
The Reactive Engine for Modular Transducers

Gérard Huet and Benôıt Razet

INRIA Rocquencourt,
BP 105, 78153 Le Chesnay Cedex, France

Abstract. This paper explains the design of the second release of the
Zen toolkit [5–7]. It presents a notion of reactive engine which simulates
finite-state machines represented as shared aums [8]. We show that it
yields a modular interpreter for finite state machines described as local
transducers. For instance, in the manner of Berry and Sethi, we define a
compiler of regular expressions into a scheduler for the reactive engine,
chaining through aums labeled with phases — associated with the letters
of the regular expression. This gives a modular composition scheme for
general finite-state machines.

Many variations of this basic idea may be put to use according to cir-
constances. The simplest one is when aums are reduced to dictionaries,
i.e. to (minimalized) acyclic deterministic automata recognizing finite
languages. Then one may proceed to adding supplementary structure
to the aum algebra, namely non-determinism, loops, and transduction.
Such additional choice points require fitting some additional control to
the reactive engine. Further parameters are required for some functional-
ities. For instance, the local word access stack is handy as an argument to
the output routine in the case of transducers. Internal virtual addresses
demand the full local state access stack for their interpretation.

A characteristic example is provided, it gives a complete analyser for
compound substantives. It is an abstraction from a modular version of
the Sanskrit segmenter presented in [9]. This improved segmenter uses
a regular relation condition relating the phases of morphology genera-
tion, and enforcing the correct geometry of morphemes. Thus we obtain
compound nouns from iic*.(noun+iic.ifc), where iic and ifc are the re-
spectively prefix and suffix substantival forms for compound formation.

Dedicated to Joseph Goguen for his 65th birthday

1 Regular morphology

We first consider the simplest framework for finite automata, where the state
transition graph is a dictionary structure (lexical tree or trie). Such structures
represent acyclic deterministic finite-state automata, with maximal sharing of
initial paths. Every state is accessible from the initial state, and we may also
assume that every state is on an accepting path. When we minimize the tree
as a dag, we obtain the corresponding minimal deterministic automaton. Such

II

automata recognize finite languages. They are adequate for representing the
lexicons of natural languages.

In a framework of generative morphology, we want to model the construction
of lexemes from smaller chunks called morphemes: radical stems, prefixes and
suffixes. It is convenient to sort the morphemes into categories, and to enforce
structural conditions on these categories, restricting the geometry of lexemes.
For instance, we may describe this geometry by a regular expression over the
alphabet of lexical categories. The language generated by the regular expression,
substituting each category by its corresponding morpheme lexicon, is recognized
by a modular reactive engine, which chains the morphemes dictionary lookup
with transitions corresponding to the regular expression recognizer. We shall use
for this setup variants of the compiling algorithm of Berry and Sethi [2].

1.1 Automaton interface

We use as algorithmic description language Pidgin ML, a core applicative subset
of Objective Caml. Thus our algorithms may be read as rigorous higher-order
inductive definitions, while being directly executable, in the spirit of literate
programming.

We first recall the basic structures of the Zen toolkit [5].
We use as basic alphabet the natural numbers provided by the hardware

processor:

module Word : sig

type l e t t e r = in t
and word = l i s t l e t t e r ;
end ;

Thus the basic morphology operations will rely on list processing, and not on
string processing (and certainly not on encoding formats such as Unicode-UTF8,
which are meant for data exchange portability and should not be used for core
computation).

Here is the interface to our simplistic automata, reduced to deterministic
transitions over a lexicon tree. Each state is labeled with a boolean (indicating
whether or not it is an accepting state), and points to the list of its successor
states, labeled with a letter.

module Auto : sig

type auto = [State of (bool × dete r)]
and dete r = l i s t (Word . l e t t e r × auto) ;
end ;

We assume that at most one transition issued from a given state is labeled
with a given letter. The datatype auto is here isomorphic to lexical trees, or
dictionary, also called tries. We may also assume that dead alleys, i.e. states
which do not have an accepting node as a substructure, are ruled out. Thus the

III

contraction of the tree as a dag, using for instance the corresponding instance of
the sharing functor [5], yields the minimal automaton that recognizes the finite
language stored in the dictionary.

1.2 Dispatching

We call phases the lexical categories, which constitute the alphabet of the reg-
ular expression defining the morphological geometry. We compile this regular
expression using the Berry-Sethi method, which linearizes the expression, and
computes the local automaton associated to this linearization [2, 3].

We recall that local automata (also called Glushkov automata) are finite
automata such that all transitions labeled with a given letter lead to the same
state, characteristic of this letter. States may thus be named with letters, here
phases. It is this locality condition which is a key to modularity.

A local automaton is described by an initial phase, a set of terminal phases,
here represented as a boolean function over phases, and a dispatch transition
function, mapping each phase to a set of following phases, sequentialized here
as a list. In the notations of [2], initial is called 1, dispatch is called follow, and
terminal is implicit from the use of an endmarker symbol. In the terminology of
Eilenberg [4], the set of non-empty words recognized by a local automaton is a
local set over phases.

In the Zen toolkit implementation, the Dispatch module is actually generated
by meta-programming, i.e. it compiled from the regular expression, as we shall
explain in section 4.

1.3 Scheduling

We are now ready to start the description of the reactive engine, as a functor
taking a module Dispatch as parameter, and using its dispatch function as a
local scheduler. Here is the corresponding specification of our React module. We
assume the utility programming functions fold right (list iterator), assoc, length,
mem, etc. from the List standard library.

module React
(Dispatch : sig

type phase = α ;
value t ransducer : phase → auto ;
value i n i t i a l : phase ;
value t e rmina l : phase → bool ;
value di spatch : phase → l i s t phase ;
end) = struct

type input = Word . word
and backtrack = [Advance of phase and input]
and resumption = l i s t backtrack ;

A resumption value stores as a datum what is necessary to resume our reac-
tive engine as a coroutine.

IV

The scheduler gets its phase transitions from dispatch. It respects the order
of dispatching.

value s chedu le phase input cont =
l et add phase cont = [Advance phase input : : cont] in
f o l d r i g h t add (d i spatch phase) cont ;

1.4 React

The reactive engine originates from the Sanskrit segmenter described in [9],
generalized to the framework of mixed automata defined in [8].

Here we have a much simpler framework, since we do not have transducer
output, but we get a modular interpreter, driven by the phase scheduler.

In the following definition, phase is the current phase, input is the input
tape represented as a word, back is the backtrack stack of type resumption,
and state is the current state of type auto. We favor deterministic transitions
within a phase to non-deterministic transitions to the next phase(s). Within a
phase, we favor longer words over shorter ones. Phase transitions are effected
in dispatch order. We have a mutual inductive definition between the reactive
engine, reading forward, and the continuation manager, backtracking on failure.

exception Fin i shed ;

value rec r e a c t phase input back s t a t e = match s t a t e with
[State (b , det) →
l et dete r cont = match input with

[[] → cont inue cont
| [l e t t e r : : r e s t] →

try let s ta te ’ = as soc l e t t e r det in
r e a c t phase r e s t cont s tate ’

with [Not found → cont inue cont]
] in

i f b (∗ accep t ing ∗) then
i f input =[] (∗ end o f input ∗) then

i f t e rmina l phase then back (∗ s o l u t i o n found ∗)
else cont inue back

else let cont = schedu le phase input back in
dete r cont

else dete r back
]

and cont inue = fun
[[] → raise Fin i shed
| [resume : : back] → match resume with

[Advance phase input →
r e a c t phase input back (t ransducer phase)

]
] ;

V

1.5 Usage

The initialization of the reactive engine consists in setting the backtrack stack
to the single initial state given by Dispatch.initial, input being initialized to the
full sentence:

value i n i t r e a c t sentence = [Advance i n i t i a l s entence] ;

We may now recognize a string as belonging to the rational language de-
scribed by the regular expression by calling the reactive continuation manager
with this initial resumption:

value r eac t1 sentence = cont inue (i n i t r e a c t sentence) ;

If the sentence belongs to the language, react1 will return with a resumption
value, otherwise it will throw the exception Finished. The resumption value is
not of use in this simple model, where the interpreter is used as a mere recognizer.
In more elaborate versions below, react may be used as a coroutine in order to
compute a stream of transductions.

Note that classical formal languages theory abstracts a language as a set
of words, or occasionally as a multiset (hiding structural idempotence) when
multiplicities matter. Here we hide structural commutativity as well, obtaining
streams of solutions, where computational details such as fairness, essential for
completeness, may be revealed and discussed.

1.6 Correctness, completeness

Let us be given a module Dispatch by its components phase (an ordered list
of discrete phase values defining the alphabet), initial (the initial phase), and
functions transducer : phase → auto, terminal : phase → bool and dispatch :
phase → list phase.

Let L(φ) be the language recognized by the automaton transducer(φ), for
a given phase φ. We assume that L(initial) is the singleton {ε} where ε is the
empty word [], that L(φ) does not contain ε for any other phase φ, and that for
every phase φ the list dispatch(φ) does not contain initial. These invariants will
be enforced by the Berry-Sethi compiler presented in section 4.

Let us say that a sequence ((φ1, w1), ... (φn, wn)) is a valid analysis of a given
word w whenever, taking φ0 = initial, we get w = w1 · w2 · ... wn with (0 <
i ≤ n) wi ∈ L(φi), (0 ≤ i < n) φi+1 ∈ dispatch(φi), and terminal(φn) = True.
For i > 0, we know from the assumptions above that L(φi) does not contain the
empty word, so there is a finite number of such analyses.

We define a total ordering on analyses by the lexicographical ordering gen-
erated by (φ,w) < (φ′, w′) iff either φ precedes φ′ in the common dispatch list
where φ and φ′ belong, or else φ = φ′ and w′ is a strict initial prefix of w.

The correction and completeness of the react algorithm may be established by
proving that it generates the set of valid analyses of an input word w in the sense
that it implicitly builds a sequence of pairs of analyses of w and resumptions
((α1, r1), ...(αN , rN)) such that, taking r0 = init react w, for each i (0 ≤ i < N)

VI

the evaluation of continue ri terminates with value ri+1, and the evaluation
of continue rN raises the exception Finished. Furthermore the list (α1, ...αN)
contains all the valid analyses of w, listed increasingly with respect to the above
ordering.

We shall not give a formal proof of this rather fastidious property, which can
be established by computational induction.

We remark that this argument makes explicit the fact that, within a given
phase, we search for longer partial solutions before shorter ones. This is a rather
arbitrary heuristic, which is convenient for the segmenting application.

2 Modular aums

So far our automata have been mere recognizers for finite sets of words, i.e.
dictionaries. Chaining them through phases, we may for instance model simple
segmentation problems, where a sentence is defined as a list of words separated
by blanks or punctuation signs, and words are defined as compounds of mor-
phemes, according to prefix, suffix, or other finite-state regimes. Such a segmenter
may be composed with a tagger, when the word dictionaries are decorated with
morphological derivation annotations, using the structure of revmaps [5], which
allows efficient sharing of morphological regularities.

We now allow more complex automata for the various phases. For instance,
we may allow a notion of transition with virtual addresses, allowing both non-
deterministic moves (including ε-transitions), and cycles.

Virtual addresses, as opposed to pointers and explicit cyclic structures, pro-
vide a declarative mechanism respecting sharing. In the original presentation of
aums [8], two varieties of virtual addresses are proposed: absolute addresses, in-
dexing a state by its absolute access path in the forest of deterministic skeletons,
and relative addresses, indexing a state in the current covering trie by the short-
hest path in the tree, encoded as a differential word pairing a natural number
(how many levels in the tree you should go up) with a word (indexing the target
state down from the closest common ancestor). These differential words are used
for instance in the revmap structure, to store the reverse morphology.

In the next section, we shall ignore relative addresses, which necessitate a
slightly more complex apparatus for their proper evaluation, since sharing makes
ambiguous the inheritance relation, and thus access paths must be maintained in
the automaton structure for proper interpretation. We shall present first simple
absolute addresses. Furthermore, the role of the forest index will be played by
the phase: to each phase corresponds a unique auto structure, covering all the
states pertaining to this phase.

2.1 Mixed automata with virtual absolute addresses

A transition (w, v) recognizes word w on the input tape (the “guard” of the
transition), and jumps to the state absolutely adressed by v in the next phase.

VII

module Auto : sig

type t r a n s i t i o n = (Word . word × Word . word)
and cho i c e s = l i s t t r a n s i t i o n ;

type auto = [State of (de te r × cho i c e s)]
and dete r = l i s t (Word . l e t t e r × auto) ;
end ;

We take as convention that the state State(d, c) is accepting iff c is not empty.
We now define acceptance as the condition on external transitions (w, v) when
the input is empty, the (next) phase is terminal, and the access parameter v
verifies a final condition which we shall not precise further. Typically, v is final
if it is empty or if it consists in a special end of sentence marker.

2.2 Service routine

Our resumptions are now more complex, since we have non-deterministic choice
points:

type backtrack =
[Choose of phase and input and auto and cho i c e s
| Advance of phase and input and word
]

and resumption = l i s t backtrack ;

exception Fin i shed ;

Here are two service routines to manage guard management.

exception Guard ;
value rec advance n w = i f n = 0 then w else match w with

[[] → raise Guard
| [: : t l] → advance (n−1) t l
] ;

Thus advance n [a1; ... aN] = [ap; ... aN], where p = N − n, whenever
n ≤ N ; otherwise the exception Guard is raised.

(∗ [acces s : phase → word → auto] ∗)
value ac c e s s phase = acc (t ransducer phase)

where rec acc s t a t e = fun
[[] → s t a t e
| [c : : r e s t] → match s t a t e with

[State (deter ,) →
acc (L i s t . a s soc c de te r) r e s t

]
] ;

VIII

2.3 React for aums

We use a similar schedule function as previously, it now stores the v access path
for the next phase transition.

value s chedu le phase input v cont =
l et add phase cont = [Advance phase input v : : cont]
in f o l d r i g h t add (d i spatch phase) cont ;

We are now ready to present the reactive engine. It consists in three si-
multaneous inductions, the main one react managing the deterministic search,
while stacking non-deterministic choice points, the second choose managing non-
deterministic jumps, and the third continue backtracking in case of dead end.
We favor deterministic transitions over non-deterministic ones.

(∗ phase i s the pars ing phase ,
input i s the input tape repre sen t ed as a word ,
back i s the back t rack s t a c k o f type resumption ,
s t a t e i s the curren t s t a t e o f type auto ∗)

value rec r e a c t phase input back s t a t e =
match s t a t e with
[State (det , cho i c e s) →

(∗ we exp l o r e the d e t e rm in i s t i c space f i r s t ∗)
l et cont = i f cho i c e s =[] then back else

[Choose phase input s t a t e cho i c e s : : back]
in match input with

[[] → cont inue cont
| [l e t t e r : : r e s t] →

try let nex t s t a t e = assoc l e t t e r det in
r e a c t phase r e s t cont n ex t s t a t e

with [Not found → cont inue cont]
]

]
and choose phase input back s t a t e = fun

[[] → cont inue back
| [(w, v) : : o the r s] →

l et cont = i f othe r s =[] then back else
[Choose phase input s t a t e o the r s : : back]

in try let tape = advance (l ength w) input in
i f tape = [] (∗ input f i n i s h e d ∗) then

i f t e rmina l phase && f i n a l v then cont
else cont inue cont

else cont inue (schedu le phase tape v cont)
with [Guard → cont inue cont]

]
and cont inue = fun

[[] → raise Fin i shed
| [resume : : back] → match resume with

IX

[Choose phase input s t a t e cho i c e s →
choose phase input back s t a t e cho i c e s

| Advance phase input word →
try let nex t s t a t e = acc e s s phase word

in r e a c t phase input back nex t s t a t e
with [Not found → cont inue back]

]
] ;

Finally, here is the initialisation routine, building the initial resumption:

value i n i t r e a c t input = [Advance i n i t i a l input []] ;

As previously, we may recognize a sentence using:

value r eac t1 sentence = cont inue (i n i t r e a c t sentence) ;

2.4 Correctness, completeness

Similarly to the previous section, we may prove the correctness and completeness
of the construction, provided the guard w of each non-deterministic transition
is non-empty. We may refine this condition as follows.

Definition: Guard condition. There is no cycle of transitions of an aum all
of which have an empty guard: (ε, w1); (ε, w2); ...(ε, wn). By cycle we mean that,
for some access word w0 in the current phase φ0 leading in transducer(φ0) to
state σ0, σ0 has among its choices (ε, w1), φ1 in dispatch(φ0) with w1 leading in
transducer(φ1) to state σ1, etc, until σn = σ0.

We claim that react terminates on an input word whenever the guard con-
dition is verified. Note that this is a global condition on the family of aums,
which requires the knowledge of the phase transition relation, but which may be
checked in time linear in the cumulated size of the aum family.

3 Modular aum transducers

We now give the final refinement of our construction, with aums having both
local and global virtual addresses.

3.1 Transducers

module Auto : sig

type cont inuat i on = (Word . word × Word . word)
and t r a n s i t i o n =

[External of (Word . word × cont inuat i on)
| I n t e r na l of (Word . word × Word . de l t a)
] ;

X

type auto = [State of (de te r × cho i c e s)]
and dete r = l i s t (Word . l e t t e r × auto)
and cho i c e s = l i s t t r a n s i t i o n ;
end ;

An internal transition Internal(w, d) recognizes w on the input tape and
jumps to the state relatively addressed by d within the same phase. This uses
the notion of differential word [5] from module Word:

type de l t a = (i n t × word) ; (∗ d i f f e r e n t i a l words ∗)

A differential word is a notation permitting to retrieve a word w from another
word w′ sharing a common prefix. It denotes the minimal path connecting the
words in a trie, as a sequence of ups and downs: if δ = (n, u) we go up n times
and then down along word u. In order to interpret the n part, we need to keep the
stack of states leading locally to the current state. We keep along this stack the
corresponding word path as well — this is useful as a parameter to the output
computation.

An external transition External(w, c) recognizes w on the input tape and
executes the continuation c in a following phase. A continuation (u, v) returns
words u as output parameter and v as access parameter in the next phase trans-
ducer.

As above we define acceptance as the condition on external transition when
the input is empty, the phase is terminal, and the access parameter v verifies a
final condition which we shall not precise further.

3.2 Modular transducers

We now produce output, as words labeled by their phase.

type input = Word . word
and output = l i s t (phase × Word . word) ;

The access stack has a letter component and a state component. The state
component is necessary to interpret the part of the internal virtual address which
concerns going up, whereas the letter component, i.e. the absolute name of the
state in the current phase is useful for computing the transducer output.

type s tack = l i s t (Word . l e t t e r × auto) ;

type backtrack =
[Choose of phase and input and output

and auto and s tack and cho i c e s
| Advance of phase and input and output and Word . word
]

and resumption = l i s t backtrack ;

Since the Advance resumption has now an output component and an access
component (anticipating a prefix of the next phase component), we parameterize
the scheduler accordingly:

XI

value s chedu le phase input output a c c e s s cont =
l et add phase cont =

[Advance phase input output a c c e s s : : cont]
in f o l d r i g h t add (d i spatch phase) cont ;

The service routine access manages the access stack, the functions pop and
push are used to interpret internal jumps.

(∗ acces s : phase → word → (auto × s t a c k) ∗)
value ac c e s s phase = acc (t ransducer phase) []

where rec acc s t a t e s tack = fun
[[] → (s ta te , s tack)
| [c : : r e s t] → match s t a t e with

[State (deter ,) →
acc (as soc c de te r) [(c , s t a t e) : : s tack] r e s t

]
] ;

value rec pop n s t a t e s tack =
i f n=0 then (s ta te , s tack)
else match s tack with

[[] → raise (Fa i l u r e ”Wrong In t e r na l jump”)
| [(, s t) : : r e s t] → pop (n−1) s t r e s t
]

and push w s t a t e s tack = match w with
[[] → (s ta te , s tack)
| [c : : r e s t] → match s t a t e with

[State (deter ,) →
push r e s t (a s soc c de te r) [(c , s t a t e) : : s tack]

]
] ;

value jump (n ,w) s t a t e s tack =
l et (s tate0 , s tack0) = pop n s t a t e s tack
in push w s ta t e 0 stack0 ;

We provide the access stack as an output parameter via an extracting routine:

value ex t r a c t s tack (, (u ,)) =
f o l d l e f t unstack u stack

where unstack acc (c ,) = [c : : acc] ;

3.3 Modular reacting transducers

We have a similar structure of three mutually recursive functions, but now choose
has two cases, for the two transition constructors.

XII

value rec r e a c t phase input output back stack s t a t e =
match s t a t e with
[State (det , cho i c e s) →

l et cont = i f cho i c e s =[] then back else
[Choose phase input output s t a t e s tack cho i c e s : : back]

in match input with
[[] → cont inue cont
| [l e t t e r : : r e s t] →

try let s ta te ’ = as soc l e t t e r det
and stack ’ = [(l e t t e r , s t a t e) : : s tack] in
r e a c t phase r e s t output cont stack ’ s ta te ’

with [Not found → cont inue cont]
]

]
and choose phase input output back s t a t e s tack = fun

[[] → cont inue back
| [External ((w, (u , v)) as r u l e) : : o the r s] →

l et cont = i f othe r s =[] then back else
[Choose phase input output s t a t e s tack othe r s : : back]

in try let tape = advance (l ength w) input
and out = [(phase , e x t r a c t s tack ru l e) : : output]
in i f tape = [] (∗ input f i n i s h e d ∗) then

i f t e rmina l phase && f i n a l v then (out , cont)
else cont inue cont

else cont inue (schedu le phase tape out v cont)
with [Guard → cont inue cont]

| [I n t e r na l (w, de l t a) : : o the r s] →
l et cont = i f othe r s =[] then back else
[Choose phase input output s t a t e s tack othe r s : : back]

in try let tape = advance (l ength w) input
and (s ta te ’ , stack ’) = jump de l t a s t a t e s tack
in r e a c t phase tape output cont stack ’ s ta te ’

with [Guard → cont inue cont]
]

and cont inue = fun
[[] → raise Fin i shed
| [resume : : back] → match resume with

[Choose phase input output s t a t e s tack cho i c e s →
choose phase input output back s t a t e s tack cho i c e s

| Advance phase input output word →
try let (s ta te ’ , stack ’) = acc e s s phase word

in r e a c t phase input output back stack ’ s ta te ’
with [Not found → cont inue back]

]
] ;

XIII

3.4 Correctness, completeness

The definitions of trace and analysis may be extended to the case of transducers,
and the correctness and completeness of our engine may be formally proved in
the sense that all transductions of the input word are properly generated, for a
notion of left-to-right transduction. We omit here the full formal development.

In the case of non overlapping junction transductions, as defined in [9], the
construction simplifies, since Internal transitions are not needed. The proofs of
termination, correctness and completeness of the reactive engine are carried out
in full in [9], for the simple case of one phase junction relations verifying a non-
overlapping criterion. This criterion allows parallel computation of the relation
along phases, without the need to cascade the transductions. Furthermore, such
relations are invertible, and the reactive engine may thus be used to invert eu-
phony and return segmentation solutions, even when the euphony relation is not
length-preserving.

Other variations may be considered, since the presence or absence of output
transitions is orthogonal to the structure of virtual addresses. We have considered
virtual addresses of two kinds, internal and external. We may also imagine other
encodings of jumps, potentially relevant for specific applications. For instance,
specific encodings, relying on the fact that the underlying alphabet is boolean,
may be used to represent boolean circuits, in the manner of BDD structures.

The general problem of compiling an arbitrary finite-state machine descrip-
tion into some variety of our aum structures is not addressed in the current pa-
per. This problem has many degrees of freedom, since there is a choice between
mapping state transitions into the deterministic skeleton, on one hand, and the
non-deterministic choices sequences, on the other; in the latter case, there is a
further choice between External and Internal jumps. Finally, the partition into
phases may be more or less coarse, and extra encoding letters, disjoint from the
input alphabet, may be used to attach orphan states. We should not expect one
uniform best solution to this problem anyway, and compiling strategies may well
depend on the application domain.
Remark.
In [9], section 8.1, the recursive call from choose calls react with occ parameter
v, instead of rev v as effected above for next stack. This is a local optimisation
for the case of sandhi, where the junction rules are such that the length of
component v is at most 1.

4 Dispatch synthesis from regular expressions

We now explain how to synthesize the dispatch function from a regular expression
representation of the phase language, using the Berry-Sethi algorithm [2]. The
basic idea is that we compose a number of finite automata/transducers, each
named with a phase. Phases are the letters of an alphabet, and we define the
admissible joint behaviour of our automata as a rational language over the phase
alphabet, specified by a regular expression.

XIV

4.1 Regular expressions and their linearization

Here is the type of regular expressions. The type parameter α is used to abstract
from the symbol representation.

type regexp α =
[One
| Symb of α
| Union of regexp α and regexp α
| Conc of regexp α and regexp α
| Star of regexp α
| Eps i lon of regexp α
| Plus of regexp α
] ;

We use a specific constructor Plus rather than defining R+ as the macro
R ·R∗, because of the blow-up due to its non-linearity.

We mark symbols with an integer to linearize the regular expression.

type marked α = (α × i n t) ;

A symbol s is mapped to (s, 0) if it occurs only one, and to (s, 1), (s, 2),
etc. otherwise. Marked symbols are used as states of the recognizing automaton.
The type local represents local automata, in the sense of Eilenberg, as a 4-tuple
defining its initial state, the other states, the transitions, and the terminal states:

type l o c a l α =
(marked α × l i s t (marked α)
× l i s t (marked α × l i s t (marked α))
× l i s t (marked α)
) ;

We skip the details of the linearization function mark, which is straightfor-
ward. The function mark takes as argument a regexp α, and returns a pair of type
regexp(marked α) × list(marked α), consisting of the marked expression, and
the list of marked symbols which will be used as states of the local automaton.

4.2 The Berry-Sethi compiler

We basically follow the construction given in [2], with the addition of the Plus
operation. We need an intermediate structure of discriminating regular expres-
sions, which makes explicit whether the associated rational language contains
the empty word ε or not.

type d regexp α =
[DOne
| DSymb of α
| DUnion of bool and d regexp α and d regexp α
| DConc of bool and d regexp α and d regexp α
| DStar of d regexp α

XV

| DEpsilon of d regexp α
| DPlus of bool and d regexp α
] ;

We can tell in unit time this property with function delta, and translate in
linear time a regexp in a discriminating regexp with function discr.

value de l t a = fun
[DOne → True
| DSymb → False
| DUnion b | DConc b → b
| DStar | DEpsilon → True
| DPlus b → b
] ;

(∗ d i s c r : regexp α → d regexp α ∗)
value rec d i s c r = fun

[One → DOne
| Symb s → DSymb s
| Union e1 e2 →

l et de1 = d i s c r e1 and de2 = d i s c r e2 in
DUnion (de l t a de1 | | de l t a de2) de1 de2

| Conc e1 e2 →
l et de1 = d i s c r e1 and de2 = d i s c r e2 in
DConc (de l t a de1 && de l t a de2) de1 de2

| Star e → DStar (d i s c r e)
| Eps i lon e → DEpsilon (d i s c r e)
| Plus e →

l et de = d i s c r e in
DPlus (de l t a de) de

] ;

The core of the algorithm is the computation of sets first, follow and last.

(∗ f i r s t : l i s t α → d regexp α → l i s t α ∗)
value rec f i r s t l = fun

[DOne → l
| DSymb d → [d : : l]
| DUnion e1 e2 → f i r s t (f i r s t l e2) e1
| DConc e1 e2 →

i f de l t a e1 then f i r s t (f i r s t l e2) e1
else f i r s t l e1

| DStar e | DEpsilon e | DPlus e → f i r s t l e
] ;

(∗ f o l l ow : α → regexp α → l i s t (α × l i s t α) ∗)
value f o l l ow i n i t i a l exp =

l et rec f 1 exp l f o l =

XVI

match exp with
[DOne → f o l
| DSymb d → [(d , l) : : f o l]
| DUnion e1 e2 →

l et f o l 2 = f1 e2 l f o l in f 1 e1 l f o l 2
| DConc e1 e2 →

l et f o l 2 = f1 e2 l f o l in
let l 1 = i f de l t a e2 then f i r s t l e2

else f i r s t [] e2 in
f 1 e1 l 1 f o l 2

| DStar e | DPlus e →
l et l r e s = f i r s t l e in
f 2 e l r e s f o l

| DEpsilon e → f 1 e l f o l
]

and f 2 exp l f o l = (∗ (f i r s t [] exp) a l r eady in l ∗)
match exp with
[DOne → f o l
| DSymb d → [(d , l) : : f o l]
| DUnion e1 e2 →

l et f o l 2 = f2 e2 l f o l in f 2 e1 l f o l 2
| DConc e1 e2 →

l et b1 = de l t a e1
and b2 = de l t a e2 in
i f b1 (∗ l 1 and l 2 in l ∗)
then i f b2

then f 2 e1 l (f 2 e2 l f o l)
else f 1 e1 (f i r s t [] e2) (f 2 e2 l f o l)

else i f b2
then f 2 e1 (f i r s t l e2) (f 1 e2 l f o l)
else f 1 e1 (f i r s t [] e2) (f 1 e2 l f o l)

| DStar e | DEpsilon e | DPlus e → f 2 e l f o l
] in

let f o l s e t s = f1 exp [] []
and i n i t i a l s = f i r s t [] exp in
[(i n i t i a l , i n i t i a l s) : : f o l s e t s] ;

Functions f1 and f2 both compute the follow sets of Berry-Sethi but with
different assertions on their arguments; precisely, a call (f1 exp l fol) is such
that first elements of exp are not in l, and the contrary assertion obtains for f2.
Thus we never attempt to add elements already present in l, which maintains a
constant cost of adding an element in l.

(∗ l a s t : α → regexp α → l i s t α ∗)
value l a s t i n i t i a l e =

l et rec l a s t r e c l = fun
[DOne → l

XVII

| DSymb d → [d : : l]
| DUnion e1 e2 →

l a s t r e c (l a s t r e c l e2) e1
| DConc e1 e2 →

i f de l t a e2 then l a s t r e c (l a s t r e c l e2) e1
else l a s t r e c l e2

| DStar e | DEpsilon e | DPlus e → l a s t r e c l e
] in

let l = l a s t r e c [] e in
i f de l t a e then [i n i t i a l : : l] else l ;

Now we have all the ingredients to compile a regular expression:

(∗ compi le : marked α → regexp α → l o c a l α ∗)
value compi le i n i t i a l exp =

l et (exp m , s t a t e s) = mark exp in
let exp d = d i s c r exp m in
let f o l = f o l l ow i n i t i a l exp d
and l a s t s = l a s t i n i t i a l exp d in
(i n i t i a l , s t a t e s , f o l , l a s t s) ;

4.3 Parametric regular expressions

We now define systems of regular expressions over parametric alphabets whose
symbols are associated to aums. Meta-variables allow sharing in such descrip-
tions. We skip the details of the syntax, and present just an example of such a fi-
nite machine description, actually a subproblem of Sanskrit morphology, namely
noun phrases representing compound substantives.

initial init epsilon_aum

alphabet noun ; iic ; ifc end

automaton Disp
node SUBST = iic* . (noun | iic.ifc)

end

Here we specify that the initial phase is called init, that the user must
provide a value epsilon_aum for the aum recognizing just the empty word,
as well as aum values noun, iic and ifc for recognizing the corresponding
languages. We are interested in the language iic* . (noun | iic.ifc). In the
intended application, SUBST is the language of substantive forms, containing
noun forms as well as compounds, formed with prefix iic forms which may be
iterated, and suffix ifc forms.

We skip the details of the parsing of such a description. In the current syn-
tax, we allow systems of regular expressions, allowing sharing, and the compiler
unfolds the system into a flattened expression.

XVIII

We use the meta-programming facilities provided by the Camlp4 preproces-
sor, which allows macro-generation of an Ocaml program at the level of abstract
syntax. Skipping the details of this meta-programming, we obtain mechanically,
for the above example, the following module text.

module Automata (Auto : sig type auto = ’ a ; end) =
struct

type auto vec t =
{ eps i lon aum : Auto . auto ;

noun : Auto . auto ; i i c : Auto . auto ; i f c : Auto . auto } ;
module Disp (Fsm : sig value autos : auto vec t ; end) =

struct
type phase =

[I n i t | I i c 1 | Noun | I i c 2 | I f c] ;
value t ransducer = fun

[I n i t → Fsm. autos . eps i lon aum
| I i c 1 → Fsm. autos . i i c
| Noun → Fsm. autos . noun
| I i c 2 → Fsm. autos . i i c
| I f c → Fsm. autos . i f c
] ;

value di spatch =
fun
[I n i t → [I i c 1 ; Noun ; I i c 2]
| I i c 1 → [I i c 1 ; Noun ; I i c 2]
| Noun → []
| I i c 2 → [I f c]
| I f c → []
] ;

value i n i t i a l = I n i t ;
value t e rmina l phase = L i s t .mem phase [Noun ; I f c] ;

end ;
end ;

We now have all the components we wish to assemble, since the module
instanciation (Automata Auto), for Auto one of the aum description modules
given in the previous sections, creates a module Dispatch=(Disp Fsm) having
the right functionality, with module Fsm holding the aum implementations. In
this simple example these implementations are the various lexicons correspond-
ing to the respective lexical categories. In the Sanskrit platform, these aums are
decorated with non-deterministic transitions (using external addressing) corre-
sponding to sandhi prediction.

Remarks. 1. During the Berry-Sethi compiling process, the candidate regular
expression is linearized when a phase occurs more than once. However, the cor-
responding automata are shared via the transducer component, recovering the
proper sharing.

XIX

2. Our Sanskrit platform1 now uses this modular methodology, which enforces
the right geometry for morphological chunks, taking care of preverb affixes,
proper recognition of compound forms and periphrastic verbal constructions,
and proper analysis of absolutive forms (with suffixes in -tvā for roots and -ya
for verbs admitting preverbs).
3. As usual, we may augment our automata descriptions with weights reflecting
(possibly conditional) probabilities in order to get stochastic automata whose
behaviour reflects hidden Markov chains in the data. Note that the correctness
criteria are invariant with the permutation of choices induced by priority selec-
tion according to these weights.

4.4 A variant using Antimirov’s compiling algorithm

V. Antimirov proposed in [1] another algorithm for compiling regular expres-
sions, using a notion of partial derivative. This algorithm produces automata
that may be significantly smaller than the ones obtained by the Berry-Sethi
algorithm. Such automata do not have the locality condition, and now the mod-
ularity of the construction obtains by a more complex mapping, since the trans-
ducer invocation does not simply depend on the states, but on the transitions.
We shall not develop further this variant construction in this paper.

5 Conclusion

We have presented a methodology for constructing finite-state machines, such
as finite automata and transducers, in a modular way. Regular expressions over
an alphabet of phases express a composition of machines under a finite-state-
controlled constraint. This corresponds to considering a regular expression not
as the mere denotation of a rational language over the alphabet of its symbols
seen as string generators, but rather as a rational polynomial over its symbols,
abstracting themselves rational sets. The algebraic property of closure of ra-
tional sets over substitution (mapping symbols to rational sets), together with
the local automaton representation of finite-state machines, provide the natural
foundation for the modular composition of finite-state machines.

Our mechanism allows the controlled interaction of machines compiled as
mixed automata (aums). This is useful for instance for shallow parsing in com-
putational linguistics applications. For the Sanskrit platform built by the first
author, this allows to build a tagger composing machines which invert phonol-
ogy (sandhi analysis) and morphology, with separate machines for distinct lex-
ical classes, constrained by the geometrical conditions defining admissible com-
pounds, preverb management, and periphrastic constructions with auxiliary verbs.

Our design exploits and justifies our functional programming methodology
as follows:

1 http://sanskrit.inria.fr/

XX

– Applicative programming leads to robust well-structured programs, amenable
to formal proofs and to journal publication, in the spirit of literate program-
ming — all our programs are rigorously expressed as inductive definitions
over higher-order types.

– Functionality is essential to the concise expression of powerful control para-
digms such as continuations, essential for the definition of coroutine inter-
preters for non-deterministic search.

– Modularity of the programming language is the essence of the parametricity
underlying algebraic closure operations, and thus is an essential abstraction
paradigm.

– Powerful macro-generation mechanisms lead to an effective meta-program-
ming methodology, tailoring general algorithms to the specific needs of ap-
plications.

– Despite this very high-level view of software architecture, the resulting pro-
grams are efficient enough for their integration in real size applications, as
witnessed by their use in computational linguistic platforms [9].

References

1. V. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theoretical Computer Science, 155:291–319, 1996.

2. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48:117–126, 1986.

3. J. Berstel and J.-E. Pin. Local languages and the Berry-Sethi algorithm. Theoret-
ical Computer Science, 155:439–446, 1996.

4. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

5. G. Huet. The Zen computational linguistics toolkit. Technical report, ESSLLI
Course Notes, 2002. http://pauillac.inria.fr/∼huet/ZEN/esslli.pdf

6. G. Huet. The Zen computational linguistics toolkit: Lexicon structures and mor-
phology computations using a modular functional programming language. In Tu-
torial, Language Engineering Conference LEC’2002, 2002.

7. G. Huet. Linear contexts and the sharing functor: Techniques for symbolic compu-
tation. In F. Kamareddine, editor, Thirty Five Years of Automating Mathematics.
Kluwer, 2003. http://pauillac.inria.fr/∼huet/PUBLIC/DB.pdf

8. G. Huet. Automata mista. In N. Dershowitz, editor, Verification: Theory and
Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
pages 359–372. Springer-Verlag LNCS vol. 2772, 2004. http://pauillac.inria.

fr/∼huet/PUBLIC/zohar.pdf

9. G. Huet. A functional toolkit for morphological and phonological processing, ap-
plication to a Sanskrit tagger. J. Functional Programming, 15,4:573–614, 2005.
http://pauillac.inria.fr/∼huet/PUBLIC/tagger.pdf.

10. E. Roche and Y. Schabes. Finite-State Language Processing. MIT Press, 1997.
11. R. Sproat. Morphology and Computation. MIT Press, 1992.

