : functor (Algebra :sig type domain = «;
value size : int; end)
— sig value share : Algebra.domain — int — Algebra.domain;
value memo : array (list Algebra.domain); (x for debug )
end;

Module Share

module Share (Algebra :sig type domain = «; value size : int; end) = struct

Share takes as argument a module Algebra providing a type domain and an integer value
size, and it defines a value share of the stated type. We assume that the elements from the
domain are presented with an integer key bounded by Algebra.size. That is, share z k will
assume as precondition that 0 < k < Maxz with Max =Algebra.size.

We shall construct the sharing map with the help of a hash table, made up of buckets
(k, [e1; €2;...e,]) where each element e; has key k.

type bucket = list Algebra.domain;

A bucket stores a set e of elements of domain of a given key these sets are here implemented
as lists invariant : ¢ = [e_I; ... e_n] with e_i = e_j only if 4 = j. That is, a bucket
consists of distinct elements.

The memory is a hash-table of a given size and of the right bucket type.

value memo = Array.create Algebra.size ([] : bucket);

We shall use a service function search, such that search e [ returns the first y in [ such that
y = e or or else raises the exception Not_found.

Note search e = List.find (fun 2 — x =e).
value search e = searchrec
where rec searchrec = fun

[[] — raise Not_found
| [x::]] — if 2 = e then z else searchrec |

l
Now share z k, where k is the key of z, looks in k-th bucket [ (this is meaningful since we
assume that the key fits in the size: 0< k < Algebra.size) and returns y in [ such that y = z
if it exists, and otherwise returns z memorized in the new k-th bucket [z :: e]. Since share
is the only operation on buckets, we maintain that such y is unique in its bucket when it
exists.

value share element key = (x assert 0 < key < Algebra.size %)
let bucket = memo.(key) in
try search element bucket with
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[Not_found — do {memo.(key) := [element :: bucket]; element}];

Instead of share we could have used the name recall, or memory, since either we recall a
previously archived equal element, or else this element is archived for future recall. It is an
associative memory implemented with a hash-code. But the hash function is external to the
memory, it is given as a key with each item .

It is an interesting property of this modular design that sharing and archiving are ab-
stracted as a common notion.
Algorithm. A recursive structure of type domain is fully shared if any two distinct subele-
ments have different values. If such a structure is traversed in a bottom-up way with sys-
tematic memoisation by share, replacing systematically an element by its memoised equal
if possible, then it is reconstructed with full sharing. This only assumes that two equal
elements have the same key.

end;

5.2 Compressing tries

We may for instance instantiate Share on the algebra of tries, with a size hash_max depending
on the application.

Module Mini

value hash_maz = 9689; (x Mersenne 21 )

module Dag = Share.Share (struct type domain = Trie.trie;
value size = hash_mazx; end);

And now we compress a trie into a minimal dag using share by a simple bottom-up traversal,
where the key is computed along by hashing. For this we define a general bottom-up traversal
function, which applies a parametric lookup function to every node and its associated key.

value hash0 = 0 (* linear hash-code parameters )
and hashl letter key sum = sum + letter X key
and hash b arcs = (arcs + Gen.dirac b) mod hash_maz;

value traverse lookup = travel
where rec travel = fun
[ Trie.Trie(b, arcs) —
let f (tries, span) (n,t) =
let (t0,k) = travel t
in ([(n, t0) :: tries|, hash1 n k span)
in let (arcs0, span) = List.fold_left f ([], hash0) arcs
in let key = hash b span
in (lookup (Trie.Trie(b, List.rev arcs0)) key, key)
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J;
Now we make a dag from a trie by recognizing common subtries.

value compress = traverse Dag.share;

value minimize trie = let (dag,-) = compress trie in dag,;

5.3 Dagified lexicons

We now return to our problem of building a lexicon which shares common suffixes of words
as well as common prefixes.

Module Dagify

For instance, we may dagify a ¢rie value read on the standard input stream with minimize,
and write the resulting dag on standard output by calling dagify(), with:

value rec dagify () =
let lexicon = (input_value stdin : Trie.trie)
in let dag = Mini.minimize lexicon in output_value stdout dag;

And now if we apply this technique to our english lexicon, with command
dagify <english.rem >small.rem, we now get an optimal representation which only needs
1Mb of storage, half of the original ASCII string representation.

The recursive algorithms given so far are fairly straightforward. They are easy to debug,
maintain and modify due to the strong typing safeguard of ML, and even easy to formally
certify. They are nonetheless efficient enough for production use, thanks to the optimizing
native-code compiler of Objective Caml.

In our Sanskrit application, the trie of 11500 entries is shrunk from 219Kb to 103Kb
in 0.1s, whereas the trie of 120000 flexed forms is shrunk from 1.63Mb to 140Kb in 0.5s
on a 864MHz PC. Our trie of 173528 English words is shrunk from 4.5Mb to 1Mb in 2.7s.
Measurements showed that the time complexity is linear with the size of the lexicon (within
comparable sets of words). This is consistent with algorithmic analysis, since it is known that
tries compress dictionaries up to a linear entropy factor, and that perfect hashing compresses
trees in dags in linear time [9).

Tuning of the hash function parameters leads to many variations. For instance if we
assume an infinite memory we may turn the hash calculation into a one-to-one Gédel num-
bering, and at the opposite end taking hash_max to 1 we would do list lookup in the unique
bucket, with worse than quadratic performance.

Using hash tables for sharing with bottom-up traversal is a standard dynamic program-
ming technique, but the usual way is to delegate computation of the hash function to some
hash library, using a generic low-level package. This is what happens for instance if one uses
the module hashtbl from the Ocaml library. Here the Share module does not compute the
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keys, which are computed on the client side, avoiding re-exploration of the structures. That
is, Share is just an associative memory. Furthermore, key computation may take advantage
of specific statistical distribution of the application domain.

We shall see later another application of the Share functor to the minimization of the
state space of (acyclic) finite automata. Actually, what we just did is minimization of acyclic
deterministic automata represented as lexical dags.

More sophisticated compression techniques are known, which may combine with array
implementations insuring fast access, and which may extend to possibly cyclic automata
state spaces. Such techniques are used in lexical analysers for programming languages, for
which speed is essential. See for instance the table-compression method described in section
3.9 of [1].

6 Variation: Ternary trees

Let us now try a variation on lexicon structure, using the notion of a ternary tree.

This notion is fairly natural if one wants to restore for ordered trees the locality of zipper
navigation in binary trees. Remark that when we go up to the current father, we have to
close the list of elder siblings in order to restore the full list of children of the upper node.
With ternary trees each tree node has two lists of children, elders and youngers. When
we go up in the zipper structure, it is now a constant cost operation. Remark that this
partition into elders and youngers is not intrinsic and carries no information, except the
memory of the previous navigation. This is again an idea of optimizing computation by
creating redundancy in the data structure representations. We may for instance exploit this
redundancy in balancing our trees for faster access.

Ternary trees are inspired from Bentley and Sedgewick|3].

Module Tertree

Trees are ternary trees for use as two-ways tries with zippers. Tree(b, [, 1, t,r) at occurrence
u stores u as a word iff b = True, and gives access to t at occurrence |u :: i| as a son, having
[ and r as respectively left stack of elder and right list of younger brothers; Leaf (True) at
occurrence u stores u as a word with no descendants; Leaf (False) is only needed to translate
Trie.empty = Trie( False,[]).

type tree = | Tree of (bool x forest x int X tree X forest)
| Leaf of bool

]

and forest = list (int X tree);

Invariant : integers are in increasing order in siblings, no repetition.
Simple translation of a trie as a tree.

value rec trie_to_tree = fun
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[ Trie.Trie(b, arcs) — match arcs with
[[] — Leaf(b)
| [(n,t) :: arcs|] — Tree(b,[], n, trie_to_tree t, List.map [ arcs)
where f (n,t) = (n,trie_to_tree t)
]
Ji
exception Anomaly;
More sophisticated translation as a balanced tree.

value rec balanced = fun
[ Trie.Trie(b, arcs) — match arcs with
(1] — Leaf(h)
| -~ — (* bal balances k first arcs of 1 and stacks them in acc *)
let rec bal acc | k = (x assert |I| > k x)
if £ =0 then (acc,!)
else match / with

[ [| — raise Anomaly (x impossible by assertion )
[(n,t) = 7] — bal [(n,balanced t) :: acc] r (k —1)

|
]
in let (stack, rest) = let half = (List.length arcs)/2
in bal || arcs half
in match rest with
[[] — raise Anomaly (x |rest| = |arcs| — half > 0 )
| [(n,t) 2 right] —
Tree(b, stack,n, balanced t, List.map f right)
where f (n,t) = (n, balanced t)

]
i
type zipper =
[ Top
| Zip of (bool x forest x int X forest x zipper)
Ji
zp_up : tree — zipper — tree
value rec zip_up t = fun
[ Top — t
| Zip(b, left, n, right, up) — zip_up (Tree(b, left, n, t, right)) up
J;

tree_of c builds the filiform Zree containing c.

tree_of : word — trie
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value rec tree_of = fun

[[] — Leaf(False)

| [n::]]] — Tree(False,[], n, Leaf ( True),[])

| [n:: rest] — Tree(False,|], n,tree_of rest,[])
]

)

mem_tree : word — tree — bool

value rec mem_tree ¢ = fun
| Tree(b,l,n,t,r) — match ¢ with
) — b
| [0 8] —

let rec memrec I ntr =

if i = n then mem_tree s t

else if i < n then match [ with
[ [] — False
| [((m,u) 2 l'] — memrec ! m u [(n,t):r]
}

else match r with
[ [] — False
| [(m,u) 1] — memrec [(n,t) = 1] mur’
]

in memrec lntr

]
]|Leaf(b) — b A c=]]

We assume that enter used over tries, and that trees are not updated.

Translates trie in entries_file into corresponding tree.

value translate_entries entries_file result_file =
let entries_trie = (Gen.gobble entries_file : Trie.trie)
in Gen.dump (balanced entries_trie) result_file;

Module Minitertree

Similarly to Min: for tries, we may dagify ternary trees.
value hash_mazr = 9689; (x Mersenne 21 x)

module Dag = Share.Share (struct type domain = Tertree.tree;
value size = hash_mazx; end);

value hash0) = 0 (x linear hash-code parameters *)
and hashl letter key sum = sum + letter X key

and hash b arcsl k n arcsr = (arcsl + arcsr + n x k+ Gen.dirac b) mod hash_max;
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value leaff = Tertree.Leaf False
and leaft = Tertree.Leaf True;

value traverse lookup = travel
where rec travel = fun
| Tertree. Tree(b, fl,n, t, fr) —
let f (trees, span) (n,t) =
let (t0,k) = travel t
in ([(n, t0) :: trees], hash1 n k span)
in let (arcsl, spanl) = List.fold_left f ([], hash0) fl
and (t1,k1) = travel t
and (arcsr, spanr) = List.fold_left f (][], hash0) fr in
let key = hash b spanl k1 n spanr in
(lookup (Tertree. Tree(b, List.rev arcsl, n, t1, List.rev arcsr)) key, key)
| Tertree.Leaf b — if b then (leaft, 1) else (leaff,0)

)

Now we make a dag from a trie by recognizing common subtries.
value compress = traverse Dag.share;
value minimize tree = let (dag,-) = compress tree in dag;

value rec dagify_tree () =
let lezicon = (input_value stdin : Tertree.tree)
in let dag = minimize lexicon in output_value stdout dag;

Ternary trees are more complex than tries, but use slightly less storage. Access is poten-
tially faster in balanced trees than tries. A good methodology seems to use tries for edition,
and to translate them to balanced ternary trees for production use with a fixed lexicon.

The ternary version of our english lexicon takes 3.6Mb, a savings of 20% over its trie
version using 4.5Mb. After dag minimization, it takes 1Mb, a savings of 10% over the trie
dag version using 1.1Mb. In the case of our sanskrit lexicon index, the trie takes 221Kb and
the tertree 180Kb, whereas shared as dags the trie takes 103Kb and the tertree 96Kb.

7 Decorated Tries for Flexed Forms Storage

7.1 Decorated Tries

A set of elements of some type 7 may be identified as its characteristic predicate in 7 — bool.
A trie with boolean information may similarly be generalized to a structure representing a
map, or function from words to some target type, by storing elements of that type in the
information slot.
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In order to distinguish absence of information, we could use a type (option info) with
constructor None, presence of value v being indicated by Some(v). We rather choose here
a variant with lists, which are versatile to represent sets, feature structures, etc. Now we
may associate to a word a non-empty list of information of polymorphic type «, absence of
information being encoded by the empty list. We shall call such associations a decorated
trie, or deco in short.

Module Deco

Same as Trie, except that info carries a list. A deco associates to a word a non-empty list
of attributes.
Tries storing decorated words.

type deco a = [ Deco of (list « X darcs a) |
and darcs o = list (Word.letter x deco a);

Invariant: integers are in increasing order in darcs, no repetition.
The zipper type is adapted in the obvious way, and algorithm zip_up is unchanged.

type zipd a =
[ Top
| Zip of ((list o) x (darcs a) x Word.letter x (darcs o) x (zipd ))

i
zip_up : (zipd a) — (deco o) — (deco )

value rec zip_up z t = match 2 with
[ Top — t
| Zip(i, left, n, right, up) — zip_up up (Deco(i, List2.unstack left [(n,t) :: right]))

)

Function trie_of becomes deco_of , taking as extra argument the information associated with
the singleton trie it constructs.

deco_of i w builds the filiform deco containing w with info .

deco_of : (list a) — word — (deco )

value deco_of i = decrec
where rec decrec = fun
[[] — Deco(i,[])

| [n:: rest] — Deco([],[(n, decrec rest)])
J;
Note how the empty list [ | codes absence of information. We generalize algorithm enter into

add, which unions new information to previous one:
add : (deco a) — word — (list «) — (deco «)

value add deco word i = enter_edit Top deco word
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where rec enter_edit z d = fun
[ [] — match d with [ Deco(j,l) — zip_up z (Deco(List2.union i j, 1)) |
| [n:: rest] — match d with
[ Deco(j,l) — let (left, right) = List2.zip n l
in match right with
[ [] — =zip_up (Zip(j, left,n,[],2)) (deco_of i rest)
[ [(m,w) s 7] —
if m = n then enter_edit (Zip(j, left,n,r,2)) u rest
else zip_up (Zip(j, left, n, right, z)) (deco_of i rest)
]
]
J;

value empty = Deco([],[]);

Invariant: contents returns words in lexicographic order.
contents : deco — list word

value contents t = contents_prefix [] t
where rec contents_prefiz pref = fun
[ Deco(i,l) —
let down = let f 1 (n,t) = | Q (contents_prefix [n :: pref] t)
in List.fold_left f [] 1
in if i =[] then down else [(List.rev pref,i) :: down|

)
iter : (word — a — unit) — (deco a) — wunit
value iter f t = dter_prefiz [| t
where rec iter_prefiz pref = fun
| Deco(i,l) — do
{ List.iter (f (List.rev pref)) i (* no action if i = [] *)
i let phi (n,u) = iter_prefiz [n :: pref] w in List.iter phi

s

fold : (o« — word — (list ) — a) — a — (deco ) — «a

value fold f x t = iter_prefix [| x t

where rec iter_prefiz pref x = fun
[ Deco(i,l) —
let accu = if i =[] then z else (f x (List.rev pref) i)

and g = (n,t) = idter_prefix [n :: pref] z t
in List.fold_left g accu [
i
assoc : word — (deco a) — (list )

value rec assoc ¢ = fun
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[ Deco(i, arcs) — match ¢ with
[ — i
| [n::r] — trylett = List.assoc n arcs
in assoc 1 1
with [ Not_found — [] ]

]
J;

next t returns the first element of deco ¢ with non-empty info.

value next t = next_rec || t
where rec next_rec pref = fun
[ Deco(i, arcs) —
if ¢ =[] then match arcs with
[[] — raise (Failure "next_deco")
| [(n,u) = _] — next_rec [n :: pref] u

]

else List.rev pref];
last t returns the last element of deco t.

value last t = last_rec [| 1
where rec last_rec acc = fun
| Deco(i,l) — match [ with
[[] — List.rev acc
| - — let (m,u) = List2.last |
in last_rec [m :: acc] u
]

J;
Now the forgetful functor: forget_deco : (deco o) — trie

value rec forget_deco = fun
[ Deco(i,l) —
Trie. Trie(— (i = []), List.map (fun (n,t) — (n, forget_deco t)) 1)
)

7.2 Lexical maps

We can easily generalize sharing to decorated tries. However, substantial savings will result
only if the information at a given node is a function of the subtrie at that node, i.e. if
such information is defined as a trie morphism. This will not be generally the case, since
this information is in general a function of the word stored at that point, and thus of all
the accessing path to that node. The way in which the information is encoded is of course
crucial. For instance, encoding morphological derivation as an operation on the suffix of a
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flexed form is likely to be amenable to sharing common suffixes in the flexed trie, whereas
encoding it as an operation on the whole stem will prevent any such sharing.

In order to facilitate the sharing of mappings which preserve an initial prefix of a word,
we shall use the notion of differential word above.

We may now store inverse maps of lexical relations (such as morphology derivations)
using the following structures (where the type parameter a: codes the relation).

Module Lexmap

A specialisation of Deco, with info localised to the current word.

type inverse a = (Word.delta x «)
and inv_map a = list (inverse a);

Such inverse relations may be used as decorations of special lexical trees called lexical maps.
open Deco;
type lexmap a = deco (inverse a);

Typically, if word w is stored in a lezmap at a node whose decoration carries (d, r), this
represents the fact that w is the image by relation r of w’ = patch d w. Such a lexmap is
thus a representation of the image by r of a source lexicon. This representation is invertible,
while preserving maximally the sharing of prefixes, and thus being amenable to sharing.
Here « is list morphs. When word w has info |... (delta, () ...] with delta = diff w w' it tells
that R w" w for every morph relation R in [ where w’' = patch delta w.

value single (d,i) = (d,[i]);
add_inv : (inverse a) — (inv_map (list a)) — (inv_map (list )

value rec add_inv ((delta, flex) as i) = fun
[[] — [single i]
| [(d, lflex) :: 1] as infos —
if d = delta then [(d, [flex :: Iflex]) :: ]
else if Word.less_diff d delta then [(d, lflex) :: add_inv i []
else [(single i) :: infos]
)

addl : (lexmap (list «)) — word — (inverse o) — (lexmap (list o))

value addl lexmap word i = enter_edit Top lexmap word
where rec enter_edit z d = fun
[[] — match d with [ Deco(j,1) — zip_up z (Deco(add_inv i j,1)) |
| [n:: rest] — match d with
[ Deco(j,1) — let (left, right) = List2.zip n |
in match right with
[[] — zip_up (Zip(j, left,n,[], 2)) (deco_of [single i] rest)
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[, 0) 5 7] —
if m = n then enter_edit (Zip(j,left,n,r,z)) u rest
else zip_up (Zip(j, left, n, right, z)) (deco_of [single i] rest)
]
]

7.3 Minimizing lexical maps

We may now profit of the local structure of lexical maps to share them optimally as dags.

Interface for module Minimap

Minimization of Lexical Maps.

module Minimap : functor (Map :sig type flexed = «; end)
— sig type flexed_map = Lexmap.lexmap (list Map.flexed);
value minimize : flexed_map — flexed_map; end;

Module Minimap

module Minimap (Map :sig type flexed = «; end) = struct

Minimization of lexmaps of flexed forms as dags by bottom-up hashing.

type flezed_map = Lexmap.lexmap (list Map.flezed);

value hash_mazr = 9689; (x Mersenne 21 x)

module Flexed = struct type domain = flexed_map; value size = hash_max; end;
module Memo = Share.Share Flexed,

Bottom-up traversal with lookup computing a key < hash_max.

value hash0 = 0
and hashl1 letter key sum = sum + letter X key

and hash i arcs = (abs (arcs + List.length i)) mod hash_max;
value traverse_map lookup = travel
where rec travel = fun

[ Deco.Deco(i, arcs) —
let f (tries, span) (n,t) =
let (t0,k) = travel t
in ([(n, t0) :: tries|, hash1 n k span)
in let (arcs0, span) = List.fold_left f ([], hash0) arcs
in let key = hash i span
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in (lookup (Deco.Deco(i, List.rev arcs0)) key, key)
i

Make a dag of flexed_map by recognizing common substructures.

value compress_map = traverse_map Memo.share;
value minimize map = let (dag, -) = compress_map map in dag;
end;

7.4 Lexicon repositories using tries and decos

In a typical computational linguistics application, grammatical information (part of speech
role, gender/number for substantives, valency and other subcategorization information for
verbs, etc) may be stored as decoration of the lexicon of roots/stems. From such a decorated
trie a morphological processor may compute the lexmap of all flexed forms, decorated with
their derivation information encoded as an inverse map. This structure may itself be used
by a tagging processor to construct the linear representation of a sentence decorated by
feature structures. Such a representation will support further processing, such as computing
syntactic and functional structures, typically as solutions of constraint satisfaction problems.

Let us for example give some information on the indexing structures trie, deco and
lexmap used in our computational linguistics tools for Sanskrit.

The main component in our tools is a structured lexical database, described in [12, 13].
From this database, various documents may be produced mechanically, such as a printable
dictionary through a TEX/Pdf compiling chain, and a Web site (http://pauillac.inria.
fr/~huet/SKT) with indexing tools. The index CGI engine searches the words by navigating
in a persistent trie index of stem entries. In the current version, the database comprises
12000 items. The corresponding trie (shared as a dag) has a size of 103KB.

When computing this index, another persistent structure is created. It records in a deco
all the genders associated with a noun entry (nouns comprise substantives and adjectives, a
blurred distinction in Sanskrit). At present, this deco records genders for 5700 nouns, and
it has a size of 268KB.

A separate process may then iterate on this genders structure a grammatical engine,
which for each stem and associated gender generates all the corresponding declined forms.
Sanskrit has a specially prolific morphology, with 3 genders, 3 numbers and 7 cases. The
grammar rules are encoded into 84 declension tables, and for each declension suffix an internal
sandhi computation is effected to compute the final flexed form. All such words are recorded
in a flexed forms lexmap, which stores for every word the list of pairs (stem,declension)
which may produce it. This lexmap records about 120000 such flexed forms with associated
grammatical information, and it has a size of 341KB (after minimization by sharing, which
contracts approximately by a factor of 10). A companion trie, without the information,
keeps the index of flexed words as a minimized structure of 140KB.

A future extension of this work will produce the flexed verbal forms as well, a still more
productive process, the Sanskrit verbal system being complex indeed.
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8 Finite State Machines as Lexicon Morphisms

8.1 Finite-state lore

Computational phonetics and morphology is one of the main applications of finite state
methods: regular expressions, rational languages, finite-state automata and transducers, ra-
tional relations have been the topic of systematic investigations [21, 27|, and have been used
widely in speech recognition and natural language processing applications. These methods
usually combine logical structures such as rewrite rules with statistical ones such as weighted
automata derived from hidden Markov chains analysis in corpuses. In morphology, the pio-
neering work of Koskenniemi [18] was put in a systematic framework of rational relations and
transducers by the work of Kaplan and Kay [15] which is the basis for the Xerox morphology
toolset [16, 17, 2]. In such approaches, lexical data bases and phonetic and morphological
transformations are systematically compiled in a low-level algebra of finite-state machines op-
erators. Similar toolsets have been developed at University Paris VII, Bell Labs, Mitsubishi
Labs, etc.

Compiling complex rewrite rules in rational transducers is however rather subtle. Some
high-level operations are more easily expressed over deterministic automata, certain others
are easier to state with e-transitions, still others demand non-deterministic descriptions.
Inter-traductions are well known, but tend to make the compiled systems bulky, since for
instance removing non-determinism is an exponential operation in the worst case. Knowing
when to compact and minimize the descriptions is a craft which is not widely disseminated,
and thus there is a gap between theoretical descriptions, widely available, and operational
technology, kept confidential.

Here we shall depart from this fine-grained methodology and propose more direct trans-
lations which preserve the structure of large modules such as the lexicon. The resulting
algorithms will not have the full generality of the standard approach, and the ensuing
methodology may be thought by some as a backward development. Its justification lies
in the greater efficiency of such direct translations, together with a simpler understand-
ing of high-level operations which may be refined easily e.g. with statistical refinements,
whereas the automata compiled by complex sequences of fine-grained operations are opaque
blackboxes which are not easily amenable to heuristic refinements by human programming.
Furthermore, the techniques are complementary, and it is envisioned that a future version
of our toolset will offer both fine-grained and lexicon-based technologies.

The point of departure of our approach is the above remark that a lexicon represented
as a lexical tree or trie is directly the state space representation of the (deterministic) finite
state machine that recognizes its words, and that its minimization consists exactly in sharing
the lexical tree as a dag. Thus we are in a case where the state graph of such finite languages
recognizers is an acyclic structure. Such a pure data structure may be easily built without
mutable references, and thus allocatable in the static part of the heap, which the garbage
collector need not visit, an essential practical consideration. Furthermore, avoiding a costly
reconstruction of the automaton from the lexicon data base is a computational advantage.
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In the same spirit, we shall define automata which implement non-trivial rational relations
(and their inversion) and whose state structure is nonetheless a more or less direct decoration
of the lexicon trie. The crucial notion is that the state structure is a lexicon morphism.

8.2 Unglueing

We shall start with a toy problem which is the simplest case of juncture analysis, namely
when there are no non-trivial juncture rules, and segmentation consists just in retrieving the
words of a sentence glued together in one long string of characters (or phonemes). Let us
consider an instance of the problem say in written English. You have a text file consisting
of a sequence of words separated with blanks, and you have a lexicon complete for this text
(for instance, ‘spell’ has been successfully applied). Now, suppose you make some editing
mistake, which removes all spaces, and the task is to undo this operation to restore the
original.

We shall show that the corresponding transducer may be defined as a simple navigation
in the lexical tree state space, but now with a measure of non-determinism. Let us give the
detailed construction of this unglueing automaton.

The transducer is defined as a functor, taking the lexicon trie structure as parameter.

Module Unglue

The unglueing problem is the simplest case of juncture analysis, namely when there are
no non-trivial juncture rules, and segmentation consists just in retrieving the words of a
sentence glued together in one long string of characters (or phonemes).

We shall show that the corresponding transducer may be defined as a simple navigation
in the lexical tree state space, but now with a measure of non-determinism. The unglueing
transducer is a lexicon morphism.

module Unglue (Lezicon : sig value lexicon : Trie.trie; end) = struct
type input = Word.word (* input sentence as a word )
and output = list Word.word; (x output is sequence of words )

type backtrack = (input X output)
and resumption = list backtrack; (* coroutine resumptions *)

exception Finished,

Now we define our unglueing reactive engine as a recursive process which navigates directly
on the (flexed) lexicon trie (typically the compressed trie resulting from the Dag module
considered above). The reactive engine takes as arguments the (remaining) input, the (par-
tially constructed) list of words returned as output, a backtrack stack whose items are
(input, output) pairs, the path occ in the state graph stacking (the reverse of) the current
common prefix of the candidate words, and finally the current ¢rie node as its current state.
When the state is accepting, we push it on the backtrack stack, because we want to favor
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possible longer words, and so we continue reading the input until either we exhaust the input,
or the next input character is inconsistent with the lexicon data.

value rec react input output back occ = fun
[ Trie.Trie(b, arcs) —
let continue cont = match input with
[[] — backtrack cont
| [letter :: rest] —
try let next_state = List.assoc letter arcs

in react rest output cont [letter :: occ| next_state
with [ Not_found — backtrack cont |

]

in if b then
let pushout = [occ :: output]
in if input = [] then (pushout, back) (* solution found x)

else let pushback = [(input, pushout) :: back]
(+ we first try the longest possible matching word )
in continue pushback
else continue back

]
and backtrack = fun

[[] — raise Finished

| [(input, output) :: back] — react input output back [| Lexicon.lexicon

i
Now, unglueing a sentence is just calling the reactive engine from the appropriate initial
backtrack situation:

value unglue sentence = backtrack [(sentence,[])];

value print_out solution = List.iter pr (List.rev solution)
where pr word = print_string (( Word.decode (List.rev word)) ~ ",");

resume : (resumption — int — resumption)

value resume cont n =
let (output, resumption) = backtrack cont in
do { print_string "\n,Solution,"
; print_int n
; print_string " :\n"
; print_out output
; resumption

b
value unglue_first sentence = (x similar to unglue *)
resume [(sentence, [])] 1;



Module Unglue_test 81 38

value unglue_all sentence = restore [(sentence,[])] 1
where rec restore cont n =
try let resumption = resume cont n

in restore resumption (n + 1)
with [ Finished —
if n =1 then print_string " No,solution found\n" else () |;

end;

Module Unglue_test

The unglueing process is complete, relatively to the lexicon: if the input sentence may be
obtained by glueing words from the lexicon, unglue sentence will return one possible solution.
For instance, assuming the sentence is in French Childish Scatology:

module Childtalk = struct
value lexicon = Lexicon.make_lez ["boudin";"caca";"pipi"];
end;

module Childish = Unglue(Childtalk);

Now, calling Childish.unglue on the encoding of the string "pipicacaboudin" produces a
pair (sol, cont) where the reverse of sol is a list of words which, if they are themselves reversed
and decoded, yields the expected sequence |"pipi"; "caca"; "boudin"|.

let (sol,_) = Childish.unglue (Word.encode "pipicacaboudin")
in Childish.print_out sol;

We recover as expected: pipi caca boudin.
Another example, this time American street talk:

module Streettalk = struct
value lexicon = Lexicon.make_lex["a"; "brick"; "fuck"; "shit"; "truck"|;
end;

module Slang = Unglue(Streettalk);

let (sol, cont) = Slang.unglue (Word.encode "fuckatruckshitabrick")
in Slang.print_out sol;

We get as expected: fuck a truck shit a brick.

Of course there may be several solutions to the unglueing problem, and this is the rationale
of the cont component, which is a resumption. For instance, in the previous example, cont
is empty, indicating that the solution sol is unique.

We saw above that we could use the process backtrack in coroutine with the printer print_out
within the unglue_all enumerator.

Let us test this segmenter to solve an English charade (borrowed from “Palindroms and
Anagrams”, Howard W. Bergerson, Dover 1973).
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module Short = struct
value lexicon = Lexicon.make_lex

[“able"; ua_mu; "amiable"; "get"; "her"; "i"; "tO”; "together"];
end;

module Charade = Unglue(Short);
Charade.unglue_all (Word.encode "amiabletogether");

We get 4 solutions to the charade, printed as a quatrain polisson:

Solution 1 : amiable together
Solution 2 : amiable to get her
Solution 3 : am i able together
Solution 4 : am i able to get her

Unglueing is what is needed to segment a language like Chinese. Realistic segmenters for
Chinese have actually been built using such finite-state lexicon driven methods, refined by
stochastic weightings [28].

Several combinatorial problems map to variants of unglueing. For instance, over a one-
letter alphabet, we get the Frobenius problem of finding partitions of integers into given
denominations (except that we get permutations since here the order of coins matters).
Here is how to give the change in pennies, nickels and dimes:

value rec unary = fun [0 — ""|n — "|" " (unary (n—1)) |;

The coins are the words of this arithmetic language:

value penny = wunary 1 and nickel = wunary 5 and dime = wunary 10;
module Coins = struct

value lexicon = Lexicon.make_lex [penny; nickel; dime];

end;

module Frobenius = Unglue(Coins);

value change n = Frobenius.unglue_all (Word.encode (unary n));
change 17,

This returns the 80 ways of changing 17 with our coins:

Solution 1 :

Solution 80 :
Y Y I I I

Now we try phonemic segmentation in phonetic French.

module Phonetic = struct
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value lexicon = Lexicon.make_lex ["gal";"aman";"de";"1a";"rene";"ala";
"tour";"magn";"a";"nime";"galaman";"1";"arene";"magnanime";

end;

module Puzzle = Unglue(Phonetic);

Puzzle.unglue_all (Word.encode "galamandelarenealatourmagnanime");

Here we get 36 solutions, among which we find the two classic verses:

gal aman de la rene ala tour magnanime
galaman de 1 arene a la tour magn a nime

We remark that nondeterministic programming is basically trivial in a functional pro-
gramming language, provided one identifies well the search space, states of computation are
stored as pure data structures (which cannot get corrupted by pointer mutation), and fair-
ness is taken care of by a termination argument (here this amounts to proving that react
always terminate).

Nondeterminism is best handled by a generating process which delivers one solution at
a time, and which thus may be used in coroutine fashion with a solution handler.

The reader will note that the very same state graph which was originally the state space
of the deterministic lexicon lookup is used here for a possibly non-deterministic transduction.
What changes is not the state space, but the way it is traversed. That is we clearly separate
the notion of finite-state graph, a data structure, from the notion of a reactive process, which
uses this graph as a component of its computation space, other components being the input
and output tapes, possibly a backtrack stack, etc.

We shall continue to investigate transducers which are lexicon mappings, but now with
an explicit non-determinism state component. Such components, whose structure may vary
according to the particular construction, are decorations on the lexicon structure, which is
seen as the basic deterministic state skeleton of all processes which are lexicon-driven; we
shall say that such processes are lexicon morphisms whenever the decoration of a lexicon trie
node is a function of the sub-trie at that node. This property entails an important efficiency
consideration, since the sharing of the trie as a dag may be preserved when constructing the
automaton structure:

Fact. Every lexicon morphism may minimize its state space isomorphically with the dag
maximal sharing of the lexical tree. That is, we may directly decorate the lexicon dag, since
in this case decorations are invariant by sub-tree sharing.

There are numerous practical applications of this general methodology. For instance, it
is shown in [14] how to construct a sanskrit segmenter as a decorated flexed forms lexicon,
where the decorations express application of the euphony (sandhi) rules at the juncture
between words. This construction is a direct extension of the unglueing construction, which
is the special case when there are no euphony rules, or when they are optional.



Module Unglue_test §1 41

References

|1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. “Compilers - Principles, Techniques
and Tools.” Addison-Wesley, 1986.

|2] Kenneth R. Beesley and Lauri Karttunen. “Finite-State Morphology: Xerox Tools and
Techniques.” Private communication, April 2001.

[3] Jon L. Bentley and Robert Sedgewick. “Fast Algorithms for Sorting and Searching
Strings.” Proceedings, 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
Jan. 1997.

[4] Eric Brill. “A simple rule-based part of speech tagger.” In Proceedings, Third Conference
on Applied Natural Language Processing, 1992. Trento, Italy, 152-155.

[5] W. H. Burge. “Recursive Programming Techniques.” Addison-Wesley, 1975.

[6] Guy Cousineau and Michel Mauny. “The Functional Approach to Programming.” Cam-
bridge University Press, 1998.

[7] Jan Daciuk, Stoyan Mihov, Bruce W. Watson and Richard E. Watson. “Incremental
Construction of Minimal Acyclic Finite-State Automata.” Computational Linguistics
26,1 (2000).

[8] Matthias Felleisen and Daniel P. Friedman. “The Little MLer”. MIT Press, 1998.

[9] Philippe Flajolet, Paola Sipala and Jean-Marc Steyaert. “Analytic Variations on the
Common Subexpresssion Problem.” Proceedings of 17th ICALP Colloquium, Warwick
(1990), LNCS 443, Springer-Verlag, pp. 220-234.

[10] M. Gordon, R. Milner, C. Wadsworth. “A Metalanguage for Interactive Proof in LCF.”
Internal Report CSR-16-77, Department of Computer Science, University of Edinburgh
(Sept. 1977).

[11] Gérard Huet. “The Zipper”. J. Functional Programming 7,5 (Sept. 1997), pp. 549-554.

[12] Gérard Huet. “Structure of a Sanskrit dictionary.” INRIA Technical Report, Sept.
2000. Available as: http://pauillac.inria.fr/~huet/PUBLIC/Dicostruct.ps.

[13] Gérard Huet. “From an informal textual lexicon to a well-structured lexical database:
An experiment in data reverse engineering.” IEEE Working Conference on Reverse
Engineering (WCRE’2001), Stuttgart, Oct. 2001.

[14] Gérard Huet. “Transducers as Lexicon Morphisms, Phonemic Segmentation by
Euphony Analysis, Application to a Sanskrit Tagger.” Available from
http://pauillac.inria.fr/~huet/FREE/tagger.ps.



Index 42

[15] Ronald M. Kaplan and Martin Kay. “Regular Models of Phonological Rule Systems.”
Computational Linguistics (20,3), 1994, pp. 331-378.

[16] Lauri Karttunen. “Applications of Finite-State Transducers in Natural Language
Processing.” In Proceedings of CIAA-2000.

[17] Lauri Karttunen. “The Replace Operator.” In Proceedings of ACL’95, Cambridge,
MA, 1995. Extended version in [27].

[18] K. Koskenniemi. “A general computational model for word-form recognition and
production.” In Proceedings, 10th International Conference on Computational
Linguistics, Stanford (1984).

[19] Eric Laporte. “Rational Transductions for Phonetic Conversion and Phonology.”
Report IGM 96-14, Institut Gaspard Monge, Université de Marne-la-Vallée, Aug.
1995. Also in [27].

|20] Xavier Leroy et al. “Objective Caml.” See:
http://caml.inria.fr/ocaml/index.html.

[21] Mehryar Mohri. “Finite-State Transducers in Language and Speech Processing.”
Computational Linguistics 23,2 (1997), pp. 269-311.

[22] Larry C. Paulson. “ML for the Working Programmer.” Cambridge University Press,
1991.

[23] Aarne Ranta. “The GF Language: Syntax and Type System.” See:
http://www.cs.chalmers.se/~aarne/GF/.

[24] Daniel de Rauglaudre. “The Camlp4 preprocessor." See:
http://caml.inria.fr/camlp4/.

[25] Dominique Revuz. “Dictionnaires et lexiques.” Thése de doctorat, Université Paris VII,
Feb. 1991.

[26] Emmanuel Roche and Yves Schabes. “Deterministic Part-of-Speech Tagging with
Finite-State Transducers.” Computational Linguistics 21,2 (1995), pp. 227-253.

[27] Emmanuel Roche and Yves Schabes, Eds. “Finite-State Language Processing.” MIT
Press, 1997.

[28] Richard Sproat. “Morphology and Computation." MIT Press, 1992.

[29] Richard Sproat, Chilin Shih, William Gale and Nancy Chang. “A Stochastic
Finite-State Word-Segmentation Algorithm for Chinese.” Computational Linguistics
22,3 (1996), pp. 377-408.

[30] Pierre Weis and Xavier Leroy. “Le langage Caml.” 2éme édition, Dunod, Paris, 1999.



Index

Bintree (module), 13
Dagify (module), 22
Deco (module), 27

Gen (module), 4
Lezxicon (module), 19
Lexmap (module), 30
List2 (module), 4
Make_lex (module), 19
Mini (module), 21
Minimap (module), 31
Minitertree (module), 25
Pidgin (module), 2
Share (module), 20
Tertree (module), 23
Trie (module), 16, 19
Unglue (module), 34
Unglue_test (module), 35
Word (module), 6, 19
Zipper (module), 9

43



