
 

Selected Papers Presented at the 17th World 
Sanskrit Conference , July 9-13, 2018

Edited by 
Gérard Huet and 
Amba Kulkarni

COMPUTATIONAL SANSKRIT 
& DIGITAL HUMANITIES

University of British Columbia  
 Vancouver, Canada

TH
E  

 1
7T

H   W
ORLD  SANSKRIT  CONFEREN

CE

VANCOUVER, CANADA • JULY 9-13, 2018VANCOUVER, CANADA • JULY 9-13, 2018



Computational Sanskrit & Digital Humanities: 
Selected Papers Presented at the 17th World Sanskrit Conference,  
July 9-13, 2018, Vancouver, Canada. 

DOI: 10.14288/1.0391834. 
URI: http://hdl.handle.net/2429/74653. 

Edited by Gérard Huet and Amba Kulkarni 
General Editor: Adheesh Sathaye 

Electronic edition published (2020) by the Department of Asian Studies, Univer-
sity of British Columbia, for the International Association for Sanskrit Studies. 

Hardback edition published in 2018 by D. K. Publishers Distributors Pvt. Ltd., 
New Delhi (ISBN: 978-93-87212-10-7). 

© Individual authors, 2020. Content is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International license (CC BY-NC-ND 
4.0). http://creativecommons.org/licenses/by-nc-nd/4.0/ 

All papers in this collection have received double-blind peer review. 

वैधुसव ्मकबुंटुक
अ ारा यसं तृा यनसमवायः
INTERNATIONAL ASSOCIATION OF SANSKRIT STUDIES

http://hdl.handle.net/2429/74653


Computational Sanskrit
&

Digital Humanities
Selected papers presented

at
the 17th World Sanskrit Conference

University of British Columbia, Vancouver
9–13 July 2018

Edited by
Gérard Huet & Amba Kulkarni





Preface
This volume contains edited versions of papers accepted for presentation

at the 17th World Sanskrit Conference in July 2018 in Vancouver, Canada.
A special track of the conference was reserved for the topic “Computational
Sanskrit & Digital Humanities”, with the intent to cover not only recent
advances in each of the now mature fields of Sanskrit Computational Lin-
guistics and Sanskrit Digital Libraries, but to encourage cooperative efforts
between scholars of the two communities, and prepare the emergence of
grammatically informed digital Sanskrit corpus. Due to its rather techni-
cal nature, the contributions were not judged on mere abstracts, but on
submitted full papers reviewed by a Program Committee.

We would like to thank the Program Committee of our track for their
work:

• Dr Tanuja Ajotikar, Belgavi, Karnataka
• Pr Stefen Baums, University of Munich
• Pr Yigal Bronner, Hebrew University of Jerusalem
• Pr Pawan Goyal, IIT Kharagpur
• Dr Oliver Hellwig, Düsseldorf University
• Dr Gérard Huet, Inria Paris (co-chair)
• Pr Girish Nath Jha, JNU, Delhi
• Pr Amba Kulkarni, University of Hyderabad (co-chair)
• Dr Pawan Kumar, Chinmaya Vishwavidyapeeth, Veliyanad
• Pr Andrew Ollett, Harvard University
• Dr Dhaval Patel, I.A.S. Officer, Gujarat
• Pr Srinivasa Varakhedi, KSU, Bengaluru

14 contributions were accepted, revised along referees’ recommendations,
and finely edited to form this collection.

The first two papers concern the problem of proper mechanical simula-
tion of Pāṇini’s Aṣṭadyāyī. In “A Functional Core for the Computational

i



ii Computational Sanskrit and Digital Humanities

Aṣṭadyāyī”, Samir Janardan Sohoni and Malhar A. Kulkarni present an
original architecture for such a simulator, based on concepts from functional
programming. In their model, each Pāṇinian sūtra translates as a Haskell
module, an elegant effective formalization. They explain an algorithm for
sūtra-conflict assessment and resolution, discuss visibility and termination,
and exhibit a formal derivation of word bhavati as a showcase.

A different computational framework for the same problem is offered
by Sarada Susarla, Tilak M. Rao and Sai Susarla in their paper “PAIAS:
Pāṇini Aṣṭadyāyī Interpreter As a Service”. They explain their development
of a Web service usable as a Sanskrit grammatical assistant, implementing
directly the Pāninian mechanisms. Here sūtras are records in a database
in the JSON format, managed by a Python library. They pay particular
attention to the meta-rules of the grammar, and specially to defining sūtras.
Thay refrain from expanding such definitions in operative sūtras, but insist
on their emulation along the grammatical processing.

These two papers conceptualize two computational models of Pāninian
grammar that are strikingly different in their software architecture. How-
ever, when one examines examples of sūtra representations in both systems,
the information content looks very similar, which may suggest some future
inter-operability of these two interesting tools.

In the general area of mechanical analysis of Sanskrit text, we have
several contributions at various levels. At the level of semantic roles analysis,
at the heart of dependency parsing, Sanjeev Panchal and Amba Kulkarni
present possible solutions to the complementary problem of ambiguity. In
their paper “Yogyatā as an absence of non-congruity” they explain various
definitions used by Sanskrit grammarians to express compatibility, and how
to use these definitions to reduce ambiguity in dependency analysis.

The next paper, “An ‘Ekalavya’ Approach to Learning Context Free
Grammar Rules for Sanskrit Using Adaptor Grammar”, by Amrith Kr-
ishna, Bodhisattwa Prasad Majumder, Anil Kumar Boga, and Pawan Goyal,
presents an innovative use of adaptor grammars to learn patterns in Sanskrit
text definable as context-free languages. They present applications of their
techniques to word reordering tasks in Sanskrit, a preliminary step towards
recovering prose ordering from poetry, a crucial problem in Sanskrit.

Concerning meter recognition, we have a contribution of Shreevatsa Ra-
jagopalan on “A user-friendly tool for metrical analysis of Sanskrit verse”.
The main feature of this new metrical analysis tool, available either as a



Preface iii

Web service or as a software library, is its robustness and its guidance in
error-correction.

Two more contributions use statistical techniques (Big Data) for improv-
ing various Sanskrit-related tasks.

For instance, in the field of optical character recognition, the contribu-
tion by Devaraja Adiga, Rohit Saluja, Vaibhav Agrawal, Ganesh Ramakr-
ishnan, Parag Chaudhuri, K. Ramasubramanian and Malhar Kulkarni on
“Improving the learnability of classifiers for Sanskrit OCR corrections”.

In the same vein of statistical techniques, Nikhil Chaturvedi and Rahul
Garg present “A Tool for Transliteration of Bilingual Texts Involving San-
skrit”, which accommodates smoothly text mixing various encodings.

While much of the work in Sanskrit computational linguistics is on Clas-
sical Sanskrit, researchers are also applying computational techniques to
Vedic Sanskrit. One such effort is a detailed formalization of Vedic recitation
phonology by Balasubramanian Ramakrishnan: “Modeling the Phonology
of Consonant Duplication and Allied Changes in the Recitation of Tamil
Taittiryaka-s”.

On a more theoretical perspective on Sanskrit syntax, Brendan Gillon
presents a formalization of Sanskrit complements in terms of the categorial
grammar framework. His paper “Word complementation in Sanskrit treated
by a modest generalization of categorial grammar” explains modified ver-
sions of the cancellation rules that aim at accommodating free word order.
This raises the theoretical problem of the distinction between complements
and modifiers in Sanskrit.

Turning to the Digital Humanities theme, we have a number of contri-
butions. In “TEITagger: Raising the standard for digital texts to facilitate
interchange with linguistic software”, Peter Scharf discusses how fine-grain
XML representation of corpus within the Text Encoding Initiative stan-
dard allows the inter-communication between digital Sanskrit libraries and
grammatical tools such as parsers as well as meter analysis tools.

A complementary proposal is discussed in the paper “Preliminary De-
sign of a Sanskrit Corpus Manager” by Gérard Huet and Idir Lankri. They
propose a scheme for a fine-grained representation of Sanskrit corpus allow-
ing inter-textuality phenomena such as sharing of sections of text, but also
a variance of readings. They propose to use grammatical analysis tools to
help annotators feeding digital libraries with grammatical information using
modern cooperative work software. They demonstrate a prototype of such
a tool, in the framework of the Sanskrit Heritage platform.



iv Computational Sanskrit and Digital Humanities

Moving towards philological concerns such as critical editions, the paper
“Enriching the digital edition of the Kāśikāvṛtti by adding variants from the
Nyāsa and Padamañjarī”, by Tanuja P. Ajotikar, Anuja P. Ajotikar, and
Peter M. Scharf discusses the problem of managing complex information
from recensions and variants. It argues for a disciplined method of using
TEI structure to represent this information in machine-manipulable ways,
and demonstrates its use on processing variants of the Kāśikāvṛtti, the major
commentary of the Aṣṭadyāyī.

In the same area of software-aided philology, the contribution “From the
web to the desktop: IIIF-Pack, a document format for manuscripts using
Linked Data standards”, by Timothy Bellefleur, presents a proposal for a
common format fit to manage complex information about corpus recensions
in various formats, including images of manuscripts. This is in view of fa-
cilitating the interchange of such data by various teams using this common
format. His proposal uses state-of-the-art standards of hypertext. It has
already been put to use in an interactive software platform to manage re-
censions for the critical edition of the Vetālapañcaviṃśati by Pr. Adheesh
Sathaye.

The volume concludes with the contribution “New Vistas to study
Bhartṛhari: Cognitive NLP” by Jayashree Aanand Gajjam, Diptesh Kano-
jia, and Malhar Kulkarni which presents highly original research on cogni-
tive linguistics in Sanskrit, by comparing the results of experiments with
eye-tracking equipment with theories of linguistic cognition by Bhartṛhari.

We thank the numerous experts who helped us in the review process
and all our authors who responded positively to the reviewer’s comments
and improved their manuscripts accordingly. We thank the entire 17th WSC
organizing committee, led by Pr. Adheesh Sathaye, which provided us the
necessary logistic support for the organization of this section.

Gérard Huet & Amba Kulkarni



Contributors
Devaraja Adiga
Department of Humanities and Social Sciences,
Indian Institute of Technology Bombay,
Powai, Mumbai, India.
pdadiga@iitb.ac.in

Vaibhav Agrawal
Indian Institute of Technology,
Kharagpur,
India.
vaibhav@iitkgp.ac.in

Anuja Ajotikar
Shan State Buddhist University,
Myanmar
anujaajotikar@gmail.com

Tanuja Ajotikar
KAHER’s Shri B. M. Kankanwadi Ayurveda Mahavidyalaya,
Belagavi,
India.
gtanu30@gmail.com

Timothy Bellefleur
Department of Asian Studies,
University of British Columbia, Vancouver
tbelle@alumni.ubc.ca

v



vi Computational Sanskrit and Digital Humanities

Anil Kumar Boga
Department of Computer Science and Engineering,
Indian Institute of Technology,
Kharagpur, India.
bogaanil.009@gmail.com

Nikhil Chaturvedi
Department of Computer Science and Engineering,
Indian Institute of Technology,
New Delhi
cs5130291@cse.iitd.ac.in

Parag Chaudhuri
Indian Institute of Technology Bombay,
Powai, Mumbai, India.
paragc@cse.iitb.ac.in

Jayashree Aanand Gajjam
Department of Humanities and Social Sciences,
Indian Institute of Technology Bombay,
Powai, Mumbai, India.
jayashree_aanand@iitb.ac.in

Rahul Garg
Department of Computer Science and Engineering,
Indian Institute of Technology,
New Delhi
rahulgarg@cse.iitd.ac.in

Brendan S. Gillon
McGill University
Montreal, Quebec
H3A 1T7 Canada
brendan.gillon@mcgill.ca



viiContributors

Pawan Goyal
Department of Computer Science and Engineering, 
Indian Institute of Technology,
Kharagpur, India.
pawang@cse.iitkgp.ernet.in

Gérard Huet
Inria Paris Center,
France.
Gerard.Huet@inria.fr

Diptesh Kanojia
IITB-Monash Research Academy, Powai, Mumbai, India 
diptesh@iitb.ac.in

Amrith Krishna
Department of Computer Science and Engineering, 
Indian Institute of Technology,
Kharagpur, India.
amrith.krishna@cse.iitkgp.ernet.in

Amba Kulkarni
Department of Sanskrit Studies,
University of Hyderabad,
Hyderabad, India.
apksh@uohyd.ernet.in

Malhar Kulkarni
Department of Humanities and Social Sciences,
Indian Institute of Technology Bombay,
Powai, Mumbai, India.
malhar@hss.iitb.ac.in



viii Computational Sanskrit and Digital Humanities

Idir Lankri
Université Paris Diderot,
Paris
lankri.idir@gmail.com

Bodhisattwa Prasad Majumder
Walmart Labs
India.
bodhisattwapm2017@email.iimcal.ac.in

Sanjeev Panchal
Department of Sanskrit Studies,
University of Hyderabad,
Hyderabad, India.
snjvpnchl@gmail.com

Shreevatsa Rajagopalan
Independent Scholar
1035 Aster Ave 1107
Sunnyvale, CA 94086, USA
shreevatsa.public@gmail.com

Balasubramanian Ramakrishnan
Independent Scholar
145 Littleton Rd
Harvard, MA 01451, USA
balasr@acm.org

Ganesh Ramakrishnan
Indian Institute of Technology Bombay,
Powai, Mumbai, India.
ganesh@cse.iitb.ac.in



ixContributors

K. Ramasubramanian
Department of Humanities and Social Sciences, 
Indian Institute of Technology Bombay, 
Powai, Mumbai, India.
ram@hss.iitb.ac.in

Tilak M Rao
School of Vedic Sciences,
MIT-ADT University,
Pune, India.
rao.tilak@gmail.com

Rohit Saluja
IITB-Monash Research Academy,
Powai, Mumbai, India.
rohitsaluja@cse.iitb.ac.in

Peter Scharf
The Sanskrit Library,
Providence, Rhode Island, U.S.A.
and
Language Technologies Research Center, 
Indian Institute of Information Technology, 
Hyderabad, India.
scharf@sanskritlibrary.org

Samir Janardan Sohoni
Department of Humanities and Social Sciences, 
Indian Institute of Technology Bombay, 
Powai, Mumbai, India.
sohoni@hotmail.com

Sarada Susarla
Karnataka Sanskrit University,
Bangalore, India.
sarada.susarla@gmail.com



x Computational Sanskrit and Digital Humanities

Sai Susarla
School of Vedic Sciences,
MIT-ADT University,
Pune, India.
sai.susarla@gmail.com



Contents

Preface i

Contributors v

A Functional Core for the Computational Aṣṭād-
hyāyī 1

Samir Sohoni and Malhar A. Kulkarni

PAIAS: Pāṇini Aṣṭādhyāyī Interpreter As a Service 31

Sarada Susarla, Tilak M. Rao and Sai Susarla

Yogyatā as an absence of non-congruity 59

Sanjeev Panchal and Amba Kulkarni

An ‘Ekalavya’ Approach to Learning Context Free
Grammar Rules for Sanskrit Using Adaptor Gram-
mar 83

Amrith Krishna, Bodhisattwa Prasad Majumder, Anil
Kumar Boga, and Pawan Goyal

A user-friendly tool for metrical analysis of San-
skrit verse 113

Shreevatsa Rajagopalan

xi



xii Computational Sanskrit and Digital Humanities

Improving the learnability of classifiers for San-
skrit OCR corrections 143

Devaraja Adiga, Rohit Saluja, Vaibhav Agrawal,
Ganesh Ramakrishnan, Parag Chaudhuri, K. Ramasubra-
manian and Malhar Kulkarni

A Tool for Transliteration of Bilingual Texts In-
volving Sanskrit 163

Nikhil Caturvedi and Rahul Garg

Modeling the Phonology of Consonant Duplica-
tion and Allied Changes in the Recitation of Tamil
Taittirīyaka-s 181

Balasubramanian Ramakrishnan

Word complementation in Classical Sanskrit 217

Brendan Gillon

TEITagger
Raising the standard for digital texts
to facilitate interchange with linguistic software 229

Peter M. Scharf

Preliminary Design of a Sanskrit Corpus Manager 259

Gérard Huet and Idir Lankri

Enriching the digital edition of the Kāśikāvr̥tti
by adding variants from the Nyāsa and Padamañjarī 277

Tanuja P. Ajotikar, Anuja P. Ajotikar, and Peter M.
Scharf



Table of contents xiii

From the Web to the desktop: IIIF-Pack, a doc-
ument format for manuscripts using Linked Data
standards 295

Timothy Bellefleur

New Vistas to study Bhartṛhari: Cognitive NLP 311

Jayashree Aanand Gajjam, Diptesh Kanojia and Mal-
har Kulkarni



xiv Computational Sanskrit and Digital Humanities



A Functional Core for the Computational
Aṣṭādhyāyī

Samir Janardan Sohoni and Malhar A. Kulkarni

Abstract: There have been several efforts to produce computational
models of concepts from Pāṇini’s Aṣṭādhyāyī. These implementations
targeted certain subsections of the Aṣṭādhyāyī such as the visibility
of rules, resolving rule conflict, producing sandhi, etc. Extrapolat-
ing such efforts extremely will give us a much-coveted computational
Aṣṭādhyāyī. A computational Aṣṭādhyāyī must produce an acceptable
derivation of words showing the order in which sūtras are applied.
We have developed a mini computational Aṣṭādhyāyī which purports
to derive accented verb forms of the root bhū in the laṭ lakāra. An
engine repeatedly chooses, prioritizes and applies sutras to an input,
given in the form of a vivakṣā, until an utterance is derived. Among
other things, this paper describes the structure of sūtras, the visibility
of sūtras in the sapādasaptādhyāyī and tripādī sections, phasing of the
sutras and the conflict resolution mechanisms.
We found that the saṃjñā and vidhi sūtras are relatively simple to
implement due to overt conditional clues. The adhikāra and paribhāṣā
sutras are too general to be implemented on their own, but can be
bootstrapped into the vidhi sūtras. The para-nitya-antaraṅga-apavāda
method of resolving sūtra conflicts was extended to suit the compu-
tational Aṣṭādhyāyī. Phasing can be used as a device to defer certain
sūtras to a later stage in the derivation.
This paper is the first part of a series. We intend to write more as we
implement more from the Aṣṭādhyāyī.
Keywords: computational Ashtadhyayi, derivation, conflict resolution,
sutra, visibility, phase

1



2 Sohoni and Kulkarni

1 Introduction
An accent is a key feature of the Sanskrit language. While the ubiquitous
accent of Vedic has fallen out of use in Classical Sanskrit, Pāṇini’s gram-
matical mechanisms are capable of producing accented speech. We aim to
derive an accented instance by using computer implementation of Pāṇinian
methods. Our system can produce the output shown in Listing 1.

Our implementation uses a representation of vivakṣā (See Listing 11)
to drive the derivation. We model Aṣṭādhyāyī sūtras as requiring a set of
preconditions to produce an effect. The sūtras look for their preconditions
in an input environment. The effects produced by sūtras become part of
an ever-evolving environment which may trigger other sūtras. To resolve
rule conflicts, we have made a provision for a harness which is based on the
paribhāṣā पवू परिनारापवादानाम उ्रोरं बलीयः.

We have used Haskell, a lazy functional programming language, to build
the prototype. Our implementation uses a phonetic encoding of characters
for accentuation and Pāṇinian operations (See Sohoni and M. A. Kulkarni
(2016)). The phonetic encoding allows for faster phonetic modifications and
testing operation, something that seems to happen very frequently across
most of the sūtras.

The following is an outline of the rest of this paper. Previous work re-
lated to the computational Aṣṭādhyāyī is reviewed in Section 2. Section
3 discusses how phonetic components, produced and consumed by sūtras,
are represented. It also discusses tracing the antecedants of components.
Implementation of sūtras is discussed in Section 4. Intermediate steps of a
derivation, known as frames, are discussed in 5.1. Section 5.2 also discusses
the environment which is used to check triggering conditions of sūtras. De-
ferring application of sūtras by arranging them into phases is discussed in
6. The process of derivation is explained in Section 7. Prioritization and
conflict resolution of sūtras is discussed in Section 8. Section 9 discusses how
visible frames in a derivation are made available to a sūtra. Some conclusions
and future work are discussed in Section 10.



Computational Aṣṭādhyāyī 3

Wiwakshaa --->[("gana",Just "1"),("purusha",Just "1"),
("wachana",Just "1"),("lakaara",Just "wartamaana"),
("prayoga",Just "kartari")]

Initial ---> भू॒
[]***>(6.1.162) ---> भू
[]***>(3.2.123) ---> भूलँट्
[(1.4.13) wins (1.4.13) vs (1.3.9) by SCARE
]***>(1.4.13) ---> भूलँट्
[]***>(1.3.9) ---> भूल्
[]***>(3.4.78) ---> भूित॒प्
[(1.4.13) wins (1.4.13) vs (1.4.104) by SCARE
,(1.4.13) wins (1.4.13) vs (1.3.9) by SCARE
,(1.4.13) wins (1.4.13) vs (3.1.68) by SCARE
,(1.4.13) wins (1.4.13) vs (7.3.84) by SCARE
]***>(1.4.13) ---> भूित॒प्
[(1.4.104) wins (1.4.104) vs (1.3.9) by SCARE
,(1.4.104) wins (1.4.104) vs (3.1.68) by SCARE
,(1.4.104) wins (1.4.104) vs (7.3.84) by SCARE
]***>(1.4.104) ---> भूित॒प्
[(3.1.68) wins (1.3.9) vs (3.1.68) by paratwa
,(7.3.84) wins (3.1.68) vs (7.3.84) by paratwa
]***>(7.3.84) ---> भोित॒प्
[(3.1.68) wins (1.3.9) vs (3.1.68) by paratwa
]***>(3.1.68) ---> भोश॒िĢत॒प्
[(1.4.13) wins (1.4.13) vs (1.3.9) by SCARE
]***>(1.4.13) ---> भोश॒िĢत॒प्
[]***>(1.3.9) ---> भोअ॒ित॒
[]***>(1.4.14) ---> भोअ॒ित॒
[]***>(1.4.109) ---> भोअ॒ित॒
[(8.4.66) wins (6.1.78) vs (8.4.66) by paratwa
]***>(8.4.66) ---> भोअ॑ित॒
[]***>(6.1.78) ---> भव॒ित॒
[]***>(8.4.66) ---> भव॑ित॒

Listing 1
A derivation of the pada भव॑ित॒



4 Sohoni and Kulkarni

2 Review of Literature
Formal foundations of a computational Aṣṭādhyāyī can be seen in Mishra
(2008, 2009, 2010). The general approach in Mishra’s work is to take a lin-
guistic form such as bhavati and apply heuristics to carve out some grammat-
ical decompositions. The decompositions are used to drive analytical pro-
cesses that may yield more decompositions along the boundaries of sandhis
to produce seed-forms.1 This part is an analysis done in a top-down manner.
The second phase is a bottom-up synthesis, wherein, each of the seed-forms
is processed by a synthesizer to produce finalized linguistic expressions that
must match the original input. To support analysis, Mishra’s implementa-
tion relies upon a database which contains partial orders of morphological
entities, mutually exclusive morphemes, and other such artifacts.2 In the
synthesis phase, Mishra (2010) also implements a conflict resolver using the
siddha principle.3

Goyal, A. P. Kulkarni, and Behera (2008) have also created a computa-
tional Aṣṭādhyāyī which focuses on ordering sūtras in the regions governed
by पवू ऽािसम (्A. 8.2.1), षतकुोरिसः (A. 6.1.86) and अिसवदऽाभात (्A. 6.4.22).
Input, in the form of prakṛti along with attributes, is passed through a set
of modules that have thematically grouped rules. The implementation em-
bodies the notion of data spaces. Rules are able to see various data spaces
in order to take input. Results produced by the rules are put back into the
appropriate data spaces. Conflict resolution is based on paribhāṣā-driven
concepts such as principle of apavāda as well as ad-hoc techniques.4

Goyal, A. P. Kulkarni, and Behera (2008) §4 mention the features of a
computational Aṣṭādhyāyī. Also, a computational Aṣṭādhyāyī should seam-
lessly glue together grammatical concepts just like the traditional Aṣṭād-
hyāyī. It should not add any side effects, neither should it be lacking any
part of the traditional Aṣṭādhyāyī. Above all, a computational Aṣṭādhyāyī
must produce an acceptable derivation of words.

The system described in Mishra (2010) does not use traditional building
blocks such as the Māheśvara Sūtras or the Dhātupātha, but can be made

1See Mishra (2009), Section 4.2 for a description of the general process.
2See Mishra (2009), Section 6.1 for details of the database.
3Mishra (2010):255
4 Goyal, A. P. Kulkarni, and Behera (2008), cf. ‘Module for Conflict Resolution’ in

§4.4



Computational Aṣṭādhyāyī 5

to do so.5 We believe that canonical building blocks such as Māheśvara Sū-
tras and Aṣṭādhyāyī sūtrapāṭha should strongly influence the computational
Aṣṭādhyāyī.

Peter M. Scharf (2016) talks about the need for faithfully translating
Pāṇinian rules in the realm of computation and shows elaborate XMLiza-
tion of Pāṇini’s rules. Bringing Pāṇini’s rules into the area of computation
uncovers some problems that need to be solved. T. Ajotikar, A. Ajotikar,
and Peter M. Scharf (2016) discuss some of those issues.

XML is useful in describing structured data and therefore XMLization
of the Aṣṭādhyāyī is a step in the right direction. However, processing
Pāṇinian derivations in XML will be fraught with performance issues. XML
is good for the specification of data but it cannot be used as a programming
language. A good deal of designing a computational Aṣṭādhyāyī will have
to focus on questions such as “How to implement (not specify) the notion
X”. X may refer to things such as run-time evaluation of apavādas, or
dynamically creating any pratyāhāra from the Māheśvara Sūtras or dealing
with an atideśasūtra so that a proper target rule is triggered. The power
of a real, feature-rich programming language will be indispensable in such
work.

Patel and Katuri (2016) have demonstrated the use of programming
languages to derive subanta forms. Patel and Katuri have discovered a
manual way to order rules (NLP ordering) for producing subantas according
to Bhattojī Dikṣita’s Vaiyākaraṇa Siddhāntakaumudī. It is conceivable that
as more rules are added to the system to derive other types of words, the
NLP ordering may undergo a lot of change and it may ultimately approach
the order that comes about due to Pāṇinian paribhāṣās and those compiled
by Nagojibhaṭṭa (See Kielhorn (1985)).

In the present paper we describe the construction of rules, the progress
of a derivation, the resolution of conflicts by modeling competitions between
the rules in the ambit of paribhāṣā पवू परिनारापवादानाम उ्रोरं बलीयः and
other such concepts.

5Mishra (2010):256, §4, “There is, however, a possibility to make the system aware of
these divisions.”



6 Sohoni and Kulkarni

type Attribute v = (String, Maybe v)
type Tag = Attribute String

data Component = Component {cmpWarnas :: [Warna]
,cmpAttrs :: [Tag]
,cmpOrigin :: [Component]
}

type State = [Component]

Listing 2
State

3 Phonetic Components
The phonetic payload, which comprises of phonemes, is known as a
Component. Listing 2 shows the implementation.6 A Component is
made up of phonetically encoded Warnas. Some name-value pairs known
as Tags give meta information about the Components. Usually, the tags
contain saṃjñās. Over the course of a derivation, Components can un-
dergo changes. At times, sūtras are required to test previous incarnations
of a sthānī (substituend), so a list of previous forms of the Components
is also retained. The current yield of the derivation at any step is in the
State which is a list of Components.

Listing 3 shows how भू + ितप ्can be represented as a intermediate pho-
netic State. The Devanāgarī representations of भू and ितप a्re converted into
an internal representation of Warnas using the encode function. Suitable
tags are applied to the components bhu and tip and they are strung together
in a list to create a State.

3.1 Tracing Components to Their Origins

The sūtra वत मान े लट ् (A. 3.2.123) inserts a लँट ् pratyaya after a dhātu. This
pratyaya will undergo changes and ultimately become ल ्due to application

6Excerpts of implementation details are shown in Haskell. References to variable names
in computer code are shown in bold teletype font. In code listings the letter ‘w’ is used
for व.् In other places the Roman transliteration is used which prefers ‘v’ instead of ‘w’.



Computational Aṣṭādhyāyī 7

egState = let bhu = Component (encode "भू") -- phonemes
[("dhaatu",Nothing)] -- tags
[] -- no previous history

tip = Component (encode "ितप्") -- phonemes
[("wibhakti",Nothing) -- tags
,("parasmaipada",Nothing)
,("ekawachana",Nothing)
,("saarwadhaatuka",Nothing)
,("pratyaya",Nothing)]
[] --no previous history

in [bhu, tip]

Listing 3
An example of State

of it-sutras A. 1.3.2-9. लशतिते (A. 1.3.8) will mark the ल ्as an इत ्causing
its removal. A. 1.3.8 should not mark the ल ्of a लँट ्pratyaya as an इत ्. The
ल ् in ten lakāras is not an इत ्. These lakāras should figure into A. 1.3.8 as
an exception list so that A. 1.3.8 does not apply to them. However, other
sutras like A. 1.3.2, A. 1.3.3 and A. 1.3.9 may still apply leaving back only
ल.् If a list of ten lakāras was kept as an exception list in A. 1.3.8, ल ्will not
match any one of those and will be liable to be dropped. Somehow, the ल ्
which remains from lakāras, needs to be traced back to the original lakāra.

As shown in Listing 2, the datatype Component recursively contains
a list of Components. The purpose of this list is to keep around previous
forms of a Component. As a Component changes, its previous form
along with all attributes is stored at the head of the list. This makes it
easy to recover any previous form of a component and examine it. Listing
4 shows the traceOrigin function. In case of 1.3.8, if calling traceOrigin
on a ल ्produces one of the 10 lakāras, 1.3.8 does not mark such a ल ्an इत ्.
This way of tracing back Components to their previous forms can help in
determination of a sthānī and its attributes under the influence of atideśa
sūtra like ािनवदादशेोऽनिधौ (A. (1.1.56).



8 Sohoni and Kulkarni

traceOrigin :: Component -> [Component]
traceOrigin (Component ws as []) = []
traceOrigin (Component ws as os) =
nub \$ (concat.foldr getOrig [os]) os
where getOrig c os = (traceOrigin c) : os

Listing 4
Tracing origin of a Component

4 Sūtras
According to one opinion in the Pāṇinian tradition, there are six different
types of sūtras. The following verse enumerates them;7

संा च पिरभाषा च िविधिन यम एव च ।
अितदशेोऽिधकार षिधं सऽूलणम ॥्

The saṃjñā sūtras apply specific saṃjñās to grammatical entities based
on certain indicatory marks found in the input. They help the vidhi sūtras
bring about changes.

The real executive power of the Aṣṭādhyāyī lies in the vidhi, niṣedha and
niyama sūtras. The vidhi sūtras bring about changes in the state of the
derivation. The niṣedha and niyama sūtras are devices that prevent over-
generation of vidhi sūtras. They are strongly associated with specific vidhi
sūtras and also share some of their conditioning information.

The paribhāṣā sūtras are subservient to vidhisūtras. They can be thought
of as algorithmic helper functions which are called from many places in
a computer program. In the spirit of the kāryakālapakṣa, the paribhāṣā
sūtras are supposed to unite with vidhi sūtras to create a complete sūtra
which produces a certain effect. The paribhāṣā sūtras need not be explicitly
implemented because their logic can be embedded into the vidhi sūtras.

The adhikāra sūtras create a context for vidhi sūtras to operate. From
an implementation perspective, the context of the adhikāra can be built into
the body of vidhi, niṣedha or niyama sūtras and therefore adhikāra sūtras
need not be explicitly implemented.

7Vedantakeshari (2001):9-11. According to other opinions there are 7 or even as many
as 8 types of sūtras if niṣedha and upavidhi types are considered.



Computational Aṣṭādhyāyī 9

The atideśa sūtras create situational analogies. By forming analogies,
atideśa sūtras cause other vidhi sūtras to trigger. In this implementation
we implement saṃjñā, vidhi and niyama sūtras. We have not implemented
atideśa sūtras.

In traditional learning, every paribhāṣā sūtra is expected to be known
in the place it is taught. The effective meaning of a vidhi sūtra is known
by resorting to the methods of yathoddeśapakṣa or kāryakālapakṣa. In one
opinion, in the yathoddeśapakṣa the boundary of the sapādasaptādhyāyī and
the tripādī presents an ideological barrier which cannot be crossed over by
the paribhāṣā sūtras for reasons of being invisible. The kāryakālapakṣa has
no such problem.8

We are inclined towards an implementation based on kāryakālapakṣa as
it allows us to escape having to implement each and every paribhāṣā sūtra
explicitly and yet enlist the necessary paribhāṣā sūtras’ numbers which go
into creating ekavākyatā (full expanded meaning). This choice allows for
swift development with less clutter. Therefore, the paribhāṣā and adhikāra
sūtras are not explicitly implemented.

Sūtras are defined as shown in Listing 5. In the derivation of the word
भव॑ित॒9 no niyama sūtras were encountered, so they are not implemented in
this effort but could be implemented by adding a Niyama value constructor.
The Widhi value constructor is used to represent all types of sūtras other
than saṃjñā sūtras. The Samjnyaa value constructor is used to make
saṃjñā sūtras. Both the value constructors appear to be same in terms of
their parameters, only the name of the constructor differentiates them. This
is useful in pattern matching on sūtra values in the SCARE model (Section
8.4) which treats saṃjñā sūtras specially.

4.1 Testing the Conditions for Application of sūtras
In a computational Aṣṭādhyāyī, a sūtra must be able to sense certain con-
ditions that exist in the input and it should also be able to produce an
effect. These are the two basic requirements any implementable sūtra must
satisfy. The Testing field in Listing 5 refers to a datatype that has testing
functions slfTest and condTest. A sūtra will be able to produce its effect
provided that slfTest returns True and condTest returns a function which
can produce effects. More on this is explained in Section 7.1. Listing 6 shows

8See Kielhorn (1985), paribhāṣās 2 & 3 – काय कालपे त ु िऽपाामपुिितिरित िवशषेः
9Ṛgvedic convention is used to show accent marks.



10 Sohoni and Kulkarni

data Sutra = Widhi { number :: SutraNumber
, testing :: Testing
}

| Samjnyaa { number :: SutraNumber
, testing :: Testing
}

Listing 5
Definition of sūtra

datatype Testing. Function slfTest is used to prevent a sūtra from apply-
ing ad infinitum. Some sūtras produce an effect without any conditions.
For example, परः सिकष ः सिंहता (A. 1.4.109) defines the saṃjñā samhitā (the
mode of continuous speech) which is not pre-conditioned by anything which
can be sensed in the input. This sūtra can get applied and reapplied contin-
uously had it not been for function slfTest. The slfTest function in sūtra
A. 1.4.109 allows its application only if it was not applied earlier. Unlike
A. 1.4.109, some sūtras produce effects which are conditioned upon things
found in the input. For example, उदाादनदुा िरतः (A. 8.4.66) will look
for an udātta syllable followed by an anudātta one in samhitā and convert
the anudātta into a svarita syllable. As long as there is no udātta followed
by anudātta in the input, A. 8.4.66 will not apply. A. 8.4.66 does not run
the risk of being applied ad infinitum because it is conditioned on things
which can be sensed in the input. Therefore, function slfTest in A. 8.4.66
always returns True. Function condTest should test for the condition that
an udātta is followed by an anudātta in samhitā, in which case it should
return True. Listing 6 shows the functions which each sūtra is expected to
implement.

If a sūtra is inapplicable, condTest returns Nothing, which means
no effects can be produced. In case a sūtra is applicable condTest re-
turns an effect function. Simply calling the effect function with the cor-
rect Environment parameter will produce an effect as part of a new
Environment. Effect is simply a function that takes an Environment
and produces a newer Environment. Each Sutra is expected to imple-
ment the functions slfTest and condTest.



Computational Aṣṭādhyāyī 11

type Effect = TheEnv -> TheEnv
data Testing = TestFuncs {

slfTest :: Environment Trace -> Bool
,condTest :: Environment Trace ->

([Attribute String], Maybe Effect)
}

Listing 6
Definition of testing functions

4.2 Organization of sūtras
The sūtras are implemented as Haskell modules. Every sūtra module exports
a details function. The details function gives access to the definition of the
sūtra and also the slfTest and condTest functions which are required in
other parts of the code. Listing 7 shows a rough sketch of sūtra A. 1.3.9. In
addition, every sūtra will have to implement its own effects function.



12 Sohoni and Kulkarni

module S1_3_9 where

-- imports omitted for brevity

details = Widhi (SutraNumber 1 3 9)
(TestFuncs selfTest condTest)

selfTest :: TheEnv -> Bool
selfTest _ = True

condTest :: TheEnv -> ([Attribute String], Maybe Effect)
condTest env = -- details omitted for brevity

effects :: Effect
effects env = -- details omitted for brevity

Listing 7
Sūtra module



Computational Aṣṭādhyāyī 13

5 The Ecosystem for Execution of Sūtras
The next sūtra applicable in a derivation takes its input from the result
produced by the previous one. Due to the siddha/asiddha notion between
certain sūtras, it can be generally said that the input for the next sūtra may
come from any of the previously generated results. This section discusses
the ecosystem in which sūtras get their inputs.

5.1 Frames
As each sūtra applies in a derivation, some information about it is captured
in a record known as a Frame. Some of the information, such as all the
Conflicts, is captured for reporting. The two important constituents of
Frame are the Sutra which was applied and the State it produced. As a
derivation progresses, the output State from one sūtra becomes the input
State of another.

Listing 8 shows Frame as an abstract datatype which expects two types,
conflict and sutra, to create a concrete datatype. Frame (Conflict Su-
tra) Sutra is the realization of a concrete type which is, for convenience,
called TheFrame. The Trace is merely a list of TheFrames. It is meant
to show a step-by-step account of the derivation.

5.2 Environment
To produce an effect, some sūtras look at indicators in what is fed as input.
A sūtra such as साव धातकुाध धातकुयोः (A. 7.3.84) is expected to convert an इक ्
letter at the end of the aṅga into a guṇa letter, provided that a sārvadhātuka

data Frame conflict sutra = Frame {frConflicts :: [conflict]
,frSutra :: (Maybe sutra)
,frOutput :: State
}

type TheFrame = Frame (Competition Sutra) Sutra
type Trace = [TheFrame]

Listing 8
The Trace



14 Sohoni and Kulkarni

-- input to A. 7.3.84
[Component (encode "भू") [("dhaatu",Nothing)] []
,Component (encode "ितप्")

[("saarwadhaatuka",Nothing),("pratyaya",Nothing)] []
]

Listing 9
An input to sūtra A. 7.3.84

-- output from A. 7.3.84
[Component (encode "भो") [("dhaatu",Nothing)] []
,Component (encode "ितप्")
[("saarwadhaatuka",Nothing) ,("pratyaya",Nothing)] []

]

Listing 10
An output from sūtra A. 7.3.84.

or ārdhadhātuka pratyaya follows. If this sūtra is fed an input such as the
one shown in Listing 9, all necessary conditions can be found in this input
viz. there is an इक ् at the end of the aṅga, followed by the sārvadhātuka
pratyaya ितप ्.

Now that its required conditions have been fulfilled, A. 7.3.84 produces
an effect such as the one shown in Listing 10. Thus, the input becomes
an environment that is looked at by the sūtras to check for any trigger-
ing conditions. A sūtra may need to look past its input into the input of
some previously triggered sūtras. Generalizing this, an environment con-
sists of outputs produced by all sūtras in the derivation thus far. The Trace
data structure (see Section 5.1) becomes a very important constituent of
Environment.

There are sūtras which produce an effect conditioned by what the speaker
intends to say. वत मान ेलट ्(A. 3.2.123), for example, will be fed an input which
may contain entities like a dhātu along with other saṃjñās associated with
it. However, the specific lakāra, which the dhātu must be cast into, can
be known only from the intention of the speaker. Unless it can be sensed



Computational Aṣṭādhyāyī 15

type Wiwakshaa = [Tag]
egWiwakshaa = [attr gana "1"

,attr purusha "1"
,attr wachana "1"
,attr lakaara "wartamaana"
,attr prayoga "kartari"
,attr samhitaa "yes"
]

Listing 11
Tags to describe vivakṣā

that the speaker wishes to express a vartamāna form, A. 3.2.123 cannot be
applied. Thus, some sūtras are conditioned on what is in the vivakṣā. As
shown in Listing 11, Wiwakshaa is modelled as a list of name-value Tags.
The attr function is a helper which creates a Tag. This listing shows a
vivakṣā for creating a 3rd person, singular, present tense, active voice form
of some dhātu in samhitā mode.

In the case of certain sūtras the triggering conditions remain intact for-
ever. Such sūtras tend to get applied repeatedly. To allow application
only once, housekeeping attributes have to be maintained. The house-
keeping attributes may be checked by the slfTest function in the sūtras
and reapplication can be prevented. Consider वत मान े लट ् (A. 3.2.123) once
again. The vivakṣā will continue to have vartamāna in it. As such, A.
3.2.123 can get reapplied continuously. While producing the effect of in-
serting laṭ, A. 3.2.123 could create a housekeeping tag, say “(3.2.123)”. If
A. 3.2.123 were to apply only in the absence of housekeeping attribute
“(3.2.123)”, the reapplication could be controlled using a suitably coded
slfTest function. Such Housekeeping is also part of the environment. Just
like Wiwakshaa, it is also represented as a list of Tags. The entire rep-
resentation of Environment is shown in Listing 12. It is a parameterized
type that expects a type t to create an environment from. Environment
Trace is a concrete type which is given an alias of TheEnv.



16 Sohoni and Kulkarni

data Environment t = Env { envWiwakshaa :: Wiwakshaa
, envHsekpg :: Housekeeping
, envTrace :: t
}

type TheEnv = Environment Trace

Listing 12
The Environment

6 Phasing
Samuel Johnson said that language is the dress of thought. Indeed, Pāṇini’s
generative grammar derives a correct utterance from an initial thought pat-
tern. The seeds of the finished linguistic forms are sowed very early in the
process of derivation. Morphemes are gradually introduced depending on
certain conditions and are ultimately transformed into final speech forms.
It seems that linguistic forms pass through definite stages. This is a crude
approximation of the derivation process: laying down the seed form from
semantic information in the vivakṣā, producing aṅgas, producing padas and
finally making some adjustments for the samhitā mode of utterance. At each
step along the way, there could be several sūtras that may apply. Grammar-
ians call this situation a prasaṅga.10 However, only one sūtra can be applied
in a prasaṅga. When the most suitable sūtra gets applied it is said to have
become pravṛtta. To make the resolution of a prasaṅga relatively simple, sū-
tras apparently belonging to the latter stages should not get applied earlier
in the derivation, even if they have scope to apply.

Phasing is a method to minimize the number of sūtras that participate in
a prasaṅga. Those saṃjñā sūtras, which form the basis of certain adhikāra
sūtras, are deferred until later in the derivation process. For instance, परः
सिकष ः सिंहता (A. 1.4.109) creates a basis for the samhitāyām adhikāra which
begins from तयोा विच सिंहतायाम ्(A. 8.2.108). Similarly, यात ्ूयिविधदािद
ूयऽेम ्(A. 1.4.13) applies the saṃjñā aṅga to something when there is a
pratyaya after it. The saṃjñā aṅga creates a basis for the adhikāra sūtra
अ (A. 6.4.1). If the sūtras, which apply certain saṃjñās, are suppressed

10See Abhyankar and Shukla (1961) pages 271 and 273



Computational Aṣṭādhyāyī 17

data Phase a = Phase { phsName :: String -- name of phase
, phsNums :: [a] -- sutras in the phase
}

phases = [Phase "pada" [SutraNumber 1 4 14]
,Phase "samhitaa" [SutraNumber 1 4 109]
]

Listing 13
Definition of Phase

in the beginning of the derivation and are released subsequently, other vidhi
sūtras operating within certain adhikāras will not participate in an untimely
prasaṅga. For example, phasing परः सिकष ः सिंहता (A. 1.4.109) will defer
sūtras like उदाादनदुा िरतः (A. 8.4.66) till a later time.

A Phase has a name and contains a list of sūtras which make up that
phase. Listing 13 defines a Phase and creates a list called phases contain-
ing two phases–“pada” and “samhitaa”. The way phases is defined, pada
formation phase (due to A. 1.4.14) and samhitā formation phase (due to A.
1.4.109) will be deferred till a later time.

7 The Process of Derivation
The details of Sutras are collected in a list called the ashtadhyayi. For
brevity, a small representation is shown in Listing 14.

ashtadhyayi :: [Sutra]
ashtadhyayi = [S1_3_9.details

,S1_3_78.details
,S1_4_99.details
,S1_4_100.details]

Listing 14
ashtadhyayi - a list of sūtras



18 Sohoni and Kulkarni

-- remove phases from the ashtadhyayi
ashtWithoutPhases = filterSutras

(predByPhases allPhases)
ashtadhyayi

-- generate the word form using phases
generateUsingPhases :: TheEnv -> [Sutra] -> [Phase Sutra]

-> TheEnv
generateUsingPhases env sutras phases =
foldl' (gen sutras) newEnv phases
where
gen sutras env phase = generate env (phsNums phase ++ sutras)
newEnv = generate env sutras

-- the returned environment will contain the derivation
finalEnv = generateUsingPhases env ashtWithoutPhases allPhases

Listing 15
Generation using phases

Before the process of derivation begins, sūtras which are part of some
phase, are removed from the ashtadhyayi. The generation of derived forms
will continue as long as applicable sūtras are found in the ashtadhyayi.
When sūtras are no longer applicable, sūtras from a phase are added to
the ashtadhyayi. Adding one phase back to the ashtadhyayi holds the
possibility of new sūtras becoming applicable. The process of derivation
continues once again until no more sūtras are applicable. The process of
adding back sūtras from other phases continues until there are no more
phases left to add. Listing 15 shows this way of using phases to generate
the derived form.

Function generateUsingPhases uses the generate function to actu-
ally advance the derivation. Given an Environment and a set of Sutras,
the process of generating a linguistic form will consist of picking out all the
applicable Sutras that have prasaṅga. The Sutras should get prioritized
so that only one Sutra can become pravṛtta. The chosen Sutra should be
invoked to produce a new Environment. This process can continue until



Computational Aṣṭādhyāyī 19

generate :: TheEnv -> [Sutra] -> TheEnv
generate env sutras
| null (envWiwakshaa env) || null (envTrace env)

|| null sutras = env
| otherwise =
if (isJust chosen)
then generate newEnv sutras
else traceShow sutras env
where list = choose env sutras

chosen = prioritize env (testBattery env) list
newEnv = invoke env chosen

Listing 16
Generation of a derived form

no more Sutras apply in which case the derivation steps are shown using
traceShow. The function generate embodies this logic as shown in Listing
16.

7.1 Choosing the Applicable sūtras
Given the list ashtadhyayi as defined in Section 7 and a starter
Environment, each and every Sutra in the ashtadhyayi is tested for
applicability. The applicability test is shown in Listing 17. A Sutra will be
chosen if it clears two-stage condition checking. In the initial stage, slfTest
checks if any Housekeeping attributes in the Environment prevent the
Sutra from applying. If the initial stage is cleared, the second stage invokes
the condTest function of the Sutra. condTest checks the Trace in the
Environment for existence of conditions specific to the sūtra. In case the
conditions exist, condTest returns a collection of Tags and a function, say
eff, to produce the effects. See Section 4.1 to read more about slfTest and
condTest.

The function choose, shown in Listing 17, uses the test described above.
All Sutras in the ashtadhyayi, for which test returns an effects function
eff, are collected and returned as a list. All sūtras in the list are applicable
and have a prasaṅga. This list of sūtras has to be prioritized so that only
one sūtra can be invoked.



20 Sohoni and Kulkarni

choose :: TheEnv -> [Sutra] -> [(Sutra, [Tag], Effect)]
choose env ss =
[fromJust r | r <- res, isJust (r) == True]
where
res = map appDetails ss
t = envTrace env
appDetails :: Sutra -> Maybe (Sutra, [Tag], Effect)
appDetails sut = case (test env sut) of

(_, Nothing) -> Nothing
(conds, Just eff)

-> Just (sut, conds, eff)

test :: TheEnv -> Sutra -> ([Tag],Maybe Effect)
test e s | null (envTrace e) = ([], Nothing)

| otherwise = if slfTest testIfc e
then condTest testIfc e
else ([], Nothing)

where testIfc = testing s

Listing 17
Choosing the applicable sūtras

8 Prioritizing sūtras
As the derivation progresses, many sūtras can form a prasaṅga, for their
triggering conditions are satisfied in the environment. It is the responsibility
of the grammar to decide which sūtra becomes pravṛtta by ensuring that the
derivation does not loop continuously.

8.1 Avoiding Cycles
It may so happen that of all the sūtras in a prasaṅga, the one that has
been chosen to become pravṛtta, say Sc, produces an Environment, say
Ei, that already exists in the Trace. In case Ei is reproduced, a cycle
will be introduced which will cause the derivation to not terminate. While
prioritizing, such sūtras, as producing an already produced Environment,
must be filtered out.



Computational Aṣṭādhyāyī 21

8.2 Competitions for Conflict Resolution
The chosen sūtras can be thought to compete with one another. If there are
n sūtras there will be (n-1) competitions. The first and the second sūtra
will compete against one another. The winner among the two will compete
against the third and so on until we are left with only one sūtra. The sūtra
which triumphs becomes pravṛtta for it is the strongest among all those
which had a prasaṅga. This view of conflict resolution is shown in Figure 1.
S1 to Sn are competing sūtras.

Figure 1
Competitions among sūtras

We model competition as a match between two entities. The match can
end in a draw or produce a winner. As shown in Listing 18, Competition is
defined as an abstract type which contains a Resolution. The Resolution
gives the Result and has a provision to note a Reason for that specific
outcome of the match.

The actual competition is represented as a function which takes two
Sutras and produces a Resolution as shown in Listing 19.

8.3 Competitions and Biases
A sūtra Si is eliminated as soon as it looses out to another sūtra Sj and
never participates in any other competition in the prasaṅga. One might
object to this methodology of conducting competitions by suggesting that



22 Sohoni and Kulkarni

{-
Following are abstract types.
Concrete realizations such as 'Conflict Sutra' and
'Resolution Sutra' are used in code.

-}
data Conflict a = Conflict a a (Resolution a)
data Resolution a = Resolution (Result a) Reason
data Result a = Draw | Winner a
type Reason = String

Listing 18
The Conflict between sūtras

type Competition a = Sutra -> Sutra -> Resolution Sutra

Listing 19
Match between sūtras

Si could have debarred another sūtra Sk later on, therefore it is important
to keep Si in the fray. In fact, the objector could claim that all sūtras must
compete with one another before a sūtra can become pravṛtta. We note that
the objector’s method of holding competitions would have been useful if the
competition between Si and Sk would produce a random winner every time.
In fact, the competitions in this grammar are biased. They don’t give both
the sūtras equal chance of winning and this is intentional in the design of
Pāṇini’s grammar. In the presence of biases, what is the use of conducting
fair competitions? Therefore the proposed method of holding competitions
should be acceptable.

The biases are introduced by the maxim पवू परिनारापवादानाम ्उरोरं
बलीयः.11 One sūtra is stronger than another one by way of four tests, namely,
paratva, nityatva, antaraṅgatva and apavādatva. The paratva test says that,
among any two sūtras, the one which is placed later in the Aṣṭādhyāyī
wins. According to the nityatva test, among two competing sūtras, one
that has prasaṅga inspite of the other being applied first, is the winner. The

11See Kielhorn (1985):१९, paribhāṣā 38.



Computational Aṣṭādhyāyī 23

testBattery :: TheEnv -> [Competition Sutra]
testBattery e | null (envTrace e) = []

| otherwise = [ (scareTest e)
, (apawaada e)
, (antaranga e)
, (nitya e)
, (para e)
]

where trace = envTrace e

-- various tests. details not shown for brevity
scareTest :: TheEnv -> Competition Sutra
para :: TheEnv -> Competition Sutra
nitya :: TheEnv -> Competition Sutra
antaranga :: TheEnv -> Competition Sutra
apawaada :: TheEnv -> Competition Sutra

Listing 20
A battery of tests to choose a winning sūtra

principle of antaraṅgatva dictates that of two conflicting sūtras, the one that
wins, relies on relatively fewer nimittas (conditions) or nimittas which are
internal to something. Finally, the test of apavādatva teaches that, among
two conflicting sūtras, a special sūtra wins over a general one to prevent
niravakāśatva (total inapplicability) of the special sūtra. The four tests are
such that a latter one is stronger determiner of the winning sūtra than the
prior ones. Test of apavādatva has highest priority and paratva has the
lowest. If the test of apavādatva produces a winner the other three tests
need not be applied. If antaraṅgatva produces a winner, the other two tests
need not be administered. If nityatva produces a winner we need not check
paratva. In the worst-case scenario all the four tests have to be applied one
after another to a pair of conflicting sūtras.

To seek a winning sūtra among two that compete with each other, a
prioritization function administers a battery of tests, beginning with apavā-
datva (See Listing 20).



24 Sohoni and Kulkarni

scareTest :: TheEnv -> Sutra -> Sutra -> Resolution Sutra
scareTest e s1@(Samjnyaa _ _) _ =

Resolution (Winner s1) "SCARE"
scareTest e _ s2@(Samjnyaa _ _) =

Resolution (Winner s2) "SCARE"
scareTest e s1 s2 = Resolution Draw "SCARE"

Listing 21
SCARE Test

8.4 Sūtra-Conflict Assessment and Resolution Extension
(SCARE)

The maxim पवू परिनारापवादानाम उ्रोरं बलीयः, introduces four methods of
conflict resolution as explained in Section 8.3. In tradition, these meth-
ods expect that saṃjñās have already been applied by resorting to either
kāryakālapakṣa or yathoddeśapakṣa. However, computation differs from tra-
dition, in that the assumptions made in traditional approach need to be
explicitly executed in computation. In a computational Aṣṭādhyāyī, meth-
ods introduced by the maxim will work provided that all saṃjñās have
already applied. Somehow saṃjñās need to apply before any of the meth-
ods in the maxim have applied. SCARE prioritizes saṃjñā sūtras higher
than any other type of sūtra. When any other type of sūtra competes with a
saṃjñā sūtra, the latter wins. In case saṃjñā sūtras compete, all of them will
eventually get a chance to apply. Since SCARE is required to differentiate
between saṃjñā and non-saṃjñā sūtras, the Sutra datatype has an explicit
value constructor called Samjnyaa. Listing 21 shows the implementation
of scareTest.

8.5 Determination of apavāda sūtras
An apavāda relationship holds between a pair of sūtras when the general
provision of one sūtra is overridden by the special provision of another sūtra.
Arbitrary pairs of sūtras may not always have an apavāda relation between
them. There has to be a reason for an apavāda relationship to exist between
two sūtras. The niṣedha and niyama sūtras suggest something which can



Computational Aṣṭādhyāyī 25

run counter to what other sūtras say. Therefore they are called apavādas of
other sūtras.

A niṣedha sūtra, say न िवभौ तुाः (A. 1.3.4), is considered an apavāda
of the general one such as हल ्अम ् (A. 1.3.3). A niṣedha sūtra directly
advises against taking an action suggested by another sūtra.12 Another
type of rule, the niyama sūtra, does the work of regulating some operation
laid down by another rule.13 A niyama sūtra such as धातोः तििम एव (A.
6.1.80) is considered an apavāda of a more general rule such as वाो िय ूये
(A. 6.1.79).

Wherever an apavāda relationship holds between two sūtras, it is static
and unidirectional. Also, there can be apavādas of apavādas. Since the
corpus of Pāṇini’s rules is well known, the apavāda relationships can be
worked out manually to build a mapping of the apavādas. Thus, A. 1.3.4 is
considered an apavāda of A. 1.3.3 and A. 6.1.80 is considered an apavāda of
A. 6.1.79.

Listing 22 shows how apavādas are setup. The datatype Apawaada
records a main sūtra and notes all the apavādas of the main sūtra.
allApawaadas is a list of Apawaadas which is converted into a map
apawaadaMap for faster access. Function isApawaada is used to check
if sūtra s1 is an apavāda of sūtra s2. The apawaada function in Listing 20
uses the isApawaada function to return an apavāda or returns a draw if
apavāda relationship does not exist between sūtras.

9 Visibility
The canonical term siddha means that the output from one sūtra A is visible
and can possibly trigger another sūtra B. The effects of A are visible to B.
The sūtras in the tripādī are not siddha in the sapādasaptādhyāyī . This
means that even if sūtras from the tripādī have applied in a derivation, the
results produced are not visible to the sūtras in the sapādasaptādhyāyī . In
other words, the State produced by certain sūtras, cannot trigger sūtras in
a specific region of the Aṣṭādhyāyī.

Listing 23 shows the visibility as dictated by पवू ऽािसम ्(A. 8.2.1). The
entire derivation thus far is captured as a Trace containing frames Fn thru
F1. The problem is this: Given a sūtra, say Si, the latest Frame Fj is

12पवू सऽूकाय िनषधेकसऽूं िनषधेसऽूम ।्
13िसे सित आरमाणो िविधः िनयमाय कते ।



26 Sohoni and Kulkarni

data Apawaada = Apawaada { apwOf :: SutraNumber
, apwApawaadas :: [SutraNumber]
}

allApawaadas = [Apawaada (SutraNumber 1 3 3)
[(SutraNumber 1 3 4)]

]

apawaadaMap = M.fromList [(apwOf a, apwApawaadas a)
| a <- allApawaadas]

-- | Is sutra s1 an apawaaad of s2?
isApawaada :: SutraNumber -> SutraNumber -> Bool
isApawaada s1 s2 = case M.lookup s2 apawaadaMap of

Just sns -> s1 `elem` sns
_ -> False

Listing 22
Setting up apavādas



Computational Aṣṭādhyāyī 27

visibleFrame :: Sutra -> Trace -> Maybe TheFrame
visibleFrame _ [] = Nothing
visibleFrame s (f@(Frame _ (Just s1) _ _):fs) =

if curr < s8_2_1
then if top < s8_2_1

then Just f
else visibleFrame s fs

else if top > curr
then visibleFrame s fs
else Just f

where s8_2_1 = SutraNumber 8 2 1
curr = number s
top = number s1

Listing 23
Visibility

required such that Fj contains sūtra Sk whose output State is visible to
Si. If Si is from the sapādasaptādhyāyī , frames from the head of the Trace
are skipped as long as they contain sūtras from tripādī . Such frames will
be asiddha for Si. If, however, Si is from tripādī , frames from the trace
are skipped so long as the sūtra in the frame has a number higher than Si.
This is because in the tripādī latter sūtras are asiddha to prior ones. The
foregoing logic is implemented in function visibleFrame.

10 Conclusion and Future Work
A computational Aṣṭādhyāyī can potentially become a good pedagogical
resource to teach grammatical aspects of Sanskrit. As a building block, a
computational Aṣṭādhyāyī can be used to build other systems like morpho-
logical analyzers and dependency parsers.

From an implementation perspective, resorting to kāryakālapakṣa allows
paribhāṣā and adhikāra sūtras to be merged into the logic of vidhi or niyama
sūtras. While displaying the derivation after it is completed, the concerned
vidhi and niyama sūtras can always enlist numbers of the paribhāṣā and
adhikāra sūtras which they have united with. This allows for faster de-



28 Sohoni and Kulkarni

velopment of the computational Aṣṭādhyāyī without having to implement
seemingly trivial sūtras in the paradigm used to implement sūtras as noted
in Section 4.2.

It could be suboptimal to represent all grammatical entities as
Components having Warnas and Tags. To a certain extent, it increases
the number of Tags applied to Components. For example, since pratyayas
are expressed as a Components, a ‘pratyaya’ Tag has to be applied. Func-
tional languages have extremely powerful type systems. To leverage the
type system, Components can be implemented as typed grammatical en-
tities. For instance, a Component can have more value constructors for
Upasarga, Dhaatu and Pratyaya, to name a few.

Abstracting the input as vivakṣā does away with the need of applying
heuristics to determine what needs to be derived. However, our choice of
representing Wiwakshaa as a simple list of Tags is an oversimplification.
The vivakṣā could be a complex psycholinguistic artifact which may contain
elements such as the kārakas, hints for using specific dhātus, argument struc-
ture of dhātu etc. It may have a sophisticated data structure. A thorough
study of semantic aspects of Aṣṭādhyāyī is necessary to know what vivakṣā
may look like in its entirety.

In the बाधबीजूकरणम ्, Kielhorn (1985) discusses many variations under
each of the four methods introduced in the para-nitya paribhāṣā. Those
variations should be plugged into the framework discussed in Section 8. Yet,
there may be instances of derivations where the maxim पवू परिनारापवादानाम ्
उरोरं बलीयःmay not be honoured and a better way is required to resolve sū-
tra conflicts in totatality. Effects such as vipratiṣedha and pūrvavipratiṣedha
also need to be included in the SCARE.



References
Abhyankar, K. V. and J. M. Shukla. 1961. A Dictionary Of Sanskrit Gram-

mar. Oriental Institute, Baroda.
Ajotikar, Tanuja, Anuja Ajotikar, and Peter M. Scharf. 2016. “Some issues in

formalizing the Aṣṭādhyāyī”. In: Sanskrit and Computational Linguistics,
Select papers presented in the ‘Sanskrit and the IT World’ Section at
the 16th World Sanskrit Conference, (June 28 - 2 July 2015) Bangkok,
Thailand. Ed. by Amba Kulkarni. DK Publishers Distributors Pvt. Ltd
(New Delhi), pp. 103–124. isbn: 978-81-932319-0-6.

Goyal, Pawan, Amba P. Kulkarni, and Laxmidhar Behera. 2008. “Com-
puter Simulation of Astadhyayi: Some Insights”. In: Sanskrit Computa-
tional Linguistics, First and Second International Symposia Rocquen-
court, France, October 29-31, 2007 Providence, RI, USA, May 15-17,
2008 Revised Selected and Invited Papers. Ed. by Gérard P. Huet, Amba
P. Kulkarni, and Peter M. Scharf. Springer, pp. 139–161. doi: 10.1007/
978-3-642-00155-0_5. url: http://dx.doi.org/10.1007/978-3-642-
00155-0_5.

Hyman, Malcolm D. 2009. “From pāṇinian sandhi to finite state calculus”.
In: Sanskrit Computational Linguistics. Springer, pp. 253–265.

Kielhorn, F. 1985. Paribhāṣenduśekhara of Nāgojībhaṭṭa. Parimala Publica-
tions, Delhi.

Mishra, Anand. 2008. “Simulating the Paninian System of Sanskrit Gram-
mar”. In: Sanskrit Computational Linguistics, First and Second Interna-
tional Symposia Rocquencourt, France, October 29-31, 2007 Providence,
RI, USA, May 15-17, 2008 Revised Selected and Invited Papers. Ed.
by Gérard P. Huet, Amba P. Kulkarni, and Peter M. Scharf. Springer,
pp. 127–138.

— 2009. “Modelling the Grammatical Circle of the Paninian System of San-
skrit Grammar”. In: Sanskrit Computational Linguistics, Third Interna-
tional Symposium, Hyderabad, India, January 15-17, 2009. Proceedings.
Ed. by Amba P. Kulkarni and Gérard P. Huet. Springer, pp. 40–55.

— 2010. “Modelling Astadhyayi: An Approach Based on the Methodology
of Ancillary Disciplines (Vedanga)”. In: Sanskrit Computational Linguis-
tics - 4th International Symposium, New Delhi, India, December 10-12,
2010. Proceedings. Ed. by Girish Nath Jha. Springer, pp. 239–258.

29

https://doi.org/10.1007/978-3-642-00155-0_5
https://doi.org/10.1007/978-3-642-00155-0_5
http://dx.doi.org/10.1007/978-3-642-00155-0_5
http://dx.doi.org/10.1007/978-3-642-00155-0_5


30 Sohoni and Kulkarni

Patel, Dhaval and Shivakumari Katuri. 2016. “Prakriyāpradarśinī - An open
source subanta generator”. In: Sanskrit and Computational Linguistics,
Select papers presented in the ‘Sanskrit and the IT World’ Section at
the 16th World Sanskrit Conference, (June 28 - 2 July 2015) Bangkok,
Thailand. Ed. by Amba Kulkarni. DK Publishers Distributors Pvt. Ltd
(New Delhi), pp. 195–221. isbn: 978-81-932319-0-6.

Scharf, P. 2009. “Rule selection in the Aṣṭ ādhyā yi or Is Pāṇini’s grammar
mechanistic”. In: Proceedings of the 14th World Sanskrit Conference,
Kyoto University, Kyoto.

Scharf, Peter M. 2009. “Modeling pāṇinian grammar”. In: Sanskrit Compu-
tational Linguistics. Springer, pp. 95–126.

Scharf, Peter M. 2016. “An XML formalization of the Aṣṭādhyāyī”. In: San-
skrit and Computational Linguistics, Select papers presented in the ‘San-
skrit and the IT World’ Section at the 16th World Sanskrit Conference,
(June 28 - 2 July 2015) Bangkok, Thailand. Ed. by Amba Kulkarni.
DK Publishers Distributors Pvt. Ltd (New Delhi), pp. 77–102. isbn:
978-81-932319-0-6.

Sohoni, Samir Janardan and Malhar A. Kulkarni. 2016. “Character En-
coding for Computational Aṣṭādhyāyī”. In: Sanskrit and Computational
Linguistics, Select papers presented in the ‘Sanskrit and the IT World’
Section at the 16th World Sanskrit Conference, (June 28 - 2 July 2015)
Bangkok, Thailand. Ed. by Amba Kulkarni. DK Publishers Distributors
Pvt. Ltd (New Delhi), pp. 125–155. isbn: 978-81-932319-0-6.

Vedantakeshari, Swami Prahlad Giri. 2001. Pāṇiniya Aṣṭādhyāyī Sūtrapāṭha.
Krishnadas Academy, Varanasi. 2nd edition.



PAIAS: Pāṇini Aṣṭādhyāyī Interpreter As a
Service

Sarada Susarla, Tilak M. Rao and Sai Susarla

Abstract: It is widely believed that Pāṇini’s Aṣṭādhyāyī is the most ac-
curate grammar and word-generation scheme for a natural language
there is. Several researchers attempted to validate this hypothesis
by analyzing Aṣṭādhyāyī’s sūtra system from a computational / algo-
rithmic angle. Many have attempted to emulate Aṣṭādhyāyī’s word
generation scheme. However, prior work has succeeded in taking only
small subsets of the Aṣṭādhyāyī pertaining to specific constructs and
manually coding their logic for linguistic analysis.
However, there is another school of thought that Aṣṭādhyāyī itself
(along with its associated corrective texts) constitutes a complete,
unified, self-describing solution for word generation (kṛt, taddhita),
compounding (samāsa) and conjugation (sandhi). In this paper, we
describe our ongoing effort to directly compile and interpret Aṣṭād-
hyāyī’s sūtra corpus (with its associated data sets) to automate its
prakṛti-pratyaya-based word transformation methodology, leaving out
kārakas. We have created a custom machine-interpretable language
in JSON for Aṣṭādhyāyī, a Python-based compiler to automatically
convert Aṣṭādhyāyī sūtras into that language, and an interpreter to
reproduce Aṣṭādhyāyī’s prakriyā for term definitions, meta-rules and
vidhis. Such an interpreter has great value in analyzing the gener-
ative capability of Pāṇinian grammar, assessing its completeness or
anomalies and the contributions of various commentaries to the orig-
inal methodology. We avoid manually supplying any data derivable
directly from Aṣṭādhyāyī. Unlike existing work that aimed at fast
interpretation of rules, we focus initially on fidelity to Aṣṭādhyāyī.
We have started with a well-annotated online Aṣṭādhyāyī resource.
We are able to automatically enumerate the character sequences de-
noted by saṃj nās defined in Aṣṭādhyāyī, and determine which parib-
hāṣā sūtras apply to which vidhi sūtras. We are in the process of de-
veloping a generic rūpa-siddhi engine starting from a prakṛti-pratyaya

31



32 Susarla et al

sequence. Our service named PAIAS1 p�rovides programmatic access
to Aṣṭādhyāyī, its data sets and their interpretation via open RESTful
API for third-party tool development.

1 Introduction
There is growing interest and activity in applying computing technology
to unearth the knowledge content of India’s heritage literature, especially
in Saṃskṛt language. This has led to several research efforts to produce
analysis tools for Saṃskṛt language content at various levels - text, syntax,
semantics and meaning Goyal, Huet, et al. (2012), Oilver Hellwig (2009),
Huet (2002), Kulkarni (2016), and Kumar (2012). The word-generating
flexibility and modular nature of the Saṃskṛt grammar makes it at once
both simpler and difficult to produce a comprehensive dictionary for the
language: simpler because it allows auto-generation of numerous variants of
words, and difficult because unbounded nature of Saṃskṛt vocabulary makes
a comprehensive static dictionary impractical. Yet, a dictionary is essential
for linguistic analysis of Saṃskṛt documents. Pāṇini’s Aṣṭādhyāyī comes to
the rescue for Saṃskṛt linguistic analysis by offering a procedural basis for
word generation and compounding to produce a dynamic, semi-automated
dictionary. Aṣṭādhyāyī is considered a monumental work in terms of its abil-
ity to codify the conventions governing the usage of a natural language into
precise, self-contained generative rules. Ever since the advent of computing,
researchers have been trying to automate the rule engine of Aṣṭādhyāyī to
realize its potential. However, due to the sheer size of the rule corpus and its
complexity, to date, only specific subsets of its rule base have been digested
manually to produce word-generation tools pertaining to specific grammar
constructs Goyal, Huet, et al. (2012), Krishna and Goyal (2015), Patel and
Katuri (2016), and Scharf and Hyman (2009).

However, this approach limits the tools’ coverage of numerous word
forms and hence their usefulness for syntax analysis of the vast Saṃskṛt cor-
pus. Interpreting Pāṇini’s Aṣṭādhyāyī as separate subsets is complex and
unnatural due to intricate interdependencies among rules and their trigger-
ing conditions. Pāṇini’s Aṣṭādhyāyī has a more modular, unified mechanism
(prakriyā)2 for word generation via rules for joining prakṛti (stems) with

1Pronounced like ‘payas’ meaning milk.
2In this paper, we use the IAST convention for Sanskrit words.



PAIAS 33

numerous pratyayas based on the word sense required. Most aspects of the
joining mechanism are common across conjugation (sandhi), compounding
(samāsa) and new word derivation (e.g., kṛt and taddhita forms). However,
commentaries such as Siddhānta Kaumudī (SK) have arranged the rules for
the purpose of human understanding of specific grammatical constructs. For
the purpose of computational tools, we believe the direct interpretation of
Pāṇini’s Aṣṭādhyāyī offers a more natural and automatable approach than
SK-based approaches.

With this view, we have taken up the problem of relying solely on Aṣṭād-
hyāyī and its associated sūtras for deriving all Saṃskṛt grammatical opera-
tions of word transformation (or rūpa-siddhi). Our approach is to compile
the Aṣṭādhyāyī sūtra text into executable rules automatically (incorporating
interpretations made by commentaries), and to minimize the manual coding
work to be done per sūtra. We have built a web-based service called PAIAS
with a RESTful API for programmatic access to the Aṣṭādhyāyī engine (i.e.,
the sūtra corpus and its associated data sets) and to enable its execution
for word transformation and other purposes. We adopted a service-oriented
architecture to cleanly isolate functionality from end-user presentation, so
numerous tools and presentation interfaces can evolve for Saṃskṛt grammar
employing appropriate programming languages.

In this paper, we describe our ongoing work and its approach, and the
specific results obtained so far. In section 2, we set the context by contrast-
ing our approach to relevant earlier work. In section 3, we give an overview
of the project’s goals and guiding design principles. In section 4, we describe
how we prepared the source Aṣṭādhyāyī for use in PAIAS. In section 5, we
explain our methodology for Aṣṭādhyāyī interpretation including the high-
level workflow, sūtra compilation scheme and rule interpreter. In section 6,
we outline how PAIAS enumerates several entity sets referred throughout
Aṣṭādhyāyī. In section 7.3, we describe our methodology to interpret parib-
hāṣā sūtras. In section 8, we provide details of our implementation and its
status. In section 9, we illustrate the operation of the interpreter by show-
ing how our engine automatically expands pratyāhāras. Finally we conclude
and outline future work in Section 10.



34 Susarla et al

2 Related Work
Aṣṭādhyāyī and its interpretation for Saṃskṛt grammatical analysis and
word synthesis has been studied extensively Goyal, Huet, et al. (2012),
Goyal, Kulkarni, and Behera (2008), Krishna and Goyal (2015), Patel and
Katuri (2016), Satuluri and Kulkarni (2013), Scharf and Hyman (2009),
and Subbanna and Varakhedi (2010). For the purpose of this paper, we
assume the reader is familiar with Pāṇini’s Aṣṭādhyāyī and its various con-
cepts relevant to computational modeling. For a good overview of those
concepts, the reader is referred to earlier publications Goyal, Kulkarni, and
Behera (2008) and Petersen and Oliver Hellwig (2016). In their Aṣṭādhyāyī
2.0 project, Petersen and Oliver Hellwig (2016) have developed a richly an-
notated electronic representation of Aṣṭādhyāyī that makes it amenable to
research and machine-processing. We have achieved a similar objective via
manual splitting of sandhis and word-separation within compounds, and by
developing a custom vibhakti analyzer for detecting word recurrence across
vibhakti and vacana variations.

Petersen and Soubusta (2013) have developed a digital edition of the
Aṣṭādhyāyī. They have created a relational database schema and web-
interface to support custom views and sophisticated queries. We opted
for a hierarchical key-value structure (JSON) to represent Aṣṭādhyāyī as
it enables a more natural navigational exploration of the text unlike a re-
lational model. We feel that the size of the Aṣṭādhyāyī is small enough to
fit in DRAM of modern computers making efficiency benefits of the rela-
tional model less relevant. We used a document database (MongoDB) due
to the schema flexibility and extensibility it offers along with powerful nav-
igational queries. Scharf (2016) developed perhaps the most comprehensive
formalization to date of Pāṇini’s grammar system including the Aṣṭādhyāyī
in XML format with the express purpose of assisting the development of au-
tomated interpreters. In his formalization, the rules are manually encoded
in a pre-interpreted form via spelling out the conditions, contexts, and ac-
tions of each rule. In contrast, our attempt is to derive those from the rule’s
text itself. Scharf’s encoded rule information enables validation of our rule
interpretation. We could also leverage its other databases that form part of
Pāṇini’s grammar ecosystem.

The first step to interpret the Aṣṭādhyāyī is to understand the terms and
metarules that Pāṇini defines in the text itself. T. Ajotikar, A. Ajotikar,
and Scharf (2015) explains some of Pāṇini’s techniques that an interpreter



PAIAS 35

needs to incorporate, and illustrated how Scharf (2016) captures them. Un-
like earlier efforts at processing Aṣṭādhyāyī that have manually enumerated
the terms and their definitions including pratyāhāras Mishra (2008), our
approach is to extract them from the text itself automatically.

Several earlier efforts attempted to highlight and emulate various tech-
niques used in Aṣṭādhyāyī for specific grammatical purposes. They typically
select a particular subset of Aṣṭādhyāyī’s engine and code its semantics
manually to reproduce a specific prakriyā. For brevity, we only discuss the
most recent work that comes close to ours. Krishna and Goyal (2015) have
built an object-oriented class hierarchy to mimic the inheritance structure
of Aṣṭādhyāyī rules. They have demonstrated this approach for generating
derivative nouns. Our goal and hence approach differ in two ways, namely,
to interpret Aṣṭādhyāyī sūtras faithfully as opposed to achieving specific
noun and verb forms, and to mechanize the process of converting sūtras into
executable code to the extent possible. However, the learnings and insights
from earlier work on interpreting Aṣṭādhyāyī Mishra (2008) will apply to
our work as well, and hence can be incorporated into our engine.

Patel and Katuri (2016) have built a subanta generator that imitates the
method given by siddhānta kaumudī. Their unique contribution is a way to
order the sūtras for more efficient interpretation. However, they also encode
the semantic meaning of individual sūtras manually, and do not suggest a
method to mechanize sūtra interpretation from its text directly. Satuluri
and Kulkarni (2013) have attempted to generate samāsa compounds by em-
ulating the relevant subset of Aṣṭādhyāyī. Subbanna and Varakhedi (2010)
have emulated the exception model used in Aṣṭādhyāyī. For this, they have
emulated a small subset of its sūtras relevant to that aspect.

3 Design Goals and Scope
The objective of our project is to develop a working interpreter for Pāṇini’s
Aṣṭādhyāyī that emulates its methodology faithfully by mechanizing the
interpretation of sūtra text as much as possible. To guide our design, we set
the following principles:

Fidelity: We focus on reproducing the prakriyā of Aṣṭādhyāyī sūtra corpus
(by taking the semantic adjustments from relevant vyākhyānas as ap-
propriate). We do not focus on optimizing the interpretation engine
for speedy execution as of now.



36 Susarla et al

Reuse: We would like to provide a powerful query interface to the Aṣṭād-
hyāyī and its data sets to enable sophisticated analytics and learning
aids.

Extensibility: We would also like to promote the development of an exten-
sible and interoperable framework for Aṣṭādhyāyī by providing a pro-
grammatic interface to its interpreter engine. This framework should
support plugging in functionality developed by third parties in multi-
ple programming languages and methodologies.

The specific contributions of this paper include

• A programmatic interface to Aṣṭādhyāyī with a powerful query lan-
guage for sophisticated search,

• A mechanism to automatically extract definitions of saṃj nās (both
statically and dynamically defined) by interpreting their sūtra text,

• A machine-processable language and its interpreter to transform the
bulk of Aṣṭādhyāyī sūtra text into executable code, and a mechanism
of interpretation that tracks word transformation state persistently,
and

• An extensible framework that supports interoperability among tech-
niques for Aṣṭādhyāyī sūtra interpretation developed by multiple re-
searchers to accelerate tool development.

4 Preparing the Aṣṭādhyāyī for machine-processing
We have started with a well-annotated and curated online resource for
Aṣṭādhyāyī Sarada Susarla and Sai Susarla (2012) available as a spreadsheet
due to its amenability to augmentation and scripted manipulation. Table
1 outlines its schema. The spreadsheet assigns each sūtra a canonical ID
string in the format APSSS (e.g., 11076 to denote the 76th sūtra in 1st pāda
of 1st adhyāya). To enable machine-processing, each sūtra is provided with
its words split by sandhi and the individual words in a samāsa separated
by hyphens and tagged with simple morphological attributes such as type
(subanta, tiṅanta or avyaya), vibhakti and vacana to enable auto-extraction.
The adhikāra sūtras are also explicitly tagged with their influence given as



PAIAS 37

a sūtra range. For each sūtra, the padas that are inherited from earlier sū-
tras through anuvṛtti are listed along with their source sūtra id and vibhakti
modification in the anuvṛtta form if any.

We auto-convert this spreadsheet into a JSON JSON (2000) dictionary
and use it as the basis for the PAIAS service. Table 2 shows an exam-
ple JSON description of sūtra 1.2.10 with all the abovementioned features
illustrated.

{
‘ ‘ Adhyaaya” : ‘ ‘ Adhyaaya # adhyAyaH” ,
‘ ‘ Paada” : ‘ ‘ Paada # pAdaH” ,
‘ ‘ sutra_num” : ‘ ‘ sutra_num sU . saM . ” ,
‘ ‘ sutra_krama” : ‘ ‘ sutra_krama sU . kra . saM” ,
‘ ‘ Akaaraadi_krama” : ‘ ‘ Akaaraadi_krama akArAdi kra . saM” ,
‘ ‘Kaumudi_krama” : ‘ ‘Kaumudi_krama kaumudI kra . saM” ,
‘ ‘ sutra_id ” : ‘ ‘ sutra_id pUrNa sU . saM . ” ,
‘ ‘ sutra_type ” : ‘ ‘ sutra_type sutralakShaNam ” ,
‘ ‘Term” : ‘ ‘Term saMj~nA” ,
‘ ‘ Metarule ” : ‘ ‘ Metarule paribhAShA” ,
‘ ‘ Spec ia l_case ” : ‘ ‘ Spec ia l_case atideshaH ” ,
‘ ‘ I n f l u en c e ” : ‘ ‘ I n f l u en c e adhikAraH ” ,
‘ ‘ Commentary” : ‘ ‘ Commentary vyAkhyAnam” ,
‘ ‘ sutra_text ” : ‘ ‘ sutra_text sutram ” ,
‘ ‘ PadacCheda” : ‘ ‘ PadacCheda padchChedaH” ,
‘ ‘ SamasacCheda” : ‘ ‘ SamasacCheda samAsachChedaH” ,
‘ ‘ Anuvrtt i ” : ‘ ‘ Anuvrtt i pada sut ra #

anuvRRitti−padam sutra−sa~NkhyA” ,
‘ ‘ PadacCheda_notes” : ‘ ‘ PadacCheda_notes”
}

Table 1
Aṣṭādhyāyī Database Schema



38 Susarla et al

‘ ‘12010” : {
‘ ‘ Adhyaaya” : 1 ,
‘ ‘ Paada” : 2 , ‘ ‘ sutra_num” : 10 ,
‘ ‘ sutra_krama” : 12010 , ‘ ‘ Akaaraadi_krama” : 3913 ,
‘ ‘Kaumudi_krama” : 2613 ,
‘ ‘ sutra_id ” : ” 1 . 2 . 1 0 ” ,
‘ ‘ sutra_type ” : [ ‘ ‘ at ideshaH ” ] , ‘ ‘ Commentary” : ‘ ‘ . . . ” ,
‘ ‘ sutra_text ” : ‘ ‘ halantAchcha | ” ,
‘ ‘ PadacCheda” : [

{ ‘ ‘ pada” : ‘ ‘ halantAt ” , ‘ ‘ pada_spl i t ” : ‘ ‘ hal−antAt ” ,
‘ ‘ type ” : ‘ ‘ subanta ” , ‘ ‘ vachana” : 1 ,
‘ ‘ v ibhakt i ” : 5 } ,

{ ‘ ‘ pada” : ‘ ‘ cha ” , ‘ ‘ type ” : ‘ ‘ avyaya ” ,
‘ ‘ vachana” : 0 , ‘ ‘ v ibhakt i ” : 0 }

] ,
‘ ‘ Anuvrtt i ” : [

{ ‘ ‘ su t ra ” : 12005 , ‘ ‘ padas ” : [ ‘ ‘ k i t ” ] } ,
{ ‘ ‘ su t ra ” : 12008 , ‘ ‘ padas ” : [ ‘ ‘ san ” ] } ,
{ ‘ ‘ su t ra ” : 12009 , ‘ ‘ padas ” : [ ‘ ‘ ikaH ” , ‘ ‘ j h a l ” ] }
]

}

Table 2
Aṣṭādhyāyī Database Schema



PAIAS 39

5 Aṣṭādhyāyī Interpreter: High-level Workflow
The input to our Aṣṭādhyāyī engine is a sequence of tagged lexemes that we
call pada descriptions or pada_descs, and its output is one or more alter-
nate sequences of tagged lexemes denoting possible word transformations. A
pada_desc is a dictionary of tag-value pairs in JSON format. The tag values
can be user-supplied (in case of human-assisted analysis), system-inferred
or user-endorsed. Table 2 shows a sūtra description where the padacCheda
section represents the sūtra as a sequence of pada_descs. An example tag
is a pada ‘type’ such as subanta, tiṅanta, nipāta, avyaya, pratyaya, saṃj nā
etc. Each application of an Aṣṭādhyāyī sūtra, referred to in this paper as
‘prakriyā’, modifies the input pada_desc sequence by adding/editing/re-
moving pada_descs to denote word-splitting, morphing or merging opera-
tions based on the semantics of the sūtra.

For instance, when applying the saṃj nā sūtra for the saṃj nā ‘it’, we
tag a given input word with a tag called ‘it_varnas’ whose value is the offset
of the ‘it’ varṇas found in the word. Such tags can also be used to store
intermediary states of grammar transformations for reference by subsequent
operations. This persistent tracking of the transformation state of words
offers the power required for interpreting Aṣṭādhyāyī sūtras faithfully. The
need for such facility to carry over internal state from one sūtra to another
has been identified by Patel and Katuri (2016) for their subanta generator
tool.

In order to transform tagged lexemes, the first step is to identify the oc-
currence of pre-determined patterns in input lexemes which are denoted by
explicit terms (saṃj nās) in Aṣṭādhyāyī sūtras. Instead of handcoding those
pattern definitions into the interpreter, our approach is to automatically ex-
tract them from the sūtras themselves and interpret them at prakriyā time.
To accomplish this, we have devised a machine-processable representation
scheme for various sūtras, which we elucidate in Section 6. Likewise, Aṣṭād-
hyāyī provides a set of 23 paribhāṣā sūtras or metarules (augmented with
approx. 100 more metarules in paribhāṣendu-śekhara treatise). The purpose
of these metarules is to modify the operation of the vidhi sūtras. In Section
7.3, we describe how we manually encode metarules as (condition, action)
pairs such that we can mechanically determine which paribhāṣās apply to a
given Aṣṭādhyāyī sūtra. Since paribhāṣās operate on vidhi sūtra texts, their
applicability can be pre-determined a priori instead of at prakriyā time.



40 Susarla et al

At a high-level, our approach to Aṣṭādhyāyī interpretation involves the
following manual steps:

• Splitting of sandhis and samāsa in the sūtra text to facilitate detection
of word recurrences.

• Enumerating the anuvṛtta padas of each sūtra (from earlier sūtras).

• Coding of each of the 23 paribhāṣā sūtras into condition-action pairs.

• Preparation of a vibhakti suffix table that covers subantas of Aṣṭād-
hyāyī for use in morphological analysis of sūtra words.

• Coding of custom functions to interpret the meaning of some technical
words used in Aṣṭādhyāyī but not defined therein (e.g., adarśanam,
ādiḥ, antyam, etc.).

• Adding special case interpretation of the sūtra ‘halantyam’ as ‘hali
antyam‘ to break the cyclic dependency for pratyāhāra generation (as
explained in Section 9).

In the next section, we outline the preprocessing steps needed for Aṣṭādhyāyī
interpretation.

5.1 Preparing the Aṣṭādhyāyī Interpreter
To prepare the Aṣṭādhyāyī engine for rule interpretation, we automatically
preprocess the Aṣṭādhyāyī database as follows.

1. We first perform morphological analysis of each word of every sūtra to
extract its prātipadikam. This is required to identify recurrence of a
word in the Aṣṭādhyāyī regardless of vibhakti and vacana variations.
We describe this step in Section 5.2.

2. For each sūtra, we generate a canonical sūtra text that we refer to
as its ‘mahāvākya’ as follows. We expand the sūtra’s text to in-
clude all anuvṛtta-padas inherited from earlier sūtras. We represent
a mahāvākya as a list of pada descriptions, each with its morphologi-
cal analysis output.

3. We auto-extract the definitions of all terms (saṃj nās) used in the
Aṣṭādhyāyī. These come in different forms and need to be handled
differently. We describe this step in Section 6.



PAIAS 41

4. We compile saṃj nā and vidhi sūtras into rules to be interpreted at
prakriyā time.

5. We determine the vidhi sūtras where each of the paribhāṣā sūtras apply,
by checking their preconditions. Then we modify the vidhi sūtras.

6. Finally, we create an optimized condition hierarchy for rule-checking
by factoring the preconditions for all the Aṣṭādhyāyī sūtras into a
decision tree. This step is still work in progress and is out of the scope
of this paper.

5.2 Morphological Analysis of Aṣṭādhyāyī Words
To detect recurrences of a sūtra word at different locations in Aṣṭādhyāyī
(e.g. through anuvṛtti or embedded references) despite their vibhakti and
vacana variations, we need the prātipadikam of each word. Since most Aṣṭād-
hyāyī words are subantas specific to the treatise and not found in typical
Saṃskṛt dictionaries, we developed a simple suffix-based vibhakti analyzer
for this purpose. Since our Aṣṭādhyāyī spreadsheet already has words tagged
by their vibhakti and vacana, our vibhakti analyzer takes them as hints and
finds possible matches in predefined vibhakti tables based on various common
word-endings. Once a match is found, it emits an analysis that includes pos-
sible alternative prātipadikas along with their liṅga and word-ending. We
store the subanta analysis for each Aṣṭādhyāyī word and store it in the
padacCheda section of the sūtra JSON entry for ready reference.

With this technique, we are able to determine the prātipadikam accu-
rately for all the technical terms used in Aṣṭādhyāyī and use it for detecting
word recurrences. Though the tool generated multiple options for liṅga, that
ambiguity doesn’t hurt for our purpose of detecting word recurrence since
the prātipadikam is unique.

Then we extract term (saṃj nā) definitions from the saṃj nā sūtras as
described in Section 6.

6 Extracting Saṃjñā Definitions from Aṣṭādhyāyī
Aṣṭādhyāyī’s word transformation method consists of detecting pre-defined
patterns denoted by saṃj nās or terms and performing associated transfor-
mations. These terms denote either a set of explicitly enumerated member
elements or conditional expressions to be dynamically checked at prakriyā



42 Susarla et al

time. Hence during preprocessing stage, we create a term definition database
where each term is defined as a list of member elements or as a compiled
rule. The Aṣṭādhyāyī itself defines four types of terms (in increasing order
of extraction complexity):

1. Terms defined in an adhikāra cum saṃj nā sūtra denoting a set of ele-
ments enumerated explicitly in subsequent vidhi sūtras (e.g., pratyaya,
taddhita, nipāta). The term itself becomes an anuvṛtta pada in all vidhi
sūtras in its adhikāra. Moreover, those sūtras refer to both the term
and its member elements in prathamā vibhakti. Hence, to extract the
definition, we pick prathamā vibhakti terms excluding (a) terms defined
in saṃj nā sūtras of Aṣṭādhyāyī and (b) a manually prohibited list of
words meant to convey colloquial meaning. With this method, we
were able to successfully extract all the pratyayas, taddhitas, nipātas,
samāsas from Aṣṭādhyāyī automatically, and verify their authenticity
with those identified in Dikshita (2010).

2. Terms with explicit name defined in saṃj nā sūtras denoting a set
of elements enumerated explicitly (e.g., vṛddhi). In this case, the el-
ements are listed in prathamā vibhakti and hence can be extracted
directly from the sūtra.

3. Terms with an explicit name defined in saṃj nā sūtras, and denoting
a condition to be computed at prayoga time (e.g., ‘it’).

4. Terms whose name (saṃj nā) and its members (saṃj ni) are both
dynamically computed quantities (e.g., pratyāhāras such as ‘ac’ and
‘hal’)

The last two variants require interpreting the sūtra text in different ways
as described in Section 7. During Aṣṭādhyāyī prakriyā, when an input
pada_desc needs to be checked for match with a saṃj nā, we have two
options. If the saṃj nā is represented as a list of member elements, then all
padas in the pada_desc that appear as members of a list will be annotated
with the saṃj nā name. For instance, when checking the word ‘rāma’ against
‘guṇa’ saṃj nā, the pada_desc of the ‘rāma’ word will be augmented with
a property named ‘guṇa’ whose value is the index of the last ‘a’ alphabet in
the ‘rāma’ word, i.e, 3.



PAIAS 43

7 Compiling Rules from sūtras
In this section, we describe a mechanism we have devised for transforming
Aṣṭādhyāyī sūtras into machine-interpretable rules. This is a core contri-
bution of our work as it enables direct interpretation of sūtras. We have
implemented this mechanism for saṃj nā and paribhāṣā sūtras first because
(i) they form a crucial prerequisite to the rest of the engine, and (ii) because
they have not been studied by earlier work as systematically as the inter-
pretation of vidhi sūtras. Moreover Aṣṭādhyāyī’s paribhāṣā sūtras state the
mechanism for interpreting vidhi sūtras explicitly. Our vidhi sūtra interpre-
tation is a work in progress and will not be discussed further.

Our sūtra interpretation scheme is based on some grammatical conven-
tions we have observed in the sūtra text. First, the bulk of Aṣṭādhyāyī
sūtras employ subanta padas and avyayas, and use tiṅanta padas sparingly.
Second, saptamī vibhakti is used to indicate the context/condition in which
a sūtra applies. Third, each sūtra word either denotes a saṃj nā (or its
negation), a predefined function (e.g. ādiḥ, antyam, etc), a set of terms or
characters (e.g., cuṭū), or joining avyayas (e.g., saha, ca, vā etc.). Finally,
whenever multiple words of the same vibhakti occur, one of them is a viśeṣya
and others are its viśeṣaṇas.

Hence we compile each Aṣṭādhyāyī sūtra into a hierarchical expression
via specially defined operators, called a rule. The rule is either atomic, i.e.,
a pada_desc describing a sūtra word, or composite, coded as a JSON list.
If pada_desc, it is interpreted via a special operator called INTERPRET
described below. If list, its first element is a predefined operator, and the rest
are its arguments. The arguments can in turn be pada_descs or sub-rules.

7.1 Special Operators
This section describes several special operators that we have defined to form
rules.

INTERPRET: This operator interprets a single sūtra word on the input
tagged lexemes. It checks whether the pattern it denotes (e.g., ‘it’)
applies to any of the input lexemes (e.g., ‘hal’). If the sūtra word is a
saṃj nā (e.g., ‘it’), the interpreter interprets its rule recursively and
tags the lexemes with the result (e.g., locations of ‘it’ varṇas). If the
sūtra word is one of a predefined set of words with special meaning,
the interpreter invokes its detector function. For instance, ādiḥ of the



44 Susarla et al

lexeme ‘hal’ is ‘h’. Otherwise, the sūtra word denotes a set of terms or
characters, in which case the interpreter returns whether the lexeme
is a member of that set. For instance, if the sūtra word ‘cuṭū’ is inter-
preted against input lexeme ‘c’, it returns True because cuṭū denotes
consonants in the ca-varga and ṭa-varga, i.e., {ca, cha, ja, jha, na, ṭa,
ṭha, ̣a, ḍha, ṇa}.
If the sūtra word is a negation such as ataddhita or apratyayaḥ, IN-
TERPRET applies the negation before returning the result.

The following conjunct operators are used to compose larger rules:

PIPE: This operator takes a sequence of rules and invokes them by feeding
the output of a rule invocation as input to the subsequent rule. The
pipe exits when one of the stages return empty, and returns the output
of the last rule. This is used to process all sūtra padas of the same vib-
hakti. For instance, when interpreting the pipe [‘PIPE’, ‘ādiḥ’, ‘cuṭū’]
against the lexeme ‘hal’, the output of ‘ādiḥ’ namely ‘h’ is compared
against ‘cuṭū’ membership, which returns None.

IF: This operator takes a list of rules. If all of them evaluate to something
other than None, it returns the input tagged lexeme set as is, otherwise
None. This is used to encapsulate saptamī vibhakti padas that indicate
the enabling context for a sūtra to apply (e.g., upadeśe). It is also
used to encapsulate a ṣaṣṭhī vibhakti padam in a saṃj nā sūtra which
indicates the saṃj ni (definition of a saṃj nā).

PAIR: This operator represents a pair of elements mentioned in a sūtra
along with the avyaya ‘saha’. The prathamā vibhakti pada sequence
describes the first element and the tṛtīyā vibhakti pada sequence de-
notes the last element. An example is shown in Figure 3 for the sūtra
‘ādirantyena sahetā’. If the pair denotes a sequence, then it describes
the first and last elements.

GEN_SAMJNA: This operator handles a saṃj nā defined as a computed
expression such as ‘ak’, ‘hal’, ‘sup’ etc. It matches the input tagged
lexeme against the rule for the saṃj nā. Upon a match, it invokes
the rule for the ‘saṃj ni’ by passing the saṃj nā as a parameter.
For instance, the sūtra ‘ādirantyena sahetā’ gets compiled into the
following rule:



PAIAS 45

• [GEN_SAMJNA, {‘saṃj ni’ : None, ‘saṃj nā’ : [PAIR, ‘ādiḥ’,
[PIPE, ‘antyam’, ‘it’] ] } ]

Since there is no explicit saṃj ni in this sūtra, we apply a special
pratyāhāra expander function to generate the character sequence from
the input pair. Figure 3 shows the hierarchical representation of the
sūtra text that leads to the above rule.

PROHIBIT: This function prohibits applying a sūtra under a matched
sub-condition. It is not the same as negation of a match condition.
This is used to process the sūtra word ‘na’ in a sūtra. For instance,
when processing the ‘it’ saṃj nā sūtra ‘na vibhaktau tusmāh’, as shown
in Figure 1, this function removes any ‘it’ varṇa tagging done while
processing its sub-conditions denoted by the words ‘hal’, ‘antyam’ and
‘tusmāh’.

Figure 1
Rule Hierarchy for sūtra ‘na vibhaktau tusmāh’.

7.2 Compiling Rules from Saṃj nā sūtras
Saṃj nā sūtras come in two flavors:

1. those that explicitly list a term and its definition in prathamā vibhakti
with some other conditions e.g., (upadeśe pratyayasya ādiḥ it) cuṭū,
and



46 Susarla et al

Figure 2
Rule Hierarchy for sūtra ‘cuṭū’.

Figure 3
Rule Hierarchy for sūtra ‘ādirantyena sahetā’.



PAIAS 47

2. those that describe the saṃj nā name as a computed expression and
its denoted items in ṣaṣṭhīi vibhakti, e.g., ādiḥ antyena itā saha (svasya
rūpasya).

In the above representation of the sūtra texts, we denote words that are
inherited by anuvṛtti in parentheses.

Figure 2 shows a tree representation for a sūtra of the first flavor. A
saṃj nā sūtra has three components: the term denoted by the edge labeled
‘kA’, its definition denoted by ‘kasya’, and the context in which the defini-
tion applies, denoted by ‘kutra’. saptamī vibhakti padas in the sūtra denote
the context. The saṃj nā term, if explicitly present in the sūtra will be in
prathamā vibhakti with its defining words also in prathamā. In that case, an
executable version of the sūtra is a representation of the tree as a hierarchi-
cal list. All words in the same vibhakti in the sūtra have viśeṣaṇa-viśeṣya
relation.

Figure 3 shows the tree representation for a sūtra of the second flavor. In
this, the ṣaṣṭhī vibhakti word should be interpreted as a filter or qualifier for
the prathamā vibhakti words, not as the saṃj ni (the definition). This sūtra
also has tṛtīyā vibhakti padas joined by ‘saha’, which can be interpreted as
sequence generation operator. This operator takes prathamā vibhakti padas
to indicate start of the sequence and tṛtīyā vibhakti padas to indicate end of
sequence.

Figure 4 shows another sūtra of the second flavor, where the saṃj nā and
saṃj ni definition are both parameterized. It has a pada that is a negation
of pratyaya. Matching this sūtra requires a pre-defined function that checks
if given word is a pratyaya. The saṃj ni in this case is the set of savarṇas
of x.

7.3 Interpreting Paribhāṣā sūtras
A paribhāṣā sūtra describes how to interpret sūtras whose text matches a
given condition. It can be represented as a set of actions guarded by con-
ditions. It is applied to transform vidhi sūtras prior to compiling them into
rules. The condition indicates the sūtra to which the paribhāṣā applies, ex-
pressed in terms of properties of the words in the sūtra text. The actions
indicate how the matching sūtra should be transformed prior to interpreta-
tion.

For instance, consider the sūtra ‘ādyantau ṭakitau’. It describes that if
a vidhi sūtra contains ‘ṭit’ or ‘kit’ pada (i.e., which has varṇa ‘ṭ’ or ‘k’ as



48 Susarla et al

Figure 4
Rule Hierarchy for sūtra ‘aṇudit savarṇasya cāpratyayaḥ’.

‘it’), then the sūtra should be expanded to add extra words ‘ṣaṣṭhyantasya
ādiḥ’ or ‘ṣaṣṭhyantasya antaḥ’ respectively to the sūtra text. We express this
logic in our interpreter by coding the paribhāṣā as shown in Algorithm 1.
Here, the condition is expressed as a rule-matching query with new operators
SAMJNA, PRATYAYA, IT_ENDING, AND and NOT. It applies if a vidhi
sūtra has an individual pada (in its padacCheda) which is not a saṃj nā or
pratyaya word, but has ‘ṭ’ as its ‘it’ varṇa. In that case, the sūtra’s text
must be augmented with two additional words ‘ṣaṣṭhyantasya ādiḥ’. That
matching vidhi sūtra will then be compiled into a rule and then interpreted
during word transformation prakriyā time. Similarly, if the sūtra word has
‘k’ as its ‘it’ varṇa, then the additional words will be ‘ṣaṣṭhyantasya antaḥ’.

As another example, the paribhāṣā sūtra ‘midaco’ntyāt paraḥ’ has the
following effect. If a vidhi sūtra has ‘m’ as ‘it’ (other than in a pratyaya or
saṃj nā word), then the words ‘ṣaṣṭhyantasya antyāt acaḥ paraḥ’ should be
added to the sūtra text.

We manually define the condition action pairs for each of the 23 parib-
hāṣā sūtras as shown in Algorithm 1. At initiation time, the Aṣṭādhyāyī
engine checks these conditions on each of the vidhi sūtras of Aṣṭādhyāyī and
transforms them accordingly prior to the rule compilation step.

In our current implementation, we have handcoded the condition-
-action pairs for about half of the paribhāṣās of Aṣṭādhyāyī, and are able
to successfully identify the sūtras to which they apply. This is because of
our ability to identify the various listable saṃj nās, which are needed in
formulating the conditions. However, processing of vidhi sūtras is future
work.



PAIAS 49

Algorithm 1 Codifying paribhāṣā sūtra ‘ādyantau ṭakitau’.

par ibhasa_defs = {
. . .

s t r (11046) : [
{

‘ ‘ cond” : {
‘ ‘ PadacCheda” :

[AND, [ [NOT, SAMJNA] , [NOT, PRATYAYA] ,
[ IT_ENDING, { ‘ ‘ varna ” : ‘ ‘T” } ] ] ] ,

‘ ‘ sutra_type ” : [ ‘ ‘ vidhiH ” ]
} ,
‘ ‘ a c t i on ” : [

sutra_add_pada , { ‘ ‘ pada” : ‘ ‘ ShaShThyantasya ” ,
‘ ‘ v ibhakt i ” : 6 , ’ type ’ : ‘ ‘ subanta ”} ,

sutra_add_pada , { ‘ ‘ pada” : ‘ ‘AdiH” ,
‘ ‘ v ibhakt i ” : 1 , ‘ type ’ : ‘ ‘ subanta ”}

]
} ,
{

‘ ‘ cond” : {
‘ ‘ PadacCheda” :

[AND, [ [NOT, SAMJNA] , [NOT, PRATYAYA] ,
[ IT_ENDING, { ‘ ‘ varna ” : ‘ ‘ k”} ] ] ] ,

‘ ‘ sutra_type ” : [ ‘ ‘ vidhiH ” ]
} ,
‘ ‘ a c t i on ” : [

sutra_add_pada , { ‘ ‘ pada” : ‘ ‘ ShaShThyantasya ” ,
‘ ‘ v ibhakt i ” : 6 , ‘ type ’ : ‘ ‘ subanta ”} ,

sutra_add_pada , { ‘ ‘ pada” : ‘ ‘ antaH ” ,
‘ ‘ v ibhakt i ” : 1 , ‘ type ’ : ” subanta ”}

]
}

] ,
. . .

}



50 Susarla et al

8 Implementation
We have implemented PAIAS as a Python library and a Flask web microser-
vice that provides RESTful API access to its functionality. The API-based
interface provides a flexible, reliable and reusable foundation for open col-
laborative development of higher-level tools and user interfaces in multiple
programming languages to accelerate research on Aṣṭādhyāyī, while ensur-
ing interoperability of those tools. The code is available on GitHub at
https://github.com/vedavaapi/ashtadhyayi and will soon be available
as a pip installable module.

The module comes bundled with the Aṣṭādhyāyī spreadsheet along with
dhātu pātha and other associated data sets. Upon first invocation after a
clean install, the Aṣṭādhyāyī module computes mahāvākyas for all sūtras,
compiles sūtras into machine-executable rules, builds saṃj nā definitions,
extracts listable terms such as Pratyayas etc, and transforms vidhi sūtras by
applying the matching paribhāṣā sūtras. It then stores all this derived state
persistently in JSON format in a MongoDB database. This enables fast
access to the Aṣṭādhyāyī engine subsequently. Our current implementation
does not handle the transformation and interpretation of vidhi sūtras yet.

Figure 2 shows an example Python script using the Aṣṭādhyāyī library.
We have also devised a powerful query interface to Aṣṭādhyāyī for sophis-
ticated search. Figure 3 shows a Python script to find unique words that
occur in the Aṣṭādhyāyī grouped by vibhakti. The query condition can be
specified as a JSON dictionary supporting a hierarchical specification of
desired attributes as shown in this example.

https://github.com/vedavaapi/ashtadhyayi


PAIAS 51

Algorithm 2 Example usage of Aṣṭādhyāyī Service.

from ashtadhyayi . u t i l s import *
from ashtadhyayi import *

de f a ( ) :
r e turn ashtadhyayi ( )

# Provide mahaavaakya o f g iven sut ra as i nd i v i dua l words
de f mahavakya ( sutra_id ) :

s = a ( ) . sut ra ( sutra_id )
re turn s [ ‘ mahavakya_padacCheda ’ ]

# Show a l l v idh i su t r a s where g iven par ibhasha sut ra
app l i e s

de f par ibhasha ( sutra_id ) :
p = get_paribhasha ( sutra_id )
i f not p :
p r i n t ‘ ‘ Error : Paribhasha d e s c r i p t i o n not found f o r ” ,

sutra_id
return [ ]

matches = [ ]
f o r s_id in p . matching_sutras ( ) :

s = a ( ) . sut ra ( s_id )
out = d i c t ( ( k , s [ k ] ) f o r k in
( ‘ sutra_krama ’ , ‘ sutra_text ’ , ‘ sutra_type ’ ) )

matches . append ( out )
re turn matches

# Return praatipadikam of g iven pada tak ing v ibhakt i and
vachana h in t s .

de f p raat ipad ika ( pada , v ibhakt i =1, vachana=1):
pada = san s c r i p t . t r a n s l i t e r a t e ( pada , s an s c r i p t . SLP1 ,

s an s c r i p t .DEVANAGARI)
return Subanta . ana lyze ({ ‘ pada ’ : pada ,

‘ v ibhakt i ’ : v ibhakt i ,
‘ vachana ’ : vachana })



52 Susarla et al

Algorithm 3 Example script to extract unique words of various vibhaktis
in Aṣṭādhyāyī.

from ashtadhyayi . cmdline import *

a = ashtadhyayi ( )
my f i l t e r = { ‘PadacCheda ’ : { ‘ v ibhakt i ’ : 1 } }
r e s u l t = {}
f o r v in [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ] :

my f i l t e r [ ‘ PadacCheda ’ ] [ ‘ v ibhakt i ’ ] = v
v_padas = [ ]
f o r s_id in a . su t r a s ( my f i l t e r ) :

s = a . sut ra ( s_id )
f o r p in s [ ‘ PadacCheda ’ ] :

i f ‘ v ibhakt i ’ not in p :
cont inue

i f p [ ‘ v ibhakt i ’ ] != v :
cont inue

v_padas . append (p [ ‘ pada ’ ] )
r e s u l t [ v ] = sor t ed ( s e t ( v_padas ) )

pr in t_d ic t ( r e s u l t )



PAIAS 53

9 Evaluation: Putting it all together
In this section, we illustrate the automated operation of the PAIAS engine
via by showing the expansion of a pratyāhāra ‘ac’ into its denoted varṇas.
pratyāhāra expansion is an essential step to enable the rest of Aṣṭādhyāyī
interpretation.

sūtra
#

(APSSS)

Mahāvākya
Representation

Generated rule

13002 it = upadeśe(7) ac(1)
anunāsikaḥ(1)

[PIPE, [IF, “upadeśa”], [PIPE, “ac”,
“anunāsikaḥ”]]

13003.1 it = upadeśe(7) hali(7)
antyam(1)

[PIPE, [IF, “upadeśa”, “hal”], [PIPE,
“antyam”]]

13003.2 it = upadeśe(7) hal(1)
antyam(1)

[PIPE, [IF, “upadeśa”], [PIPE, “hal”,
“antyam”]]

13004 it = upadeśe(7) na(0)
vibhaktau(7) tusmāḥ(1)

[PIPE, [IF, “upadeśa”, “vibhakti”],
[PROHIBIT, “tu-s-ma”]]

13005 it = upadeśe(7) ādiḥ(1)
ṇiṭuḍavaḥ(1)

[PIPE, [IF, “upadeśa”], [PIPE, “ādiḥ”,
“ṇi-ṭu-ḍu”]]

13006 it = upadeśe(7) ādiḥ(1)
ṣaḥ(1) pratyayasya(6)

[PIPE, [IF, “upadeśa”], [PIPE,
“pratyaya”, [PIPE, “ādiḥ”, “ṣaḥ”]]

13007 it = upadeśe(7) ādiḥ(1)
pratyayasya(6) cuṭū(1)

[PIPE, [IF, “upadeśa”], [PIPE,
“pratyaya”, [PIPE, “ādiḥ”, “cu-ṭu”]]

13008 it = upadeśe(7) ādiḥ(1)
pratyayasya(6) laśaku(1)

ataddhite(7)

[PIPE, [IF, “upadeśa”, [NOT,
“taddhita”]], [PIPE, “pratyaya”, [PIPE,
“ādiḥ”, “la-śa-ku”]]

11071 pratyāhāra = svasya(6)
rūpasya(6) ādiḥ(1)

antyena(3) saha(0) itā(3)

[GEN_SAMJNA, {‘saṃj ni’ : None,
‘saṃj nā’ : [PAIR, ‘ādiḥ’, [PIPE,
‘antyam’, ‘it’] ] } ]

11060 lopa = iti(0) adarśanam(1) [PIPE, “adarśanam”]

Table 3
Mahāvākya representations produced by PAIAS engine from specific

saṃj nā sūtras relevant to pratyāhāra expansion.

Our engine accomplishes ‘ac’ expansion as follows. First, it compiles all
saṃj nā sūtras into mahāvākyas and then into machine-interpretable rules.



54 Susarla et al

Table 3 shows the mahāvākya representations and corresponding rules gen-
erated by our engine for specific sūtras relevant to pratyāhāra expansion,
namely ‘it’ and dynamically computed saṃj nā names. The engine main-
tains a terms_db database that caches the set of lexemes denoted by each
saṃj nā. At start time, the engine resets this database and populates it
with the lexemes of all saṃj nās that are listed explicitly in Aṣṭādhyāyī.
During pada_desc tagging, whenever the occurrence of a saṃj nā needs to
be detected, the engine checks the terms_db cache first before attempting
to interpret the saṃj nā’s rules.

9.1 Expansion of pratyāhāra ‘hal’
Pratyāhāras are computed saṃj nā names. To expand them, the engine
should be able to interpret the saṃj nā sūtras for ‘it’, especially, the sūtra
‘halantyam’. However, to break its cyclic dependency on the expansion of
pratyāhāra ‘hal’, this sūtra should be interpreted twice - first as a samāsa
with vigraha ‘hali antyam’, where ’hali’ is the saptamī vibhakti form of the
māheśvara sūtra ‘hal’, and second as ’hal antyam’. As a result of the first
interpretation (sūtra 13003.1), the engine adds the varṇa ‘l’ as the definition
of the ‘it’ saṃj nā in terms_db cache. During the second interpretation of
‘it’ as ‘upadeśe hal antyam’, the engine recursively checks if ‘hal’ is a saṃj nā.
This in turn matches with sūtra 11071 because ‘l’ in ‘hal’ gets tagged as
‘it_varṇa’. Hence ‘hal’ gets detected as a computed saṃj nā, which denotes
the set of varṇas from ’ādi’ of ‘hal’ i.e., ‘h’ upto the but not including the
last ‘l’ in ‘upadeśa’ i.e., the māheśvara sūtra character sequence. Hence the
saṃj nā ‘hal’ and its denoted character sequence i.e., all consonants of the
Saṃskṛt alphabet get added to the terms_db cache. When unwinding the
recursion back to continue the second interpretation of sūtra 13003, this
time, the ending hal varṇa in each māheśvara sūtra gets an ‘it_varṇa’ tag.

9.2 Expansion of pratyāhāra ‘ac’
Next, when trying to interpret the input lexeme ‘ac’, the engine looks to
tag the lexeme’s constituent parts by matching them with the definitions
of known saṃj nās. This time, the sūtra 13003.2 applies, causing the ‘c’ to
be tagged as an ’it_varṇa’ because ‘c’ is a member of the ‘hal’ set in the
terms_db cache. Since there is no explcit saṃj nā called ‘ac’, the engine



PAIAS 55

checks to see if ‘ac’ is a dynamically computed saṃj nā name by applying
sūtra 11071 ‘ādiḥ antyena saha itā’.

This time, when computing the varṇa set as part of sūtra 11071, the last
‘hal’ varṇa in each māheśvara sūtra needs to be suppressed. To accomplish
this, we had to manually code the interpretation of a single vidhi sūtra ‘tasya
lopaḥ’. To do so, we had to manually rewrite it as ‘itaḥ lopaḥ’ because our
engine does not yet have the logic to interpret vidhi sūtras automatically.
The engine reduces the definition of ‘lopaḥ’ to be ‘adarśanam’ from sūtra
11060. We manually wrote a function to interpret the Aṣṭādhyāyī word
‘adarśanam’ to suppress the emission of its referrent lexeme - here the one
with the ‘it_varṇa’ tag.

Thus the engine is able to generate the varṇa sequence for ‘ac’ pratyāhāra
as ‘a i u e o ai au’. The terms_db cache serves two purposes: i) to break
infinite recursions in expansion of saṃj nā definitions that are possible in
Aṣṭādhyāyī, and ii) to speedup subsequent processing of a saṃj nā once it
has been expanded.

10 Future Directions
We recognize that generating an automated interpretation engine for Aṣṭād-
hyāyī is a complex and long-term task due to the need to validate and adjust
the methodology manually, and the thousands of sūtras involved. However,
our attempt is to rely on the precision of Aṣṭādhyāyī’s exposition to mech-
anise large parts of the work. Our second objective is to provide a robust
foundational platform so multiple researchers can work collaboratively and
leverage each other’s innovations to accelerate the task. To this end, we
would like to work closely with other researchers to incorporate existing ap-
proaches to Aṣṭādhyāyī interpretation and its validation. This is especially
true for vidhi sūtras which constitute the bulk of Aṣṭādhyāyī.

We hope that our programmatic interface to Aṣṭādhyāyī and its seman-
tic functionality enables interoperable applications and deeper exploration
of the grammatical structure of Saṃskṛt literature by the larger computer
science community. Certain directions include data-driven analysis of the
relative usage of Saṃskṛt grammar constructs in Saṃskṛt literature, vocab-
ulary and its evolution over time, kāraka analysis via a mix of data-driven
and first-principles approaches. A robust grammar engine provides a sound



56 Susarla et al

basis for such projects. Another area of future research would be to explore
the engine’s applicability for modeling other natural languages.

11 Conclusion
In this paper, we have presented a programmatic interface to the celebrated
Saṃskṛt grammar treatise Aṣṭādhyāyī with the goal to evolve a direct in-
terpreter of its sūtras for Saṃskṛt word generation and transformation in all
its variations. Our initial experience indicates that the consistent structure
and conventions of Aṣṭādhyāyī’s sūtras make them amenable to mechanized
sūtra interpretation with fidelity. However, much more work needs to be
done to fully validate the hypothesis. Having a flexible, reusable and ex-
tendible interface to Aṣṭādhyāyī provides a sound basis for collaborative
research and application development.



References
Ajotikar, Tanuja, Anuja Ajotikar, and Peter Scharf. 2015. “Some Issues

in the Computational Implementation of the Ashtadhyayi”. In: San-
skrit and Computational Linguistics, select papers from ’Sanskrit and
IT World’ section of 16th World Sanskrit Conference. Ed. by Amba
Kulkarni. Bangkok, Thailand, pp. 103–124.

Dikshita, Pushpa. 2010. “Ashtadhyayi Sutra Pathah”. In: Samskrita Bharati.
Chap. 4.

Goyal, Pawan, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph
Bunker. 2012. “A Distributed Platform for Sanskrit Processing”. In:
24th International Conference on Computational Linguistics (COLING),
Mumbai.

Goyal, Pawan, Amba Kulkarni, and Laxmidhar Behera. 2008. “Computer
Simulation of Ashtadhyayi: Some Insights”. In: 2nd International Sym-
posium on Sanskrit Computational Linguistics. Providence, USA.

Hellwig, Oilver. 2009. “Extracting dependency trees from Sanskrit texts”.
Sanskrit Computational Linguistics 3, LNAI 5406pp. 106–115.

Huet, Gérard. 2002. “The Zen Computational Linguistics Toolkit: Lexicon
Structures and Morphology Computations using a Modular Functional
Programming Language”. In: Tutorial, Language Engineering Conference
LEC’2002. Hyderabad.

JSON. 2000. Introducing JSON. http://www.json.org/.
Krishna, Amrit and Pawan Goyal. 2015. “Towards automating the gener-

ation of derivative nouns in Sanskrit by simulating Panini”. In: San-
skrit and Computational Linguistics, select papers from ’Sanskrit and IT
World’ section of 16th World Sanskrit Conference. Ed. by Amba Kulka-
rni. Bangkok, Thailand.

Kulkarni, Amba. 2016. Samsaadhanii: A Sanskrit Computational Toolkit.
http://sanskrit.uohyd.ac.in/.

Kumar, Anil. 2012. “Automatic Sanskrit Compound Processing”. PhD the-
sis. University of Hyderabad.

Mishra, Anand. 2008. “Simulating the Paninian System of Sanskrit Gram-
mar”. In: 1st and 2nd International Symposium on Sanskrit Computa-
tional Linguistics. Providence, USA.

57



58 Susarla et al

Patel, Dhaval and Shivakumari Katuri. 2016. “Prakriyāpradarśinī - an open
source subanta generator”. In: Sanskrit and Computational Linguistics -
16th World Sanskrit Conference, Bangkok, Thailand, 2015.

Petersen, Wiebke and Oliver Hellwig. 2016. “Annotating and Analyzing the
Ashtadhyayi”. In: Input a Word, Analyse the World: Selected Approaches
to Corpus Linguistics, Newcastle upon Tyne: Cambridge Scholars Pub-
lishing.

Petersen, Wiebke and Simone Soubusta. 2013. “Structure and implementa-
tion of a digital edition of the Ashtadhyayi”. In: In Recent Researches
in Sanskrit Computational Linguistics - Fifth International Symposium
IIT Mumbai, India, January 2013 Proceedings.

Satuluri, Pavankumar and Amba Kulkarni. 2013. “Generation of Sanskrit
Compounds”. In: International Conference on Natural Language Pro-
cessing.

Scharf, Peter. 2016. “An XML formalization of the Ashtadhyayi”. In: San-
skrit and Computational Linguistics - 16th World Sanskrit Conference,
Bangkok, Thailand, 2015.

Scharf, Peter and Malcolm Hyman. 2009. Linguistic Issues in Encoding San-
skrit. Motilal Banarsidass, Delhi.

Subbanna, Sridhar and Srinivasa Varakhedi. 2010. “Asiddhatva Principle
in Computational Model of Ashtadhyayi”. In: 4th International Sanskrit
and Computational Linguistics Symposium. New Delhi.

Susarla, Sarada and Sai Susarla. 2012. Panini Ashtadhyayi Sutras with Com-
mentaries: Sortable Index. https://sanskritdocuments.org/learning_-
tools/ashtadhyayi/.



Yogyatā as an absence of non-congruity
Sanjeev Panchal and Amba Kulkarni

Abstract: Yogyatā or mutual congruity between the meanings of the
related word is an important factor in the process of verbal cognition.
In this paper, we present the computational modeling of yogyatā for
automatic parsing of Sanskrit sentences. Among the several definitions
of yogyatā we modeled it as an absence of non-congruity. We discuss
the reasons behind our modeling.
Due to lack of any syntactic criterion for viśeṣaṇa (adjectives) in San-
skrit, parsing Sanskrit texts with adjectives resulted in a high number
of false positives. Hints from the vyākaraṇa texts helped us in the
formulation of a criterion for viśeṣaṇa with syntactic and ontologi-
cal constraints, which provided us a clue to decide the absence of
non-congruity between two words with respect to the adjectival rela-
tion. A simple two-way classification of nouns into dravya and guṇa
with further sub-classification of guṇas into guṇavacanas was found
to be necessary for handling adjectives. The same criterion was also
necessary to handle the ambiguities between a kāraka and non-kāraka
relations. These criteria together with modeling yogyatā as an absence
of non-congruity resulted in 81% improvement in precision.

1 Introduction
Three factors viz. ākāṅkṣā (expectancy), yogyatā (congruity) and sannidhi
(proximity) play a crucial role in the process of śābdabodha (verbal cogni-
tion). These factors have been found to be useful in the development of a
Sanskrit parser as well. The concept of subcategorisation of modern Lin-
guistics comes close to the concept of ākāṅkṣā. Subcategorization structures
provide syntactic frames to capture different syntactic behaviors of verbs.
Sanskrit being an inflectional language, the information of various relations
is encoded in suffixes rather than in positions. These suffixes express the
expectancy, termed as ākāṅkṣā in the Sanskrit literature. Kulkarni, Pokar,

59



60 Sanjeev Panchal and Amba Kulkarni

and Shukl (2010) describe how the ākāṅkṣā was found to be useful in the
proposition of possible relations between words. Sannidhi has been found to
be equivalent to the weak non-projectivity principle (Kulkarni, P. Shukla,
et al. 2013c). In this paper, we will discuss the role of the third factor viz.
yogyatā, in building a Sanskrit parser.

The concept of selection restriction is similar to the concept of yogyatā.
The expectancy, or the ākāṅkṣā, proposes a possible relation between the
words in a sentence. Such a relation would hold between two words only if
they are meaning-wise compatible. It is the selection restriction or yogyatā
which then comes into force to prune out incongruent relations, keeping only
the congruent ones. Katz and Fodor (1963) proposed a model of selection re-
strictions as necessary and sufficient conditions for semantic acceptability of
the arguments to a predicate. Identifying a selection restriction that is both
necessary and sufficient is a very difficult task. Hence there were attempts
to propose alternatives. One such alternative was proposed by Wilks (1975)
who viewed these restrictions as preferences rather than necessary and suffi-
cient conditions. After the development of WordNet, Resnik (1993) modeled
the problem of induction of selectional preferences using the semantic class
hierarchy of WordNet. Since then there is an upsurge in the field of com-
putational models for the automated treatment of selectional preferences
with a variety of statistical models and Machine learning techniques. In
recent times, one of the ambitious projects to represent World Knowledge
was taken up under the banner of Cyc. This knowledgebase contains over
five hundred thousand terms, including about seventeen thousand types of
relations, and about seven million assertions relating these terms.1 In spite
of the availability of such a huge knowledge base, we rarely find Cyc being
used in NLP applications.

The first attempt to use the concept of yogyatā in the field of Ma-
chine Translation was by the Akshar Bharati group (Bhanumati 1989) in
the Telugu-Hindi Machine Translation system. Selectional restrictions were
used in defining the Kāraka Charts that provided a subcategorization frame
as well as semantic constraints over the arguments of the verbs. On simi-
lar lines Noun Lakṣaṇa Charts and Verb Lakṣaṇa Charts were also used
for disambiguation of noun and verb meanings. These charts expressed se-
lectional restrictions using both ontological concepts as well as semantic

1http://www.cyc.com/kb, accessed on 30th August, 2017

http://www.cyc.com/kb


Yogyatā as an absence of non-congruity 61

properties. An example Kāraka chart for the Hindi verb jānā (to go) is
given in table 1.

case relation necessity case marker semantic constraint
apādānam (source) desirable se not (upādhi:vehicle)
karaṇam (instrument) desirable se (upādhi:vehicle)
karma(object) mandatory 0/ko -
kartā (agent) mandatory 0 -

Table 1
Kāraka Chart for the verb jānā (to go)

Here upādhi is an imposed property. The first row in Table 1 states a
constraint that a noun with case marker se has a kāraka role of apādānam
(source) provided it is not a vehicle. The ontological classification was in-
spired by the ontology originated from the vaiśeṣika school of philosophy.
The parsers for Indian languages were further improved. Bharati, Chai-
tanya, and Sangal (1995) mentions the importance of two semantic factors
viz. animacy and humanity, in parsing, that removes the ambiguity among
the kartā and karma(roughly subject and object). This hypothesis was fur-
ther strengthened with experimental verification by Bharati, Husain, et al.
(2008).

In the next section, we first state the importance of yogyatā in parsing,
as a filter to prune out meaningless parses. Since yogyatā deals with the
compatibility between meanings, and a word expresses meanings at different
levels, we also discuss the mutual hierarchy among these various meanings.
In the third section, we look at various definitions of yogyatā offered in
the tradition, and decide the one that is suitable for implementation. In
the same section, we evolve strategies to disambiguate relations based on
yogyatā. Finally, the criteria evolved for disambiguation are evaluated. The
evaluation results are discussed in section four, followed by the conclusion.

2 Yogyatā as a filter
Necessary condition for understanding a sentence is that a word having an
expectancy for another word should become nirākāṅkṣa (having no further



62 Sanjeev Panchal and Amba Kulkarni

expectancy) once a relation is established between them. Further, such re-
lated words should also have mutual compatibility from the point of view of
the proposed relation. If they are not, then the expectancy of such words
will not be put to rest and there would not be any verbal cognition. There-
fore the role of yogyatā in verbal cognition is very important. The purpose
of using yogyatā in parsing is not to make a computer ‘understand’ the text,
but to rule out incompatible solutions from among the solutions that fulfill
the ākāṁkṣās. For example, in the sentence

Skt: yānam vanam gacchati.
Gloss: vehicle{neut., sg., nom./acc.} forest{neut., sg., nom./acc.}
go{present, 3rd per., sg.}

There are 6 possible analyses, based on the ākāṅkṣā. They are

1. yānam is the kartā and vanam is the karma of the verb gam,
2. yānam is the karma and vanam is the kartā of the verb gam,
3. yānam is the kartā of the verb gam and vanam is the viśeṣaṇa of yānam,
4. yānam is the karma of the verb gam and vanam is the viśeṣaṇa of yānam,
5. yānam is the viśeṣaṇa of vanam which is the kartā of the verb gam,
6. yānam is the viśeṣaṇa of vanam which is the karma of the verb gam.

If the machine knows that the kartā of an action of going should be mov-
able, and that the designation of yāna is movable, but that of vana is not
movable, then mechanically it can rule out the second analysis. The words
yānam and vanam on account of the agreement between them have the poten-
tial to be viśeṣaṇas of each other. But the semantic incompatibility between
the meanings of these words rules out the last four possibilities, leaving only
the first correct analysis.

As another example, look at the sentence

Skt: Rāmeṇa bāṇena Vālī hanyate.
Gloss: Rama{ins.} arrow{ins.} Vali{nom.} is_killed.

Rāma and bāṇa, both being in instrumental case, can potentially be a
kartā as well as a karaṇam of the verb han (to kill). If the machine knows
that bāṇa can be used as an instrument in the act of killing, while Rāma
being the name of a person, can not be a potential instrument in the act of



Yogyatā as an absence of non-congruity 63

killing, it can then filter out the incompatible solution: Rāma as a karaṇam
and bāṇa as a kartā.

Look at another sentence payasā siñcati (He wets with water). Here
payas (water) is in instrumental case, and is a liquid, and hence is compat-
ible with the action of siñc (to wet). But in the sentence vahninā siñcati
(He wets with fire), vahni (fire) is not fit to be an instrument of the action
of wetting, and as such it fails to satisfy the yogyatā. But now imagine a
situation where a person is in a bad mood, and his friend without know-
ing it starts accusing him further for some fault of his, instead of uttering
some soothing words of the console. Third-person watching this utters kim
vahninā siñcasi (Why are you pouring fire?) - a perfect verbalization of
the situation. The words, here, are like a fire to the person who is already
in a bad mood. This meaning of vahni is its extended meaning. Thus,
even if a relation between primary meanings does not make sense, if the
relation between extended meanings makes sense, we need to produce the
parse. Therefore, in addition to the primary meanings, the machine also,
sometimes, needs access to the secondary/extended meanings of the words.

2.1 Word and its Meanings
Every word has a significative power that denotes its meaning. In Indian
theories of meaning, this significative power is classified into three types
viz. abhidhā (the primary meaning), lakṣaṇā (the secondary or metaphoric
meaning) and vyañjanā (the suggestive meaning). In order to use the con-
cept of yogyatā in designing a parser, we should know what is the role of
each of these meanings in the process of interpretation.

The secondary meaning comes into play when the primary meaning is
incompatible with the meanings of other words in a sentence. The absence
of yogyatā is the basic cause for this signification. Indian rhetoricians ac-
cept three conditions as necessary for a word to denote this extended or
metaphoric sense. These three conditions are2

1. inapplicability / unsuitability of the primary meaning,
2. some relation between the primary meaning and the extended mean-

ing, and
2 mukhyārthabādhe tadyoge rūḍhito’tha prayojanāt |

anyo’rtho lakṣyate yat sā lakṣaṇāropitā kriyā ||
(KP II 9)



64 Sanjeev Panchal and Amba Kulkarni

3. definite motive justifying the extension.

In addition to these two meanings, there is one more meaning, called
vyañjanā or the suggestive meaning. This corresponds to the inner mean-
ing of any text/speaker’s intention. In order to understand this meaning,
consider a sentence gato’stam arkaḥ which literally means ‘the sun has set’.
Every listener gets this meaning. In addition to this meaning, it may also
convey different signals to different listeners. For a child playing in the
ground, it may mean ‘now it is getting dark and it is time to stop playing
and go home’, for a Brahmin, it may mean ‘it is time to do the sandhyā-
vandana’, and for a young man it may mean ‘it is time to meet his lover’.
This extra meaning co-exists with the primary meaning. It does not block
the primary meaning. Therefore vyaṅgārtha (suggestive meaning) exists in
parallel with the primary/secondary meaning.

Since the suggestive meaning is in addition to the primary/secondary
meaning, and is optional, and also is different for different listeners, it in-
volves subjectivity for processing. Hence it is not possible to objectively
process this meaning for any utterance.3 This also puts an upper limit on
the meaning one can get from a linguistic utterance without the interference
of subjective judgments. In summary, we observe that these three meanings
are not in the same plane. Lakṣaṇā comes into play only when abhidhā
fails to provide a suitable meaning for congruent interpretation. And the
suggestive meaning can co-exist with the abhidhā as well as the lakṣaṇā,
and as such, is outside the scope of automatic processing.

3 Modeling Yogyatā
Yogyatā is the compatibility between the meanings of related words. This
meaning, as we saw above, can be either a primary or a metaphoric one. The
absence of any hindrance in the understanding of a sentence implies there
is yogyatā or congruity among the meanings. There have been different
views among scholars about what yogyatā is. According to one definition,
yogyatā is artha-abādhaḥ4 (that which is not a hindrance to meaning). It

3One of the reviewers commented that taking into account the advents in Big Data
and Machine Learning techniques, it may even be possible to process such meanings
by machines in the future. However, we are of the opinion that machine would need
semantically annotated corpus for learning, which does not yet exist.

4All the meanings we will be discussing below are found in NK p. 675.



Yogyatā as an absence of non-congruity 65

is further elaborated as bādhaka-pramā-virahaḥ or bādhaka-niścaya-abhāvaḥ
(absence of the decisive knowledge of incompatibility). There are other at-
tempts to define it as an existing qualifying property. One such definition
is sambandha-arhatvam (eligibility for mutual association), and the other
one is paraspara-anvaya-prayojaka-dharmavattvam (a property of promot-
ing mutual association). The first set of definitions presents yogyatā as an
absence of incompatibility whereas the second set of definitions present it
as the presence of compatibility between the meanings.

Let us see the implications of modeling yogyatā through these two lenses.

1. We establish a relation only if the two morphemes are mutually con-
gruous.
In this case, we need to take care of not only the congruity between
primary meanings but even between the metaphoric/secondary mean-
ings.

2. We establish a relation if there is no incongruity between the two
meanings.

The first possibility ensures that the precision is high and there is less
chance of Type-1 error, i.e. of allowing wrong solutions. The second pos-
sibility, on the other hand, ensures that the recall is high and there is less
chance of Type-2 error, viz. the possibility of missing any correct solution.
But there is a chance that we allow some unmeaningful solutions as well. If
we decide to go for the first possibility, we need to handle both the primary
as well as secondary meanings, and we need to state precisely under what
conditions the meanings are congruous. And this means modeling congruity
for each verb and for each relation. This is a gigantic task, and there is a
possibility of missing correct solutions if we do not take into account all
the possible extensions of meanings. Therefore, we decided to go for the
second choice allowing a machine to do some mistakes of choosing incon-
gruous solutions but we did not want to throw away correct solutions even
by mistake. This decision is in favor of our philosophy of sharing the load
between man and machine. Our aim is to provide access to the original
text by reducing the language learning load. So we can not afford to miss
a possible solution. Thus at the risk of providing more solutions than the
actual possible solutions, we decided to pass on some load to the reader of
pruning out irrelevant solutions manually.



66 Sanjeev Panchal and Amba Kulkarni

In the first step, we decided to use yogyatā only in those cases where a
case marker is ambiguous between more than one relation. We noticed the
following three cases of ambiguities with reference to the relations.

1. viśeṣya-viśeṣaṇa-bhāva (adjectival relation)
Here both the viśeṣya and viśeṣaṇa agree in gender, number and case,
and hence only on the basis of the word form, we can not tell which
one is viśeṣya and which one is viśeṣaṇa.

2. a kāraka and a non-kāraka relation as in
a. karaṇam (instrument) and hetu (cause), with an instrumental

case marker,
b. sampradānam (beneficiary), prayojanam (purpose) and tā-

darthya (being intended for), with a dative case marker,
c. apādānam (source) and hetu (cause), with an ablative case

marker.
3. śaṣṭhī sambandha (a genitive relation) and a viśeṣaṇa (an adjective)

When two words are in the genitive case, it is not clear whether there
is an adjectival relation between them, or a genitive relation.

We now discuss each of these three cases below.

3.1 Viśeṣya-viśeṣaṇa-bhāva (Adjectival relation)
We come across a term samānādhikaraṇa (co-reference) in Pāṇini to denote
an adjective (Joshi and Roodbergen 1998, p. 6). One of the contexts in
which the term samānādhikaraṇa is used is the context of an agreement
between an adjective and a noun.5 For example, dhāvantaṁ mṛgaṁ (a run-
ning deer), or sundaraḥ aśvaḥ (a beautiful horse). Pāṇini has not defined the
term samānādhikaraṇa, either. The term samānādhikaraṇa (co-reference)
literally means ‘having the same locus’. Patañjali in the Samartha-āhnika
discusses the term sāmānādhikaraṇya (co-referential) (literally a property
of being in the same locus). In the example, sundaraḥ aśvaḥ (a beautiful
horse), both the qualities of saundarya (beauty) and aśvatva (horse-ness)
reside in an aśva (horse), which is the common locus. Similarly, in the
case of ācāryaḥ droṇaḥ, or agne gṛhapate (O Agni! house-holder), both
the words ācārya as well as droṇa refer to the same individual, so do agni

5sāmānādhikaraṇyam ekavibhaktitvam ca. dvayoścaitad bhavati. kayoḥ. Viśeṣaṇa-
viśeṣyayoḥ vā sañjñā-sañjñinorvā (MBh 1.1.1)



Yogyatā as an absence of non-congruity 67

and gṛhapati. This is true of various other relation-denoting terms such as
guru, śiṣya, pitā, putra, etc. and upādhis (imposed / acquired properties)
such as rājā, mantrī, vaidya, etc. From all this discussion, we may say
sāmānādhikaraṇya (the property of having the same locus) is the semantic
characterisation of a viśeṣaṇa.

In Sanskrit, there is no syntactic / morphological category as a viśeṣaṇa
(an adjective). The gender, number and case of a viśeṣaṇa follows that of
a viśeṣya (the head). From the point of view of analysis this provides a
syntactic clue for a possible viśeṣya-viśeṣaṇa-bhāva between two words such
as in śuklaḥ paṭaḥ (a white cloth). This agreement is just a necessary con-
dition, and not sufficient. Because, a viśeṣaṇa, in addition to agreeing with
the viśeṣya should also be semantically fit to be a qualifier of the viśeṣya.
For example, there can be two words say yānam (a vehicle) and vanam (a
forest), that match perfectly in gender, number and case, but we can not
imagine a viśeṣya-viśeṣaṇa-bhāva between yāna and vana. Is it only the
semantics that rules out such a relation or are there any clues, especially
syntactic ones, that help us to rule out a viśeṣya-viśeṣaṇa-bhāva between
such words?

In search of clues:

Pāṇini has not defined the terms viśeṣya and viśeṣaṇa. Patañjali uses
two terms dravya (substance) and guṇa (quality) while commenting on the
agreement between a viśeṣya and a viśeṣaṇa.

yad asau dravyaṁ śrito bhavati guṇaḥ tasya yat liṅgam vacanam
ca tad guṇasya api bhavati. (MBh under A4.1.3 Vt VI.)
A quality assumes the gender and number of the substance in
which it resides.

But then what is this guṇa?

We come across the description of guṇa by Kaiyyaṭa.

sattve niviśate apaiti pṛthag jātiṣu dṛśyate
ādheyaḥ -ca-akriyājaḥ-ca saḥ asattva-prakṛti-guṇaḥ
(MBh A4.1.44)
Guṇa is something which is found in things / substances (sattve



68 Sanjeev Panchal and Amba Kulkarni

niviśate), which can cease to be there (apaiti), which is found
in different kinds of substances (pṛthag jātiṣu), which is some-
times an effect of an action and sometimes not so (ādheyaḥ-
ca-akriyājaḥ-ca), and whose nature is not that of a substance
(asattva-prakṛti).

Thus guṇa is something which is not a substance since it resides in other
things. It is not universal since it is found in different kinds of substances.
It is not an action, since guṇa is sometimes an effect of an action, as in the
case of the color of a jar and sometimes not, as in the case of the magnitude
of a substance. This characterisation of guṇais very close to the vaiśeṣika’s
concept of guṇa (Raja 1963).

Then, is this vaiśeṣika guṇa a viśeṣaṇa?

Patañjali commenting on the word guṇa under A2.2.11 provides an
example contrasting two types of guṇas. While both śukla and gandha
are qualities (guṇa) according to the vaiśeṣika ontology, the usage śuklaḥ
paṭaḥ (a white cloth) is possible, while gandham candanam (fragrance sandal-
wood) is not. Thus, only some of the vaiśeṣika guṇas have a potential to be
a viśeṣaṇa, and not all.

If viśeṣaṇa is not a vaiśeṣika guṇa, what is it?

The characterisation of guṇa by Bhartṛhari in Guṇa-samuddeśa includes
bhedakam as one of the characteristics of guṇa. But, in addition, guṇa,
according to him, is also capable of expressing the degree of quality in a
substance through a suffix. He defines guṇa as

saṁsargi bhedakaṁ yad yad savyāpāraṁ pratīyate
guṇatvaṁ paratantratvāt tasya śāstra udāhṛtam VP III.5.1
Whatever rests on something else (saṁsargi), differentiates it
(bhedaka), and is understood in that function (savyāpāra) is,
being dependent, called quality in the śāstra. (Iyer 1971)

According to Bhartṛhari, apart from being a differentiator, a guṇa has
another important characteristic, viz. that such a distinguishing quality can



Yogyatā as an absence of non-congruity 69

also express the degree of excellence through some suffix (such as a com-
parative suffix tarap, or a superlative suffix tamap). This concept of guṇa
of Bhartṛhari, thus is different from the concept of the guṇa of a vaiśeṣika.
This definitely rules out the case of gandha, since we can not have gand-
hatara but we can have śuklatara to distinguish the white-ness between two
white cloths.

Another clue from Pāṇini

We have another hint from Pāṇini through Patañjali. While in A4.1.3,
Patañjali has used the terms dravya and guṇa in connection with agreement,
in A1.2.52, he uses the term guṇavacana while describing a viśeṣaṇa

guṇavacanānāṁ śabdānām-āśrayataḥ liṅgavacanāni bhavanti-iti
(A1.2.52).
The words which are guṇavacanas take the gender and number
of the substance in which they reside.

The term guṇavacana is used for those words which designate quality and
then a substance in which this quality resides (Cardona 2009). In the ex-
ample, śuklaḥ paṭaḥ, since śukla in addition to being a quality (white color),
can also designate a substance, such as a paṭa (cloth), which is (white) in
color, it is a guṇavacana word. But gandha (fragrance) designates only qual-
ity, and can not be used to designate a substance that has a fragrance, and
hence is not a guṇavacana.

Is guṇavacana necessary and sufficient to describe a viśeṣaṇa?

Let us look at the examples above. It definitely rules out yānaṁ and
vanaṁ to be qualifiers of each other, since neither of them is quality. But
then what about dhāvan (the one who is running) in dhāvan bālakaḥ (a
running boy)? Is dhāvan a guṇavacana?

Guṇavacana is a technical term, used by Pāṇini to define an operation of
elision of matup suffix in certain quality denoting words such as ’sukla etc. So
technically, a word such as dhāvan, though it designates a substance, is not a
guṇavacana. This is clear from Patañjali’s commentary on A1.4.16 where he

6The Vārtika guṇvacanam ca is followed by several other vārttikas, of which the fol-
lowing two are relevant. samāsa-kṛt-taddhita-avyaya-sarvanāma-asarvaliṅgā jātiḥ ||41 ||
saṁkhyā ca ||42 ||



70 Sanjeev Panchal and Amba Kulkarni

states that compounds (samāsa), primary derivatives (kṛdantas), secondary
derivatives (taddhitāntas), indeclinables (avyaya), pronouns (sarvanāma),
words referring to universals (jāti), numerals (saṁkhyā) can not get the
designation guṇavacana, since the latter saṁjñās (technical terms) supersede
the previous ones.7

The very fact that Kātyāyana had to mention that words belonging to all
the latter categories are not guṇavacana, indicates that all these categories
of words have the potential to get the guṇavacana designation, but Pāṇini
did not intend to assign this sañjñā to these words. Whatever may be the
reason, but this list of various categories, in fact, provides us a morphological
clue for a word to be a viśeṣaṇa.

Here are some examples of viśeṣaṇas belonging to these different gram-
matical categories.

1. Samāsa (a compound)
Bahuvrīhi (exo-centric) compounds refer to an object different from
the components of the compound, and thus typically act as adjectives.
For example, pītāmbaraḥ is made up of two components pīta (yellow)
and ambara (cloth), but it refers to the ‘one wearing a yellow-cloth’
(and is conventionally restricted to Viṣṇu). An example of tat-puruṣ
(endo-centric) compound as a viśeṣaṇa is parama-udāraḥ (extremely
noble).

2. Kṛdanta (an adjectival participle)
Nouns derived from verbs act as qualifiers of a noun. For example,
in the expression dhāvantam mṛgam (a running deer), dhāvantam, a
verbal noun, is a viśeṣaṇa. Only certain kṛdanta suffixes such as śatṛ,
śānac, kta, etc. produce nouns that can be viśeṣaṇas, and not all.

3. Taddhita (a secondary derivative)
Taddhitas with certain suffixes derive new nouns such as bhāratīya
(Indian), dhanavān (wealthy), guṇin (possessing good qualities), etc.
that denote a substance, as against certain other taddhita words such
as manuṣyatā (humanity), vārddhakya (senility) etc. which derive new
words designating qualities.

4. Sarvanāma (a pronoun)
Pronouns also act as qualifiers. For example, in the expression idam
pustakam (this book), idam is a viśeṣaṇa.

7gaṇavacanasaj̇ñāyāḥ ca etābhiḥ bādhanaṁ yathā syāt iti



Yogyatā as an absence of non-congruity 71

5. Jāti (a universal)
In an expression āmraḥ vṛkṣaḥ (a mango tree), both the words āmraḥ
and vṛkṣaḥ are common nouns. But one is a special and the other one
is a general one. So the designation of āmra is a subset of the designa-
tion of vṛkṣa. Only in such cases, where there is a parājāti-aparājāti
(hypernymy-hyponymy) relation, the one denoting an aparājāti (hy-
ponymy) qualifies to be a viśeṣaṇa of the other one.

6. Saṁkhyā (a numeral)
In an expression ekaḥ puruṣaḥ (a man), the word ekaḥ designates a
number, which is a viśeṣaṇa of puruṣa.

There are still two more classes of words that are not covered in the above
list, but which can be viśeṣaṇas. They are: words denoting an acquired
property or an imposed property, and the relation-denoting terms. For
example, ācāryaḥ in ācāryaḥ droṇaḥ, is an imposed property and putraḥ
in Daśarathasya putraḥ rāmaḥ is a relation denoting term.

In summary, samastapada, certain kṛdantas, certain taddhitāntas,
saṁkhyā, sarvanāma, ontological categories such as parā-aparā jātis,
semantico-syntactic property such as guṇavacana and finally semantic prop-
erties such as relation denoting terms and upādhis, all these serve as charac-
terisations of a viśeṣaṇa. This characterization is only a necessary condition,
and not sufficient since it does not involve any mutual compatibility between
the words. However, it brings in more precision in the necessary conditions
for two words to be in viśeṣya-viśeṣaṇa-bhāva.

3.1.1 Deciding a Viśeṣya

Once we have identified the words that are mutually compatible with regard
to an adjectival relation, the next thing is to decide the viśeṣya (head)
among them. The commentary on A2.1.57 is useful in deciding the viśeṣya.
This sūtra deals with the compound formation of two words that are in
viśeṣya-viśeṣaṇa-bhāva. In Sanskrit compound formation, the one which is
subordinate gets a designation of upasarjana. This provides us a clue about
which word classes are subordinate to which ones. A noun may refer to a
substance through an expression expressing the class character (jāti) such
as utpalam (a flower), or through an action associated with it (kriyāvacana),
as in dhāvan (running), or through a guṇavācaka such as nīlam. If there are
two words designating common nouns, one denoting a special and the other
one general, then the one which denotes a special type of common noun is



72 Sanjeev Panchal and Amba Kulkarni

subordinate.8 For example, in āmraḥ vṛkṣaḥ, āmra is a special kind of tree,
and hence is a viśeṣaṇa and vṛkṣa is its viśeṣya. If one word designates a
common noun and the other one either a guṇavacana or a kriyāvacana, then
the word denoting the common noun becomes the viśeṣya.9 Thus in nīlam
utpalam, utpalam is the viśeṣya. In pācakaḥ brāhmaṇaḥ (cook Brahmin),
brāhmaṇaḥ is the viśeṣya. When one of the words designate a guṇavacana
and the other a kriyāvacana, or both the words designate either guṇavacanas
or kriyāvacanas, then either of them can be a viśeṣya, as in khañjaḥ kubjaḥ
(a hump-backed who is limping) or kubjaḥ khañjaḥ (a limping person with
hump-back), similarly as in khañjaḥ pācakaḥ (a limping cook) or pācakaḥ
khañjaḥ (a limping person who is a cook), etc.

On the basis of the above discussion, we have the following preferential
order for the viśeṣya.

jātivācaka > {guṇvacana, kṛdanta}.

We saw earlier that a viśeṣaṇa can be any one of the following: a pro-
noun, a numeral, a kṛdanta, a taddhitānta, a samasta-pada, guṇavācaka,
jāti, relation denoting terms, and an upādhi. So adding all these categories
to the above preferential order, we get,

jātivācaka > upādhi > taddhitānta > guṇavacana > numeral > kṛdanta
> pronoun.10

3.1.2 Flat or Hierarchical Structure?

After we identify all the words that have a samānādhikaraṇa relation be-
tween them, and mark the viśeṣya (the head) among them, the next task
is to know whether a viśeṣaṇa is related to this viśeṣya directly, or through
other viśeṣaṇas.

If there are n viśeṣaṇas, and all of them are related to the viśeṣya directly,
then it results in a flat structure. But if a viśeṣaṇa is related to the viśeṣya

8sāmānyajāti-viśeṣajātiśabdayoḥ samabhivyāhāre tu viṣeṣajātireva viśeṣaṇam. under
A2.1.57, in BM

9jātiśabdo guṇakriyāśabdasamabhivyāhāre viśeṣyasamarpaka eva na tu viśeṣaṇa
samarpakaḥ, svabhāvāt, under A2.1.57, in BM

10This preferential order is purely based on some observations of the corpus, and needs
further theoretical support, if there is any.



Yogyatā as an absence of non-congruity 73

through other viśeṣaṇas, then there are exponentially large number of ways
in which n viśeṣaṇas can relate to the viśeṣya. For example, if there are
three words say a, b and c, of which c is the viśeṣya. Then computationally,
there are three ways in which the other two words may relate to c.

1. Both a and b are the viśeṣaṇa of c. (This results in a flat structure.)
2. a is a viśeṣaṇa of b and b that of c.
3. b is a viśeṣaṇa of a and a that of c.

In positional languages like English, only the first two cases are possible.
For example, consider the phrase ‘light red car’, which may either mean a
car which is red in color and is light in weight, or a car which is light-red in
color. In the second case, light-red is a compound.

Sanskrit being a free word order language, one can imagine, computation-
ally, a possibility for the third type as well. The relation between the adjec-
tival terms being that of sāmānādhikaraṇya (co-referential), semantically,
only a flat structure is possible with adjectives. The other two cases of hi-
erarchical structures result in compound formation in Sanskrit.

This is also supported by Jaimini’s Mīmāṁsā sūtra

guṇānām ca parārthatvāt asambandhaḥ samatvāt syāt. (MS
3.1.22)
In as much as all subsidiaries are subservient to something else
and are equal in that respect, there can be no connection among
themselves.
(Jha 1933)

Thus, a viśeṣaṇa is not connected to another viśeṣaṇa. The associated struc-
ture is a flat one, with all the viśeṣaṇas being connected to the viśeṣya.

3.2 Distinguishing a kāraka from a non-kāraka:
In Sanskrit, some case markers denote both a kāraka relation as well as a
non-kāraka relation, as we saw earlier. In a sentence, if a verb denotes an
action, then nouns denote the participants in such an action. These partic-
ipants, which are classified into 6 types, viz. kartā, karma, karaṇam, sam-
pradānam, apādānam, and adhikaraṇam are collectively called as kārakas.
Other nouns in the sentence, which do not participate directly in the action,



74 Sanjeev Panchal and Amba Kulkarni

express non-kāraka relations such as hetu (cause), prayojanam (purpose),
etc. We get a clue to distinguish between the nouns which are related by
a kāraka relation and those which are related by a non-kāraka one in the
Aruṇādhikāra of the Śābara bhāṣya. There it is mentioned that

na ca amūrta-arthaḥ kriyātāḥ sādhanaṁ bhavatīti (SB; p 654)
No unsubstantial object can ever be the means of accomplishing
an act.

Thus anything other than dravya can not be a kāraka. As we saw earlier,
the guṇavacanas also can designate a dravya. And thus, all the dravyas and
the guṇavacanas are qualified to be a kāraka. And the rest, i.e. nouns which
denote either a guṇa which is not a guṇavacana or a kriyā (verbal nouns),
may have a non-kāraka relation with a verb.

Let us see some examples.

Skt: rāmaḥ daśarathasya ājñayā rathena vanam gacchati.
Gloss: Rama {nom.} Dasharatha{gen.} order{ins.} ratha{ins.} for-
est{acc.} goes.
Eng: On Dasharatha’s order, Rama goes to the forest by a chariot.

Skt: rāmaḥ adhyayanena atra vasati.
Gloss: Rama {nom.} study{ins.} here lives.
Eng: Rama lives here in order to study.

In the first sentence ājñā (order) is the cause for Rama’s going to forest,
ratha (chariot) is the instrument (or vehicle) for his going and in the second
sentence adhyayana is the cause of Rāma’s stay.

Since both hetu as well as karaṇam demand a 3rd case suffix, ākāṅkṣā
would establish a relation of karaṇam between ājñayā and gacchati,11

between rathena and gacchati and also between adhyayana and gacchati.
Now with the above definition of a kāraka, adhyayana, being a verbal noun (a
kṛdanta) in the sense of bhāva, represents an abstract concept and therefore
it does not designate a dravya (a substance). Hence it can not be a karaṇam.
Similarly ājñā, which is a guṇa (according to Vaiśeṣika ontology, being a

11To be precise, the relation is between the meaning denoted by the nominal stem ājñā
and the one denoted by the verbal root gam.



Yogyatā as an absence of non-congruity 75

śabda), can not be a karaṇa. Thus the use of congruity helps in pruning
out impossible relations.

On the same grounds, establishment of apādānam and sampradānam
relations between a non-dravya12 denoting noun and a verb can also be
prevented.

3.3 Congruous substantive for a Ṣaṣṭhī (genitive)
Pāṇini has not given any semantic criterion for the use of the genitive re-
lation. His rule is ṣaṣṭhī śeṣe (A2.3.50) which means, in all other cases
that are not covered so far, the genitive case suffix is to be used. The re-
lation marked by the ṣaṣṭhī (genitive) case marker falls under the utthāpya
(aroused) ākāṁkṣā. This is a case of uni-directional expectancy. Thus,
there is no syntactic clue to which noun the word in genitive case would
get attached. All other nouns in the sentence are potential candidates for
a genitive relation to join with. The clue is, however, semantic. Patañjali
in the Mahābhāṣya on A2.3.50 provides some semantic clues. He says there
are hundreds of meanings of śaṣṭhī. Some of them are sva-svāmi-bhāva as in
rājñaḥ puruṣaḥ (a king’s man), avayava-avayavī-bhāva as in vṛkṣasya śākhā
(branch of a tree) etc. So in order to establish a genitive relation, we need
the semantic inputs. However, there are certain constraints. They are

1. A genitive connecting a verbal noun expressing bhāva such as lyuṭ etc.
expresses a kāraka13 relation and not the genitive one, as in rāmasya
gamanam.

2. A genitive always connects with a viśeṣya, and never with a viśeṣaṇa,
since there is a samānādhikaraṇa relation between the viśeṣya and
viśeṣaṇa. For example, in the expression rāmasya vīreṇa putreṇa, the
genitive relation of rāmasya is with putreṇa and not with vīreṇa.

Lexical resources such as Sanskrit WordNet14 and Amarakośa15 that are
marked with the semantic information of part-whole relation, janya-janaka-
bhāva, ājīvikā relation etc. help in identifying the genitive relations with
confidence. When both the words refer to dravyas (substantives), then also
there is a possibility of a genitive relation. So note that, while for other

12To be precise, a non-dravya and non-guṇavacana.
13kartṛkarmaṇoḥ kṛti (A2.3.65)
14http://www.cfilt.iitb.ac.in/wordnet/webswn/english_version.php
15http://scl.samsaadhanii.in/amarakosha/index.html

http://www.cfilt.iitb.ac.in/wordnet/webswn/english_version.php
http://scl.samsaadhanii.in/amarakosha/index.html


76 Sanjeev Panchal and Amba Kulkarni

relations, we look for the absence of non-congruity for ruling out the rela-
tions, in the case of genitives, instead, we look for the presence of congruity,
to prune out impossible relations. We took this decision, since we found it
difficult to describe the non-congruity in the case of genitive relations.

Ambiguity between a genitive and an adjectival relation

Further, we come across an ambiguity in the genitive relation, in the
presence of adjectives. Look at the following two examples.

Skt: vīrasya Rāmasya bāṇam
Gloss: brave{gen.} Rama{gen.} arrow
Eng: An arrow of brave Rama

and

Skt: Rāmasya putrasya pustakam
Gloss: Rama{gen.} son{gen.} book
Eng: A book of Rama’s son

In the first example, vīra being a guṇavacana, with the earlier charac-
terisation of an adjective, vīra would be marked an adjective. while in the
second one there is a kinship relation.

4 Evaluation
As stated earlier, ākāṅkṣā states the possibility of relations between two
words. The mutual compatibility between the meanings further helps in
pruning out the incompatible relations. We classified the content nouns
into two classes: dravya and guṇa. Guṇas being further marked if they are
guṇavacanas. We tested the mutual compatibility only when the suffix is
ambiguous. To be precise, the yogyatā is used only to disambiguate between
a kāraka versus non-kāraka relation, to establish the viśeṣya-viśeṣaṇa-bhāva,
and to establish a genitive relation. This ensured that we do not miss the
metaphoric meanings. In the case of kāraka relations, if the noun denotes a
guṇavacana, then the possible kāraka relation, on the basis of expectancy is



Yogyatā as an absence of non-congruity 77

pruned out. Similarly, in the case of adjectival relations, the relations with
a non-guṇavācaka guṇa is pruned out.

The performance of the system with and without yogyatā was measured
to evaluate the impact of yogyatā. The corpus for evaluation of sentences
consists of around 2300 sentences. It includes sentences with various gram-
matical constructions, a few passages from school text book, Bhagavadgītā,
and a sample from Māgha’s Śiśupālavadham. The ślokas in Bhagvadgītā
as well as in Śiśupālavadham were converted to a canonical form.16 The
sentences with conjunction were not considered for the evaluation, since the
nouns in conjunction conflict with the adjectives, and the criteria for han-
dling conjunction are under development. The statistics showing the size of
various texts, the average word length and the average sentence length is
given in Table 2.

Type Sents Words characters avg sntlen avg wrd len
Text books 260 1,295 9,591 4.98 7.40
Syntax 937 3,339 25,410 3.56 7.61
Māgha’s SPV 66 623 5,851 9.40 9.39
Bhagvadgītā 940 5,698 42,251 6.06 7.41
Total 2,203 10,955 83,103 3.77 7.58

Table 2
Corpus Characteristics

All these sentences were run through a parser, first without using the
conditions of yogyatā and second times using the conditions of yogyatā. In
both cases, the parser produced all possible parses. We also ensured that
the correct parse is present among the produced solutions. Table 3 shows
the statistics providing the number of solutions with and without using the
filter of yogyatā. The number of parses produced was reduced drastically.
This improved the precision by 63% in textbook stories, by 67% in the
grammatical constructs, and by 81% in case of the text from Bhagvadgītā
and Māgha’s kāvya. Better results in the case of these texts pertains to the
fact that these texts have more usage of adjectives and non-kāraka relations
as against the textbook sentences, and artificial grammatical constructs.

16All the ślokas were presented in their anvita form, following the traditional Daṇḍān-
vaya method, where the verb typically is at the end, and viśeṣaṇas precede the viśeṣyas.



78 Sanjeev Panchal and Amba Kulkarni

Corpus type Sents avg sols avg sols improvement
without with in
yogyata yogyata precision

Text books 260 39.76 14.56 63%
Syntax 937 19.5 6.33 67%
Literary 66 11,199 2,107 81%
BhG 940 2,557 478 81%
Total 2203 1439.54 268.85 81%

Table 3
Improvement

5 Conclusion
Yogyatā or mutual congruity between the meanings of the related words is
an important factor in the process of verbal cognition. In this paper, we
presented the computational modeling of yogyatā for automatic parsing of
Sanskrit sentences. Among the several definitions of yogyatā, we modeled it
as an absence of non-congruity.

Due to lack of any syntactic criterion for viśeṣaṇa (adjectives) in Sanskrit,
parsing Sanskrit texts with adjectives resulted in a high number of false
positives. Hints from the vyākaraṇa texts helped us in the formulation
of a criterion for viśeṣaṇa with syntactic and ontological constraints, which
provided us a hint to decide the absence of non-congruity between two words
with respect to the adjectival relation. A simple two-way classification of
nouns into dravya (substance) and guṇa (quality) with further classifications
of guṇas into guṇavacanas was found to be necessary for handling adjectives.
The same criterion was also found useful to handle the ambiguities between
a kāraka and non-kāraka relations. These criteria together with modeling
yogyatā as an absence of non-congruity resulted in 81% improvement in
precision.

Finally, the fact that there can not be an adjective of an adjective, having
identified a viśeṣya, there is only one way all the viśeṣaṇas can connect with
the viśeṣya. This theoretical input provided much relief from a practical
point of view, in the absence of which possible solutions would have been
exponential.



Yogyatā as an absence of non-congruity 79

6 Abbreviations
A: Pāṇini’s Aṣṭādhyāyī, See Pande, 2004
Aa.b.c : adhyāya(chapter),pāda(quarter),sūtra number in Aṣṭādhyāyī
BM: Bālamanoramā, see Pande, 2012
MBh: Patañjali’s Mahābhāṣya, see Mīmāṅsaka
KP: Kāvyaprakāśa, see Jhalakikar
MS: Mīmāṁsā sūtra, through SB
NK: Nyāyakośa, see Jhalkaikar
PM: Padamañjarī, see Mishra
SB: Śābara Bhāṣya, see Mīmāṁsaka, 1990
VP: Vākyapadīyam, see Sharma, 1974



References
Bhanumati, B. 1989. An Approach to Machine Translation among Indian

Languages. Tech. rep. Dept. of CSE, IIT Kanpur.
Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal. 1995. Natural Lan-

guage Processing: A Paninian Perspective. Prentice-Hall New Delhi.
Bharati, Akshar, Samar Husain, Bharat Ambati, Sambhav Jain, Dipti M

Sharma, and Rajeev Sangal. 2008. “Two semantic features make all the
difference in Parsing accuracy”. In: Proceedings of the 6th International
Conference on Natural Language Processing (ICON-08). C-DAC, Pune.

Cardona, George. 2007. Pāṇini and Pāṇinīyas on Śeṣa Relations. Kunjunni
Raja Academy of Indological Research Kochi.

— 2009. “On the structure of Pāṇini’s system”. In: Sanskrit Computational
Linguistics 1 & 2. Ed. by Gérard Huet, Amba Kulkarni, and Peter Scharf.
Springer-Verlag LNAI 5402.

Devasthali, G V. 1959. Mīmāṁsā: The vākya śāstra of Ancient India. Book-
sellers’ Publishing Co., Bombay.

Huet, Gérard, Amba Kulkarni, and Peter Scharf, eds. 2009. Sanskrit Com-
putational Linguistics 1 & 2. Springer-Verlag LNAI 5402.

Iyer, K A Subramania. 1969. Bhartṛhari: A study of Vākyapadīya in the light
of Ancient comentaries. Deccan College, Poona.

— 1971. The Vākyapadīya of Bhartṛhari, chapter III pt i, English Transla-
tion. Deccan College, Poona.

Jha, Ganganatha. 1933. Śābara Bhāṣya. Oriental Institute Baroda.
Jhalakikar, V R. 1920; 7th edition. Kāvyaprakāśa of Mammaṭa with the

Bālabodhinī. Bhandarkar Oriental Research Institute, Pune.
— 1928. Nyāyakośa. Bombay Sanskrit and Prakrit Series, 49, Poona.
Jijñāsu, Brahmadatta. 1979. (In Hindi). Aṣṭādhyāyī (Bhāṣya) Prathamāvṛtti.

Ramlal Kapoor Trust Bahalgadh, Sonepat, Haryana, India.
Joshi, S D. 1968. Patañjali’s Vyākaraṇa Mahābhāṣya Samarthāhnika (P

2.1.1) Edited with Translation and Explanatory Notes. Center of Ad-
vanced Study in Sanskrit, University of Poona, Poona.

Joshi, S D and J.A.F. Roodbergen. 1975. Patañjali’s Vyākaraṇa Mahābhāṣya
Kārakāhnikam (P 1.4.23–1.4.55). Pune: Center of Advanced Study in
Sanskrit.

80



Yogyatā as an absence of non-congruity 81

— 1998. The Aṣṭādhyāyī of Pāṇini with Translation and Explanatory Notes,
Volume 7. Sahitya Akadamy, New Delhi.

Katz, J J and J A Fodor. 1963. “The structure of a Semantic Theory”.
Language 39pp. 170–210.

Kiparsky, Paul. 2009. “On the Architecture of Panini’s Grammar”. In: San-
skrit Computational Linguistics 1 & 2. Ed. by Gérard Huet, Amba
Kulkarni, and Peter Scharf. Springer-Verlag LNAI 5402, pp. 33–94.

Kulkarni, Amba. 2013b. “A Deterministic Dependency Parser with Dynamic
Programming for Sanskrit”. In: Proceedings of the Second International
Conference on Dependency Linguistics (DepLing 2013). Prague, Czech
Republic: Charles University in Prague Matfyzpress Prague Czech Re-
public, pp. 157–166. url: http://www.aclweb.org/anthology/W13-
3718.

Kulkarni, Amba and Gérard Huet, eds. 2009. Sanskrit Computational Lin-
guistics 3. Springer-Verlag LNAI 5406.

Kulkarni, Amba, Sheetal Pokar, and Devanand Shukl. 2010. “Designing a
Constraint Based Parser for Sanskrit”. In: Fourth International Sanskrit
Computational Linguistics Symposium. Ed. by G N Jha. Springer-Verlag,
LNAI 6465, pp. 70–90.

Kulkarni, Amba and K. V. Ramakrishnamacharyulu. 2013a. “Parsing San-
skrit texts: Some relation specific issues”. In: Proceedings of the 5th Inter-
national Sanskrit Computational Linguistics Symposium. Ed. by Malhar
Kulkarni. D. K. Printworld(P) Ltd.

Kulkarni, Amba, Preeti Shukla, Pavankumar Satuluri, and Devanand Shukl.
2013c. “How ‘Free’ is the free word order in Sanskrit”. In: Sanskrit Syntax.
Ed. by Peter Scharf. Sanskrit Library, pp. 269–304.

Mishra, Sri Narayana. 1985. Kāśikāvṛttiḥ along with commentaries Nyāsa
of Jinendrabuddhi and Padamañjarī of Haradattamiśra. Ratna Publica-
tions, Varanasi.

Mīmāṃsakaḥ, Yudhiṣṭhira. 1990. Mīmāṁsā Śābara Bhāṣya. Ramlal Kapoor
Trust, Sonipat, Hariyana.

— 1993. Mahābhāṣyam, Patañjalimuniviracitam. Ramlal Kapoor Trust,
Sonipat, Hariyana.

Pande, Gopaldatta. 2000, Reprint Edition. Vaiyākaraṇa Siddhāntakaumudī
of Bhaṭṭojidikṣita (Text only). Chowkhamba Vidyabhavan, Varanasi.

— 2012, Reprint Edition. Vaiyākaraṇa Siddhāntakaumudī of Bhaṭṭojidikṣita
containing Bālamanoramā of Śrī Vāsudevadīkṣita. Chowkhamba Surab-
harati Prakashan, Varanasi.

http://www.aclweb.org/anthology/W13-3718
http://www.aclweb.org/anthology/W13-3718


82 Sanjeev Panchal and Amba Kulkarni

Pande, Gopaldatta. 2004. Aṣṭādhyāyī of Pāṇini elaborated by M.M.Panditraj
Dr. Gopal Shastri. Chowkhamba Surabharati Prakashan, Varanasi.

Pataskar, Bhagyalata A. 2006. “Semantic Analysis of the technical terms in
the ‘Aṣṭādhyāyī’ meaning ‘Adjective’”. Annals of Bhandarkar Oriental
Research Institute 87pp. 59–70.

Raja, K Kunjunni. 1963. Indian Theories of Meaning. Adayar Library and
Research Center, Madras.

Ramakrishnamacaryulu, K V. 2009. “Annotating Sanskrit Texts Based
on Śābdabodha Systems”. In: Proceedings Third International San-
skrit Computational Linguistics Symposium. Ed. by Amba Kulkarni and
Gérard Huet. Hyderabad India: Springer-Verlag LNAI 5406, pp. 26–39.

Ramanujatatacharya, N S. 2005. Śābdabodha Mīmāṁsā. Institut Françis de
Pondichérry.

Resnik, Phillip. 1993. “Semantic classes and syntactic ambiguity”. In: AR-
RPA Workshop on Human Language Technology. Princeton.

Sharma, Pandit Shivadatta. 2007. Vyākaraṇamahābhāṣyam. Chaukhamba
Sanskrit Paratishthan, Varanasi.

Sharma, Raghunath. 1974. Vākyapadīyam Part III with commentary Prakāśa
by Helaraja and Ambakartri. Varanaseya Sanskrit Visvavidyalaya,
Varanasi.

Shastri, Swami Dwarikadas and Pt. Kalika Prasad Shukla. 1965. Kāśikāvṛt-
tiḥ with the Nyāsa and Padamañjarī. Varanasi: Chaukhamba Sanskrit
Pratishthan.

Wilks, Yorick. 1975. “A preferential, pattern-seeking, semantics for Natural
Language Interface”. Artificial Intelligence 6pp. 53–74.



An ‘Ekalavya’ Approach to Learning Context Free
Grammar Rules for Sanskrit Using Adaptor

Grammar
Amrith Krishna, Bodhisattwa Prasad Majumder, Anil

Kumar Boga, and Pawan Goyal

Abstract: This work presents the use of Adaptor Grammar, a non-
parametric Bayesian approach for learning (Probabilistic) Context-
Free Grammar productions from data. In Adaptor Grammar, we pro-
vide the set of non-terminals followed by a skeletal grammar that
establishes the relations between the non-terminals in the grammar.
The productions and the associated probability for the productions
are automatically learnt by the system from the usages of words or
sentences, i.e., the dataset. This facilitates the encoding of prior lin-
guistic knowledge through the skeletal grammar and yet the tiresome
task of finding the productions is delegated to the system. The system
completely learns the grammar structure by observing the data. We
call this approach the ‘Ekalavya’ approach. In this work, we discuss
the effect of using Adaptor grammars for Sanskrit at word-level super-
vised tasks such as compound type identification and also in identify-
ing the source and derived words from corpora for derivational nouns.
In both of the works, we show the use of sub-word patterns learned
using Adaptor grammar as effective features for their corresponding
supervised tasks. We also present our novel approach of using Adaptor
Grammars for handling Structured Prediction tasks in Sanskrit. We
present the preliminary results for the word reordering task in San-
skrit. We also outline our plan for the use of Adaptor grammars for
Dependency Parsing and Poetry to Prose Conversion tasks.

83



84 Amrith Krishna et al

1 Introduction
The recent trends in Natural Language Processing (NLP) community sug-
gest an increased application of black-box statistical approaches such as deep
learning. In fact, such systems are preferred as there has been an increase in
the performance of several NLP tasks such as machine translation, sentiment
analysis, word sense disambiguation, etc. (Manning 2016). In fact, MIT
Technology Review reported the following regarding Noam Chomsky’s opin-
ion about the extensive use of ‘purely statistical methods’ in AI. The report
says that “derided researchers in machine learning who use purely statistical
methods to produce behavior that mimics something in the world, but who
don’t try to understand the meaning of that behavior.” (Cass 2011).

Chomsky quotes, “It’s true there’s been a lot of work on trying to apply
statistical models to various linguistic problems. I think there have been
some successes, but a lot of failures. There is a notion of success ... which
I think is novel in the history of science. It interprets success as approxi-
mating un-analyzed data.” (Pinker et al. 2011). Norvig (2011), in his reply
to Chomsky, comes in defense of statistical approaches used in the com-
munity. Norvig lays emphasis on the engineering aspects of the problems
that the community deals with and the performance gains achieved in using
such approaches. He rightly attributes that, while the generative aspects of
a language can be deterministic, the analysis of a language construct can
lead to ambiguity. As probabilistic models are tolerant to noise in the data,
the use of such approaches is often necessary for engineering success. It is
often the case that the speakers of a language deviate from the laid out
linguistic rules in usage. This can be seen as noise in the dataset, and yet
the system we intend to build should be tolerant to such issues as well. The
use of statistical approaches provides a convenient means of achieving the
same. But, the use of statistical approaches does not imply discarding of the
linguistic knowledge that we possess. Manning (2016) quotes the work of
Paul Smolensky, “Work by Paul Smolensky on how basically categorical sys-
tems can emerge and be represented in a neural substrate (Smolensky and
Legendre 2006). Indeed, Paul Smolensky arguably went too far down the
rabbit hole, devoting a large part of his career to developing a new categor-
ical model of phonology, Optimality Theory (Prince and Smolensky 1993).”
This is an example where the linguistics and the statistical computational
models had a successful synergy, fruitful for both the domains.



‘Ekalavya’ Approach 85

The Probabilistic Context-Free Grammars (PCFGs) provide a conve-
nient platform for expressing linguistic structures with probabilistic priori-
tization of the structures they accept. It has been shown that PCFGs can
be learned automatically using statistical approaches (Horning 1969). In
this work, we look into Adaptor grammar (Johnson, T. L. Griffiths, and
Goldwater 2007), a non-parametric Bayesian approach for learning gram-
mar from the observations, say, sentences or word usages in the language.
When given a skeletal grammar along with the fixed set of non-terminals,
Adaptor grammar learns the right-hand side of the productions and the
probabilities associated with them. The grammar does so just by observing
the dataset provided to it, and hence the name ‘Ekalavya’ approach.

The use of Adaptor grammars for linguistic tasks provides the following
advantages for a learning task.

1. Adaptor grammars in effect output valid PCFGs, which in turn are
context-free grammars, and thus are valid for linguistic representa-
tions.

2. It helps to encode linguistic information which is already described in
various formalisms via the skeletal grammars. Thus domain knowledge
can effectively be used. The only restriction here might be that the
expressive power of the grammar is limited to that of a Context-Free
Grammar.

3. By leveraging the power of statistics, we can obtain the likelihood
of various possible parses, in case of structural ambiguity during an
analysis of a sentence.

4. While the proposed structures might not be as competitive in perfor-
mance as with the black-box statistical approaches such as the deep
learning approaches, the interpretability of the Adaptor grammar-
based systems is a big plus. Grammar experts can look into the indi-
vidual production rules learned by the system. This frees the experts
from coming up with the rules in the first place. Additionally, by
looking into the production rules, understandable to any domain ex-
pert with the knowledge of context-free grammars, it can be validated
whether the system has learned patterns that are relevant to the task
or not.



86 Amrith Krishna et al

In Section 2, we discuss the preliminaries regarding Context-Free Gram-
mars, Probabilistic CFGs, and Adaptor Grammar. In Section 3, we discuss
the use of Adaptor grammars in various NLP tasks for different languages.
We then describe the work performed in Sanskrit with Adaptor grammars
in Section 4. We then discuss future directions in Sanskrit tasks, specifically
for multiple structured prediction tasks.

2 Preliminaries - CFG and Probabilistic CFG
Context-Free Grammar was proposed by Noam Chomsky who initially
termed it as phrase structure grammar. Formally, a Context-Free Grammar
G is a 4-tuple (V,Σ, R, S), where V is a set of non-terminals, Σ is a finite
set of terminals, R is the set of productions from V to (V ∪ Σ)∗, where ∗
is the ‘Kleene Star’ operation. S is an element of V which is treated as the
start symbol, which forms the root of the parse trees for every string ac-
cepted by the grammar. Using the notation LX for the language generated
by non-terminal X, the language generated by the grammar G is LS .

Figure 1
An example of a Context Free Grammar

The productions in Context-Free Grammars are often handcrafted by
expert linguists. it is common to have large CFGs for many of the real-life
NLP tasks. It is common that a given string can have multiple possible
parses for the given grammar. This is due to the fact that a Context-Free
Grammar contains all possible choices that can be produced from a given
Non-terminal (O’Donnell 2015). The grammar neither provides a determin-
istic parse nor prioritizes the parses. This leads to structural ambiguity in
the grammar. Probabilistic Context-Free Grammars (PCFGs) have been
introduced to weigh the probable trees when the ambiguity arises, and thus
provide a means for prioritizing the desired rules. A PCFG is a 5-tuple



‘Ekalavya’ Approach 87

(V,Σ, R, S, θ), where θ, denotes a vector of real numbers in the range of
[0, 1] indexed by productions of R, subject to noting RX for the set of pro-
ductions of X in R, for all X in V we require∑

ρ∈RX

θρ = 1

Figure 2
Example of a Probabilistic Context Free Grammar corresponding to CFG

shown in Figure 1

The probabilities associated with all the productions of a given non-
terminal should add up to 1. The probability of a given tree is nothing
but the product of the probabilities associated with the rules which are
used to construct the tree. A given vector θX denotes the parameters of a
multinomial distribution that have the non-terminal X on their left-hand
side (LHS) (O’Donnell 2015).

Note that PCFGs make two strong conditional independence assump-
tions (O’Donnell 2015):

1. The decision about expanding a non-terminal depends only on the
non-terminal and the given distribution for that non-terminal. No
other assumptions can be made.

2. Following from the first assumption, a generated expression is inde-
pendent of other expressions.

There are numerous techniques suggested for the estimation of weights
for the productions in PCFG. The Inside-Outside algorithm is a maximum
likelihood estimation approach based on the unsupervised Expectation max-
imization parameter estimation method. Summarily, the algorithm starts by
initializing the parameters with a random set of values and then iteratively



88 Amrith Krishna et al

modifies the parameter values such that the likelihood of the training corpus
is increased. The process continues until the parameter values converge, i.e.,
no more improvement of the likelihood over the corpus is possible.

Another way of estimating parameters is through the Bayesian Inference
approach (Johnson, T. Griffiths, and Goldwater 2007). Given a corpus of
strings s = s1, s2.....sn, we assume a CFG G generates all the strings in
the corpus. We take the dataset s and infer the parameters θ using Bayes’
theorem

P (θ|s) ∝ PG(s|θ)P (θ)

where,

PG(s|θ) =
n∏

i=1

PG(si|θ)

Now, the joint posterior distribution for the set of possible trees t and
the parameters θ can be obtained by

P (t, θ|s) ∝ P (s|t)P (t|θ)P (θ) = (
n∏

i=1

P (si|ti)P (ti|θ))P (θ)

To calculate the posterior distribution, we assume that the parameters
in θ are drawn from a known distribution termed as the prior. We assume
that each non-terminal in the grammar has a given distribution which need
not be the same for all. For a non-terminal, the multinomial distribution
is indexed by the respective productions and since we use Dirichlet prior
over here, each production probability θX→β has a corresponding Dirichlet
parameter αX→β. Now, either through Markov Chain Monte Carlo Sam-
pling approaches (Johnson, T. Griffiths, and Goldwater 2007) or through
variational inference or a hybrid approach, the parameters are learnt (Zhai,
Boyd-Graber, and Cohen 2014).

However, this approach as well does not deal with the real bottleneck,
which is to come up with relevant rules which can solve a task for a given
corpus. For large datasets, the CFGs could have a large set of rules and
it is often cumbersome to come up with rules by experts alone. Non-
Parametric Bayesian Approaches have been proposed as modifications for
PCFGs. Roughly, the Non-parametric Bayesian approaches can be seen as
learning a single model that can adapt its complexity to the data (Gersh-
man and David M Blei 2012). The term non-parametric does not imply that



‘Ekalavya’ Approach 89

there are no parameters associated with the learning algorithm, but rather
it implies that the number of parameters is not fixed, and increases with an
increase in data or observations.

The most general version of learning PCFGs goes by the name of Infi-
nite HMM or Infinite PCFG (Johnson 2010). In infinite PCFG, say for the
model described in Liang et al. (2007), we are provided with a set of atomic
categories and a combination of these categories as rules. Now, depending
on the data, the learning algorithm learns the productions and the number
of possible non-terminals along with the probabilities associated with them
(Johnson 2010). Another variation that is popular with the Non-Parametric
Grammar induction models is the Adaptor grammar (Johnson, T. L. Grif-
fiths, and Goldwater 2007). Here, the number of non-terminals remains
fixed and is set manually. But, the production rules and their correspond-
ing probabilities are obtained by inference. The productions are obtained
for a subset of non-terminals which are ‘adapted’, and it uses a skeletal
grammar to obtain the linguistic structures.

An Adaptor Grammar is a 7-tuple G = (V,Σ, R, S, θ, A,C). Here A ⊆
V denotes non-terminals which are adapted, i.e., productions for the non
terminals in A will automatically be learnt from data. C is the Adaptor
set, where CX is a function that maps a distribution over trees TX to a
distribution over distributions over TX (Johnson 2010).

Figure 3
Example of an Adaptor Grammar. The non-terminals marked with an ‘@’

show that they are adapted. The productions will be learnt from data,
where each production is a variable length permutation of subset of the

elements in the alphabet set

The independence assumptions that exist for PCFGs are not anymore
valid in the case of Adaptor Grammars (Zhai, Boyd-Graber, and Cohen
2014). Here the non-terminal X is defined in terms of another distribution
HX . Now the adaptors for each of the non-terminal X, CX , can be based
on Dirichlet Process or a generalisation of the same, termed as Pitman-Yor



90 Amrith Krishna et al

Process. Here TDX(GY1 , GY2 ....., GYm) is a distribution over all the trees
rooted in the non-terminal X

HX =
∑

X→Y1...Ym∈RX

θX→Y1...YmTDX(GY1 , GY2 ....., GYm)

GX ∼ CX(HX)

3 Adaptor Grammar in Computational Linguistics
Adaptor Grammar has been widely used in multiple morphological and syn-
tactic tasks for various languages. Adaptor Grammar has been initially
shown for word segmentation task in English (Johnson, T. L. Griffiths, and
Goldwater 2007). A sentence with no explicit word boundaries was given as
observations and the task was to predict the actual words in the sentence.
The task is similar to tasks for variable-length motif identification.

Adaptor Grammars has been introduced by Johnson, T. L. Griffiths, and
Goldwater (2007) as a non-parametric Bayesian framework for performing
inference of syntactic grammar of a language over parse trees. A PCFG
(Probabilistic Context-Free Grammar) and an adaptor function jointly de-
fine an Adaptor grammar. The PCFG learns the grammar rules behind the
data generation process and the adaptor function maps the probabilities of
the generated parse trees to substantially larger values than of the same
under the conditionally independent PCFG model.

Adaptor grammars have been very effectively used in numerous NLP
related tasks. Johnson (2010) has drawn connections between topic mod-
els and PCFGs and then proposed a model with combined insights from
adaptor grammars and topic models. While LDA defines topics project-
ing documents to lower-dimensional space, Adaptor grammar defines the
distribution over trees. The author also projects a hybrid model to iden-
tify topical collocations using the power of PCFG encoded topic models.
Adaptor grammars are also used in named entity structure learning. Zhai,
Kozareva, et al. (2016) has used adaptor grammars for identifying entities
from shopping-related queries in an unsupervised manner.

The word segmentation task is essentially identifying the individual
words from a continuous sequence of characters. This is seen as a chal-
lenging task in computational cognitive science as well. Johnson (2008a)
used Adaptor Grammar for word segmentation on the Bantu Language,



‘Ekalavya’ Approach 91

‘Sesotho’. The author specifically showed how the grammar with additional
syllable structure yields a better F-score for word segmentation task than the
usual collocation grammar. A similar study has been carried out by Kumar,
Padró, and Oliver González (2015). The authors present the mechanism to
learn complex agglutinative morphology with specific examples of three of
four Dravidian languages, Tamil, Malayalam, and Kannada. Furthermore,
the authors specifically have stressed upon the task of dealing with sandhi
using finite-state transducers after producing morphological segment genera-
tion using Adaptor grammars. Adaptor grammar succeeds in leveraging the
knowledge about the agglutinative nature of the Dravidian language but re-
frains from modeling the specific morphotactic regularities of the particular
language. Johnson also demonstrates the effect of syllabification on word
segmentation task using PCFGs (Johnson 2008b). Johnson further moti-
vates the usability of the aforementioned unsupervised approaches for word
segmentation and grammar induction tasks by extracting the collocational
dependencies between words (Johnson and Demuth 2010).

Due to their generalizability, Adaptor grammars have been used exten-
sively in NLP. Hardisty, Boyd-Graber, and Resnik (2010) achieves state-
of-the-art accuracy in perspective classification using adaptive Naïve Bayes
model – the adaptor grammar-based non-parametric Bayesian model. Be-
sides this, adaptor grammar has been proven to be effective in grammar
induction (Cohen, David M Blei, and Smith 2010). Grammar induction
is an unsupervised syntax learning task. The authors achieved consider-
able results along with the finding that the variational inference algorithm
(David M. Blei, Kucukelbir, and McAuliffe 2017) can be extended to the
logistic normal prior instead of the Dirichlet prior. Neubig et al. (2011)
proposed an unsupervised model for phrase alignment and extraction where
they claimed that their method can be thought of as an adaptor grammar
over two languages. Zhai, Kozareva, et al. (2016) has presented a work,
where the authors attempted to identify relevant suggestive keywords to
a typed query so as to improve the results for search in an e-commerce
site. The authors previously presented a new variational inference approach
through a hybrid of Markov chain Monte Carlo and variational inference.
It has been reported that the hybrid scheme has improved scalability with-
out compromising the performance on typical common tasks of grammar
induction.

Botha and Blunsom (2013) presented a new probabilistic model that
extends Adaptor grammar to make it learn word segmentation and mor-



92 Amrith Krishna et al

pheme lexicons in an unsupervised manner. Stem derivation in Semitic lan-
guages such as Arabic achieves better performance using this mildly context-
sensitive grammar formalism. Again, Eskander, Rambow, and Yang (2016)
recently investigated with Adaptor Grammars for unsupervised morpholog-
ical segmentation to establish a claim of language-independence. Keeping
aside other baselines such as morphological knowledge input from external
sources and other cascaded architectures, adaptor grammar proved to be
outperforming in a majority of the cases.

Another use of Adaptor grammar has been seen in the identification of
native language (Wong, Dras, and Johnson 2012). Authors used adaptor
grammar in identifying n-gram collocations of an arbitrary length over a
mix of Parts of Speech tags and words to feed them as a feature in the clas-
sifier. By modeling the task with syntactic language models, the authors
showed that extracted collocations efficiently represent the native language.
Besides grammar induction, Huang, Zhang, and Tan (2011) further uses
Adaptor grammar for machine transliteration. The PCFG framework helps
to learn syllable equivalent in both languages and hence aids in the auto-
matic phonetic translation. Furthermore, Feldman et al. (2013) recently
explored a Bayesian model to understand how feedback from segmented
words can alter the phonetic category learning of infants due to access to
the knowledge of the joint occurrence of word-pairs.

As an extension to the standard Adaptor Grammar, O’Donnell (2015)
presented Fragment Grammars which were built as a generalization of Adap-
tor Grammars. They generalize Adaptor Grammars by scoping the pro-
ductivity and abstraction to occur at any point within individual stored
structures. The specific model has adopted ‘stochastic memoization’ as an
efficient substructure storing mechanism from the Adaptor grammar frame-
work. It further memoizes partial internal computations via a lazy evalua-
tion version of the original storage mechanism given by Adaptor Grammar.

4 Adaptor Grammar for Sanskrit
Adaptor Grammars have also been used for Sanskrit as well, mainly as a
means of obtaining variable-length character n-grams to be used as fea-
tures for classification tasks. Below, we describe two different applications,
compound type identification, as well as identifying the Taddhita suffix for
derivational nouns.



‘Ekalavya’ Approach 93

4.1 Variable Length Character n-grams for compound type
identification1

Krishna, Satuluri, Sharma, et al. (2016) used adaptor grammars for identi-
fying patterns present in different types of compound words. The underlying
task was, given a compound word in Sanskrit, to identify the type of the
compound. The problem was a multi-class classification problem. The clas-
sifier needed to classify a given compound into one of the four broad classes,
namely, Avyayībhāva, Dvandva, Bahuvrīhi, Tatpuruṣa.

The system is developed as an ensemble-based supervised classifier. We
used the Random Forests classifier with an easy ensemble approach to han-
dle the class imbalance problem persisting in the data. The classifier had
a majority of its labels in Tatpuruṣa. The presence of Avyayībhāva was the
least. The classifier incorporated rich features from multiple sources. The
rules from Aṣṭādhyāyī pertaining to compounds that are of conditional na-
ture i.e. contains those containing selectional constraints were encoded as
a feature. This was encoded by applying those selectional restrictions over
the input compounds. Variable-length character n-grams for each class of
compounds were obtained from adaptor grammar. Each filtered production
from the compound class-specific grammar was used as a feature. We also
incorporated noun pairs that follow the knowledge structure in Amarakośa
as mentioned in Nair and A. Kulkarni (2010). We used a selected subset of
relations from Nair and A. Kulkarni (2010).

We capture semantic class-specific linguistic regularities present in our
dataset using variable-length character n-grams and character n-gram col-
locations shared between compounds using adaptor grammars.

We learn 3 separate grammars namely, G1, G2, and G3, with the same
skeletal structure as Figure 4a, but with different data samples belonging
to Tatpuruṣa, Bahuvrīhi and Dvandva respectively. We did not learn
grammar for Avyayībhāva, due to insufficient data samples for learning the
patterns. We use a ‘$’ marker to indicate the word boundary between the
components, where the components were in sandhi split form. A ‘#’ sym-
bol was added to mark the beginning and end of the first and the final
components, respectively. We also learn a grammar G4, where the entire
dataset is taken together along with additional 4000 random pair of words

1The work has been done as part of the compound type identification work published
in Krishna, Satuluri, Sharma, et al. (2016). Please refer to the aforementioned work for a
detailed explanation of the concepts described here.



94 Amrith Krishna et al

from the Digital Corpus of Sanskrit, where none of the words appeared as
a compound component in the corpus. The co-occurrence or the absence of
it was taken as the proxy for compatibility between the components. The
skeletal grammar in Figure 4b has two adapted non-terminals, both marked
by ‘@’. Also, the adapted non-terminal ‘Word’ is a non-terminal appearing
as a production to the adapted non-terminal ‘Collocation’. The ‘+’ symbol
indicates the notion of one or more occurrence of ‘Word’, as used in regular
expressions. This is not standard to use the notation in productions as per
context-free grammar. This is ideally achieved using recursive grammars
in CFGs with additional non-terminals. But, in order to present a simpler
representation of skeletal grammar, we followed this scheme. In subsequent
representations, we will be using recursiveness instead of the ‘+’ notation.

Figure 4
a) Skeletal grammar for the adaptor grammar b) Derivation tree for an
instance of a production ‘#sa$ śa’ for the non-terminal @Collocation

Every production in the learned grammars has a probability to be in-
voked, where the likelihood of all the productions of a non-terminal, sums
to one. To obtain discriminative productions from G1, G2, and G3, we find
conditional entropy of the productions with that of G4 and filter only those
productions above a threshold. We also consider all the unique productions
in each of the Grammars in G1 to G3. We further restrict the productions
based on the frequency of the production in the data and the length of the
sub-string produced by the production, both of them were kept at the value
of three.

We show an instance of one such production for a variable-length char-
acter n-gram collocation. Here, for the adapted non-terminal @Collocation,
we find that one of the production finally derives ‘#sa$ śa’, which actually
is derived as two @Word derivations as shown in the Figure 4b. We use
this as a regular expression, which captures some properties that need to
be satisfied by the concatenated components. The particular production



‘Ekalavya’ Approach 95

mandates that the first component must be exactly sa, as it is sandwiched
between the symbols # and $. Now, since śa occurs after the previous sub-
string which contains $ the boundary for both the components, śa should
belong to the second component. Now, since as per the grammar both the
substrings are independent @word productions, we relax the constraint that
both the substrings should occur immediately one after the other. We treat
the same as a regular expression, such that śa should occur after sa, and any
number of characters can come in between both the substrings. For this par-
ticular pattern, we had 22 compounds, all of those belonging to Bahuvrīhi,
which satisfied the criteria. Now, compounds where the first component
is ‘sa’ are mostly Bahuvrīhi compounds, and this is obvious to Sanskrit
linguists. But here, the system was not provided with any such prior infor-
mation or possible patterns. The system learned the pattern from the data.
Incidentally, our dataset consisted of a few compound samples belonging to
different classes as well where the first component was ‘sa’.

4.1.1 Experiments

Dataset - We obtained a labeled dataset of compounds and the decom-
posed pairs of components from the Sanskrit studies department, UoHyd2.
The dataset contains more than 32,000 unique compounds. The compounds
were obtained from ancient digitised texts including Śrīmad Bhagavat Gīta,
Caraka saṃhitā among others. The dataset contains the sandhi split com-
ponents along with the compounds. With more than 75% of the dataset con-
taining Tatpuruṣa compounds, we down-sample the Tatpuruṣa compounds
to a count of 4000, to match with the second-highest class, Bahuvrīhi. We
find that the Avyayībhāva compounds are severely under-represented in the
data-set, with about 5% of the Bahuvrīhi class. From the dataset, we fil-
tered 9,952 different data-points split into 7,957 data points for training and
the remaining as a held-out dataset.

Result - To measure the impact of different types of features we incorpo-
rated, we train the classifier incrementally with different feature types. We
report the results over the held-out data. At first, we train the system with
only Aṣṭādhyāyī rules and some additional hand-crafted rules. We find that
the overall accuracy of the system is about 59.34%. Then we augmented the
classifier by adding features from Amarakoṣa. We find that the overall accu-
racy of the system has increased to 63.81%. We then finally add the adaptor

2http://sanskrit.uohyd.ac.in/scl/

http://sanskrit.uohyd.ac.in/scl/


96 Amrith Krishna et al

Class P R F
A 0.92 0.43 0.58
B 0.85 0.74 0.79
D 0.69 0.39 0.49
T 0.68 0.88 0.77

Table 1
Classwise performance of the Random Forests Classifier.

grammar-based features which have increased the performance of the system
to an accuracy of 74.98 %. The effect of adding adaptor grammar features
was more visible for the improvement in the performance of Dvandva and
Bahuvrīhi. Notably, the precision for Dvandva and Bahuvrīhi increased by
absolute values 0.15 and 0.06 respectively, when compared to the results
before adding adaptor grammar-based features. Table 1 presents the result
of the system with the entire feature set per Compound class. The addition
of adaptor grammar features has resulted in an overall increase in the per-
formance of the system from 63.81 % to 74.91 %. The patterns for adaptor
grammar were learned only using the data from the training set and the
held-out data was not used. This was done so as to ensure no over-fitting
of data takes place. Also, we filtered the productions with length less than
3 and which do not occur many times in the grammar.

4.2 Distinctive Patterns in Derivational Nouns in Taddhita3

Derivational nouns are a means of vocabulary expansion in a language. A
new word is created in a language where an existing word is modified by
an affix. Taddhita is a category of such derivational affixes which are used
to derive a prātipadika from another prātipadika. The challenge here is to
identify Taddhita prātipadikas from corpora in Sanskrit and also to identify
their source words.

Pattern-based approaches often result in false positives. The edit dis-
tance, a popular distance metric to compare the similarity of two given
strings, between the source and derived words due to the patterns tends
to vary from 1 to 6. For example, consider the word ‘rāvaṇi’ derived from

3The work has been done as part of the Derivational noun word pair identification work
published in Krishna, Satuluri, Ponnada, et al. (2017). Please refer to the aforementioned
work for a detailed explanation of the concepts described here.



‘Ekalavya’ Approach 97

‘rāvaṇa’, where the edit distance between the words is just 1. But, ‘Āś-
valāyana’ derived from ‘aśvala’ has an edit distance of 6. Also, the word
‘kālaśa’ is derived from the word ‘kalaśa’, but ‘kāraṇa’ is not derived from
‘karaṇa’. Similarly ‘stutya’ is derived from ‘stu’ but using a kṛt affix. But,
dakṣiṇā (South direction) is used to derive dākṣhiṇātya (Southern) with a
taddhita affix. If we have to use vṛddhi as an indicator, which is the only
difference between both the examples, then there are cases such as kāraka
derived from kṛ for kṛt and aṣvaka is derived from aṣva using taddhita. All
these instances show the level of ambiguity that can arise in deciding the
pairs of source and derived words using taddhita. All the aforementioned
examples show the need for knowledge of Aṣṭādhyāyī (or the knowledge of
affixes), semantic relation between the word pairs or a combination of these
to resolve the right set of word pairs.

The approach proposed in Krishna, Satuluri, Ponnada, et al. (2017) first
identifies a high recall low precision set of word pairs from multiple San-
skrit Corpora based on pattern similarities as exhibited by the 137 affixes
in Taddhita. Once the patterns are obtained, we look for various similar-
ities between the word pairs to group them together. We use rules from
Aṣṭādhyāyī , especially from the Taddhita section. But since we could not
incorporate rules of semantic and pragmatic nature, to compensate for the
missing rules, we tried to identify patterns from the word pairs, specifically
the source words, to be used. We use Adaptor Grammar for the purpose.

Currently, we do not identify the exact affix that leads to the derivation
of the word. Also, since the affixes are distinguished not just by the visible
pattern, but also by the ‘it’ markers, it is challenging to identify the exact
affix. So, we group all those affixes that result in similar patterns into a
single group. All the word pairs that follow the same pattern belong to
one group. To further increase the group size, we group all those entries
that differ by vṛddhi and guṇa also into the same group. Such distinctions
are not considered while forming a group. Effectively we only look into the
pattern at the end of the ‘derived word’. We call all such collection of groups
based on the patterns as our ‘candidate set’.

For every distinct pattern in our candidate set, we first identify the word
pairs and then create a graph with the given word pairs. A word pair is a
node and edges are formed between nodes where they match different set
of similarities. The first set of similarities are based on rules directly from
Aṣṭādhyāyī, while the second set of node similarities were using character
n-grams using Adaptor grammars. Once the similarities were found, we



98 Amrith Krishna et al

apply the Modified Adsorption approach (Talukdar and Crammer 2009) on
the graph. The modified adsorption is a semi-supervised label prorogation
approach where labels are provided to a subset of nodes and then propagated
to the remaining nodes based on the similarity they share with other nodes.

Figure 5 shows a sample construction of the graph for the word pairs,
where words differ by a pattern ‘ya’. Here every pair obtained by pattern
matching is a node. Now, Modified Adsorption is a semi-supervised ap-
proach. So, we need a limited number of labeled nodes. The nodes marked
in grey are labeled nodes. They are called as seed nodes. The label here is
just binary, i.e. a word pair can either be a true Taddhita pair or not. Now,
edges are formed between the word pairs. Modified Adsorption provides a
means of designing the graph explicitly, while many of its predecessors relied
more on nearest-neighbor based approaches (Zhu and Ghahramani 2002).
Also, the edges can be weighted based on the closeness between different
nodes. Once the graph structure is defined, we perform the modified ad-
sorption. In this approach, the labels from the seed nodes are propagated
through the edges, such that the labels from seed nodes are propagated to
other unlabelled nodes as well. The highly similar nodes should be given
similar labels or else the optimization function penalizes any other label as-
signments. We use three different means of obtaining similarities between
the nodes. The first such set of similarity is the rules in Aṣṭādhyāyī that
the pair of nodes have a match with. The second set of similarity is the sum
of probabilities of productions from adaptor grammar, which are matched
for a pair of nodes. The third is the word vector similarity between the
source words in the node pairs. For a detailed working of the system and a
detailed explanation of each set of features please refer to Krishna, Satuluri,
Ponnada, et al. (2017). Here, we republish the working of the second set
of features obtained using Adaptor grammar and the results of the model
thereafter.

Character n-grams similarity by Adaptor Grammar - Pāṇini had
an obligation to maintain brevity, as his grammar treatise was supposed to
be memorized and recited orally by humans (Kiparsky 1994). In Aṣṭādhyāyī,
Pāṇini uses character sub-strings of varying lengths as conditional rules for
checking the suitability of the application of an affix. We examine if there
are more such regularities in the form of variable-length character n-grams
that can be observed from the data, as brevity is not a concern for us. Also,
we assume this would compensate for the loss of some of the information
which Pāṇini originally encoded using pragmatic rules. In order to identify



‘Ekalavya’ Approach 99

Figure 5
Graph structure for the group of words where derived words end in ‘ya’.
Nodes in grey denote seed nodes, where they are marked with their class

label. The Nodes in white are unlabelled nodes.

the regularities in the pattern in the words, we use Adaptor grammar.
In Listing 1, ‘Word’ and ‘Stem’ are non-terminals, which are adapted.

The non-terminal ‘Suffix’ consists of the set of various end-patterns.

Word → Stem Suffix
Word → Stem
Stem → Chars
Suffix → a|ya|.....|Ayana
Listing 1: Skeletal CFG for the Adaptor grammar

The set A2 captures all the variable-length character n-grams learned as
the productions by the grammar along with the probability score associated
with the production. We form an edge between two nodes in Gi2, if there
exists an entry in A2, which are present in both the nodes. We sum the
probability value associated with all such character n-grams common to the
pair of nodes vj , vk ∈ Vi, and calculate the edge score τj,k. If the edge score



100 Amrith Krishna et al

is greater than zero, we find the sigmoid of the value so obtained to assign
the weight to the edge. The expression for calculating τj,k in the equation
given below uses the Iverson bracket (Knuth 1992) to show the conditional
sum operation. The equation essentially makes sure that the probabilities
associated with only those character n-grams get summed, which are present
in both the nodes. We define the edge score τj,k, weight set Wi2 and Edge
set Ei2 as follows.

τj,k =

|A2|∑
l=1

ak2,l[ak2,l = aj2,l]

E
vk,vj
i2 =

{
1 τj,k > 0
0 τj,k = 0

W
vk,vj
i2 =

{
σ(τj,k) τj,k > 0
0 τj,k = 0

As mentioned, we use the label distribution per node obtained from
phase 1 as the seed labels in this setting.

4.2.1 Experiments

As we mentioned, we use three different set of similarity sets for weighting
the edges. But, in Modified Adsorption (MAD) the edge weight requires to
be a scalar. This implies a similarity score between a pair of nodes using
one similarity function can be used at a time. hence, we chose to apply
the similarity weights sequentially on the graph. An alternative would have
been to obtain a weighted average of the different similarity scores. But, our
pipeline approach can be seen as a means of bootstrapping our seeds set.
In Modified Adsorption, we need to provide seed labels, which are labels for
some of the nodes. In reality, the seed nodes do not have a binary assignment
of the labels, rather a distribution of the labels (Talukdar and Crammer
2009). So after the run of each similarity set, we get a label distribution for
each of the nodes in the graph. This label distribution is used to generate
seed nodes in the subsequent run of the modified adsorption. The seed nodes
also get modified during the run of the algorithm.

Dataset - We use multiple lexicons and corpora to obtain our vocabu-
lary C. We use IndoWordNet (M. Kulkarni et al. 2010), the Digital Corpus of



‘Ekalavya’ Approach 101

Sanskrit4, a digitized version of the Monier Williams5 Sanskrit-English dic-
tionary, a digitized version of the Apte Sanskrit-Sanskrit Dictionary (Goyal,
G. P. Huet, et al. 2012) and we also utilize the lexicon employed in the San-
skrit Heritage Engine (Goyal and G. Huet 2016). We obtained close to
170,000 unique word lemmas from the combined resources.

Results - In Krishna, Satuluri, Ponnada, et al. (2017), we report results
from 11 of the patterns from a total of more than 80 patterns we initially
obtained. Due to the lack of enough evidence in the form of data-points we
did not attempt the procedure for others. Here, we only show results for 5 of
the patterns, which were selected based on the size of evidence from the cor-
pora we obtain. Since we use each of the similarity set sequentially, we have
outputs at each of the phase of the sequences. The result of the system after
incorporating Aṣṭādhyāyī rules is MADB1, while that after incorporating
Adaptor grammar ngrams is MADB2 and the final result after the word
vector similarity is MAD. Now, since we have 5 different patterns, we have
an index i sub-scripted to the systems to denote the corresponding patterns.
We additionally use a baseline called as Label Propagation (LP), based on
the algorithm by Zhu and Ghahramani (2002). We can find that the systems
which incorporates adaptor grammar are the MAD and MADB2. Both the
systems are the best and second best performing systems respectively.

Table 2 shows the results of our system. We compare the performance
of 5 different patterns, selected based on the number of candidate word
pairs available for the pattern. The system proposed in the work MADi

performs the best for all the 5 patterns. Interestingly, MADB2i is the
second best-performing system in all cases. The system uses 3 kinds of
similarity measures in a sequential pipeline of which adaptor grammar comes
as the second feature set. To understand the impact of adding adaptor
grammar-based features, we can compare the results with that of MADB1i.
The system shows the result for each of the patterns before using adaptor
grammar-based features.

A baseline using the label propagation algorithm was also used. The
motive behind the label propagation baseline was to measure the effect of
Modified adsorption on the task. In Label Propagation, we experimented
with the parameter K with different values, K ∈ {10, 20, 30, 40, 50, 60}, and
found that K = 40, provides the best results for 3 of the 5 end-patterns.

4http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
5http://www.sanskrit-lexicon.uni-koeln.de/monier/

http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
http://www.sanskrit-lexicon.uni-koeln.de/monier/


102 Amrith Krishna et al

Pattern System P R A

a

MAD 0.72 0.77 73.86
MADB2 0.68 0.68 68.18
MADB1 0.49 0.52 48.86
LP 0.55 0.59 55.68

aka

MAD 0.77 0.67 73.33
MADB2 0.71 0.67 70
MADB1 0.43 0.4 43.33
LP 0.75 0.6 70

in

MAD 0.74 0.82 76.47
MADB2 0.67 0.70 67.65
MADB1 0.51 0.56 51.47
LP 0.63 0.65 63.23

ya

MAD 0.7 0.72 70.31
MADB2 0.61 0.62 60.94
MADB1 0.53 0.59 53.12
LP 0.56 0.63 56.25

i

MAD 0.55 0.52 54.76
MADB2 0.44 0.38 45.24
MADB1 0.3 0.29 30.95
LP 0.37 0.33 38.09

Table 2
Comparative performance of the four competing models.

The values for K are set by empirical observations. We find that for those
3 patterns (‘a’,‘in’,‘i’), the entire vertex set has vṛddhi attribute set to the
same value. For the other two (‘ya’,‘aka’), K = 50 gave the best results.
Here, the vertex set has nodes where the vṛddhi attribute is set to either of
the values. For a better insight towards this finding, the notion of the pattern
that we use in the design of the system needs to be elaborated. A pattern is
effectively the substrings that remain in both the source word and derived
word after removing the portions which are common in both. This pattern
is the visible change that happens in the derivation of a word. To reduce the
number of distinct patterns we did not consider the pattern changes that
occur due to vṛddhi and guṇa as distinct patterns, rather we abstracted
them out. Now, multiple affixes may lead to the generation of the same set
of patterns. In the case of pattern, rather end-pattern, (Krishna, Satuluri,
Ponnada, et al. 2017), ‘a’, the effect may be the result of application of one
of the following affixes such as aṇ añ etc. Here, all the affixes of pattern ‘a’



‘Ekalavya’ Approach 103

lead to vṛddhi. But for the pattern ‘ya’, the affixes may or may not lead to
a vṛddhi. We report the best result for each of the system in Table 2.

5 Inference of Syntactic Structure in Sanskrit
In this section, we are reporting an ongoing work, where we investigate the
effectiveness of using Adaptor grammar for inference of syntactic structures
in Sanskrit. We experiment with the effect of Adaptor Grammar in cap-
turing the ‘natural order’ or the word order followed in prose. For this
task, we use a dataset of Sanskrit sentences which are in prose order. The
dataset consists of 2000 sentences from Pañcākhyānaka and more than 600
sentences from Mahābhārata, . For this experiment, we only consider the
morphological classes of the words involved in the sentences. Currently, we
use the morphological tags as used in the Sanskrit Library.6 We keep 500
of the sentences for testing and the remaining 2000 are used for identifying
the patterns. Some of the constructs had one or two words, which we ignore
for the experiment.

We learn the necessary productions in grammar and then evaluate the
grammar on the 500 test sentences. We calculate the likelihood of gener-
ating each of the sentences. In order to test the likelihood of the correct
sentence, we also generate all possible permutations of the morphological
tags in each of the test sentences. For sentences of length > 5, we break
them into sub-sequences of 5 and find the permutations of the sub-sequences
and concatenate them again. This is used as a means of sampling the pos-
sible combinations as the explicit enumeration of all the permutations are
computationally costly. From the generated candidate set we find the like-
lihood of the ground truth sentence and rank them. We report our results
based on two measures.

1. Edit Distance (ED) - The edit distance of the top-ranked sentence
among the candidate set for a given sentence with that of the ground
truth. Edit distance is roughly described as the minimum number
of operations required to convert one string to another based on a
fixed set of operations with predefined costs. We use the standard
Levenshtein distance (Levenshtein 1966), where the three operations
are ‘insert’, ‘delete’ and ‘substitution’. All the 3 operations have a

6http://sanskritlibrary.org/helpmorphids.html

http://sanskritlibrary.org/helpmorphids.html


104 Amrith Krishna et al

cost of 1. We compare the ground truth sentence with the predicted
sentence that has the highest likelihood to obtain the measure. The
predicted sentences with a lower Edit Distance implies a better result.

2. Mean Reciprocal Rank (MRR) - Mean Reciprocal Rank is the
average of reciprocal ranks for each of the queries. Here a test sentence
is treated as a query. The different permutations are the retrieved
results for the query. So from the ranked retrieved list, we find the
inverse of the rank of the gold standard sentence. The better the MRR
Score, the better the result.

1

|Q|

|Q|∑
i=1

reli
ranki

We first attempt the same skeletal grammars as proposed by Johnson,
T. L. Griffiths, and Goldwater (2007) for capturing the syntactic regularities.
We used both the ‘unigram’ and ‘collocation’ grammar as mentioned in the
work. Figures 6 and 7 show the first two grammars that we have used for
the task.

Figure 6
Unigram grammar as used in Johnson, T. L. Griffiths, and Goldwater

(2007)

With these grammars, we experimented with various hyper-parameter
settings. Since both the grammars are right recursive grammars, the length
of the productions so learnt from the grammar varied greatly. Though this is
beneficial for identifying the word lengths, the association with the morpho-
logical tags cannot be much longer. Secondly, the number of productions to
be learnt is user-defined hyper-parameter. We find that due to the possible
varying length size of strings and fewer observations, the main morpholog-
ical patterns that were learnt as the productions were not repeated enough
in the observations to be statistically significant.



‘Ekalavya’ Approach 105

Figure 7
Collocation grammar as used in Johnson, T. L. Griffiths, and Goldwater

(2007)

Figure 8
Modified grammar by eliminating the recursiveness in the Adapted

nonterminal ‘@Word’.

We modified both the grammars to restrict the length of the productions
to a maximum of 4 and limited the number of productions to be learnt. We
show the modification done to the adapted non-terminal ‘word’ in both the
grammars. This restricts the number of productions that ‘word’ can learn.
The modified portion can be seen in Figure 8.

The results for all the four grammars are shown in Table 3. It can be
seen that there is considerable improvement in the Mean Reciprocal Rank
and the edit distance measures for the task with the restricted grammar.
On our manual inspection of the patterns learnt from all the grammars, it
was observed that the initial skeletal grammars were essentially over-fitting
the training instances due to longer lengths. The modified grammars could
reduce the Edit distance to almost half and double the Mean Reciprocal



106 Amrith Krishna et al

Grammar MRR ED
Unigram 0.2923 4.87
Collocation 0.3016 4.66
Modified Unigram 0.4025 3.21
Modified Collocation 0.5671 2.20

Table 3
Results for the word reordering task.

Rank for the task.
For example, consider the sentence ‘tatra budhaḥ vrata caryā samāptau

āgacchat (ā agacchat)’ from Mahābhārata. Consider the corresponding se-
quence of morphological tags as shown, ‘i m1s iic f3s f7s i ipf[1]_a3s’.7 We
filter out the ‘iic’ tags as the ‘iic’ tag stands for the compound component.
It can be seen as part of the immediate next noun tag following it. We do
not filter out the ‘i’ tags as of now, where ‘i’, stands for the indeclinable.
So in effect the tag sequence is ‘i m1s f3s f7s i ipf[1]_a3s’. The ‘Colloca-
tion’ Grammar had the following sequence as the most likely output ‘i f7s i
m1s f3s ipf[1]_a3s’ with an edit distance of 4. In the ‘Modified Collocation’
Grammar the predicted sequence is ‘i m1s f3s i f7s ipf[1]_a3s’. The edit
distance of the sentence is 2. Here, it can be seen that just 2 tags have
swapped their position. The tags ‘i’ and ‘f7s’ have changed their positions,
but are still at adjacent positions to each other. The fourth and fifth words
in the original sentence have changed to become the fifth and fourth words
in the predicted sentence.

The results shown here are preliminary in nature. What excites us the
most is the provision this framework provides to incorporate the syntactic
knowledge which is explicitly defined in our grammar formalisms. With this
work, we plan to extend the work to two immediate tasks. First, we plan
to extend the word-reordering task to the poetry to prose conversion task.
Currently, the task is to convert a bag of words into its corresponding prose
or the ‘natural order’. But we will investigate the regularities involved in
poetry apart from the aspects of meter and incorporate the regularities to
guide the grammar in picking up those patterns. We can also attempt to
learn the conditional probabilities for the syntactic patterns in both poetry

7We follow the notations from Sanskrit Library - http://sanskritlibrary.org/
helpmorphids.html

http://sanskritlibrary.org/helpmorphids.html
http://sanskritlibrary.org/helpmorphids.html


‘Ekalavya’ Approach 107

and prose. Second, we will be performing the Dependency parse analysis
of given sentences at a morphological level. Goyal and A. Kulkarni (2014)
presents a scheme for converting Sanskrit constructs in constituency parse
structure to Dependency parse structure. Headden III, Johnson, and Mc-
Closky (2009) provides some insights into the use of PCFGs and lexical
evidence for unsupervised dependency parsing. Currently, we will be work-
ing only on the projective dependency parsing. We will be relying on the
Dependency Model with Valence to define our PCFG formalism for depen-
dency parsing.

6 Conclusion
The primary goal of this work was to look into the applicability of the Adap-
tor Grammars, a non-parametric Bayesian approach for learning syntactic
structures from observations. In this work, we introduced the basic con-
cepts of the Adaptor grammars, various applications in which the grammar
is used in NLP tasks. We provide detailed descriptions of how adaptor
grammar is used in word-level vocabulary expansion tasks in Sanskrit. The
adaptor grammars were used as effective sub-word n-gram features for both
Compound type identification and Derivational noun pair identification. We
further showed the feasibility of using adaptor grammar for syntactic level
analysis of sentences in Sanskrit. We plan to investigate the feasibility of
using the Adaptor grammars for dependency parsing and poetry to prose
conversion tasks at the sentence level.

Acknowledgements
The authors acknowledge the use of the morphologically tagged database
of the Pañcākhyānaka and Mahābhārata produced under the direction of
Professor Peter M. Scharf while laureate of a Blaise Pascal Research Chair
at the Université Paris Diderot 2012–2013 and maintained by The Sanskrit
Library.



References
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. 2017. “Variational

Inference: A Review for Statisticians”. Journal of the American Statis-
tical Association 112.518pp. 859–877. doi: 10.1080/01621459.2017.
1285773. eprint: https://doi.org/10.1080/01621459.2017.1285773.
url: https://doi.org/10.1080/01621459.2017.1285773.

Botha, Jan A and Phil Blunsom. 2013. “Adaptor Grammars for Learning
Non- Concatenative Morphology”. In: Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics.

Cass, Stephen. 2011. Unthinking Machines, Artificial intelligence needs a
reboot, say experts. url: https://www.technologyreview.com/s/
423917/unthinking-machines/.

Cohen, Shay B, David M Blei, and Noah A Smith. 2010. “Variational in-
ference for adaptor grammars”. In: Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics. Association for Computational
Linguistics, pp. 564–572.

Eskander, Ramy, Owen Rambow, and Tianchun Yang. 2016. “Extending
the Use of Adaptor Grammars for Unsupervised Morphological Segmen-
tation of Unseen Languages.” In: COLING, pp. 900–910.

Feldman, Naomi H, Thomas L Griffiths, Sharon Goldwater, and James L
Morgan. 2013. “A role for the developing lexicon in phonetic category
acquisition.” Psychological review 120.4p. 751.

Gershman, Samuel J and David M Blei. 2012. “A tutorial on Bayesian non-
parametric models”. Journal of Mathematical Psychology 56.1pp. 1–12.

Goyal, Pawan and Gérard Huet. 2016. “Design and analysis of a lean in-
terface for Sanskrit corpus annotation”. Journal of Language Modelling
4.2pp. 145–182.

Goyal, Pawan, Gérard P Huet, Amba P Kulkarni, Peter M Scharf, and
Ralph Bunker. 2012. “A Distributed Platform for Sanskrit Processing.”
In: COLING, pp. 1011–1028.

Goyal, Pawan and Amba Kulkarni. 2014. “Converting Phrase Structures to
Dependency Structures in Sanskrit”. In: Proceedings of COLING 2014,

108

https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://www.technologyreview.com/s/423917/unthinking-machines/
https://www.technologyreview.com/s/423917/unthinking-machines/


‘Ekalavya’ Approach 109

the 25th International Conference on Computational Linguistics: Tech-
nical Papers, pp. 1834–1843.

Hardisty, Eric A, Jordan Boyd-Graber, and Philip Resnik. 2010. “Model-
ing perspective using adaptor grammars”. In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, pp. 284–292.

Headden III, William P, Mark Johnson, and David McClosky. 2009. “Im-
proving unsupervised dependency parsing with richer contexts and
smoothing”. In: Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association
for Computational Linguistics. Association for Computational Linguis-
tics, pp. 101–109.

Horning, James Jay. 1969. A study of grammatical inference. Tech. rep.
STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE.

Huang, Yun, Min Zhang, and Chew Lim Tan. 2011. “Nonparametric
bayesian machine transliteration with synchronous adaptor grammars”.
In: Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies: short papers-
Volume 2. Association for Computational Linguistics, pp. 534–539.

Johnson, Mark. 2008a. “Unsupervised word segmentation for Sesotho us-
ing adaptor grammars”. In: Proceedings of the Tenth Meeting of ACL
Special Interest Group on Computational Morphology and Phonology.
Association for Computational Linguistics, pp. 20–27.

— 2008b. “Using Adaptor Grammars to Identify Synergies in the Unsuper-
vised Acquisition of Linguistic Structure.” In: ACL, pp. 398–406.

— 2010. “PCFGs, topic models, adaptor grammars and learning topical
collocations and the structure of proper names”. In: Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, pp. 1148–1157.

Johnson, Mark and Katherine Demuth. 2010. “Unsupervised phonemic Chi-
nese word segmentation using Adaptor Grammars”. In: Proceedings of
the 23rd international conference on computational linguistics. Associa-
tion for Computational Linguistics, pp. 528–536.

Johnson, Mark, Thomas L Griffiths, and Sharon Goldwater. 2007. “Adap-
tor grammars: A framework for specifying compositional nonparametric
Bayesian models”. In: Advances in neural information processing sys-
tems, pp. 641–648.



110 Amrith Krishna et al

Johnson, Mark, Thomas Griffiths, and Sharon Goldwater. 2007. “Bayesian
inference for pcfgs via markov chain monte carlo”. In: Human Language
Technologies 2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Proceedings of the Main
Conference, pp. 139–146.

Kiparsky, Paul. 1994. “Paninian linguistics”. The Encyclopedia of Language
and Linguistics 6pp. 2918–2923.

Knuth, Donald E. 1992. “Two notes on notation”. The American Mathemat-
ical Monthly 99.5pp. 403–422.

Krishna, Amrith, Pavankumar Satuluri, Harshavardhan Ponnada, Muneeb
Ahmed, Gulab Arora, Kaustubh Hiware, and Pawan Goyal. 2017. “A
Graph Based Semi-Supervised Approach for Analysis of Derivational
Nouns in Sanskrit”. In: Proceedings of TextGraphs-11: the Workshop
on Graph-based Methods for Natural Language Processing. Vancouver,
Canada: Association for Computational Linguistics, pp. 66–75. url:
http://www.aclweb.org/anthology/W17-2409.

Krishna, Amrith, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar,
and Pawan Goyal. 2016. “Compound Type Identification in Sanskrit:
What Roles do the Corpus and Grammar Play?” In: Proceedings of the
6th Workshop on South and Southeast Asian Natural Language Process-
ing (WSSANLP2016). Osaka, Japan: The COLING 2016 Organizing
Committee, pp. 1–10.

Kulkarni, Malhar, Chaitali Dangarikar, Irawati Kulkarni, Abhishek Nanda,
and Pushpak Bhattacharyya. 2010. “Introducing Sanskrit Wordnet”. In:
Proceedings on the 5th Global Wordnet Conference (GWC 2010), Narosa,
Mumbai, pp. 287–294.

Kumar, Arun, Lluís Padró, and Antoni Oliver González. 2015. “Joint
Bayesian Morphology learning of Dravidian Languages”. In: RICTA
2015: Proceedings of the Joint Workshop on Language Technology for
Closely Related Languages, Varieties and Dialects: Hissan, Bulgaria:
September 10, 2015: proceedings book.

Levenshtein, Vladimir I. 1966. “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet physics doklady. Vol. 10, pp. 707–
710.

Liang, Percy, Slav Petrov, Michael I Jordan, and Dan Klein. 2007. “The Infi-
nite PCFG Using Hierarchical Dirichlet Processes.” In: EMNLP-CoNLL,
pp. 688–697.

http://www.aclweb.org/anthology/W17-2409


‘Ekalavya’ Approach 111

Manning, Christopher D. 2016. “Computational linguistics and deep learn-
ing”. Computational Linguistics.

Nair, Sivaja S and Amba Kulkarni. 2010. “The Knowledge Structure in
Amarakosa.” In: Sanskrit Computational Linguistics. Springer, pp. 173–
189.

Neubig, Graham, Taro Watanabe, Eiichiro Sumita, Shinsuke Mori, and
Tatsuya Kawahara. 2011. “An unsupervised model for joint phrase
alignment and extraction”. In: Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Computational Linguis-
tics, pp. 632–641.

Norvig, Peter. 2011. On Chomsky and the Two Cultures of Statistical Learn-
ing. url: http://norvig.com/chomsky.html.

O’Donnell, Timothy J. 2015. Productivity and reuse in language: A theory
of linguistic computation and storage. MIT Press.

Pinker, Steven, Emilio Bizzi, Sydney Brenner, Noam Chomsky, Marvin Min-
sky, and Barbara H. Partee. 2011. Keynote Panel: The Golden Age: A
Look at the Original Roots of Artificial Intelligence, Cognitive Science,
and Neuroscience. url: http://languagelog.ldc.upenn.edu/myl/
PinkerChomskyMIT.html.

Prince, Alan and Paul Smolensky. 1993. Optimality Theory: Constraint in-
teraction in generative grammar. John Wiley & Sons, the version pub-
lished in 2008.

Smolensky, Paul and Géraldine Legendre. 2006. The harmonic mind: From
neural computation to optimality-theoretic grammar (Cognitive architec-
ture), Vol. 1. MIT press.

Talukdar, Partha and Koby Crammer. 2009. “New regularized algorithms
for transductive learning”. Machine Learning and Knowledge Discovery
in Databasespp. 442–457.

Wong, Sze-Meng Jojo, Mark Dras, and Mark Johnson. 2012. “Exploring
Adaptor Grammars for Native Language Identification”. In: Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 699–709.

Zhai, Ke, Jordan Boyd-Graber, and Shay B Cohen. 2014. “Online adaptor
grammars with hybrid inference”. Transactions of the Association for
Computational Linguistics 2pp. 465–476.

Zhai, Ke, Zornitsa Kozareva, Yuening Hu, Qi Li, and Weiwei Guo. 2016.
“Query to Knowledge: Unsupervised Entity Extraction from Shopping

http://norvig.com/chomsky.html
http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html
http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html


112 Amrith Krishna et al

Queries using Adaptor Grammars”. In: Proceedings of the 39th Interna-
tional ACM SIGIR conference on Research and Development in Infor-
mation Retrieval. ACM, pp. 255–264.

Zhu, Xiaojin and Zoubin Ghahramani. 2002. Learning from Labeled and
Unlabeled Data with Label Propagation. Tech. rep.



A user-friendly tool for metrical analysis of Sanskrit
verse

Shreevatsa Rajagopalan

Abstract: This paper describes the design and implementation of a
tool that assists readers of metrical verse in Sanskrit (and other
languages/literatures with similar prosody). It is open-source, and
available online as a web application, as a command-line tool and as a
software library. It handles both varṇavṛtta and mātrāvṛtta metres. It
has many features for usability without placing strict demands on its
users. These include allowing input in a wide variety of transliteration
schemes, being fairly robust against typographical or metrical errors
in the input, and “aligning” the given verse in light of the recognized
metre.
This paper describes the various components of the system and its
user interface, and details of interest such as the heuristics used in the
identifier and the dynamic-programming algorithm used for displaying
results. Although originally and primarily designed to help readers,
the tool can also be used for additional applications such as detecting
metrical errors in digital texts (its very first version identified 23 errors
in a Sanskrit text from an online corpus), and generating statistics
about metres found in a larger text or corpus. These applications are
illustrated here, along with plans for future improvements.

1 Introduction

1.1 Demo
As a software tool is being discussed, it seems best to start with a
demonstration of a potential user interaction with the tool. Suppose I wish
to learn about the metre of the following subhāṣita (which occurs in the
Pratijñāyaugandharāyaṇa attributed to Bhāsa):

113



114 Rajagopalan

kāṣṭhād agnir jāyate mathya-mānād-
bhūmis toyaṃ khanya-mānā dadāti |
sotsāhānāṃ nāstyasādhyaṃ narāṇāṃ
mārgārabdhāḥ sarva-yatnāḥ phalanti ||

Then I can visit the tool’s website, http://sanskritmetres.appspot.
com, enter the above verse (exactly as above), and correctly learn that it
is in the metre Śālinī. More interestingly, suppose I do not have the verse
correctly: perhaps I am quoting it from memory (possibly having misheard
it, and unaware of the line breaks), or I have found the text on a (not very
reliable) blog, or some errors have crept into the digital text, or possibly I
just make some mistakes while typing. In such a case, possibly even with
an unreasonable number of mistakes present, I can still use the tool in the
same way. Thus, I can enter the following error-ridden input (which, for
illustration, is encoded this time in the ITRANS convention):

kaaShThaad agni jaayate
mathyamaanaad bhuumistoya khanyamaanaa /
daati sotsaahaanaaM naastyasaadhyaM
naraaNaaM maargaabdhaaH savayatnaaH phalantiihi //

Here, some syllables have the wrong prosodic weight (laghu instead of
guru and vice-versa), some syllables are missing, some have been introduced
extraneously, not a single line of the input is correct, and even the total
number of syllables is wrong. Despite this, the tool identifies the metre
as Śālinī. The output from the tool, indicating the identified metre, and
highlighting the extent to which the given verse corresponds to that metre,
is shown in Figure 1. The rest of this paper explains how this is done, among
other things.

1.2 Background
A large part of Sanskrit literature, in kāvya, śāstra and other genres, is in
verse (padya) rather than prose (gadya). A verse in Sanskrit (not counting
some modern Sanskrit poets’ experimentation with “free verse” and the like)
is invariably in metre.

Computer tools to recognize the metre of a Sanskrit verse are not
new. A script in the Perl programming language, called sscan, written
by John Smith, is distributed among other utilities at the http://bombay.

http://sanskritmetres.appspot.com
http://sanskritmetres.appspot.com
http://bombay.indology.info


Metrical analysis of Sanskrit verse 115

Figure 1
A screenshot of the output from the tool for highly erroneous input.

Despite the errors, the metre is correctly identified as Śālinī. The guru
syllables are marked in bold, and the deviations from the expected metrical

pattern (syllables with the wrong weight, or missing or superfluous
syllables) are underlined (and highlighted in red).

http://bombay.indology.info
http://bombay.indology.info


116 Rajagopalan

indology.info website, and although the exact date is unknown, the
timestamp in the ZIP file suggests a date of 1998 or earlier for this file (Smith
1998?). This script, only 61 lines long (38 source lines not including
comments and description) was the spark of inspiration that initiated the
writing of the tool being described in the current paper, in 2013. Other
software or programs include those by Murthy (2003?), by A. Mishra (2007)
and by Melnad, Goyal, and P. M. Scharf (2015). A general introduction to
metre and Sanskrit prosody is omitted in this paper for reasons of space,
as the last of these papers (Melnad, Goyal, and P. M. Scharf 2015) quite
excellently covers the topic.

Like these other tools, the tool being discussed in this paper recognizes
the metre given a Sanskrit verse. It is available in several forms: as a
web application hosted online at http://sanskrit-metres.appspot.com,
as a commandline tool, and as a Python library; all are available in the
source-code form at https://github.com/shreevatsa/sanskrit. It is
being described here for two reasons:

1. It has some new features that I think will be interesting (see
section 1.4), some of which distinguish it from other tools. The
development of this tool has thrown up a few insights (see Section 4)
which may be useful to others who would like to develop better tools
in the future.

2. A question was raised about this tool (P. Scharf 2016), namely:

“An open-source web archive of metrically related soft-
ware and data can be found at https://github.com/
shreevatsa/sanskrit with an interface at http://sanskritmetres.
appspot.com/. The author and contributors to this archive
and data were unknown at the time and not included in our
literature review. No description of the extent, comprehen-
siveness, and effectiveness of the software has been found.”

I took this as encouragement that such a description may be desirable
/ of interest to others.

1.3 The intended user
The tool can be useful for someone trying to read or compose Sanskrit verses,
and for someone checking a text for metrical errors. In other words, the tool

http://bombay.indology.info
http://bombay.indology.info
http://sanskrit-metres.appspot.com
https://github.com/shreevatsa/sanskrit
https://github.com/shreevatsa/sanskrit
https://github.com/shreevatsa/sanskrit
http://sanskritmetres.appspot.com/
http://sanskritmetres.appspot.com/


Metrical analysis of Sanskrit verse 117

can be used by different kinds of users: a curious learner, an editor working
with a text (checking verses for metrical correctness), a scholar investigating
the metrical signature of a text, or an aspiring poet. To make these concrete,
consider the following “user stories” as motivating examples.

• Devadatta is learning Sanskrit. He knows that Sanskrit verse is
written in metre and that this is supposed to make it easier to chant or
recite. But he knows very little about various metres, so that when he
looks at a verse, especially one in a longer metre like Śārdūla-vikrīḍitam
or Sragdharā, he cannot quickly recognize the metre. All he sees is a
string of syllables, and he has no idea where to pause (yati), how to
recite, or even where to break at pādās if they are not indicated clearly
in the text he is reading. With this tool, these problems are solved,
and he can focus on understanding and appreciating the poetry, now
that he can read it aloud rhythmically and melodically and savor its
sounds.

• Chitralekha is a scholar. She works with digital texts that, though
useful to have, are sometimes of questionable provenance and do not
always meet her standards of critical editions. Errors might have
crept into the texts, and she has the idea that some instances of
scribal emendation or typographical errors (such as omitted letters,
extraneous letters, or transposed letters) are likely to cause metrical
errors as well. With this tool, she can catch a great many of them
(see Section 3). Sometimes, she is interested in questions about
prosody itself, such as: what are all the metres used in this text?
Which ones are the most common? How frequently does the poet
X use a particular “poetic license” of scansion? What are the rules
governing Anuṣṭubh (Śloka), typically? This tool can help her with
such questions too.

• Kamban would like to write poetry, like his famous namesake. He
has a good command of vocabulary and grammar and has some poetic
imagination, but when he writes a verse, especially in an “exotic” (to
him) metre, he is sometimes unsure whether he has got all the syllables
right. With this tool, he enters his tentative attempt and sees whether
anything is off. He knows that the metres will soon become second-
nature to him and he will not need the tool anymore, but still he



118 Rajagopalan

wishes he could have more help—such as choosing his desired metre,
and knowing what he needs to add to his partially composed verse.

With the names of these users as mnemonics, we can say that the tool
can be used to discover, check, and compose metrical verse and facts about
them.

1.4 User-friendly features
As mentioned earlier, the tool has several features for easing the user’s job:

1. It accepts a wide variety of input scripts (transliteration schemes).
Unlike most tools, it does not enforce the input to be in any particular
input scheme or system of transliteration. Instead, it accepts IAST,
Harvard-Kyoto, and ITRANS transliteration, Unicode Devanāgarī,
and Unicode Kannada scripts, without the user having to indicate
which input scheme is used. The tool is agnostic to the input method
used, as it converts all input to an internal representation based on
SLP1 (P. M. Scharf and Hyman 2011). It is straightforward to extend
to other scripts or transliteration methods, such as SLP1 or other Indic
scripts.

2. It is highly robust against typographical errors or metrical errors in
the verse that is input. This is perhaps the most interesting feature
of the tool and is useful because the text in the “wild” is not always
error-free.

3. It can detect the metre even from partial verses—even if the user is
not aware that the verse one is looking up is incomplete.

4. Informative “display” of a verse in relation to the identified metre,
by aligning the verse to the metre using a dynamic programming
algorithm to find the best alignment.

5. Supports learning more about a metre, by pointing to other examples
of the metre, and audio recordings of the metre being recited in several
styles (where available).

6. Quick link to provide feedback (by creating an issue on GitHub),
specific to the input verse being processed on the page.



Metrical analysis of Sanskrit verse 119

Preprocessing
Metrical

(raw)
data

Build Metrical
index

IdentifyUser
input

Detect
input

scheme Transliterate
to SLP1

Input
scheme

SLP1
(phonemes) Scansion

SLP1
(with

punctuation)

Display

Metrical
signature
(pattern
lines)

List
of

metres Pretty
output

Figure 2
A “data flow diagram” of the system’s operation. The rectangles denote

different forms taken by the data; the ovals denote code that transforms (or
uses, or generates) the data.

2 How it works
This section describes how the system works. At a high level, there are the
following steps/components:

1. Metrical data, about many known metres. This has been entered into
the system.

2. Building the Index (Pre-processing): from the metrical data, various
indices are generated.

3. Detection and Transliteration: The input supplied by the user is
examined, the input scheme detected, and transliterated into SLP1.

4. Scansion: The SLP1 text (denoting a set of phonemes) is translated
into a metrical signature (a pattern of laghus and gurus).

5. Matching: The metrical signature is compared against the index, to
identify the metre (or metres).

6. Display: The user’s input is displayed to the user, appropriately re-
formatted to fit the identified metre(s), and with highlighting of any
deviations from the metrical ideal.

These steps are depicted in Figure 2, and described in more detail in the
following subsections.



120 Rajagopalan

2.1 Metrical data
This is the raw data about all the metres known to the system. They
are stored in the JSON format, so that they could be used by other
programs too. In what follows, a metrical pattern is defined as string over
the alphabet {L,G}, i.e., a sequence of symbols each of which is either L
(denoting laghu or a light syllable) or G (denoting guru or a heavy syllable).
As described elsewhere (Melnad, Goyal, and P. M. Scharf 2015), there are
two main types of metres, varṇavṛtta and mātrāvṛtta (note that (Murthy
2003) points out that the Śloka metre constitutes a third type by itself),
with the former having three subtypes:

1. samavṛtta metres, in which all four pādas of a verse have the same
metrical pattern,

2. ardhasamavṛtta metres, in which odd pādas have one pattern and even
pādas another (so that the two halves of the verse have the same
metrical pattern),

3. viṣamavṛtta metres, in which potentially all four pādas have different
metrical patterns.

Correspondingly each metre’s characteristics are indicated in this system
with the minimal amount of data necessary:

1. samavṛtta metres are represented by a list of length one (or for
convenience, simply a string), containing the pattern of each of their
pādas,

2. ardhasamavṛtta metres are represented by a list of length two,
containing the pattern of the odd pādas followed by the pattern of
the even pādas,

3. viṣamavṛtta metres are represented by a list of length four, containing
the pattern for each of the four pāas.

Additionally, with the pattern, yati can be indicated; also spaces can be
added, which are ignored. The yati is ignored for identification, but used
later for displaying information about the metre. Here are some lines, as
examples:



Metrical analysis of Sanskrit verse 121

{
# ...
['Śālinī', 'GGGG—GLGGLGG'],
['Praharṣiṇī', 'GGGLLLLGLGLGG'],
['Bhujaṅgaprayātam', 'LGG LGG LGG LGG'],
# ...
['Viyoginī', ['LLGLLGLGLG','LLGGLLGLGLG']],
# ...
['Udgatā', ['LLGLGLLLGL',

'LLLLLGLGLG',
'GLLLLLLGLLG',
'LLGLGLLLGLGLG']],

# ...
}

For mātrāvṛtta metres (those based on the number of morae: mātrās),
the constraints are more subtle, and as not every syllable’s weight is fixed,
there are so many patterns that fit each metre that it may not be efficient to
generate and store each pattern separately. Instead, the system represents
them by using a certain conventional notation, which expands to regular
expressions. This notation is inspired by the elegant notation described
in another paper (Melnad, Goyal, and P. M. Scharf 2015), and uses a
particularly useful description of the Āryā and related metres available in a
paper by Ollett Ollett (2012).

# ...
["Āryā", ["22 4 22", "4 22 121 22 .", "22 4 22", "4 22 1 22 ."]],

["Gīti", ["22 4 22", "4 22 121 22 ."]],
["Upagīti", ["22 4 22", "4 22 L 22 ."]],

["Udgīti", ["22 4 22", "4 22 L 22 .", "22 4 22", "4 22 121 22."]],
["Āryāgīti", [["22 4 22", "4 22 121 22 (4|2L)"]],

# ...

Here, 2 will be interpreted as the regular expression (G|LL) and 4 as
the regular expression (GG|LLG|GLL|LLLL|LGL) – all possible sequences
of laghus and gurus that are exactly 4 mātrās long. Note that with this
notation, the frequently mentioned rule of “any combination of 4 mātrās
except LGL (ja-gaṇa)” is simply denoted as 22, expanding to the regular
expression (G|LL)(G|LL) which covers precisely the 4 sequences of laghus
and gurus of total duration 4, other than LGL.



122 Rajagopalan

Type of metre Number
samavṛtta 1242
ardhasamavṛtta 132
viṣamavṛtta 19
mātrāvṛtta 5
Total 1398

Table 1
The number of metres “known” to the current system. Not too much

should be read into the raw numbers as a larger number isn’t necessarily
better; see Section 4.1.3 for why.

The data in the system was started with a hand-curated list of popular
metres (Ganesh 2013). It was greatly extended with the contributions
of Dhaval Patel, which drew from the Vṛttaratnākara and the work of
Mishra (A. Mishra 2007). A few metres from these contributions are yet
to be incorporated, because of reasons described in section 4.1.3. Overall,
as a result of all this, at the moment we have a large number of known
metres, shown in Table 1.

2.2 Metrical index
The data described in the previous section is not used directly by the rest
of the program. Instead, it is first processed into data structures (which we
can consider a sort of “index”) that allow for efficient lookup, even when
the number of metres is huge. These enable the robustness to errors that
is one of the most important features of the system. The indices are called
pāda1, pāda2, pāda3, pāda4, ardha1, ardha2, and full. Each of these
indices consists of an associative array (a Python dict) that maps a pattern
(a “pattern” is a string over the alphabet {L,G}) to a list1 of metres that
contain that pattern (at the position indicated by the name of the index),
and similarly an array that maps a regular expression to the list of metres
that contain it. For instance, ardha2 maps the second half of each known
metre to that metre’s name. It is at this point that we also introduce laghu-

1Why a list? Because different metres can share the same pāda, for instance. And
there can even be multiple names for the same metre. See Section 4.1.3 later.



Metrical analysis of Sanskrit verse 123

ending variants for many metres (see more in 4.1.2). Section 2.5 describes
how these indices are used.

Although this index is generated automatically and not written down in
code, the following hypothetical code illustrates some sample entries in the
ardha2 index:

ardha2_patterns = {
# ...
'GGGGGLGGLGGGGGGGLGGLGG': ['Śālinī'],
# laghu variants for illustration.
# In reality we don't add for Śālinī…
'GGGGGLGGLGLGGGGGLGGLGG': ['Śālinī'],
'GGGGGLGGLGGGGGGGLGGLGL': ['Śālinī'],
'GGGGGLGGLGLGGGGGLGGLGL': ['Śālinī'],
# ...

}
ardha2_regexes = {

# ...
"22 4 22" + "4 22 L 22 .": ['Āryā', 'Upagīti],
# ...

}

2.3 Transliteration
The first step that happens after users enter their input is automatic
transliteration. Detecting the input scheme is based on a few heuristics.
Among the input schemes initially supported (Devanāgarī, Kannada, IAST,
ITRANS, and Harvard-Kyoto), the detection is done as follows:

• If the input contains any Kannada consonants and vowels, treat it as
Kannada.

• If the input contains (m)any Devanāgarī consonants and vowels, treat
it as Devanāgarī. Note that this should not be applied to other
characters from the Devanāgarī Unicode block, such the daṇḍa symbol,
which are often used with other scripts too, as encouraged in the
Unicode standard.

• If the input contains any of the characters āīūṛṝḷḹṃḥṅñṭḍśṣ, treat
it as IAST.



124 Rajagopalan

• If the input matches the regular expression

aa|ii|uu|[RrLl]\^[Ii]|RR[Ii]|LL[Ii]|~N|Ch|~n|N\^|Sh|sh

treat it as ITRANS. Here, the Sh and sh might seem dangerous, but
the consonant cluster ःह is unlikely in Sanskrit.

• Else, treat the input as Harvard-Kyoto.

An option to explicitly indicate the input scheme (bypassing the
automatic inference) could be added but has not seemed necessary so far.
The input is transliterated into (a subset of) the encoding SLP1 (P. M.
Scharf and Hyman 2011), which is used internally, as it has many properties
suitable for computer representation of Sanskrit text. While the input is
being transliterated according to the detected scheme, known punctuation
marks (and line breaks) are retained, while all “unknown” characters that
have not been programmed into the transliterator (such as control characters
and accent marks in Devanāgarī) are ignored.

The exact details of how the transliteration is done are omitted here, as
transliteration may be regarded as a reasonably well-solved problem by now.
One point worth mentioning is that there are no strict input conventions. In
other work (Melnad, Goyal, and P. M. Scharf 2015), a convention is adopted
like:

If the input text lacks line-end markers, it is assumed to be a
single pāda and to belong to the samavṛtta type of metre

Such a scheme may be interesting to explore. For now, as much as possible,
the system tries to assume an untrained user and therefore infer all such
things, or try all possibilities.

2.4 Scan
The transliteration into SLP1 can be thought of as having generated a set
of Sanskrit phonemes (this close relationship between phonemes and the
textual representation is the primary strength of the SLP1 encoding). From
these phonemes, scansion into a pattern of laghus and gurus can proceed
directly, without bothering with syllabification (however, syllabification is
still done, for the sake of the “alignment” described later in section 2.6).
The rule for scansion is mechanical: initial consonants are dropped, and



Metrical analysis of Sanskrit verse 125

each vowel is considered as a set along with all the non-vowels that follow it
before the next vowel (or end of text) is found. If the vowel is long or if there
are multiple consonants (treating anusvāra and visarga as consonants here,
for scansion only) in this set, then we have a guru, else we have a laghu.

The validity of this method of scansion, with reference to the traditional
Sanskrit grammatical and metrical texts, is skipped in this paper, as
something similar has been treated elsewhere (Melnad, Goyal, and P. M.
Scharf 2015). However, note that this is the “purist” version of Sanskrit
scansion. There is an issue of śithila-dvitva or poetic licence, which is treated
in more detail in Section 4.3.

2.5 Identification
The core of the tool’s robust metre identification is an algorithm for trying
many possibilities for identifying the metre of the input text. Identifying
the metre given a metrical pattern (the result of scansion) is done in two
steps: (1) first the input is broken into several “parts” in various ways, and
then (2) each of these parts is matched against the appropriate indices.

2.5.1 Parts

Given the metrical pattern corresponding to the input text, which may be
either a full verse, a half-verse, or a single quarter-verse (pāda), we try to
break it into parts in multiple ways. One way of breaking the input, which
should not be ignored, is already given by the user, in the form of line breaks
in the input. If there are 4 lines, for example, it is a strong possibility that
these are the 4 pādas of the verse. If there are 2 lines, each line may contain
two pādas. But what if there are 3 lines, or 5? Another way of breaking the
input is by counting syllables. If the number of syllables is a multiple of 4
(say 4n), it is possible that every n syllables constitute a pāda of a samavṛtta
metre. But what if the number of syllables is not a multiple of 4?

The solution adopted here is to consider all ways of breaking a pattern
into k parts even when its length (say l) may not be a multiple of k. Although
this would apply to any positive k, we only care about k = 4 and k = 2, so
let’s focus on the k = 4 case for illustration. In that case, suppose that the
length l leaves a remainder r when divided by 4, that is,

l ≡ r (mod 4), 0 ≤ r < 4



126 Rajagopalan

or in other words l can be written as l = 4n + r for some integer n, where
0 ≤ r < 4. Then, as ⌊l/4⌋ = n (here ⌊·⌋ denotes the “floor function”,
or integer division with rounding down), we can consider all the ways of
breaking the string of length l into 4 parts of lengths (n+a, n+b, n+c, n+d)
where a+ b+ c+ d = r (in words: we consider all ways of distributing the
remainder r among the 4 parts). For example, when r = 2, we say that a
string of length 4n+ 2 can be broken into 4 parts in 10 ways:

(n, n, n, n+ 2)

(n, n, n+ 1, n+ 1)

(n, n, n+ 2, n)

(n, n+ 1, n, n+ 1)

(n, n+ 1, n+ 1, n)

(n, n+ 2, n, n)

(n+ 1, n, n, n+ 1)

(n+ 1, n, n+ 1, n)

(n+ 1, n+ 1, n, n)

(n+ 2, n, n, n)

Similarly, there are 4 ways when r = 1, 20 ways when r = 3, and of course
there is exactly one way (n, n, n, n) when r = 0.

In this way, we can break the given string into 4 parts (in 1, 4, 10, or 20
ways) or into 2 parts (in 1 or 2 ways), either by lines or by syllables. For
instance, if we are given an input of 5 lines, then there are 4 ways we can
break it into 4 parts, by lines. What we do with these parts is explained
next.

2.5.2 Lookup/match

Once we have the input broken into the appropriate number of parts (based
on whether we’re treating it as a full verse, a half verse, or a pāda), we look up
each part in the appropriate index. For a particular index, to match against
patterns is a direct lookup (we do not have to loop through all patterns in
the index). To match against regexes, we do indeed loop through all regexes,
which are fewer in number compared to the number of patterns. If needed,
we can trade-off time and memory here; for instance, we could have indexed
a large number of instantiated patterns instead of regexes even for mātrā



Metrical analysis of Sanskrit verse 127

treating input as
kind of index full verse half verse single pāda
pāda1 first part of 4 first part of 2 the full input
pāda2 second part of 4 second part of 2 the full input
pāda3 third part of 4 first part of 2 the full input
pāda4 fourth part of 4 second part of 2 the full input
ardha1 first part of 2 the full input -
ardha2 second part of 2 the full input -
full the full input - -

Table 2
What to match or look up, depending on how the input is being treated.
Everywhere in the table above, phrases like “first part of 4” mean both by
lines and by syllables. For instance, when treating the input as a full verse,

the first 1/4 part by lines and the first 1/4 part by syllables are both
matched against the pāda1 index.

metres. Note that in this way, to match an ardhasamavṛtta or a viṣamavṛtta
that has been input perfectly, we search directly for the full pattern (of the
entire verse) in the index. We do not have to run a loop for breaking a
line into pādas in all possible ways, as in (Melnad, Goyal, and P. M. Scharf
2015). Details of which indices are looked up are in Table 2.

2.6 Align/Display
The metre identifier, from the previous section, results in a list of metres
that are potential matches to the input text. Not all of them may match
the input verse perfectly; some may have been detected based on partial
matches. Whatever the reason for this imperfect match (an over-eager
matching on the part of the metre identifier, or errors in the input text),
it would be useful for the user to see how closely their input matches a
given metre. And even when the match is perfect, aligning the verse to the
metre can help highlight the pāda breaks, the location of yati, and so on.
This is done by the tool, using a simple dynamic-programming algorithm
very similar to the standard algorithm for the longest common subsequence
problem: in effect, we simply align both the strings (the metrical pattern of



128 Rajagopalan

the input verse, and that of the known metre) along their longest common
subsequence.

What this means is that given two strings s and t, we use a dynamic
programming algorithm to find the minimal set of “gap” characters to insert
in each string, such that the resulting strings match wherever both have a
non-gap character (and never have a gap character in both). For example:

('abcab', 'bca'), => ('abcab', '-bca-')
('hello', 'hello'), => ('hello', 'hello')
('hello', 'hell'), => ('hello', 'hell-')
('hello', 'ohell'), => ('-hello', 'ohell-')
('abcdabcd', 'abcd'), => ('abcdabcd', 'abcd----')
('abcab', 'acb'), => ('abcab', 'a-c-b')
('abcab', 'acbd'), => ('abcab-', 'a-c-bd')

We use this algorithm on the verse pattern and the metre’s pattern,
to decide how to align them. Then, using this alignment, we display the
user’s input verse in its display version (transliterated into IAST, and with
some recognized punctuation retained). Here, laghu and guru syllables are
styled differently in the web application (styling customizable with CSS).
This also highlights each location of yati or caesura (if known and stored for
the metre), so that the user can see if their verse violates any of the subtler
rules, such as words straddling yati boundaries.

This algorithm could also be used for ranking the results, based on the
degree of match between the input and each result (metre identified).

3 Text analysis and results
As part of testing the tool (and as part of pursuing the interest in literature
and prosody that led to the tool in the first place), a large number of texts
such as from GRETIL2 were examined. Although primarily designed to help
readers, the tool can also be used to analyze a metrical text, to catch errors
or generate statistics about the metres used. In the very first version of the
tool, the first metre added was Mandākrāntā, and the tool was run on a
text of the Meghadūta from GRETIL, the online corpus of Sanskrit texts.
This text was chosen because the Meghadūta is well-known to be entirely

2Göttingen Register of Electronic Texts in Indian Languages: and related Indological
materials from Central and Southeast Asia, http://gretil.sub.uni-goettingen.de

http://gretil.sub.uni-goettingen.de


Metrical analysis of Sanskrit verse 129

in the Mandākrāntā metre, so the “gold standard” to use as a reference
to compare against was straightforward. Surprisingly, this tool successfully
identified 23 errors in the 122 verses!3 These were communicated to the
GRETIL maintainer.

Similarly, testing of the tool on other texts highlighted many errors.
Errors identified in the GRETIL text of Bhartṛhari’s Śatakatraya were
carefully compared against the critical edition by D. D. Kosambi.4 In this
text, as in Nīlakaṇṭha’s Kali-viḍambana,5 in Bhallaṭa’s Bhallaṭa-śataka,6,
and in almost all cases, the testing highlighted errors in the text, rather
than any in the metre recognizer. This constitutes evidence that the
recognizer has a high accuracy approaching 100%, though the lack of a
reliable (and nontrivial) “gold standard” hinders attaching a numeric value
to the accuracy. In the terminology of “precision and recall”, the recognizer
has a recall of 100% in the examples tested (for example, no verse that
is properly in Śārdūla-vikrīḍitam is failed to be recognized as that metre),
while the precision was lower and harder to measure because of errors in
the input (sufficiently many errors can make the verse partially match a
different metre).

After sufficiently fixing the tool and the text so that Meghadūta was
recognized as being 100% in the Mandākrāntā metre, other texts were
examined. These statistics7 confirmed that, for example, the most common
metres in the Amaruśataka are Śārdūlavikrīḍitam (57%), Hariṇī (13%) and
Śikhariṇī (10%), while those in Kālidāsa’s Raghuvamśa are Śloka, Upajāti
and Rathoddhatā. And so on. Once errors in the texts are fixed, this sort of
analysis can give insights into the way different poets use metre. It can also
be used for students to know which are the most common metres to focus
on learning, at least for a given corpus. Other sources of online texts, like

3See a list of 23 errors and 3 instances of broken sandhi detected in one of the GRETIL
texts of the Meghadūta, at https://github.com/shreevatsa/sanskrit/blob/f2ef7364/
meghdk_u_errors.txt (October 2013).

4See https://github.com/shreevatsa/sanskrit/blob/7c42546/texts/gretil_stats/
diff-bharst_u.htm-old.patch for a list of errors found, in diff format, with comments
referring to the location of the verse in Kosambi

5https://github.com/shreevatsa/sanskrit/blob/08ccb91/texts/gretil_stats/
diff-nkalivpu.htm.patch

6https://github.com/shreevatsa/sanskrit/blob/67251bc/texts/gretil_stats/
diff-bhall_pu.htm.patch

7http://sanskritmetres.appspot.com/statistics

https://github.com/shreevatsa/sanskrit/blob/f2ef7364/meghdk_u_errors.txt
https://github.com/shreevatsa/sanskrit/blob/f2ef7364/meghdk_u_errors.txt
https://github.com/shreevatsa/sanskrit/blob/7c42546/texts/gretil_stats/diff-bharst_u.htm-old.patch
https://github.com/shreevatsa/sanskrit/blob/7c42546/texts/gretil_stats/diff-bharst_u.htm-old.patch
https://github.com/shreevatsa/sanskrit/blob/08ccb91/texts/gretil_stats/diff-nkalivpu.htm.patch
https://github.com/shreevatsa/sanskrit/blob/08ccb91/texts/gretil_stats/diff-nkalivpu.htm.patch
https://github.com/shreevatsa/sanskrit/blob/67251bc/texts/gretil_stats/diff-bhall_pu.htm.patch
https://github.com/shreevatsa/sanskrit/blob/67251bc/texts/gretil_stats/diff-bhall_pu.htm.patch
http://sanskritmetres.appspot.com/statistics


130 Rajagopalan

TITUS, SARIT8 or The Sanskrit Library9 could also be used for testing the
system.

4 Interesting issues and computational experience
Some insights and lessons learned as a result of this project are worth
highlighting, as are some of the design decisions that were made either
intentionally or unconsciously.

4.1 Metrical data

4.1.1 The gaṇa-s

For representing the characteristics of a given metre, a popular scheme used
by all Sanskrit authors of works on prosody is the use of the 8 gaṇs. Each
possible laghu-guru combination of three syllables (trika), namely each of the
23 possibilities LLL, LLG, LGL, LGG, GLL, GLG, GGL, GGG, is given a distinct
name (na, sa, ja, ya, bha, ra, ta, ma respectively), so that a long pattern
of laghus and gurus can be concisely stated in groups of three. This is an
excellent mnemonic and space-saving device, akin to writing in octal instead
of binary. For instance, the binary number 1101100101012 can be written
more concisely as the octal number 66258 and the translation between them
is immediately apparent (1101100101012 corresponds to 66258 and vice-
versa, by simply treating each group of three binary digits (bits) as an octal
digit, or conversely expanding each octal digit to a three-bit representation).
Similarly, the pattern GGLGGLLGLGLG of Indravaṃśa can be more concisely
expressed by the description as “ta ta ja ra”. Moreover, another mnemonic
device of unknown origin uses a string “yamātārājabhānasalagaṃ” that
traverses all the 8 gaṇas (and the names la and ga used for any “leftover”
laghus and gurus respectively), assigning them syllable weights (via vowel
lengths) such that the three syllables starting at any of the 8 consonants are
itself in the gaṇa named by that consonant.10

Thus we can see that the gaṇa names are a useful mnemonic and space-
saving device, and yet at the same time, from an information-theoretic
point of view, they contain absolutely no information that is not present

8http://sarit.indology.info
9http://sanskritlibrary.org

10In the modern terminology of combinatorics, this is a de Bruijn sequence.

http://sarit.indology.info
http://sanskritlibrary.org


Metrical analysis of Sanskrit verse 131

in the expanded string (the pattern of Ls and Gs). Moreover, for a typical
reader who is not trying to memorize the definitions of metres (either in the
GGLGGLLGLGLG form or the “ta ta ja ra”’ form), the gaṇas add no value and
serve only to further mystify and obscure the topic. Moreover, they can be
misleading as to the nature of yati breaks in the metre, as the metre being
described is rarely grouped into threes, except for certain specific metres
(popularly used in stotras) such as भजुूयातम ्, तोटकम ्, and ॐिवणी. One can
as easily (and more enjoyably) learn the pattern of a metre by committing a
representative example (a good verse in that metre) to memory, rather than
the definition using gaṇas, as the author and others know from personal
experience. For these reasons, the gaṇa information is de-emphasized in the
tool described in this paper.

4.1.2 pādānta-laghu

Sanskrit poetic convention is that the very last syllable in a verse can be
laghu even if the metre requires it to be guru. Consider for instance, the
very first verse of Kālidāsa’s Meghadūta, in the Mandākrāntā metre:

kaścit kāntā-viraha-guruṇā svādhikārāt pramattaḥ
śāpenāstaṃgamita-mahimā varṣa-bhogyeṇa bhartuḥ
yakṣaś cakre janaka-tanayā-snāna-puṇyodakeṣu
snigdhacchāyā-taruṣu vasatiṃ rāmagiryāśrameṣu

Even though the Mandākrāntā requires in each pāda a final syllable that
is guru, the final syllable of the verse above is allowed to be ṣu which if
it occurred in another position (and not followed by a consonant cluster)
would be treated as a laghu syllable. A similar convention, though not
always stated as clearly in texts in prosody, more or less applies at the end
of each half (ardha or pair of pādas) of the verse (for an example, see the
kāṣṭhād agnir… verse in Śālinī from Section 1.1).

The question of such a laghu at the end of odd pādas (viṣama-pādānta-
laghu) is a thorny one, with no clear answers. Even the word of someone
like Kedārabhaṭṭa cannot be taken as final on this matter, as it needs to
hold up to actual usage and what is pleasing to the trained ear. Certainly
we see such laghus being used liberally in metres like Śloka, Upajāti and
Vasantatilakā. At the same time, there are metres like Śālinī where this
would be unusual. The summary from those well-versed in the metrical



132 Rajagopalan

tradition11 is that such laghus are best avoided (and are therefore unusual,
the works of the master poets) in yati-prabala metres, those where the yati is
prominent. This is why, Śālinī with 11 syllables to a pāda requires a stricter
observance of guru at the end of odd pādas than a metre like Vasantatilakā
with 14. As a general rule of thumb, though, such viṣama-pādānta-laghus
can be regarded as incorrect in metres longer than Vasantatilakā. It is not
clear how a computer could automatically make such subjective decisions,
so something like the idea (Melnad, Goyal, and P. M. Scharf 2015) of storing
a boolean parameter about which metres allow this option, seems desirable.
Still, the question of how that boolean parameter is to be chosen remains
open.

4.1.3 Is more data always better?

It seems natural that having data about more metres would lead to better
decisions and better results, but in practice, some care is needed. A common
problem is that when there are too many metres in our database, the
likelihood of false positives increases. To see this more clearly, imagine
a hypothetical case in which every possible combination of laghu and guru
syllables was given its own name as a metre: in that case, a verse intended
to be in the metre Śārdūlavikrīḍtam, say, with even a single error, would
perfectly match some other named metre, and we would be misled as to the
truth. A specific case where this happens easily is when a user inputs a
single pāda but the system tries to treats it as a full verse. In this case, the
quarters of the input, as they are much shorter, are more likely to match
some metre accidentally. The solution of returning multiple results (a list
of results rather than a single result) alleviates this problem (cf. the idea of
list decoding from computer science).

A related problem is the over-precise naming of metres. We know that
Indravajrā and Upendravajrā differ only in the weight of the first syllable,
and that the Upajāti metre consists of free alternation between them for
the four pādas in a verse, as for this particular metre, the weight of the
first syllable does not matter too much. However, there exist theorists of
prosody who have, to each of the 24 = 16 possibilities (all the ways of
combining Indravajrā and Upendravajrā), given names like Māyā, Premā,
Mālā, Ṛddhiḥ and so on (A. Mishra 2007). This is not very useful to a
reader, as in such cases, the metre in question is, in essence, really more

11Śatāvadhānī R. Ganesh, personal communication



Metrical analysis of Sanskrit verse 133

common than such precise naming would make it seem. Velankar (Velankar
1949) even considers the name Upajāti as arising from the “displeasure” of
the “methodically inclined prosodist”.

Another issue is that data compiled from multiple works on prosody
(or sometimes even from the same source) can have inconsistencies. It
can happen that the same metre is given different names in different
sources (Velankar 1949, p. 59). This is very common with noun endings
that mark gender, such as -ā versus -aṃ, but we also see cases where
completely different names are used. It can also happen that the same
name is used for entirely different metres (see also the confusion about
Upajāti mentioned below in Section 4.4). For these reasons, instead of
storing each metre as a (name,pattern) pair as mentioned earlier, or as
the (better) (name,pattern,bool) triple (Melnad, Goyal, and P. M. Scharf
2015), it seems best to store a (pattern,bool,name, source for name) tuple.
I started naively, thinking the name of metres is objective truth, and as a
result of this project I realized that names are assigned with some degree of
arbitrariness.

Finally, a couple more points: (1) There exist metres that end with laghu
syllables, and the code should be capable of handling them. (2) It is better
to keep metrical data as data files, rather than code. This was a mistake
made in the initial design of the system. Although it did not deter helpful
contributors like Dhaval Patel from contributing code-like definitions for
each metre, it is still a hindrance that is best avoided. Keeping data in data
files is language-agnostic and would allow it to be used by other tools.

Overall, however, despite these issues, on the whole, the situation is not
too bad, because it is mostly a small set of metres that is used by most poets.
Although the repertoire of Sanskrit metres is vast (Deo 2007), and even the
set of commonly used metres is larger in Sanskrit than in other languages,
nevertheless, as with rāgas in music, although names can and have been
given to a great many combinations, not every mathematical possibility is
an aesthetic possibility.12

4.2 Transliteration
It appears that accepting input in various input schemes is one of the features
of the tool that users enjoy. Although the differences between various input
schemes are mostly superficial and easily learned, it appears that many

12This remark comes from Śatāvadhānī Ganesh who has pointed this out multiple times.



134 Rajagopalan

people have their preferred scheme that they would like to employ wherever
possible. These are fortunately easy for computers to handle.

As pointed out elsewhere in detail (P. M. Scharf and Hyman 2011), the
set of graphemes or phonemes one might encounter in putatively Sanskrit
input is larger than that supported by common systems of transliteration
like Harvard-Kyoto or IAST. Characters like chandrabindu and ळ will occur
in the input especially with modern poetry or verse from other languages.
The system must be capable of doing something reasonable in such cases.

A perhaps unusual choice is that the system does not currently accept
input in SLP1, even though SLP1 is used internally. The simple reason is
that no one has asked for it, and it does not seem that many people type
in SLP1. SLP1 is a great internal format and can be a good choice for
interoperability between separate tools, but it seems that the average user
does not prefer typing kfzRaH for कृः. Nevertheless, this is a minor point
as this input method can easily be added if anyone wants it.

In an earlier paper (Melnad, Goyal, and P. M. Scharf 2015), two of the
deficiencies stated about the tool by Mishra (A. Mishra 2007) are that:

1. By supporting only Harvard-Kyoto input, that tool requires special
treatment of words with consecutive a-i or a-u vowels (such as the
word “ूउग”). In this tool, as Devanāgarī input is accepted, such words
can be input (besides of course by simply inserting a space).

2. That tool does not support accented input, which (Melnad, Goyal,
and P. M. Scharf 2015) do because they accept input in SLP1. In
this tool, accented input is accepted if input as Devanāgarī. However,
as neither this tool nor the one by (Melnad, Goyal, and P. M. Scharf
2015) supports Vedic metre, this point seems moot: Sanskrit poetry
in the classical (non-Vedic) metre is not often accompanied by accent
markers! In this tool, accent marks in Devanāgarī are accepted but
ignored.

4.3 Scansion
As a coding shortcut when the program was first being written, I decided
to treat anusvāra and visarga as consonants too for scansion, instead of
especially handling them. To my surprise, I have not had to revise this and
eliminate the shortcut, because, in every instance, the result of scansion is
the same. I am not aware of any text on prosody treating anusvāra and



Metrical analysis of Sanskrit verse 135

visarga as consonants, but their identical treatment is valid for Sanskrit
prosody. This is a curious insight that the technological constraints (or
laziness) have given us!

As mentioned in earlier work (Melnad, Goyal, and P. M. Scharf 2015),
in later centuries of the Sanskrit tradition, there evolved an option of
considering certain guru syllables as laghu, as a sort of poetic license,
in certain cases. Specifically, certain consonant clusters, especially those
containing r like pr and hr, were allowed to be treated as if they were single
consonants, at the start of a word. This rule is stated by Kedārabhaṭṭa
too and seems to be freely used in the Telugu tradition even today. A
further trend is to allow this option everywhere, based on how “effortlessly”
or “quickly” certain consonant clusters can be pronounced, compared with
others. A nuanced understanding of this matter comes from a practising
poet and scholar of Sanskrit literature, Śatāvadhānī R. Ganesh:13 this
practice arose from the influence of Prākṛta and Deśya (regional) languages
(for instance, it is well-codified as a rule in Kannada and Telugu, under the
name of Śithila-dvitva). It was also influenced by music; Ganesh cites the
treatise चतदु डीूकािशका. He concludes that as a conscientious poet, he will
follow poets like Kālidāsa, Bhāravi, Māgha, Śrāharṣa and Viśākhadatta in
not using this exception when composing Sanskrit, but using it sparingly
when composing in languages like Kannada where prior poets have used it
freely.

With this understanding,14 the question arises whether the system needs
to encode this exception, especially for dealing with later or modern poetry.
This could be done, but as a result of the system’s robustness to errors, in
practice, this turns out to be less necessary. Any single verse is unlikely to
exploit this poetic license in every single pāda, so the occasional usage of this
exception does not prevent the metre from being detected. The only caveat
is that this already counts as an error, so verses that exploit this exception
would have slightly lower robustness to further additional errors.

13personal communication, but see also corroboration at https://groups.google.com/
d/msg/bvparishat/ya1cGLuhc14/EkIqH9NbgawJ

14See another summary here: https://github.com/shreevatsa/sanskrit/issues/1#
issuecomment-68502605

https://groups.google.com/d/msg/bvparishat/ya1cGLuhc14/EkIqH9NbgawJ
https://groups.google.com/d/msg/bvparishat/ya1cGLuhc14/EkIqH9NbgawJ
https://github.com/shreevatsa/sanskrit/issues/1#issuecomment-68502605
https://github.com/shreevatsa/sanskrit/issues/1#issuecomment-68502605


136 Rajagopalan

4.4 Identification
It is not enough for a verse to have the correct scansion (the correct pattern
of laghu and guru syllables), for it to be a perfect specimen of a given
metre. There are additional constraints, such as yati: because a pause
is indicated at each yati-sthāna (caesura), a word must not cross such
a boundary, although separate lexical components of a compound word
(samāsa) may. Previously (Melnad, Goyal, and P. M. Scharf 2015), an
approach has been suggested of using a text segmentation tool such as the
Sanskrit Heritage Reader (Huet 2005; Huet and Goyal 2013) for detecting
when such a constraint is violated. This would indeed be ideal, but the tool
being described in this paper alleviates the problem by displaying the user’s
input verse aligned to the metre, with each yati-sthāna indicated. Thus, any
instance of a word crossing a yati boundary will be apparent in the display.

Note that we can provide information on all kinds of Upajāti, even
if they are not explicitly added to our database, a problem mentioned
previously (Melnad, Goyal, and P. M. Scharf 2015). Upajāti just means
“mixture”; the common upajāti of Indravajrā and Upendravajrā, as a metre,
has nothing to do with the upajāti of Vaṃśastha and Indravaṃśa (Velankar
1949). In fact, the latter is sometimes known by the more specific name of
Karambajāti,15 among other names. Whenever an Upajāti of two different
metres is used and input correctly, each of the two metres will be recognized
and shown to the user, because different pādas will match different patterns
in our index. So without us doing any special work of adding all the kinds
of Upajāti to the data, the user can see in any given instance that their
verse contains elements of both metres, and in exactly what way. Of course,
adding the “mixed” metre explicitly to the data would be more informative
to the user, if the mixture is a common one.

4.5 Display
Once a metre is identified, for some users, telling the user the name of the
metre may be enough. However, if we envision this tool being used by anyone
reading any Sanskrit verse (such as Devadatta from Section 1.3), then for
many users, being told the name of the metre (or even the metre’s pattern)
carries mainly the information that the verse is in some metre, but does not
substantially improve the reader’s enjoyment of the verse. Seeing the verse

15Śatāvadhān R. Ganesh, personal communication



Metrical analysis of Sanskrit verse 137

aligned to the metre, with line breaks introduced in the appropriate places
and yati locations highlighted, helps a great amount. What would help the
most, however, is a further introduction to the metre, along with familiar
examples that happen to be in the same metre, and audio recordings of
typical ways of reciting the metre.

The tool does this, for popular metres (see Figure 1), drawing on
another resource (Ganesh 2013). In these audio recordings made in 2013,
Śatāvadhānī R. Ganesh describes several popular metres, with well-chosen
examples (most recited from memory and some composed extempore for the
sake of the recordings). Some interesting background such as its usage in the
tradition—a brief “biography” of the metre —is also added for some metres.
Although they were not created for the sake of this tool, it was the same
interest in Sanskrit prosody that led both to the creation of this tool and to
my request for these recordings. Showing the user’s verse accompanied by
examples of recitation of other verses in the same metre helps the user read
aloud and savor the verse they input.

Incidentally, an introduction to metres via popular examples and
accompanying audio recordings is also the approach taken by the book
Chandovallarī (S. Mishra 1999). The examples chosen are mostly from the
stotra literature, which are most likely to be familiar to an Indian audience.
In this way, it can complement the recordings mentioned in the previous
paragraph, in which the examples were often chosen for their literary quality
or illustrative features.

4.6 Getting feedback from users
The main lesson I learned from building this system was the value of making
things accessible to as many users as possible, by removing as many barriers
as possible. Write systems that are “liberal” in what they accept, but are
nevertheless conservative enough to avoid making errors (Postel’s law).

There exist users who may not have much computer science or
programming knowledge, but are nevertheless scholars who are experts
in a specific subject. For example, India’s tech penetration is low; even
many Sanskrit scholars aren’t trained or inclined to enter verse in standard
transliteration formats. The very fact that they are visiting your tool and
using it means that they constitute a self-selecting sample. It would be
a shame not to use their expertise. Their contributions and suggestions
can help improve the system. In the case of this tool, the link to GitHub



138 Rajagopalan

discussion pages, and making it easy with a quick link to report issues
encountered during any particular interaction, have generated a lot of
improvements, both in terms of usability and correctness. A minor example
of a usability improvement is setting things up so that the text area is
automatically focused when a user visits the web page—this is trivial to set
up, but not something that had occurred as something desirable to do. In
this case, a user asked for it.

Though user feedback guided many design decisions, gathering and
acting on more of the user feedback would lead to further improvements.

5 Conclusions and future work
This paper has described a tool for metre recognition that takes various
measures to be useful to users as much as possible. In this section, we list
the current limitations of the tool and improvements that can be (and are
planned to be) made.

In terms of transliteration, though there are many transliteration
schemes supported, even the requirement to be in a specific transliteration
scheme is too onerous—instead, the tool must let the user type, and in real-
time display its understanding of the user’s input, while offering convenient
input methods (such as a character picker16) that do not require prior
knowledge of how to produce specific characters. Similarly, on the output
side, a user’s preferred script for reading Sanskrit (which may not be the
same as their input script) should be used and remembered for future
sessions, so that for instance a user can completely use the tool and see
all Sanskrit text in the Kannada script. There may even exist users who
prefer to read everything in SLP1!

Very few mātrā metres are currently supported (only members of the
Āryā family have been added). There are many simple mātrā metres used
in stotras, such a metre consisting of alternating groups of 3 and 4 mātrās.
More examples for each metre, such as from Chandovallarī (S. Mishra 1999),
would help.

The program is a monolithic application. It should be made more
modular and packaged into libraries for distribution so that other software
can easily incorporate the same user-friendly features. Similarly, in addition
to the human interface, providing an API would make this code usable from

16For instance, https://r12a.github.io/pickers/devanagari

https://r12a.github.io/pickers/devanagari


Metrical analysis of Sanskrit verse 139

another website or application. Another limitation is that the program
requires a dedicated server to run; if rewritten to run entirely in the browser
it could be packaged as a browser extension so that any Sanskrit verse on
any web page can be quickly queried about and reformatted in a metrically
clear form. The automatic inference of the transliteration scheme and other
aspects of the user’s intention, though a user-friendly feature, might have
errors occasionally, so the program would be improved by allowing them to
be indicated manually when desired.

Finally, the most promising avenue for future work is running this tool
on large texts rather than for one verse at a time, which can uncover
many insights about prosody. For instance, the most common Anuṣṭubh
(Śloka) metre, the work-horse of Sanskrit literature and beloved of the
epic poets of the Rāmāyaṇa and the Mahābhārata, is still difficult to
define clearly. The naive definition, that the odd pādas match the regular
expression “....LGG.” and the even pādās match “....LGL.”, is found
insufficient: there are both more and fewer constraints in practice. It is
not the case that all 216 choices for the first four syllables are acceptable,
nor is it the case that every acceptable śloka satisfies even these constraints.
G. S. S. Murthy (Murthy 2003) surveys and summarizes the literature on
this metre and concludes with some perceptive remarks:

It is indeed surprising that anuṣṭup has remained ill-defined for
so long. […] If anuṣṭup is being used for thousands of years
in saṃskṛt literature without a precise definition having been
spelled out till date, it must be simply because the internal
rhythm of anuṣṭup becomes ingrained in the mind of a student
of saṃskṛt at an early age due to constant and continuous
encounter with anuṣṭup and when one wants to compose a verse
in anuṣṭup, one is guided by that rhythm intuitively.

It is now almost within reach, by running a tool like this on a large
corpus consisting of the Mahābhārata, Rāmāyaṇa, and other large works,
to arrive at a descriptive definition of śloka based on the verses found in the
literature so that we can make explicit the rules that have been implicitly
adhered to by the natural poets.



140 Rajagopalan

Acknowledgements

I am indebted to the poet and scholar Śatāvadhānī R. Ganesh for
encouraging my interest in Sanskrit (and other Indian) prosody. It is his
intimate love of metres (reminding me of the story of the mathematician
Ramanujan for whom every positive integer was a personal friend), that led
me to the realization that an understanding of metre greatly enriches the
joy of poetry. Dhaval Patel contributed metrical data, and raised points
about nuances, from Vṛttaratnākara (some still unresolved). Sridatta A
pointed out some more. I thank Vishvas Vasuki for being a heavy user and
pointing out many bugs and suggestions, and for initiating the sanskrit-
programmers mailing list where this project began. Finally, I thank my wife
Chitra Muthukrishnan for supporting me during this work, both technically
and otherwise, and for reviewing drafts of this article.



References
Deo, Ashwini S. 2007. “The metrical organization of Classical Sanskrit

verse”. Journal of linguistics 43.1pp. 63–114.
Ganesh, Shatavadhani R. 2013. Sanskrit Metres (A playlist with a series of

audio recordings containing recitation and information about popular
metres). url: https : / / www . youtube . com / playlist ? list =
PLABJEFgj0PWVXr2ERGu2xtoSXrNdBs5xS.

Huet, Gérard. 2005. “A functional toolkit for morphological and phonolog-
ical processing: application to a Sanskrit tagger”. Journal of Functional
Programming 15.4pp. 573–614.

Huet, Gérard and Pawan Goyal. 2013. “Design of a lean interface for Sanskrit
corpus annotation”. Proceedings of ICON 2013, the 10th International
Conference on NLPpp. 177–86.

Melnad, Keshav, Pawan Goyal, and Peter M. Scharf. 2015. “Identification of
meter in Sanskrit verse”. In: Selected papers presented at the seminar on
Sanskrit syntax and discourse structures, 13–15 June 2013, Universite
Paris Diderot, with a bibliography of recent research by Hans Henrich
Hock. Providence: The Sanskrit Library, 325–346.

Mishra, Anand. 2007. Sanskrit metre recognizer. url: http://sanskrit.
sai.uni-heidelberg.de/Chanda/.

Mishra, Sampadananda. 1999. Chandovallari: Handbook of Sanskrit prosody.
Sri Aurobindo Society.

Murthy, G. S. S. 2003. “Characterizing Classical Anuṣṭup: A Study in
Sanskrit Prosody”. Annals of the Bhandarkar Oriental Research Institute
84pp. 101–115. issn: 03781143.

— 2003? Maatraa5d.java. url: https://github.com/sanskrit-coders/
sanskritnlpjava/tree/master/src/main/java/gssmurthy.

Ollett, Andrew. 2012. “Moraic Feet in Prakrit Metrics: A Constraint-Based
Approach”. Transactions of the Philological Society 110.12241–282.

Scharf, Peter. 2016. “Sanskrit Library conventions of digital representation
and annotation of texts, lexica, and manuscripts”. In: ICON 2016
Workshop on bridging the gap between Sanskrit computational linguistics
tools and management of Sanskrit digital libraries 17–20 December 2016,
IIT-BHU.

141

https://www.youtube.com/playlist?list=PLABJEFgj0PWVXr2ERGu2xtoSXrNdBs5xS
https://www.youtube.com/playlist?list=PLABJEFgj0PWVXr2ERGu2xtoSXrNdBs5xS
http://sanskrit.sai.uni-heidelberg.de/Chanda/
http://sanskrit.sai.uni-heidelberg.de/Chanda/
https://github.com/sanskrit-coders/sanskritnlpjava/tree/master/src/main/java/gssmurthy
https://github.com/sanskrit-coders/sanskritnlpjava/tree/master/src/main/java/gssmurthy


142 Rajagopalan

Scharf, Peter M. and Malcolm D. Hyman. 2011. Linguistic Issues in
Encoding Sanskrit. The Sanskrit Library, Providence and Motilal
Banarsidass, Delhi. url: http://sanskritlibrary.org/Sanskrit/
pub/lies_sl.pdf.

Smith, John. 1998? sscan (part of sktutils.zip). url: http : / / bombay .
indology.info/software/programs/index.html.

Velankar, H. D. 1949. Jayadāman: A collection of ancient texts on Sanskrit
Prosody and A Classified List of Sanskrit Metres with an Alphabetical
Index. Haritoṣamālā, pp. 14–15.

http://sanskritlibrary.org/Sanskrit/pub/lies_sl.pdf
http://sanskritlibrary.org/Sanskrit/pub/lies_sl.pdf
http://bombay.indology.info/software/programs/index.html
http://bombay.indology.info/software/programs/index.html


Improving the learnability of classifiers for Sanskrit
OCR corrections

Devaraja Adiga, Rohit Saluja, Vaibhav Agrawal, Ganesh

Ramakrishnan, Parag Chaudhuri, K. Ramasubramanian and

Malhar Kulkarni

Abstract: Sanskrit OCR documents have a lot of errors. Correcting
those errors using conventional spell-checking approaches breaks down
due to the limited vocabulary. This is because of high inflections
of Sanskrit, where words are dynamically formed by Sandhi rules,
Samāsa rules, Taddhita affixes, etc. Therefore, correcting OCR doc-
uments require huge efforts. In this paper, we present different ma-
chine learning approaches and various ways to improve features for
ameliorating the error corrections in Sanskrit OCR documents. We
simulated Subanta Prakaraṇam of VaiyākaraṇaSiddhāntaKaumudī for
synthesizing off-the-shelf dictionary. Most of the methods we propose
can also work for general Sanskrit word corrections.

1 Introduction
Optical character recognition(OCR) is the process of identifying characters
in document images for creating editable electronic texts. SanskritOCR by
Indsenz, Google OCR and Tesseract are major OCRs available for Sanskrit.
Word level error analysis for 6 books printed at various places of India
having different fonts scanned with 300 DPI are listed in Table 1. Correcting
the errors manually becomes cumbrous even with the OCR accuracy as
high as above 90% unless complemented by a mechanism for correcting
the errors. User feedback based OCR correcting mechanisms can improve
through correcting a contiguous text having a uniform font. We discuss
different approaches for correcting Sanskrit OCR based on available system
resources.

143



144 Adiga et al

Book Name Publisher Details

Year
of
Pub-
lica-
tion

No.
of
Pages
OCRed

WER
- Ind-
Senz

WER
-
Google

Raghuvaṁśam
Sanjīv-
inīsametam

Nirṇaya Sāgara
Press, Mumbai 1929 200 19% 35%

Nṛsiṃhapūr-
vottaratā-
panīyopaniṣat

Ānandāśrama,
Pune 1929 160 34% 41%

Siddhānta
Śekhara-1

Calcutta
University Press 1932 390 38%* 66%

Gaṇaka-
Tarangiṇī

Jyotish Prakash
Press, Varanasi 1933 150 34% 46%

Siddhānta
Śkhara-2

Calcutta
University Press 1947 241 55%* 53%

Siddhānta
Śiromaṇi

Sampuranananda
University,
Varanasi

1981 596 18% 29%

Table 1
Word Error Rates for Indsenz’s SanskritOCR and Google OCR (*After

training 5 pages)

Conventional approaches for spell checking uses Levenshtein-Damerrau
edit distance to a known dictionary and auto-corrects the errors using a
language model (Whitelaw et al. 2009). For post-OCR corrections of lan-
guages highly rich in inflections, this naive approach results in poor accu-
racy (Sankaran and Jawahar 2013). It primarily depends upon lookups into
a fixed vocabulary. Such vocabulary for Sanskrit is always incomplete be-
cause of the complexity arising due to its inflectional nature, tendency to
do Sandhi, and highly productive in derivative morphology such as Samāsa,
Taddhita, and Kṛdanta.

In recent works, encoder-decoder Recurrent Neural Networks (RNNs)
with character-based attention have shown state-of-the-art results in Neu-
ral Language Correction (Xie et al. 2016). Saluja et al. (2017a) proposed
a logistic regression-based machine learning framework for correcting In-



Sanskrit OCR 145

dic OCRs using dual-engine OCR. For correcting OCRs across four Indic
languages (Sanskrit, Hindi, Kannada, and Malayalam) in the single-engine
environment, Saluja et al. (2017b) have succeeded in reaching the state of
art using a special type of RNNs, called Long Short Term Memory Networks
(LSTM).

OCR Word Corrected Word Ground Truth
िवशीआआआआर ्िन िवशीणा िन िवशीणा िन
ष◌्े।पिनषत ्ि◌९ ष◌्ोपिनषदि्◌ षोपिनषिद
भत ुम ुिनराआ◌्ूएतिवरः भत ुम ुिनराि◌तिवरः भत ुम ुिनराितिवरः
मलिननाः मलतयू िननाः मलतयू िननाः
म◌ातपबं महाचबं महाचबं
न◌ै९वा ्ि◌०इषते ह◌ैवाभ ्ि◌ष ्ि◌ते हवैािभिषते
ऊूउगव◌्ू◌ा◌्ुऋउScऊ भगवा भगवा

Table 2
Examples of Sanskrit OCR words corrected by our framework.

OCRed data of over 5k Sanskrit document images and 12k in different
languages were corrected using our framework - OpenOCRCorrect.

The basic dictionary lookup approach requires fewer system resources
whereas Neural language correcting models demand higher system specifi-
cations. So we propose and evaluate different models for correcting Sanskrit
OCR1, starting from simple dictionary lookup to Neural attention models.
For building the vocabulary for Sanskrit, we developed a Subanta-generator.
We will be using various other auxiliary sources which we will discuss in the
next section. Then in section 4 we discuss the results for various error de-
tecting approaches in detail. Suggestion generation will be explained in the
following section. Table 2 shows the OCR errors corrected by our frame-
work and Figure 1 is a screen-shot of our framework. We are using multicolor
coding to depict compound words, out-of-vocabulary words, auto-corrected
words and correct words.

Our contributions in this paper are i) Suggesting different models for
error detection based upon the amount of training data (if the range is 10k
and GPU is not available use Plug-in classifier, for a range of 100k with
GPU use LSTM and for a range of 1000k with GPU use attention models)

1The source code of Sanskrit OCR corrector, OpenOCRCorrect is available at
https://goo.gl/WqoVi2



146 Adiga et al

Figure 1
A screen-shot of our framework.

ii) increasing the learnability of ML classifiers by increasing auxiliary sources
and iii) Comparing the different ML-based and Deep learning-based methods
for the task of Error detection. We have improved the results of plug-
in-classifier by introducing more auxiliary sources and synthesized words.
Further, we use attention model to compare the results with LSTM based
error detection.

2 Auxiliary Sources
Figure 2 depicts the functionality of human-interactive framework for OCR
corrections. We will be using various auxiliary sources that are helpful in
verifying the correct words and curating the word-level errors. Our system is
leveraged by OCR data from different systems, dynamically updated OCR
confusions, and domain-specific vocabulary. We are also using a synthesized
off-the-shelf dictionary. These features are used for supervised learning by
training a plug-in-classifier for achieving a better F-score. Erroneous words
are corrected using suggestions through human interaction to keep the con-
fidence level high. Later on, words having similar errors are auto-corrected.



Sanskrit OCR 147

Figure 2
Block diagram of our framework.

In the following sections, we discuss various auxiliary sources used by the
framework.

2.1 OCR documents from different systems
Since different OCR systems are using different models they are likely to
make different kinds of errors and are likely to be correct on the OCR
words that they agree upon. This observation is especially leveraged by the
ensemble-based ML approach (Polikar 2006). Therefore OCR documents
from different systems can become a powerful auxiliary source.

2.2 Off-the shelf dictionary
Since the vocabulary is incomplete for Sanskrit due to rich inflections, we
developed a Subanta generator for synthesizing noun variants. A databank
of noun variants is available through Huet (2017) which has around 6.5 lakh
unique Subanta words. Among the different declension generators, Patel and



148 Adiga et al

Shivakumari Katuri (2015) is an open-source Subanta generator for Sanskrit.
We developed a new Subanta generator for the following reasons

• For ease of integration into the OCR framework

• For overcoming the errors produced by the existing Subanta generator.
Examples from Patel and Sivakumari Katuri (2015) -

– ूथमा एकवचनम ्for words ending with ऋ.
– ितीया िवचनम ्for many of the Sarvanāmaās
– Declensions for words ending with वस ु affix are wrong in case of
भसंा.

• To have the provision for future enhancements
Aṣṭādhyāyā rules corresponding to Subanta Prakaraṇam and required
Sandhi rules are coded in accordance with the rules explanations as given
in (B. Dīkṣita, V. Dīkṣita, and Sarasvatī 2006). For resolving the con-
flicts we chose the order of applicability of rules as per the Paribhāṣā -
परिनारापवादानामुरोरं बलीयः. Context dependencies of many rules are re-
solved by collecting the context information. For example, for the rule एकाचो
बशो भष झ्ष ःोः (अ.8-2-37), the roots collected are गाध ्, गधु ्, गधृ ्, दघ ्, दध ्, भ ्,
िाघ ्, बध ्, बीभ ्, बधु ्. And also the roots गाह,् गहु,् गहृ,् मह,् लह,् दह,् िदह,् ह,् ह,् िाह,् िुह,्
बाह,् बहृ ् are considered after applying ‘दादधेा तोघ ः’ (अ.8-2-32) or ‘हो ढः’ (अ.8-2-
31).An example word where this rule is applied - कामधकु ् (ूाितपिदकम -् कामह)्.
For the rules नाातःु (अ.7-1-78), आीनोन ुम ्(अ.7-1-80) and शनोनम ्
(अ.7-1-81), we grouped the participles of roots belonging to different conju-
gations accordingly. Similar way we tried to completely/partially solve the
context dependencies of many rules.

We have processed XML file of Monier-Williams Sanskrit Dictionary
available in the Cologne Digital Sanskrit Dictionary collections, Insti-
tute for Indology and Tamilistics, University of Cologne (http://www.
sanskrit-lexicon.uni-koeln.de/download.html) and extracted more
than 1.8 lakh words with the gender information from the XML file. Vib-
hakti variants for these words are generated using the Subanta generator
and around 3.2million unique words are generated. We also used the verbs
which are listed in the िबयापिनािदका (Verb-forms-Generator) of ILTP-DC
(Indian language technology proliferation and deployment center), which
are around 3 lakh unique words. These 3.5 million words are used as an
off-the-shelf dictionary for the OCR corrector.

http://www.sanskrit-lexicon.uni-koeln.de/download.html
http://www.sanskrit-lexicon.uni-koeln.de/download.html


Sanskrit OCR 149

2.3 Domain specific vocabulary
In Sanskrit literature frequency of commonly used words changes from one
Śāstra to another. So the domain-specific vocabulary is the most powerful
auxiliary resource which will fill the words not found in the off-the-shelf dic-
tionary. Domain-specific vocabulary is created by extracting unique strings
from the various books available in Göttingen Register of Electronic Texts in
Indian Languages (GRETIL 15.11.2001 - 16.02.2018). This auxiliary source
is also dynamically updated as the user corrects the document, which helps
in correcting the rest of the document.

2.4 Sandhi Rules
Due to Sandhi rules and Samāsa, words can change dynamically in Sanskrit
documents. We are using basic Sandhi rules to find the subwords of a com-
pound word and to match with the words from the vocabulary for detecting
its correctness. A greedy approach is used for this splitting with a mini-
mum set of words of maximum length and minimum edit distance as the
criteria. For example, the OCR word जागिरतावायाभवेावाऽयमंु will be split
into जागिरत, अवायाभ ्(this word is matched with अवायाम)्, एव, अवाऽयम ्
and उं. This helps in detecting out-of-vocabulary words and generating
suggestions for them.

2.5 Document and OCR specific n-gram confusions
Since different OCR systems use different preprocessing techniques, different
classifier models, error confusions for a word varies from one OCR engine to
another (Abdulkader and Casey 2009). Thus, the OCR specific confusions
can be helpful in deciding whether the part of the erroneous word should be
changed or not and also in deciding the tie while changing the part of the
erroneous word. For example, while changing the erroneous word िनवः, if
the dictionary lookup suggests िनबः and िनरः as nearest possible words,
having higher n-gram confusion to व->ब biases the selection towards िनबः.



150 Adiga et al

3 Methodologies Followed

3.1 Learning by Optimizing Performance Measures though
Plug-in Approach

We rephrase our basic problem of error detection as that of continuously
evolving a classifier that labels the OCR of a word as correct or incorrect.
The classifier should be trained to optimize a performance measure that is
not necessarily the conventional likelihood function or sum of squares error.
An example performance measure to be maximized and that is coherent with
our needs of maximizing recall (coverage) in detecting erroneous words while
also being precise in this detection is the F−score, which, unfortunately,
does not decompose over the training examples and can be hard to optimize.
We adapt a plug-in approach (Narasimhan, Vaish, and Agarwal 2014) to
train our binary classifier over such non-decomposable objectives while also
being efficient for incremental re-training.

Consider a simple binary classification problem where the task is to
assign every data point x ∈ X , a binary label y ∈ {−1,+1}. Plug-in-
classifiers achieve this by first learning to predict Class Probability Esti-
mate (CPE) scores. A function g : X → [0, 1] is learned such that g(x) ≈
Probability(y = 1). Various tools such as logistic regression may be used to
learn this CPE model g. The final classifier is of the form sign(g(x) − η)
where η is a threshold that is tuned to maximize the performance measure
being considered, e.g. F-measure, G-mean etc.

In Saluja et al. (2017a), various features based on dictionary n-grams and
language rules have been used in Sanskrit, Hindi, and Marathi. Our major
work in this paper is to improve features for such a classifier and verify their
effect in three different domains in Sanskrit. We use train:val:test ratio as
48:12:40 for all our experiments that use plug-in-classifier since we wanted
to explore the possibility of using the classifier to correct the last 40% of the
book, once initial 60% of the book is corrected.

3.2 LSTM with fixed delay
The basic RNN (Recurrent Neural Network) can be represented by Equa-
tions .1 and .2.

ht = g(Whhht−1 +Whxxt + bh) (.1)



Sanskrit OCR 151

yt = Wyhht (.2)

g can be sigmoid(σ(xi) = exp(xi)∑
j [exp(xj)]

) or tanh (tanh(x) = 2σ(2x) − 1)
or Rectified Linear Unit (ReLU) (f(x) = max(0, x)) (Talathi and Vartak.
2014). The matrices Whx and Wyh connect the input to the hidden layer
and hidden layer to output respectively. These matrices are common for
instance in the sequence. The matrix Whh is the feedback from past input
and is responsible for remembrance and forgetfulness of the past sequence
based on context.

Equation .2 at each time t can be unfolded back in time, to time t = 1 for
the 1st character of the word sequence, using Equation .1 and the network
can be trained using back-propagation through time (BPTT) (Mike and
Paliwal. 1997).

Since we have taken care to ensure equal byte length per letter with
ASCII transliteration scheme, for the loss function we used negative log-
likelihood of Log SoftMax (multi-class) function. The Log SoftMax function
is given in .3, where yti is the value at ith index of output vector yt.

f(yti) = log(
exp(yti)∑
j [exp(ytj)]

) (.3)

The equations are similar for the LSTM with each unit as a memory unit,
instead of a neuron. Such memory unit remembers, forgets, and transfers
cell state to the output(or next state) based on input history. The cell state
at time t is given by equation .4 where the forget gate ft and the input gate
it fire according to equations .5 and .6 respectively.

ct = ftct−1 + itg1(Whcht−1 +Wxcxt + bc) (.4)

ft = g2(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (.5)

it = g2(Wxixt +Whiht−1 +Wcict−1 + bi) (.6)
The data is selectively transferred from the cell to hidden state ht ac-

cording to equation .7 where the selection is done by the firing of output
gate ot as per equation .8.

ht = otg3(ct) (.7)



152 Adiga et al

g1 and g3 are generally tanh and g2 is generally sigmoid.

ot = g2(Wxoxt +Whoht−1 +Wcoct−1 + bo) (.8)

Saluja et al. (2017b) uses 512 X 2 LSTM with the fixed delay (between
the input sequence and output sequence) trained and tested on characters
from 86k OCR word correction pairs with train:val:test split as 64:16:20.
The model, when trained on large data, is able to learn OCR specific error
patterns as well as a language model. The model abstains from changing the
correct word. Thus, for error detection, the word changed by such a model
is marked as incorrect whereas the word unchanged by the model is marked
as correct. Such a model over-fits the OCR system and domain. It works
well with the dataset range of a hundred thousand OCR word correction
pairs.

3.3 Attention Model
Here, we use the model with more number of layers than LSTM based model
discussed in the previous section. Attention models are the models with a
separate encoder as well as a decoder as compared to LSTM based model
wherein the same layers encode as well as decode a sequence. Attention
models contain RNN layers as an encoder that can take characters from
OCR words, and similar RNN based decoders decode the encoder’s output
to correct words when trained with a large amount of data. The attention
layers, which are applied on encoder’s output to help the decoder, learn
to give attention to different contexts around the character being corrected
based on the input. We train and test such a model with the 86k OCR
word correction pairs used in (Saluja et al. 2017b). We use open-source
library OpenNMT ( http://opennmt.net/) for this purpose with the de-
fault model that includes 500 X 2 LSTM encoder as well as 500 X 2 LSTM
decoder. Such a model is able to learn a dataset of an order of millions of
OCR word correction pairs as per our experiences for French and English in
ICDAR Post-OCR Competition 2017. Here again, we mark words changed
by the model as incorrect for error detection and the words that remained
unchanged as correct. As we will see later, even when trained on 86k pairs,
such a model is able to perform close to the LSTM based model for the error
detection task.

http://opennmt.net/


Sanskrit OCR 153

4 Error Detection Methods and Results

4.1 Unsupervised approach

Approach TP FP TN FN Prec. Recall F-Score
Gen. Dict. 89.18 40.12 59.87 10.82 29.75 89.18 44.61
Lookup
Sandhi Rules 54.34 13.23 86.77 45.66 43.89 54.34 48.56
Sec. OCR 90.68 23.59 76.40 9.31 42.79 90.68 58.14
Lookup

Table 3
Error Detection Results with unsupervised methods. Using Sandhi rules
while dictionary lookup increase true detections(TN) but increase false
detections(FN) as well which is balanced by secondary OCR lookup.

We applied various methods for detecting errors in the OCR text. To
start with, we used the book named “Āryabhaṭīyabhāṣya of Nīlakaṇṭha
III Golapāda(AnantaśayanaSaṃskṛtaGranthāvaliḥ, 1957)” for which we had
the OCR text (OCRed from indsenz) and the ground truth data available.

Using unsupervised methods, commonly used dictionary lookup based
approach gave poor F-Scores due to a lot of correct words marked as errors,
i.e. lower True Negative percentage as shown in Table 3. Marking the words
that are formed by applying Sandhi rules on dictionary lexicons as correct
increased detection of correct words(True Negatives) but not the detection
of errors (True Positives) as compared to the previous approach. For this
book, lookup into OCR output of other engine (Google Docs) for the same
document images improved the F-Score to a decent value.

4.2 Single Engine Environment
For supervised learning using the plug-in-classifier as explained in section
3.1, we are splitting the data with train:val:test ratio as 48:12:40, we train
the plug-in-classifier with various features. We are able to improve the row 1
results in Table 3 by including frequency of n-grams (upto 8) in the general
dictionary as features. We also include the binary feature based on lookup
in a general dictionary. The results are shown in the first row of Table 4.



154 Adiga et al

Approach TP FP TN FN Prec. Recall F-Score
Classifier with
ngrams
frequency +
word lookup in
General Dict.
as features

73.38 22.86 77.13 26.61 38.88 73.38 50.83

Classifier with
ngrams
frequency +
word lookup in
Synthesised
Dict.(superset
of gen. dict.) as
features

74.06 21.02 78.98 25.94 41.14 74.06 52.89

Classifier with
ngrams
frequency +
word lookup in
Synthesised
Dict. as well as
Domain Dict.
as features

66.37 13.08 86.92 33.63 50.38 66.37 57.28

Classifier with
features in row
3 + no. of
Sandhi
components in
OCR word as
features

68.50 13.53 86.47 31.50 50.10 68.50 57.87

Table 4
ML Classifier’s Error Detection Results in Single Engine Environment.

Here we achieved the F-score close to that of Secondary OCR lookup using
Unsupervised approach

We further include more words in the dictionary by synthesizing nouns



Sanskrit OCR 155

and collecting the verbs as explained in 2.2. This helps us to achieve the
results shown in row 2 of Table 4.

Adding frequencies of n-grams from OCR word as features from domain
dictionary generated as explained in 2.3 along with synthesized dictionary
improved the results as shown in row 3 of Table 4.

For improving the results further as shown in row 3 of Table 4, we used
three splitting based features. i) Split the OCR words using commonly used
Sandhi rules and used the no. of lexicon components obtained from the
general dictionary as features. ii) We also used no. of lexicon components
obtained by splitting the OCR word as lexicons of domain dictionary (for
Jyotiṣa) as a feature. Herein, the no. of characters from unknown sub-
strings in the OCR word are added to the feature. iii) The product of
features obtained in (i) and (ii) is also used as the feature. We normalized
all these features about the mean and standard deviation of training data.

The results are shown in row 4 of Table 4. It is important to note that
here in single-engine environment we are able to reach closer to the dual
engine environment based Secondary OCR Lookup approach given in row 3
of Table 3.

4.3 Multi Engine Environment
We further include the dual engine OCR agreement as a feature in addition
to the features used in previous sections and achieve the results obtained
in Table 5. Here we have used Indsenz as primary OCR engine and Google
docs as secondary OCR engine.

We improve the results further by using the feature of dual OCR agree-
ment between Indsenz and Tesseract in addition to previous features to
obtain the results shown in row 4 of Table 5.

We present the results of Plug-in Classifier trained and tested on the
dataset of books with different domains in Table 6 for proving its consistency
over various domains. Row 1 in this table shows the baseline for the book
‘Nṛsiṃhapūrvottaratāpanīyopaniṣat’ (ĀnandāśramaSaṃskṛtaGranthāvaliḥ,
1929) and row 2 shows the results achieved using all the features (obtained
using triple engine environment, off-the-shelf dictionary, domain vocabulary
and n-gram frequency from general, synthesized and domain vocabularies).
It is important to note that the TP (Errors detected as errors) is high for
the baseline in this case as compared to TP for baseline in other domains.
However, TN (Correct words detected as correct) for the dictionary lookup



156 Adiga et al

Approach TP FP TN FN Prec. Recall F-Score
Classifier with
features in
table 4 row 2
along with dual
engine
agreement*

85.13 17.84 82.16 14.87 48.62 85.13 61.89

Classifier with
features in
table 4 row 3
along with dual
engine
agreement

78.04 13.67 86.33 21.96 53.11 78.04 63.20

Classifier with
features in
table 4 row 4
along with dual
engine
agreement

83.49 15.26 84.74 16.51 52.25 83.49 64.28

Classifier with
features in
table 4 row 4
along with
triple engine
agreements

83.43 14.95 85.04 16.56 52.74 83.43 64.63

Table 5
ML Classifier’s Error Detection Results in Multi Engine Environments.

(*state of the art (Saluja et al. 2017a)). Here TP is significantly increased
when compared to single engine environment.

baselines are however close to each other for all domains as shown in row 1
of Table 3 and row 1 and row 3 of Table 6. The reason for high TN could
be less ambiguity (as compared to other domains) in incorrect words since
TP (unlike TN) does not depend on the presence of correct OCR words in
a dictionary. Hence we are getting F-score as high as 62.87 for the baseline
in this case. We also evaluated the system for Sāhitya domain. For this



Sanskrit OCR 157

Approach TP FP TN FN Prec. Recall F-Score
Vedānta gen.
dict. lookup
baseline

85.52 34.35 65.65 14.48 49.71 85.52 62.87

Vedānta Plug-in
Classifier 79.95 9.80 90.20 20.05 77.95 79.95 78.94

Sāhitya gen. dict.
lookup baseline 64.24 35.36 64.64 35.76 32.86 64.24 43.49

Sāhitya Plug-in
Classifier 87.88 13.37 86.62 12.12 66.52 87.88 75.72

Table 6
ML Classifier’s Error Detection Results for other domains. Above results

shows the generality of the model for different domains of Sanskrit
literature.

we have used the book ‘Raghuvaṃśam Sanjīvinīsametam’ (Nirṇaya Sāgara
Press, 1929, 1-9 Sarga) and row 3 in table 6 shows the baseline, whereas
row 4 shows the results obtained using our framework.

4.4 Deep Neural Network-based approaches

Approach TP FP TN FN Prec. Recall F-Score
LSTM with fixed
delay* 92.64 5.45 94.54 7.36 94.84 92.64 93.72

Char. level
Attention model 81.53 7.74 92.26 18.47 91.92 81.53 86.41

Table 7
Neural Network’s Error Detection Results. (*state of the art (Saluja et al.

2017b))

Here, in Table 7, we present the results for the approaches described in
Sections 3.2 and 3.3 for 86k pairs used in (Saluja et al. 2017b) with 64:16:20
as train:val:test split. The first row shows the Sanskrit results from (Saluja
et al. 2017b). The second row presents the results for the character level
attention model. For the attention model, we use characters from OCR word



158 Adiga et al

and its preceding OCR word (as context) at input and characters from the
correct word at the output. We tried other contexts at the input as well.
Using the context of characters from one word gave optimized F-Score.

F-scores show that using these approaches we can outperform all other
ML techniques, but requires a large amount of training data for generic
adaptations. Since these models learn error patterns and language based
on the dataset, if the test data differs (in terms of OCR confusions/system
and/or domain from training data), we can make use of approaches men-
tioned in the previous sections. Since plug-in-classifier uses general auxiliary
sources, we recommend to use it for practical purposes.

5 Suggestion Generation
The results for various ways of exploiting auxiliary sources, to generate ap-
propriate suggestions, are given in (Saluja et al. 2017a) for “Āryabhaṭīyab-
hāṣya of Nīlakaṇṭha III Golapāda(1957)”.

Here, in Table 8, we show the improvement in results due to adaptations
of domain dictionary and OCR Confusions on-the-fly for “Āryabhaṭīyab-
hāṣya of Nīlakaṇṭha III Kālakriyāpāda(AnantaśayanaSaṃskṛtaGranthāvaliḥ,
1931)”.

We synthetically generated word images for the words in Sanskrit dic-
tionaries, and OCR-ed them using ind.senz (ind.senz 2014) and extracted
around 0.5 million erroneous-correct word pairs. We used the longest com-
mon subsequence algorithm (Hirschberg 1977) for generating around 0.78
million OCR character confusions. The row 1 of Table 8 shows the total per-
centage of correct suggestions obtained using various auxiliary sources with
i) words common to dual OCR systems as Domain Vocabulary throughout
the document and ii) obtained synthesized confusions. As shown in row 2,
we further improved the quality of suggestions by uploading the corrected
domain words on-the-fly after the user corrects the page. Adapting the con-
fusions on-the-fly page by page further improved results as shown in row 3.
Using real confusions from the primary OCR text and ground truth from
other books further helped in improving results as shown in row 4 of Table 8.



Sanskrit OCR 159

Sources Included Percentage of
Correct Suggestions

Domain words with dual OCR agreement
+ Synthesized Confusions 36.26
Prev. + adapting Domain Words/Page 36.38
Prev. + adapting Confusions/Page 37.14
Prev. - Synthesized + Real Confusions 39.40

Table 8
Improvement in Suggestions with Adaptive sources for “Āryabhaṭīyabhāṣya

of Nīlakaṇṭha III Kālakriyāpāda(AnantaśayanaSaṃskṛtaGranthāvaliḥ,
1931)”.

6 Conclusions
In this paper, we demonstrate different ML approaches for Sanskrit OCR
corrections. Our framework leverages synthesized dictionary, n-gram error
confusions and domain vocabularies. Error confusions and domain-specific
vocabularies grow on-the-fly with user corrections. We have presented a
multi-engine environment which is useful in detecting potential errors. Using
various auxiliary sources along with plug-in-classifier we succeed in achieving
F-Scores better than (Saluja et al. 2017a). LSTM with fixed delay is outper-
forming other approaches. Deep neural network-based approaches, however,
require higher-level resources like GPU and a large amount of training data.
Our system is able to generate correct suggestions for the errors having edit
distance as high as 15. As shown in (Saluja et al. 2017a), our GUI is able
to reduce the overall cognitive load of the user by providing adequate color
coding, generating suggestions, and auto-correcting similar erroneous words.
As a future enhancement to the framework, Sandhi splitting using a greedy
approach can be improved with better algorithms.



References
Abdulkader, Ahmad and Matthew R. Casey. 2009. “Low Cost Correction of

OCR Errors Using Learning in a Multi-Engine Environment”. In: Pro-
ceedings of the 10th international conference on document analysis and
recognition.

Dīkṣita, Bhaṭṭojī, Vāsudeva Dīkṣita, and Jñānendra Sarasvatī. 2006.
Vaiyākaraṇasiddhāntakaumudī with the commentary Bālamanoramā and
Tattvabodhinī. Motilal Banarasidas.

GRETIL. 15.11.2001 - 16.02.2018. Götingen Register of Electronic Texts in
Indian Languages. url: http://gretil.sub.uni- goettingen.de/
gretil.htm.

Hirschberg, Daniel S. 1977. “Algorithms for the longest common subse-
quence problem”. Journal of the ACM 24.4pp. 664–675.

Huet, Gérard. 2017. The Sanskrit Heritage Resources. url: https : / /
gitlab.inria.fr/huet/Heritage%5Ctextunderscore%20Resources/.

ind.senz. 2014. “SanskritOCR”. http://www.indsenz.com/. Last accessed on
01/15/2018.

Mike, Schuster and Kuldip K. Paliwal. 1997. “Bidirectional recurrent neural
networks”. In: IEEE Transactions on Signal Processing.

Narasimhan, Harikrishna, Rohit Vaish, and Shivani Agarwal. 2014. “On
the Statistical Consistency of Plug-in Classifiers for Non-decomposable
Performance Measures”. In: Proceedings of NIPS.

Patel, Dhaval and Shivakumari Katuri. 2015. “Prakriyāpradarśinī - an open
source subanta generator”. In: Sanskrit and Computational Linguistics.
D. K. Publishers, New Delhi.

Patel, Dhaval and Sivakumari Katuri. 2015. Subanta Generator. Last
accessed on 09/30/2017. url: http : / / www . sanskritworld . in /
sanskrittool/SanskritVerb/subanta.html.

Polikar, R. 2006. “Ensemble based systems in decision making”. In: IEEE
Circuits and Systems Magazine.

Saluja, Rohit, Devaraj Adiga, Parag Chaudhuri, Ganesh Ramakrishnan, and
Mark Carman. 2017a. “A Framework for Document Specific Error De-
tection and Corrections in Indic OCR”. 1st International Workshop on
Open Services and Tools for Document Analysis (ICDAR- OST).

160

http://gretil.sub.uni-goettingen.de/gretil.htm
http://gretil.sub.uni-goettingen.de/gretil.htm
https://gitlab.inria.fr/huet/Heritage%5Ctextunderscore%20Resources/
https://gitlab.inria.fr/huet/Heritage%5Ctextunderscore%20Resources/
http://www.sanskritworld.in/sanskrittool/SanskritVerb/subanta.html
http://www.sanskritworld.in/sanskrittool/SanskritVerb/subanta.html


Sanskrit OCR 161

— 2017b. “Error Detection and Corrections in Indic OCR using LSTMs”.
International Conference on Document Analysis and Recognition (IC-
DAR).

Sankaran, Naveen and C.V. Jawahar. 2013. “Error Detection in Highly In-
flectional Languages”. In: Proceedings of 12th International Conference
on Document Analysis and Recognition. IEEE, pp. 1135–1139.

Talathi, Sachin S. and Aniket Vartak. 2014. “Improving performance of re-
current neural network with relu nonlinearity”. In: In the International
Conference on Learning Representations workshop track.

Whitelaw, Casey, Ben Hutchinson, Grace Y Chung, and Gerard Ellis. 2009.
“Using the web for language independent spellchecking and autocorrec-
tion”. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing: Volume 2. Association for Computational Linguis-
tics, pp. 890–899.

Xie, Ziang, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew
Y. Ng. 2016. “Neural language correction with character-based atten-
tion”. arXiv preprint arXiv:1603.09727.





A Tool for Transliteration of Bilingual Texts
Involving Sanskrit

Nikhil Chaturvedi and Rahul Garg

Abstract: Sanskrit texts are increasingly being written in bilingual and trilin-
gual formats, with Sanskrit paragraphs or shlokas followed by their cor-
responding English commentary. Sanskrit can also be written in many
ways, including multiple ramanized encodings such as SLP-1, Velthuis etc.
The need to handle code-switching in such texts is exacerbated due to the
requirement of rendering web pages with multilingual Sanskrit content.
These need to automatically detect whether a given text fragment is in San-
skrit, followed by the identification of the form/encoding, further selec-
tively performing transliteration to a user specified script. The Brahmi-
derived writing systems of Indian languages are mostly rather similar in
structure, but have different letter shapes. These scripts are based on sim-
ilar phonetic values which allows for easy transliteration. This correspon-
dence forms the basis of themotivation behind deriving a uniform encoding
schema that is based on the underlying phonetic value rather than the sym-
bolic representation. The open-source tool developed by us performs this
end-to-end detection and transliteration, and achieves an accuracy of 99.1%
between SLP-1 and English on a Wikipedia corpus using simple machine
learning techniques.

1 Introduction
Sanskrit is one of the most ancient languages in India and forms the basis of nu-
merous Indian languages. It is the only known language which has a built-in
scheme for pronunciation, word formation and grammar (Maheshwari 2011). It
is one of the most used languages of it's time and hence encompasses a rich tra-
dition of poetry and drama as well as scientific, technical, philosophical and re-
ligious texts. Unfortunately, Sanskrit is now spoken by only a small number of
people. The aforementioned literature, though available, remains inaccessible to
most of the world. However, in recent years, Sanskrit has shown a resurgence

163



164 Caturvedi and Garg

through various media, with people reviving the language over the internet (Nair
and Devi 2011) and through bilingual and trilingual texts.

There exist numerous web-based application tools that provide age-old San-
skrit content to users and assist them with getting an insight into the language.
Cologne Sanskrit Dictionary Project (Kapp and Malten 1997) aims to digitize the
major bilingual Sanskrit dictionaries. Sanskrit Reader Companion (Goyal and
Huet 2013) by INRIA has tools for declension, conjugation, Sandhi splitting and
merging along with word stemming. Samsadhani (A. Kulkarni 2017) by Univer-
sity of Hyderabad supports transliteration, morphological analysis and Sandhi.
Sanskrit language processing tools developed at the Jawaharlal Nehru University
(Jha 2017) provide a number of tools with the final aim of constructing a Sanskrit-
Hindi translator. In this paper, we attempt to construct a transliteration tool to
render the web pages of the above tools in multiple scripts and encodings at the
backend. Through this, we aim to expand the reach of Sanskrit to a wider com-
munity, along with the standardization of an open-source tool for transliteration.

The number of bilingual and trilingual content involving Sanskrit has been on
a steady rise. For example, the Gita Supersite (Prabhakar 2005) maintained by IIT
Kanpur serves as a huge bilingual database of the Bhagvad Gita, the Ramacharit-
manas andUpanishads. Traditional texts such as Srisa Chandra Vasu's translation
of the Ashtadhyayi in English (Vasu 1897) exist in a similar format. These works
broadly follow a commentary structure with Sanskrit hyms, verses andwords fol-
lowed by their translation in popularmodern day languages like English orHindi.
Code-switching (Auer 2013) is the practice of moving back and forth between two
languages, or between two dialects/registers of the same language. Due to their
commentarial nature, multilingual Sanskrit works constitute massive amounts of
code-switching. For example, an excerpt of the Valmiki Ramayana from Gita Su-
persite: "तपी ascetic, वाीिक: Valmiki, तप: ाायिनरतम ्highly delighted in the
practice of religious austerities and study of vedas, वािवदां वरम ्eloquent among
the knowledgeable, मिुनपुवम p्reeminent among sages, नारदम N्arada, पिरपू en-
quired." This motivates the need for a word-level transliteration tool that tackles
areas of code-switching and performs transliteration through an automatic detec-
tion of the relevant sections.

Romanisation is another phenomenon that has led to the resurgence of San-
skrit on the Internet. In linguistics, romanisation is the conversion of writing from
a different writing system to the Roman (Latin) script. Multiple methods of this
transliteration have emerged, although none has emerged as the clear standard.
These methods include SLP1, Velthuis, Harvard-Kyoto, ISO15919, WX, IAST and
National Library at Kolkata romanisation. Such romanisation makes it easy for



Transliteration tool 165

large parts of the world population to pronounce and appreciate Sanskrit verses.
Therefore, any standardized transliteration tool for Sanskrit needs to support all
the above romanisation encodings

A property of the Sanskrit language and other major Indian languages like
Hindi, Marathi, Tamil, Gujarati etc. that forms the basis of our transliteration,
is that these languages are written using different letter shapes (scripts) but are
rather similar structurally. The same sounds are duplicated across these lan-
guages, allowing for easy transliteration. The phonetic sound [ki] (IPA) will
be rendered as िक in Devanagari, as ਿਕ in Gurmukhi, and as in Tamil. Each
having different code- points in Unicode and ISCII1. This enabled us to formu-
late a mediating encoding schema that encodes the sound of a syllable rather than
any syntactical aspect, thus allowing seamless transliteration between any 2 given
scripts.

Romanised Sanskrit however exacerbates the problem of code-switching. The
requirement for a general-purpose transliteration tool is now to differentiate be-
tween two words of the same script, which turns out to be a non-trivial problem.
We again use the intuition of phonetics to overcome this problem. Certain sounds
(or sequence of sounds) occur more frequently in some languages than in others.
This allows us to formulate the classifier using a simple Naive Bayes model that
functions on all possible substrings of a given word. We manage to achieve a
classification accuracy of 99.1% between English and Sanskrit written using SLP1.

The rest of the paper is organized as follows. In section 2 we briefly describe
presently used encoding and romanisation schemes forwriting Sanskrit texts. Sec-
tion 3 describes the prevalent transliteration tools available. Sections 4 and 5 re-
spectively describe our transliterator and script detector. In section 6, we present
our results and discuss possible future work.

2 Sanskrit Alphabet and Encodings

The Sanskrit alphabet comprises 5 short (॑)2 vowels, 8 long (दीघ ) vowels and 9
prolated (तु) vowels. Each of these vowels can be pronounced in three different

1Indian Script Code for Information Interchange (ISCII) is an 8-bit coding scheme for
representing the main Indic scripts. Unicode is based on ISCII, and with Unicode being
the standard now, ISCII has taken a back seat.

2In this paper, we use Unicode Devanagari enclosed within round brackets for better
understanding through popular Sanskrit terms.



166 Caturvedi and Garg

ways: acute accent (उदा), grave accent (अनदुा) and circumflex (िरत). Vowels in
acute accent are written as before (अ), in grave accent, a horizontal line is drawn
under them (अ॒) and circumflex vowels arewrittenwith a vertical line drawn above
them (अ॑). There are 33 consonants including 4 semi-vowels, 3 sibilants and 1 as-
pirate (ह).

There are several methods of transliteration from Devanagari to the Roman
script (a process known as romanization) which share similarities, although no
single system of transliteration has emerged as the standard. SLP1 (P. Scharf 2011)
andWX (Bharati et al. 1995) map each Devanagari letter to exactly one ASCII sym-
bol. Velthuis (Velthuis 1981) is based on using the ISO 646 repertoire to repre-
sent mnemonically the accents used in standard scholarly transliteration. IAST
(Trevelyan, Jones, and Williams 1894) incorporates diacritics to represent letters.
Harvard-Kyoto (Nakatani 1996) largely resembles SLP1 in terms of using capital
letters in its mapping. ITRANS (Chopde 1991) exists as a pre-processing package
and hence is widely used for electronic documents. ISO15919 (ISO/TC-46 2001)
like IAST uses diacritics. A comparison of some of the above schemes was first
presented in (Huet 2009). A more detailed comparison is also given under Ap-
pendix A of this paper. Reader may refer to (P. M. Scharf and Hyman 2012) for a
thorough analysis and discussion.

Unicode has designated code blocks for almost all major Indian scripts. The
supported scripts are: Assamese, Bengali (Bangla), Devanagari, Gujarati, Gur-
mukhi, Kannada, Malayalam, Oriya, Tamil, and Telugu among others. Across
scripts, Unicode respects alphabet correspondence and letters with similar pho-
netic values are assigned the same code-points. As a result, transliteration can
be done easily with a mere offsetting. In Unicode, the Devanagari symbol (अ) is
coded as U+0905, whereas its representation in Gurmukhi script is (ਅ) which is
coded as U+0A05. In comparison, the symbol (क) in Unicode Devanagari has its
code as U+0915 while in Gurmukhi is (ਕ) with the code as U+0A15. Therefore,
transliteration of Sanskrit texts written using Unicode in Indian scripts can be eas-
ily done by simply changing the offset value.

However, the Unicode encoding doesn’t represent the language in its true
essence. Hindi, Sanskrit andmost other Indian languages are centred around pho-
netic values. Hence the encoded token should ideally represent the entire sound
rather than it being split into different symbols for consonants and vowels. Since
Unicode is based on the display of fonts and not the underlying phonetic struc-
ture, it requires significant parsing to figure out anything about the letter from its
corresponding encoding, which section of consonants it belongs to, whether it is
voiced or unvoiced etc. For example, the symbol (ॐी) stands for the consonants



Transliteration tool 167

(स)् and (र)् followed by the vowel (ई). Its Unicode representation will consist of (स
+ ◌् + र + ◌् + ई). Phonetically 3 units (स a्nd र ्and ई), but represented in Unicode
through 5 Unicode characters. Our tool fixes this issue by creating a new repre-
sentation that encapsulates the consonants and the vowels (or lack of it) in a single
encoding.

A comprehensive phonetic encoding (PE) based on the Ashtadhyayi rules for
computational processing of Sanskrit language has been described in (Sohoni and
M. Kulkarni 2015). In order to implement this encoding in a general purpose
programming language, a 20-bit encoding scheme was proposed. Although this
encoding is phonetically rich, it is possible to compact it into fewer bits without
compromising on the essential phonetic information present in the language. Our
proposed internal encoding described in the following sections aims to achieve
this goal.

Table 1
Comparison of existing Transliteration Tools

Tool Support for Encodings Bi-
lingual

Support

Open
SourceUni

Dev SLP1 ITR Vel. ISO IAST Harv.
Kyoto WX Sohoni

PE
ITRANS Yes No Yes No No No No No No No No
Sanscript Yes Yes Yes No No Yes Yes No No No Yes
Akshara- Yes No Yes Yes Yes Yes Yes No No No No

mukha
Samsaa- Yes Yes Yes Yes No Yes Yes Yes No No Yes
dhanii
Google Yes No No No No No No No No No No
Input

Proposed Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Tool

3 Existing Transliteration Tools
A number of tools exist as of today for Sanskrit transliteration to other scripts and
encodings. We present a brief survey of the same. Aksharamukha (Rajan 2001),
Sanscript (Prasad 2015) and ITRANS (Chopde 1991) are some of the tools currently
used for transliteration in Sanskrit. Google Input is another tool that is used to
transliterating Devanagari to English. Though Aksharamukha and ITRANS sup-
port the romanised forms of Sanskrit, none of the aforementioned tools manage
to handle bilingual scenarios. Most of these (except Sanscript) are also not open
source and hence cannot be utilized by Sanskrit Developers. These tools have been
summarised in Table 1.



168 Caturvedi and Garg

International Phonetic Alphabet (IPA) is an internationally accepted scheme
for encoding phonetic sounds. However, it has a number of representational and
backward transliteration issues because of being completely sound based. The im-
ported sounds (नुा) don’t share any correspondence to their roots. The sounds of
(ऋ) and (िर) have the same representation in IPA, making it impossible to differen-
tiate them while translating back. Anuswar (अनुार) has multiple representations
based on context, but none is unique to it (m, n, chandra). Visarga (िवसग ) has the
same representation as (ह).

Figure 1
Model for Web-Based Applications

WX and SLP encoding schemes are also phonetic in nature. However,
the Sanksrit language alphabet system has a rich structure that categorizes the
phonemes according to the place of pronounciation (Gutturals, Palatals, Retroflex,
Dentals, Labials), the amount of air exhaled (aspirated or unaspirated) and
whether the consonents are voiced andunvoiced. These attritutes of the phonemes
are very useful while carrying out phonologial or morphological processing in the
language. It is desirable to have an encoding that represents these attributes of the
language in a natural manner.

Due to these inefficacies of existing tools andphonetic schemes, we created our
own unified encoding schema which naturally encodes the sounds in the Sanskrit
Varnamala (as described in the next section).



Transliteration tool 169

4 Design of the Transliterator

4.1 Internal Representation
We created an internal encoding that represents simple syllables (single consonant
followed by single vowel) using 16-bits. Initial 5 bits in this encoding represent the
script (hence can support 32 scripts). Next 6 bits represent the consonants (जंन)
while the last 5 bits represent the vowel (र/माऽा). Each 16-bit code represents a
specific simple syllable sound, which can further be reverse mapped to a specified
destination script. In contrast, the Unicode representation for a simple Sanskrit
syllable would require 32-bits under the UTF-16 encoding, and 48-bits under the
UTF-8 encoding.

With 33 consonants and 14 vowels, we can encode their permutations using
just 9-bits versus the 11-bits that we currently are using. But, we preferred to use
some extra bits so as to keep our representation clean and allow for the bits within
themselves to represent certain nuances of the Sanskrit language. Our encoding
respects the phonetic structure of the language as described by Panini in a manner
very similar to the phonetic encoding (PE) of (Sohoni and M. Kulkarni 2015). Just
by using the bit patterns of this encoding, it is possible to figure out important
phonetic characteristics of the letters.

For the 5 bits of the vowels, the second-last bit represents whether the vowel
is a simple vowel (अ, इ, उ, ऋ, ऌ) or a dipthong/compound vowel (ए, ऐ, ओ, औ). The
last bit of the vowels represent the length of the vowel. Long (दीघ ) vowels (आ, ई,
ऊ, ॠ, ॡ, ए, ऐ, ओ, औ) will have their last bit as 1, while short (॑) vowels (अ, इ, उ, ऋ,
ऌ) will have their last bit as 0.

In the case of consonants, the first 3 bits represent the place of pronunciation of
the letter. Thus, the sequence 000 refers to the throat as the source and the letters
are called Gutturals (क,् ख ्, ग ्, घ ्, ङ,् ह)्, 001 refers to the palate and letters are called
Palatals (च ्, छ,् ज ्, झ ्, ञ ्, य ्, श)्. 010 refers to the murdha and are called Retroflex
letters (ट,् ठ,् ड,् ढ,् ण ्, र,् ष)्, 011 contains letters with source of origin as the teeth and
are called Dentals (त ्, थ ्, द,् ध ्, न ्, ल,् स)्. Lastly, 100 refers to the lips and the letters
are called Labials (प ्, फ,् ब ्, भ ्, म ्, व)्, while 101, 110 and 111 are reserved for special
symbols and accents.

As for the last 3 bits of consonants, the first of these is 0 for stop-consonants
(श) which means non-nasal, non-semivowel and non-sibilant consonants. The
second of these bits represents voicing (whether or not the vocal chords vibrate in
pronunciation). It is 1 for voiced (घोष) consonants like (ग ्, घ)् while 0 for unvoiced



170 Caturvedi and Garg

(अघोष) consonants like (क,् ख)्. The last of these bits represents aspiration (a puff
of air at the end of the pronunciation). It is 1 for aspirated (महाूाण) consonants
(ख ्, घ)् while 0 for unaspirated (अूाण) consonants (क,् ग)्. A table describing the
proposed encoding is given in Appendix B.

Figure 2
Model for Bilingual Texts

4.2 Transliterator Pipeline
The transliterator takes a bilingual (or trilingual) document as its input and pro-
duces an output document in the same format where the Sanskrit text is tran-
scribed into the specified script. It consists of 5 stages, namely fragmentation,
script detection, tokenisation, universalisation and specification, explained below.

Fragmentation refers to splitting the given text into smaller fragments
(words, sentences, paragraphs etc). The assumption shall be that the script and
encoding remain same through these fragments if not through the entire text. In
order to make it most general, currently fragmentation is done at the word level.

Script Detection refers to identification of the language, scripts and encod-
ings for the various fragments through a Naive Bayes model described in section
5.

Tokenisation refers to splitting the fragment further into tokens, each of
which represent a single sound. It is similar to the concept of English syllables. So
the sound [ki] will be seen as one single token under this model.

Universalisation refers to the conversion of the token to the universal 16-
bit encoding designed by us. This is done through pre-populated hash maps for
different script tokens.



Transliteration tool 171

Specification refers to the conversion of the universal encoding to the spec-
ified script using pre-populated hash maps.

4.3 Use Cases

Pred
English

Pred
SLP-1 Recall

Actual
English 72294 1605 97.8%

Actual
SLP-1 213 25004 99.2%

Precision 99.7% 93.9% 98.2%

Table 2
Confusion matrix of English vs Sanskrit-SLP-1 without proper noun

correction

4.3.1 Web-based Applications

One of the foremost uses of our transliteration tool is it's utility for web-based
applications. A number of websites nowadays serve the historical epics like the
Gita and the Ramayana that were originally written in Sanskrit. Along with this,
many websites also provide an avenue for people to learn Sanskrit grammar, un-
derstand conjugation and splitting of words, along with explaining the various
forms of Sanskrit verb roots. Such websites are as of now available only in the De-
vanagari script. Our tool can be used to transliterate these pages to a user defined
script/encoding at the backend. The model for this use case has been depicted
in Figure 1. We insert our tool as a middle-ware between the backend and the
frontend. The user specifies his required script/encoding on the frontend and all
outgoing pages from the server pass through our tool while getting converted to
that required script. The frontend then renders the converted HTML to the user
for a seamless experience.

4.3.2 Bilingual Texts

Numerous Sanskrit texts have been modified to bilingual and trilingual texts
through their translation to popular modern languages like English and Hindi.



172 Caturvedi and Garg

These works exist in a commentary form and incorporate massive amounts of
code-switching. To represent any such text in a script different to that of its ori-
gin turns out to be an ordeal because the tool needs to conditionally perform the
transliteration at a micro-level. This problem gets exacerbated when the Sanskrit
verses are written using their Romanised form while the translation language is
English. Figure 2 depicts the model for this use case.

4.3.3 User Driven

The third use for our tool is on the lines of Google input tools. Our tool can al-
low a user to enter a line of Sanskrit (in any script) intertwined with English and
will output the resulting sentence to the user after transliteration. This not only
provides an unmatched amount of flexibility to the user, but also has abundant
relevance in the growing age of multi-lingual social media.

Basline
67.2%

Pred
English

Pred
SLP-1 Recall

Actual
English 73178 721 99.0%

Actual
SLP-1 205 25012 99.2%

Precision 99.7% 97.2% 99.1%
(a) English vs SLP-1

Basline
58.6%

Pred
English

Pred
Velthuis Recall

Actual
English 72649 1250 98.3%

Actual
Velthuis 860 24357 96.6%

Precision 98.8% 95.1% 97.9%
(b) English vs Velthuis

Table 3
Confusion matrix of English vs Sanskrit using different Romanisation

schemata Part-1



Transliteration tool 173

Basline
51.1%

Pred
English

Pred
ITRANS Recall

Actual
English 72778 1121 98.5%

Actual
ITRANS 645 24572 97.4%

Precision 99.1% 95.6% 98.2%
(a) English vs ITRANS

Basline
68.5%

Pred
English

Pred
HK Recall

Actual
English 73269 630 99.1%

Actual
HK 199 25018 99.2%

Precision 99.7% 97.5% 99.2%
(b) English vs Harvard-Kyoto

Basline
73.4%

Pred
English

Pred
ISO Recall

Actual
English 73576 323 99.6%

Actual
ISO 94 25123 99.6%

Precision 99.9% 98.7% 99.6%
(c) English vs ISO15919

Basline
71.5%

Pred
English

Pred
IAST Recall

Actual
English 73368 531 99.3%

Actual
IAST 111 25106 99.6%

Precision 99.8% 97.9% 99.4%
(d) English vs IAST

Table 4
Confusion matrix of English vs Sanskrit using different Romanisation

schemata Part-2



174 Caturvedi and Garg

5 Design of the Script Detector
Differentiating English from Indian scripts, or differentiating different Indian
scripts is easy as each uses a different alphabet with a different Unicode range.
Hence, one can easily achieve a Word-level classifier with 100% accuracy. How-
ever, differentiating English text from Romanized Sanskrit/Hindi texts requires
learning, specially to be able to do such classification at word-level. For this we
designed a modified Naive Bayes classifier described next.

5.1 Modified Naive-Bayes Classifier
While learning, two dictionaries are maintained. The first dictionary compiles all
seen complete words, while the other forms an occurrence database of all possible
substrings of length <= 10. The intuition is that certain sounds (or sequence of
sounds) occur more frequently in some languages then the others.

For a word, define the absolute frequency of a word as the actual number of
occurrences for that word for a given language in the training dataset. On the
other hand, the relative frequency of a given word is defined as its fraction of
occurrences in the given language versus all other languages under consideration.
While classifying, if the word is seen and the absolute as well as relative frequency
is above a pre-set threshold for a particular language in training data, we classify
it as that language. We use the relative frequency metric to account for mixed
language nature of Wikipedia pages used as our dataset.

If the classifier encounters an unseen word, it is broken into all possible sub-
strings of length >= 2 and length <= 10. Subsequently, the probability of seeing a
substring given a language, p(substr | lang), over all substrings of word using the
trained substring dictionary is computed. This is a simplified version of the Naive
Bayes model for the problem at hand. The word is classified to the language for
which this metric turns out to be the maximum.

5.2 Training and Test Data
Training Data: One thousand random Wikipedia pages for both English and
Sanskrit were used as the training data. The Sanskrit pages were converted to dif-
ferent Romanised Sanskrit encodings (such as SLP-1) using our universal encoder.
We then parse out the irrelevant HTML meta-data and tags, stripping it down to
just plain text content.

Test Data: One hundred more such random pages for both languages were
used as the test data.



Transliteration tool 175

6 Results and Future Work
We tested our word-level language detection model on 100 random Sanskrit
Wikipedia pages (after converting them to the 6 most popular romanisation
schemes of SLP1, Velthuis, ITRANS, Harvard-Kyoto, ISO15919 and IAST). Dur-
ing our testing, we discovered that multiple English proper nouns like 'Bopanna'
or 'Kannada' were getting classified as SLP-1 leading to a lower recall for English.
In our opinion, such a misclassification aligns with the intention of the tool as it
classifies the origin based on the prevalent sounds in the word. For Indian proper
nouns appropriated to English these sounds still remain similar to those of their
Sanskrit roots, and hence rather should be classified as that. These earlier results
are presented in Table 2.

The final confusionmatrices, obtained after manually removing proper nouns
from the training and test dataset, are shown in Table 4. Each scheme shown has a
corresponding baseline to compare our results with, shown in the top left cell. For
SLP1, this baseline was the existence of a capital letter in themiddle of a word. For
Velthuis, it was the existence of a full stop in the middle of a word or the existence
of doubly repeated vowels. For ITRANS, the baseline was similar to Velthuis,
with repeated 'L' and 'R' instead of full stop. For Harvard-Kyoto, we selected the
baseline as capital in the middle of the word alongside repeated 'L' and 'R'. Lastly,
for ISO15919 and IAST, it was kept as the existence of a letter beyond the simple
English letters and punctuation within a word.

As one can notice in Table 4, we in general attain a high precision for English
and a high recall for the romanised words. A large number of misclassified words
in both the English and SLP1 cases are 2-3 letter words. 'ati', 'ca' etc. are examples
of SLP1 words misclassified as English, while 'Raj', 'Jan', 'are' etc. are examples of
English words misclassified as SLP1. For these words, the modified Naive-Bayes
model does not end up having enough information for correct classification.

We also tested our tool on a bilingual text test case by converting a extract
from an English commentary on Ramayana from Gita-supersite (Prabhakar 2005)
to an mixture of SLP-1 and English. Subsequently, we converted the previous
result back to Unicode Devanagari and English to see its differences with the orig-
inal text. As can be seen in Figure 3, the transliteration from Devanagari-English
to SLP1-English has a 100% accuracy due to our tool exploiting the difference in
Unicode for the two scripts.

Our tool is available at
https://github.com/709nikhil/sanskrit-transliteration. This tool
can be further improved in several ways. The primary one being heuristically

https://github.com/709nikhil/sanskrit-transliteration


176 Caturvedi and Garg

(a) Original Bilingual Paragraph

(b) Devanagari selectively transcribed to SLP1

(c) SLP1-English transcribed back to Devanagari-English

Figure 3
Transliteration of Bilingual Texts

breaking down word into syllables rather than substrings, to provide a stronger
basis for the phoneme intuition. One could also use machine learning approaches
other than Naive Bayes, such as deep learning methods or conditional random
fields (CRFs) (Lafferty, McCallum, and Pereira 2001). One could also incorporate
contextual history into the transliteration to deal with the problem of incorrect
classification of proper nouns, thereby aiming at a near perfect accuracy.

Acknowledgments
We thank the anonymous referees and the editors for their meticulous comments
on the manuscript which helped in significantly improving the quality of the final
paper.



References
Auer, Peter. 2013. Code-switching in conversation: Language, interaction

and identity. Daryaganj, Delhi, India: Routledge.
Bharati, Akshar, Vineet Chaitanya, Rajeev Sangal, and KV Ramakrishna-

macharyulu. 1995. Natural language processing: a Paninian perspective.
Delhi, India: Prentice-Hall of India, pp. 191–193.

Chopde, Avinash. 1991. Indian languages TRANSliteration (ITRANS).
https://www.aczoom.com/itrans/.

Goyal, Pawan and Gérard Huet. 2013. “Completeness analysis of a San-
skrit reader”. In: Proceedings of 5th International Symposium on San-
skrit Computational Linguistics. DK Printworld (P) Ltd. IIT Bombay,
India, pp. 130–171.

Huet, Gérard. 2009. “Formal structure of Sanskrit text: Requirements anal-
ysis for a mechanical Sanskrit processor”. In: Proceedings of 3rd Inter-
national Symposium on Sanskrit Computational Linguistics (LNAI, vol
5402). University of Hyderabad, India, pp. 162–199.

ISO/TC-46. 2001. ISO 15919 - Transliteration of Devanagari and related
Indic scripts into Latin characters. https://www.iso.org/standard/
28333.html.

Jha, G. N. 2017. Sanskrit Sandhi recognizer and analyzer. http : / /
sanskrit.jnu.ac.in/sandhi/viccheda.jsp.

Kapp, Dieter B and Thomas Malten. 1997. Report on the Cologne San-
skrit Dictionary Project. Read at 10th International Sanskrit Conference,
Bangalore.

Kulkarni, Amba. 2017. Samsadhani: A Sanskrit computational toolkit. http:
//sanskrit.uohyd.ac.in/scl/.

Lafferty, John, Andrew McCallum, and Fernando CN Pereira. 2001. “Con-
ditional random fields: Probabilistic models for segmenting and labeling
sequence data”. In: Proceedings of the 18th International Conference on
Machine Learning (ICML’01). Williamstown, MA, USA, pp. 282–289.

Maheshwari, Krishna. 2011. “Features of Sanskrit”. Hindupedia.
Nair, R Raman and L Sulochana Devi. 2011. Sanskrit Informatics: Infor-

matics for Sanskrit studies and research. Centre for Informatics Research
and Development.

177

https://www.aczoom.com/itrans/
https://www.iso.org/standard/28333.html
https://www.iso.org/standard/28333.html
http://sanskrit.jnu.ac.in/sandhi/ viccheda.jsp
http://sanskrit.jnu.ac.in/sandhi/ viccheda.jsp
http://sanskrit.uohyd.ac.in/ scl/
http://sanskrit.uohyd.ac.in/ scl/


178 Caturvedi and Garg

Nakatani, H. 1996. Harvard Kyoto. https://en.wikipedia.org/wiki/
Harvard-Kyoto.

Prabhakar, T.V. 2005. Gita Supersite : Repository of Indian philosophical
texts. https://www.gitasupersite.iitk.ac.in.

Prasad, V. K. 2015. Sanscript. http://www.learnsanskrit.org/tools/
sanscript.

Rajan, Vinodh. 2001. Aksharmukha. http://www.virtualvinodh.com/wp/
aksharamukha/.

Scharf, Peter. 2011. Sanskrit Library Phonetic Basic encoding scheme
(SLP1). https://en.wikipedia.org/wiki/SLP1.

Scharf, Peter M and Malcolm Donald Hyman. 2012. Linguistic issues in
encoding Sanskrit. Kamla Nagar, New Delhi, India: Motilal Banarsidass
Publishers.

Sohoni, Samir and Malhar Kulkarni. 2015. “Character Encoding for Compu-
tational Ashtadhyayi”. In: Proceedings of 16th World Sanskrit Conference
(WSC’15): Sanskrit and the IT world. Bangkok.

Trevelyan, Charles, William Jones, and Monier Williams. 1894. Interna-
tional Alphabet of Sanskrit Transliteration. https://en.wikipedia.
org/wiki/International_Alphabet_of_Sanskrit_Transliteration.

Vasu, Srisa Chandra. 1897. The Ashtadhyayi of Panini. Rabindra Nagar,
New Delhi, India: Sahitya Akademi.

Velthuis, Frans. 1981. Velthuis. https : / / en . wikipedia . org / wiki /
Velthuis.

https://en.wikipedia.org/wiki/Harvard-Kyoto
https://en.wikipedia.org/wiki/Harvard-Kyoto
https://www.gitasupersite.iitk.ac.in
http://www.learnsanskrit.org/tools/sanscript
http://www.learnsanskrit.org/tools/sanscript
http://www.virtualvinodh.com/wp/aksharamukha/
http://www.virtualvinodh.com/wp/aksharamukha/
https://en.wikipedia.org/wiki/SLP1
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/Velthuis
https://en.wikipedia.org/wiki/Velthuis


Transliteration tool 179

Appendix A: Comparison of various Devanagari
Romanisations

Devanagari Unicode Velthius SLP-1 WX ITRANS Harvard-Kyoto IAST ISO-15919
अ U+0905 a a a a a a a
आ U+0906 aa A A A/aa A ā ā
इ U+0907 i i i i i i i
ई U+0908 ii I I I/ii I ī ī
उ U+0909 u u u u u u u
ऊ U+090A uu U U U/uu U ū ū
ए U+090F e e e e e e ē
ऐ U+0910 ai E E ai ai ai ai
ओ U+0913 o o o o o o ō
औ U+0914 au O O au au au au
ऋ U+090B .r f q RRi/Rî R ṛ r�
ॠ U+0960 .rr F Q RRI/RÎ RR ṝ r��
ऌ U+090C .l x L LLi/Lî lR ḷ l�
ॡ U+0961 .ll X LLI/LÎ lRR ḹ l�̄
अं U+0902 .m M M M/.n/.m M ṃ ṁ
अः U+0903 .h H H H H ḥ ḥ
अँ U+0904 ~ z .N m�
ऽ U+093D .a ’ ’ .a ’ ’ ’
क U+0915 ka ka ka ka ka ka ka
ख U+0916 kha Ka Ka kha kha kha kha
ग U+0917 ga ga ga ga ga ga ga
घ U+0918 gha Ga Ga gha gha gha gha
ङ U+0919 ”na Na fa Na Ga ṅa ṅa
च U+091A ca ca ca cha ca ca ca
छ U+091B cha Ca Ca Cha cha cha cha
ज U+091C ja ja ja ja ja ja ja
झ U+091D jha Ja Ja jha jha jha jha
ञ U+091E na Ya Fa na Ja ña ña
ट U+091F .ta wa ta Ta Ta ṭa ṭa
ठ U+0920 .tha Wa Ta Tha Tha ṭha ṭha
ड U+0921 .da qa da Da Da ḍa ḍa
ढ U+0922 .dha Qa Da Dha Dha ḍha ḍha
ण U+0923 .na Ra Na Na Na ṇa ṇa
त U+0924 ta ta wa ta ta ta Ta
थ U+0925 tha Ta Wa tha tha tha Tha
द U+0926 da da xa da da da Da
ध U+0927 dha Da Xa dha dha dha Dha
न U+0928 na na na na na na na
प U+092A pa pa pa pa pa pa pa
फ U+092B pha Pa Pa pha pha pha pha
ब U+092C ba ba ba ba ba ba ba
भ U+092D bha Ba Ba bha bha bha bha
म U+092E ma ma ma ma ma ma ma
य U+092F ya ya ya ya ya ya ya
र U+0930 ra ra ra ra ra ra ra
ल U+0932 la la la la la la la
व U+0935 va va va va/wa va va va
श U+0936 ”sa Sa Sa sha za śa śa
ष U+0937 .sa za Ra Sha Sa ṣa ṣa
स U+0938 sa sa sa sa sa sa sa
ह U+0939 ha ha ha ha ha ha Ha



180 Caturvedi and Garg

Appendix B: Proposed Encoding Schema
The characters in our encoding schema are represented in 16 bits as follows:
b15...b11-b10b9b8-b7b6b5-b4b3b2-b1b0. The bits b15 − b11 are used to represent the
script. The remainder bits are represented as given in the tables 5 and 6 below.
Null for the consonant part represents a pure vowel, whereas null for the vowel
part represents consonants without a vowel sound. For example, अ is represented
as 00000-111-111-000-00. The symbol  which is broken up as (क ् + ष = क ् + ष +् अ)
will be represented as two 16-bit units, 00000-000-000-111-11 representing (क)् and
00000-010-101-000-00 representing (ष).

b7b6b5

b 1
0
b 9
b 8

000 001 010 011 100 101 110 111
000 क ् ख ् ग ् घ ् ह ् ङ्
001 च ् छ ् ज ् झ ् श ् ञ ् य ्
010 ट ् ठ ् ड ् ढ ् ष ् ण ् र ्
011 त ् थ ् द ् ध ् स ् न ् ल ्
100 प ् फ ् ब ् भ ् म ् व ्
101 क़ ् ख़ ् ग़ ् ज़ ् ड़ ् ढ़ ् फ़ ्
110 Udatta Anudatta ◌ः ◌ं ◌ँ ऽ
111 Latin Punc. Num. Vaid. Null

Table 5
Mapping for 6 consonant bits

b1b0

b 4
b 3
b 2

00 01 10 11
000 अ आ
001 इ ई ए
010 ऋ ॠ ऐ
011 ऌ ॡ ओ
100 उ ऊ औ
101
110
111

Table 6
Mapping for 5 vowel bits



Modeling the Phonology of Consonant Duplication
and Allied Changes in the Recitation of Tamil

Taittirīyaka-s
Balasubramanian Ramakrishnan

Abstract: The phonetics of the Vedas are described by the prātísākhya
and śiks.ā texts. Each Veda has its own prātísākhya as well as specific
śiks.ā texts. There is also a Pān. in̄ıya śiks.ā, which talks about general
rules applicable to all Veda-s. While there are similarities between
the various prātísākhya and śiksā texts, there also tend to be impor-
tant differences, leading to differences in the modes of chanting the
Veda-s. Some differences are obvious, but a significant percentage of
the differences can be detected only by the trained ear, consonant du-
plication being in the latter category. While consonant duplication is
not always faithfully followed by reciters of classical Sanskrit verses, by
even trained pan.d. ita-s, duplication is faithfully preserved, largely ad-
hering to the Taittir̄ıya-Yajuh. Prātísākhyam (TYP) rules, especially
by the Tamil Taittir̄ıyaka-s (TT). Additional rules are to be found in
various śiks.ā texts and some rules are known only from traditional
practice. It is important to study the printed texts of the TTs which
use the Grantha script since they offer a very concise representation
of some unique duplication rules. Finally, analysis of actual recitation
by experts, or field-study, is also required to completely understand
the phonetic rules.
The aim of this paper can be summarized as:

1. describe duplication rules among TTs, point out where they devi-
ate from the TYP, compare and contrast with other prātísākhya-
s and Pān. ini,

2. develop an algebraic formulation of TT duplication rules,
3. develop a Non-Deterministic Finite State Transducer (ND-FST)

model from the algebraic formulation, and finally
4. a Perl implementation of the model as a tool to study TT du-

plication rules.

181



182 B Ramakrishnan

1 Introduction
Consonant duplication is one of the truly arcane topics in Sanskrit. This
paper is about consonant duplication among TTs, a phonological process,
when conjunct consonants (sam. yutāks.ara) occur. While it should be clear,
it is worth mentioning that this is different from the duplication of syllables
in a verbal root form, e.g., the third class of verbs reduplicated aorist, etc.,
which are morphological processes. Consonant duplication occurs when spe-
cific groupings of vowels and consonants (to be specified later) occur. The
duplicated syllable is always a full consonant and never a vowel and this is
made explicit by using the phrase “consonant duplication”. A vowel can be
duplicated in the long (d̄ırgha) svarita accent, but the topic of this paper is
not accentuation in the Veda. The list of vowels and consonants are mostly
the same in classical and Vedic Sanskrit. However, there are a few differences
between the different lists, even between the prātísākhya-s of different Veda-
s. This paper will not discuss these differences in detail and a good resource
for this is Whitney (1871). This paper will also not examine the phonetics
of the standard Sanskrit vowels and consonants, which is a well-researched
topic. A good source for phonetic analysis, including many Vedic forms,
is Allen (1953), and many more references can be found in Scharfe (1973).
However, we will discuss phonetics of a few specific vowels and consonant
forms which are important in and peculiar to TT recitation, especially dur-
ing duplication, and which are different from the classical Sanskrit, in the
relevant sections.

One of the first people to study duplication was Whitney, in his path-
breaking studies of the prātísākhya-s of the Atharva and the Taittir̄ıya veda-s
(Whitney 1863, 1871). Whitney had specific reservations about the value
of the detailed discussions on duplication in the prātísākhya-s, which he ex-
pressed rather forcefully, first in his translation of the Atharva prātísākhya1

(Whitney 1863)

“The subject of the duplicated pronunciation of consonants, or
of the varn. akrama, as it is sometimes called, is one of the most
peculiar in the whole phonetical science of the Hindus. It is
also the one, to my apprehension, which exhibits most strikingly
their characteristic tendency to arbitrary and artificial theoriz-
ing; I have not succeeded in discovering the foundation of fact

1This can be found under his explanation to 3.28, page 470 (Whitney 1863)



Tamil Taittirīyaka-s 183

upon which their superstructure of rules is based, or explain-
ing to myself what actual phonetic phenomena, liable to occur
in a natural, or even a strained, mode of utterance, they sup-
posed themselves to have noted, and endeavored thus to reduce
to systematic form. The varn. akrama, however, forms a not in-
conspicuous part of the phonetic system of all the Prātísākhyas,
and is even presented by Pān. ini (viii. 4. 46-52), although the
latter mercifully allows us our option as to whether we will or
will not observe its rules.”.2

There are two questions which Whitney rightly raises: 1) what the phonetic
basis of duplication is and 2) whether it really makes a difference in Vedic
chanting. In this paper, I’ll concentrate mostly on the latter question. The
concise answer is that duplication does matter quite a bit and is reflected
in the recitation of pan.d. ita-s trained in the orthodox manner. The first
question is not the focus of this paper. However, in a few places, I will point
out some of the possible phonetic reasons for duplication.

Opinion of the later śiks.ā-s
First, we can look at texts which were written after the TYP, i.e., the śiks.ā
texts, and see that it is an important topic in these texts as well. The
sarvasammata śiks.ā (Finke 1886) actually begins with the invocatory verse

kr.pālum. varadam. devam. pran. ipatya gajānanam |
dvitvād̄ınām. pravaks.yāmi laks.an. am. sarvasammatam ||
Having prostrated to the compassionate and wish-granting

elephant-faced God,
I will expound the phonetics of duplication, etc., (which are)

agreeable to all.

Since the sarvasammata śiks.ā singles out duplication and is actually largely
about this topic, it can be seen that the later textual tradition also held
that consonant duplication was an important topic for reciters of the Veda.

2He also states in page 313 of his translation of the TYP (Whitney 1871), “Thus is
brought to an end the tedious subject of duplication, the physical foundation of which is of
the obscurest, although the pains with which the Hindu śākhinah. have elaborated it, and
the earnestness with which they assert their discordant views respecting it, prove that it
had for them a real, or what seemed like a real, value.”, clearly expressing his reservations
once again on the practical utility of the discussions on duplication.



184 B Ramakrishnan

Furthermore, the śiks.ā is somewhat ambitiously titled sarvasammata, i.e.,
agreeable to all, which implies that a variety of opinions, especially on du-
plication, existed at the same point in time. This is very clear from the
TYP itself, where several contradictory opinions are stated and sometimes
with attribution to a specific authority. Whitney had also pointed out very
early on that while duplication was a topic treated by all prātísākhya-s, the
TYP is unique in that it presents the contradictory opinion of many differ-
ent authorities (Whitney 1871). The Vyāsa (Ācārya Śr̄ıpat.t.ābhirāmaśāstri
1976) and especially the sarvasammata śiks.ā clearly try to present a unified
theory of duplication by leaving out contradictory opinions and sometimes
adding rules not found in the TYP. The sarvasammata śiks.ā finishes with
the cautionary verse3

ś̄ıks.ā ca prātísākhyam. ca virudhyete parasparam |
ś̄ıks.aiva durbaletyāhuh. sim. hasyaiva mr. ḡı yathā ||
(If there is any) mutual contradiction between the śiks.ā and

prātísākhyam,
They declare that the śiks.ā is indeed the weaker, like the deer

(in the presence) of a lion.

Clearly the sarvasammata śiks.ā’s author was aware that at least some of
the śiks.ā-s have opinions contradictory to the TYP. However, it should be
noted that the same text adds some rules not found in the TYP, and also
extends the scope of some rules found in the TYP. Again it was noted by
Whitney in his treatment of the svarabhakti in the TYP, where he remarks
that the commentator seemed to rely more on his śiks.ā text than the TYP
itself (Whitney 1871). In this regard, the comment of Scharfe regarding the
attitude of Pān. in̄ıya-s is very perceptive, is applicable in this case as well,
and deserves to be quoted in full (Scharfe 1973)

“The as.t.ādhyāȳı can be compared to a code of law which is sub-
ject to legal interpretation when cases that were not or could not
be foreseen by the lawmaker. The courts need a consistent and
workable application even to such cases. Lawyers are used to ob-
taining this application by extrapolating principles embodied in
the code which is presumed to be comprehensive and consistent
to the minute technical details; seemingly redundant features

3It is interesting that the text uses the word ś̄ıks.ā instead of śiks.ā , similar to the Tait-
tir̄ıya Upanis.ad, thus placing the author squarely within the Kr.s.n. a-yajur-veda tradition.



Tamil Taittirīyaka-s 185

must have their significance. If these extrapolations lead to op-
posing conclusions this contradiction must be resolved. As a
last recourse, the law may be amended, The Pān. in̄ıya-s are like
such lawyers and we miss the point when we castigate them for
reading later theories into the original texts.”

Methodology of the Orthodox Practitioners
The methodology so aptly described by Scharfe can be described in general
by following a list of Boolean logic rules as given below, and is also applicable
to the phonology of duplication:

• If condition A1, then execute Rule 1.

• If conditions A1 AND A2, then execute Rule 2.

• · · ·

• If conditions A1 AND A2 AND · · · AND Ak, then execute Rule k.

A series of rules like the above can be used to give the general and fundamen-
tal rule (vidhi) (denoted by Rule 1) and modifying the rule by an exception,
followed by an exception to the exception and so on. Note that the TYP
itself follows such a formulation by first giving a general rule and adding
elements to the list to either discard Rule 1 or modify its performance in
certain cases. For example, Rule 2 could be “discard the implementation of
Rule 1”, if conditions A1 and A2 occur together, thus providing an excep-
tion. The śiks.ā-s follow the lead of the TYP and add lawyerly emendations
to either modify or discard the rules within in TYP. In this manner, they
can claim to be completely consistent with the TYP and yet offer modifi-
cations/emendations. Note that the question of why the TYP does not list
all the rules followed by the orthodox tradition, or whether some of them
were later innovations, does not make sense within this formulation of the
orthodox tradition. This is a sensible procedure for interpreting the TYP
and śiks.ā texts as a unified whole. It is also important for the orthodox
tradition to interpret these texts as a unified whole because while in some
cases it is clear what the TYP considers as an accepted doctrine, in several
other cases what the TYP considers to be an accepted doctrine is known



186 B Ramakrishnan

only from the commentary, as noted by Whitney (Whitney 1871).4 Thus if
the orthodox tradition accepts the TYP as well as the śiks.ā texts, to begin
with, then the only logical route is the lawyerly one.

Regarding the orthodox method of learning the Vedic recitation, it was
pointed out in a recent study of the Vedic tradition in Maharashtra by Lar-
ios (Larios 2017) that the “vedamūrti-s” or the orthodox Vedic chanters
rarely have even seen a śiksā text5 and it has been observed by me in
Tamil tradition as well.6 However the phonological peculiarities of the TTs
are very efficiently encoded in their texts published in the Grantha script
(Nārāyan. a Śāstr̄ı 1930, 1931, 1935, Undated[a],[b]; Vaidyanāthasāstri 1905).
This should not be confused with an efficient and one-to-one mapping of the
actual syllables chanted, e.g., in a manner as described in Scharf and Hyman
(2009) from the point of view of computer-based processing or representa-

4It can of course be hypothesized that the TYP represents the “original” rules and
the modifications and additions found in the śiks.ā -s are later accretions. But this is not
correct because the TYP does record a multitude of opinions, especially about duplication,
and clearly, the TYP is only one strand among the different schools of thought. It is clear
that there were multiple schools of thought regarding certain phonetic and phonological
processes, and that the TYP is the first attempt to unify the different strands. It also
seems unlikely that there was a single original way of recitation, unless it is assumed that
the Taittir̄ıya school was limited originally to a very small geographical area, which is not
likely. It’s also unlikely that a historical dating of different doctrines can be obtained by
mere textual analysis.

5In page 5 (Larios 2017), “Notably, none of the brāhman. as I came in contact with
had memorized a śiks.ā or prātísākhya text at the time of our meeting. Many of those I
interviewed during my fieldwork did not possess a copy of such a text, and many others had
never seen a śiks.ā or prātísākhya text in their lives. Yet, as will be shown below, the rules
concerning the Vedic recitation are mainly learned through the system of oral transmission,
and this includes the pronunciation rules stipulated in the śiks.ā or prātísākhya texts of
each Vedic branch.”

6In Staal (1961) TT recitation is referred to as Tamil Iyer recitation. I prefer the
reference as TTs since Iyer, Iyeṅkars and Mādhvas settled in Tamil Nadu all follow the
same schools and the phonetics/phonology is the same between these different subsects.
The Iyeṅgars usually, but not always, learn the Drāvid. a pāt.ha. But this affects only
the text of a few praśna-s of the Taittir̄ıya Āran. yaka and not the phonetics/phonology.
I have observed that the pan.d. ita-s from the Vedic school conducted by one of the four
Advaita āmnāya mat.ha-s, Daks.in. āmnāya Śringeri Śāradā P̄ıt.ham, are very similar to TTs
in their recitations, but I do not know if it’s the same case with all reciters from the
Karnataka region. I also haven’t had the opportunity of interacting with pan.d. ita-s from
the Andhra region, but the few recordings I have heard show at least some differences from
the TTs. The Nambudiri recitation is of course quite different from the TTs. Comparing
the duplication among the different Southern schools, including the Nambudiris, would
be an interesting field study.



Tamil Taittirīyaka-s 187

tion of general Sanskrit texts, but rather a concise encoding of only the most
important śiks.ā rules, which will make complete sense only to people trained
within the oral tradition. It should be noted that if the texts were printed
exactly as recited, with all duplicated consonants explicitly specified, there
would be a prolixity of consonants. This would have had a manifold effect:
it would have significantly complicated the task of the scribe, increase the
probability of error propagation, as well as hinder text comprehension. The
printed texts serve a dual purpose, aid recitation, and comprehension, and
this fact was likely not lost to the TTs who started the practice of using
the Grantha script. On the other hand, unless some of the more obscure
rules are actually represented in the printed text, it might result in the
wrong recitation. The Grantha texts offer an admirable combination of pre-
cisely encoding arcane duplication rules, yet avoiding prolixity in printing
out consonants for people trained within the tradition. The Grantha texts
thus make the TYP and śiks.ā texts largely unnecessary for an orthodox re-
citer. An ability to read Grantha is thus a sine-qua-non for understanding
consonant duplication among TTs.

The method by which the Grantha texts achieve this is by writing any
conjunct consonant from top to bottom, even if they consist of more than
two consonants, or inventing new characters for frequently used complex
conjunct consonants. Standalone consonants mean something special, but
the meaning is context-dependent and thus the encoding is not one-to-one.
For example, a standalone ‘n’ phoneme within a sentence can stand for dif-
ferent ways of pronouncing it, depending on the vowel-consonant cluster
surrounding it (as will be seen in a subsequent section). Note again that
some of these rules and exceptions can be found neither in the TYP nor in
the śiks.ā texts, and are known only from the orthodox tradition. However,
these are faithfully reflected in the Grantha texts. In contrast, Devanāgar̄ı
typesets typically do not have such complicated conjunct consonants, and
the complex phonological rules are largely ignored and not encoded. An-
other issue is that some conjunct consonants which occur in the TT recita-
tion due to phonological changes, e.g., śna which is transformed into śña
except in the Kāt.haka borrowings, do not occur at all in classical Sanskrit
and are thus not available in Devanāgar̄ı typesets as a standalone conjunct
consonant.7 An important effort to rectify these defects, and reflect TYP

7The Vaidikavardhini press in Kumbhakonam published these Grantha texts and many
excellent prayoga texts but unfortunately went out of business many decades ago. These
books are hard to obtain, but facsimile copies of their Taittir̄ıya corpus are available



188 B Ramakrishnan

rules in the Devanāgar̄ı script has been made, but still has some short-
falls compared to the original Grantha texts (Rā Kr.s.n. amūrti śāstri and Rā
Gan. eśvaradrāvid. ah. 2003a,b). However, this series has a very learned intro-
duction regarding some of the key, though not all, phonological aspects of
TT recitation. Furthermore, this series has very few printing errors, uses a
very pleasing font, and is thus well worth using as a reference text.

Just an ability to read the Grantha texts is not enough and actually
would hinder the proper evaluation of duplication among TTs. I have per-
sonally interacted with a number of kramānta-svādhyāyinah. and have also
learned to recite a good portion of the Taittir̄ıya śākhā, which has been
an invaluable help in understanding duplication rules. Field study would
also clear any questions about whether duplication makes a difference in
Vedic recitation. In my experience with laypeople and experts, I have seen
that most (but not all) laypeople who learn to recite the Vedas, especially
as adults and using texts printed in the Devanagari script, confuse textual
familiarity and chanting with seeming fluency with correct Vedic recitation.
Relying on texts and not listening keenly to expert recitation makes laypeo-
ple, even those who listen to or practice Vedic chanting regularly, unaware
of the phonological sophistication of Vedic chanting, which cannot be com-
pletely captured in textual form. When the correct syllables are not dupli-
cated or wrongly duplicated, the expert recognizes this very quickly, which
answers Whitney’s question on whether duplication makes a difference in
Vedic recitation. The answer is that it does to the expert, but laypeople
may not understand the subtleties. Finally, while actual field study is im-
portant and irreplaceable, a good source for authentic TT recitation is the
audio recordings released by an organization called Vediclinks (Sarma et al.

among the pan.d. ita circles in Chennai. One of my teachers Śr̄ı Śr̄ıkan. t.ha Ācāryāh. showed
me his Kannada text and it seemed to follow the same principle as the Grantha texts with
regard to conjunct consonants and standalone consonants. However, I am not familiar
with the Kannada script and did not perform a careful analysis. A reviewer also pointed
out that the Telugu and Kannada texts follow the same principle as the Grantha texts. It
would be interesting to compare texts in Kannada and Telugu scripts with the Grantha
texts popular in Tamil Nadu. It is also not implied that Devanāgar̄ı typesets do not
have sophisticated conjunct consonant representations, but they are not as clear as the
Grantha scripts which follow a binary rule of conjunct consonants always being represented
as a single top-to-bottom cluster and standalone consonants representing exceptions to the
duplication rules. This can certainly be corrected by introducing new conjunct consonants
in existing Devanāgar̄ı fonts.



Tamil Taittirīyaka-s 189

2004), which unfortunately seems to be defunct now.8

Fundamental Rule and Notation
Consonant duplication is specified in fundamentally the same way in differ-
ent texts, and the basic rule (Condition A1 in previous section) is common
across all prātísākhya-s as well as Pān. ini.:

• Taittir̄ıya Prātísākhyam 14.1 (Whitney 1871) - svarapūrvam.
vyañjanam. dvivarn. am. vyañjanaparam.

• Śukla-yajuh. Prātísākhyam 4.99 (Rastogi 1967) - svarāt sam. yogādir-
dvirucyate sarvatra.

• R. k Prātísākhyam 6.1 (Sastri 1931) - svarānusvāropahito dvirucyate
sam. yogādih. sa krame ′vikrame san.

• Atharva Prātísākhyam 3.28 (Whitney 1863) - sam. yogādi svarāt.

• Pān. ini 8.4.47 (Vasu 1898) - anaci ca.

In this paper we will use the terminology from the TYP to refer to vowels,
consonants, or groups of consonants. The following abbreviations will be
used for a concise description of the rules:

1. V - all the consonants (vyañjana-s).

2. Ci,j - the mutes (sparśah. ), the indices i and j stand for the row and
column in 5× 5 matrix with the ka, ca, t.a, ta and pa series (varga) as
the rows. As examples, C1,4 would be gha and C5,5 would be ma.

3. A - the semivowels (antasthah. ) ya, ra, la, and va.

4. U - the sibilants (ūs.man) śa, s.a, sa, ha, jihvāmūl̄ıya, and upadhmān̄ıya.

5. Ua - the four sibilants, śa, s.a, sa, and ha.

6. S - vowels and the svarabhakti-s (svara).9

8This is available at https://archive.org/details/
VedicLinks-SriKrishnaYajurVedam-TaitiriyaSamhita and I would like to thank
Mr. N. E. Venkateswaran for bringing this to my attention.

9The svarabhakti is the sound the phonemes ‘r’ and ‘l’ attain in certain situations and
will be explained in detail later.

https://archive.org/details/VedicLinks-SriKrishnaYajurVedam-TaitiriyaSamhita
https://archive.org/details/VedicLinks-SriKrishnaYajurVedam-TaitiriyaSamhita


190 B Ramakrishnan

7. Sd and Sh stand for long (d̄ırgha) and short (hrasva) vowels respec-
tively.

Specific consonants or vowels will also be used if the rules require specificity.
The basic duplication rule from the TYP 14.1, svara-pūrvam. vyañjanam.

dvi-varn. am. vyañjana-param, actually requires a sequence of consonants af-
ter a vowel, where the sequence length is greater than one. Since two or more
consonants cannot occur after a vowel without a following vowel, except at
the end of a sentence, which is exempted from duplication by TYP 14.15,
the rule can be concisely expressed by the algebraic expression S1V1 · · ·VkS2

where k ≥ 2. The subscripts stand for the numbering of the vowels and con-
sonants in the required sequence. The basic transformational rule is thus
explained by the following equation

S1V1 · · ·VkS2 7→ S1V1V1 · · ·VkS2 (.1)

The rule is applicable whether the cluster occurs within a word or across two
words within a sentence, i.e., vākya. In printed texts, there is white space
between two words, when they do not coalesce due to sandhi. However, the
spacing in printed texts is merely for the convenience of comprehension and
does not affect pronunciation. However, there are specific rules for certain
exceptions to duplication, when certain consonants occur at the end of a
word (pada). These word-end rules are to be found in the śiks.ā texts and
in the orthodox tradition and are not specified by the TYP. It is convenient
to treat the word-end exceptions separately. Unless specified, the presence
of white space in the text is ignored in all these rules.

The next section will give a detailed description of all the duplication
rules and exceptions in various situations. Appropriate examples will be
given to illustrate the rules. I use the abbreviations TS, TB, and TA for
the Taittir̄ıya Sam. hitā, Brāhman. a and Āran. yaka respectively. It should be
noted that in some examples, there may be multiple duplicated consonants
and only the consonant which illustrates that particular rule will be shown
explicitly. Another important fact is that the duplication rules are largely
independent of the stress accents udātta, anudātta and svarita, except in
one case. So the stress markings are not given in the illustrative examples
unless the duplication rule demands it. The rules are very dependent on V1,
and the duplication rules are enumerated by the class to which V1 belongs.



Tamil Taittirīyaka-s 191

2 Duplication Rules

V1 is a mute
This is the bulk of duplications, since there are 25 mutes, which forms the
majority of all consonants.

• V2 is a mute: The mute is duplicated, and if the mute is aspirated,
then the corresponding unaspirated mute is used instead as per the
rule

dvit̄ıya-caturthayostu vyañjana-uttarayoh. pūrvah. |
Of the 2nd and 4th after which a consonant (occurs), the

previous (consonant in the series, i.e., the 1st or 3rd is
duplicated).

There are important exceptions. If V1 and V2 belong to the same
series, then there is no duplication, except if the conditions that V2 is
the fifth consonant in the series and V1 is not, are met simultaneously.
For example, if V1 and V2 are the phonemes ‘t’ and ‘th’ respectively,
then there is no duplication. However if V1 and V2 are ‘dh’ and ‘n’,
then there is duplication. This is stated by the TYP 14.13 which is an
exception to the general rule and 14.14 which is an exception to 14.13
as10

savarn. a-savarḡıya-parah. |
The (consonant which is) of the same quality and series (as

the) later (consonant is not duplicated).
nānuttama uttamaparah. |
(But) not in the case of a consonant (which is) not the last

(in the series which has) the last (in the series following
it).

Some examples of duplication in this case are
10The Vyāsa śiksā 363 also gives the two rules concisely as varḡıyānanuttarordhve hal

savarn. ottara eva ca. The same two rules are stated in the Śukla-yajuh. Prātísākhyam
(SYP) 4.115 as well, by the exception sva-varḡıye cānuttame



192 B Ramakrishnan

jyok ca 7→ jyokkca (TS 1.8.5.3)
ahim. budhniyam 7→ ahim. buddhniyam (TS 1.8.14.2)
jagdhvā 7→ jaggdhvā (TS 2.2.6.2)
pāpmānam 7→ pāppmānam (TS 2.1.10.3)

• V2 is a semivowel: The fundamental rule applies, i.e., V1 is duplicated.

āpyāyamānam 7→ āppyāyamānam (TS 2.3.5.3)
apākrāmat 7→ apākkrāmat (TS 2.3.7.1)
śukle 7→ śukkle (TS 5.3.1.4)
āgn̄ıdhram 7→ āgn̄ıddhram (TS 4.7.8.1)

• V2 is a sibilant: It should be noted that only the first mute in each
series occurs before a sibilant. As per TYP 1.12,

prathama ūs.maparo dvit̄ıyam |
(The) first (in the series which has a) sibilant after it (be-

comes) the second in the series.

After this, the normal duplication rule applies. Some examples will
clarify this situation:

r.ksāme 7→ r.khsāme 7→ r.kkhsāme (TS 6.1.3.1)
hr. tsu 7→ hr. thsu 7→ hr. tthsu (TS 1.2.8.1)
dipsanta 7→ diphsanta 7→ dipphsanta (TS 1.2.14.5)
tat s.od. aś̄ı 7→ taths.od. aś̄ı 7→ tatths.od. aś̄ı (TS 6.6.11.1)

We now briefly examine the phonetic basis of duplication about which
(Whitney 1871) raised questions, which was quoted in the previous section.
TYP 2.32 and 2.33 are key sūtra-s in this analysis:

yadupasam. harati tatkāran. am | 2.32
anyes.ām. tu yatra sparśanam. tatsthānam | 2.33
What comes close (the tip of the tongue), that (is the) cause (of

the vowels).11

The place of the production of others is where contact (with the
tongue occurs).

11The fact that the vowels are referred to in this sūtra, is inferred from the previous
sūtra-s.



Tamil Taittirīyaka-s 193

The key issue is clear articulation and even flow, especially in Vedic recita-
tion. Take the simple case of a word like rudra contrasted with the allied
verb roditi. The former has a conjunct consonant, while the latter does not.
When a consonant is followed by a vowel, the tongue is first “close” to the
organ of production, and when the vowel sound is generated, it is not in
contact. The movement of tongue will both be fluid and the sounds can be
articulated clearly and with an even flow, as long as only consonant-vowel
phoneme pairs are repeated, e.g., the word roditi, which has 3 syllables ro,
di and ti. Now take the word rudra consisting of two syllables, ru and dra.
The first consonant-vowel phoneme pair is ru, which lends to clear articu-
lation and even flow. The conjunct consonant ‘dra’ requires the tip of the
tongue to be first placed at the back of the teeth, and the second phoneme
‘r’ requires the tongue to be moved a little back towards the throat and the
‘a’ phoneme requires no contact. This can happen without a pause and in
a fluid manner easily if the phoneme ‘d’ is duplicated, i.e., when the tongue
makes contact with the back of the teeth.

It should be noted here that there is a strand of thought that when V1

and V2 are both mutes there should be no duplication. This is recorded in
the TYP 14.27 sparśa-sparśa-parah. , which is one of the exceptions to dupli-
cation. According to the commentary, this doctrine is not approved by the
TYP (Whitney 1871). It is also clear from the commentary12 on the Vyāsa
śiks.ā, and looking at the examples of duplication cited in the commentary,
that this is not an approved rule by this text (Ācārya Śr̄ıpat.t.ābhirāmaśāstri
1976) as well. However, this is indeed a sound doctrine, except in the case
when V2 is the fifth mute in a series. Listening to actual recitations, the
duplication of d in rudra is extremely clear, whereas the duplication of the
mute g in vāgdev̄ı, supposed to be vāggdev̄ı, is not as clear. We may even
say that some duplicated syllables are more duplicated than others! The
phonetic basis of duplication certainly deserves a full treatment by itself.

V1 is the phoneme ‘y’
V1 being ‘y’ phoneme occurs usually only in a conjunct consonant with itself,
e.g., rayyai in the TS. In the TB, there is a single occurrence tāñcham. yvanta
(TB 1.5.9.3). Since this is after an anusvāra, it does not undergo duplication.
In the TA, there are two instances of the word vāyvaśvā (TA 1.1.2 and TA
1.21.1), which will undergo duplication as per the fundamental rule

12The Vyāsa śiks.ā itself omits this doctrine.



194 B Ramakrishnan

vāyvaśvā 7→ vāyyvaśvā

V1 is the phoneme ‘l’
lavakārapūrvasparśaśca paus.karasādeh. 14.2
sparśa evaikes.āmācāryān. ām 14.3
(That) the mute preceded by the ‘l’ or ‘v’ phonemes (is dupli-

cated is the opinion) of Paus.karasādi 14.2
(That) the mute alone (is duplicated is the opinion) of some

teachers 14.3

The possibilities for V2 when V1 = l are as follows:
• V2 is a mute: Only the mute is duplicated, and if the mute is aspirated,

then the corresponding unaspirated mute is duplicated.

yajñena kalpatām 7→ yajñena kalppatām (TS 4.5.7.2)
cāpagalbhāya ca 7→ cāpagalbbhāya ca (TS 4.5.6.1)

This should be contrasted with the situation in the recitation by
the Nambudiris. It was first pointed out by Kunhan Raja that the
phoneme ‘t’ is pronounced as the phoneme ‘l’ in certain situations,
both in Vedic as well as regular Sanskrit by the Nambudiris (Raja
1937). In the case of vedic recitation, the Nambudiris duplicate the
‘l’ phoneme when it has been substituted for a ‘t’ phoneme, but fol-
low the TYP rules otherwise. For example, vatsa which is pronounced
valsa would actually be said vallsa in the case of vedic recitation, while
kalpayati would be pronounced as kalppayati.

• V2 is the phoneme ‘y’: The fundamental rule applies, i.e., the phoneme
‘l’ is duplicated, e.g.,

yā kalyān. ı̄ bahurūpā 7→ yā kallyān. ı̄ bahurūpā (TS 7.1.5.7)

• V2 is the phoneme ‘v’: In sarvasammata śiks.ā-44

lakāraśca vakāraśca sam. yoge svarito yadi |
sam. yuktau tu tadā jñeyāvasam. yuktau tadanyathā ||
Where (there is) a svarita in the combination (of the) ‘l’ and

‘v’ phonemes,
There (is) a combination (of the two), in other cases it is

known to be separate.



Tamil Taittirīyaka-s 195

A non-conjunct ‘l’ phoneme is reflected in only four instances of this
combination, all with the word bailvah. or bilvah. , and not elsewhere
where this combination occurs, by the TTs. However this distinction
is not specified by the sarvasammata śiks.ā:

bailvo yūp
ı
o 7→ bail÷vo yūp

ı
o (TS 2.1.8.1)

bilv
ı
a ud

ı
atis.t.hat 7→ billv

ı
a ud

ı
atis.t.hat (TS 2.1.8.2)

bailvo v
ı
ā 7→ bail÷vo v

ı
ā (TB 3.8.19.1)

s.ad.bailvā 7→ s.ad.bail÷vā (TB 3.8.20.1)
khalv

ı
āhuh. 7→ khallv

ı
āhuh. (TS 2.5.1.6)

khalvaindramityeva 7→ khallvaindramityeva (TS 2.5.3.7)

Note that in the last example (TS 2.5.3.7), the non-occurrence of a
svarita does not matter and the ‘l’ phoneme does not stand separately.
This is correctly reflected in the printed Grantha texts. It is not
clear if the author of the savrvasammata śiks.ā was from a tradition
where in the example TS 2.5.3.7 above, the ‘l’ phoneme would be
non-conjunct. In practice, there is also a very slight pause after the
non-conjunct ‘l’ phoneme, which is pronounced as the phoneme ‘l’
followed by approximately the last quarter of the r. phoneme.13 In Rā
Kr.s.n. amūrti śāstri and Rā Gan. eśvaradrāvid. ah. (2003a), the authors
have introduced a notation to make the non-conjunct nature clear to
readers. They print a ÷ sign after the phoneme ‘l’ to clarify that it is
not just the usual phoneme ‘l’. In their previous book (Rā Kr.s.n. amūrti
śāstri and Rā Gan. eśvaradrāvid. ah. 2003b), they followed the principle
of the Grantha texts by printing a free standing consonant, in this
case an ‘l’ phoneme, which they note was confusing to people used
to Devanāgar̄ı typesetting. Note again that a free standing consonant
in the Grantha typeset texts have a context based meaning, and the
fact that the phoneme ‘l’ in this case is non-conjunct is clear to the
practitioners. I have adopted the clarifying notation introduced in Rā
Kr.s.n. amūrti śāstri and Rā Gan. eśvaradrāvid. ah. (2003a) in this paper.

• V2 is a sibilant: The Vyāsa śiks.ā 381 says:

svarordhvos.man. i rephasya lasyāpi svarabhaktitā

13It should be note that the TTs pronounce all non-conjunct or final consonants, except
the phoneme ‘m’ in this manner in their chantings, be it Vedic or otherwise, unlike native
Hindi speakers.



196 B Ramakrishnan

The ‘r’ phoneme or ‘l’ phoneme attain svarabhakti when (oc-
curring) after a sibilant before which a vowel is present

The ‘l’ phoneme before a ‘h’ phoneme is called karvin. ı̄, and before
the ‘́s’, ‘s.’ or ‘s’ phonemes is called the hāritā, as per the Vyāsa
śiks.ā 385-386. However, in practical chanting the two svarabhakti-
s are pronounced in a similar fashion. It may be noted here that
these svarabhakti-s are pronounced by the TTs very similar to a ‘l’
phoneme followed by the kuṟṟiyalukaram sound (John Lazarus 1878)
in the Tamil language.14 In the Grantha texts these svarabhakti-s
are indicated by a freestanding ‘l’ phoneme, and the fact that it is a
svarabhakti and not non-conjunct is clear only from the context. Some
examples are:

sahasravaĺsāh. 7→ sahasraval÷śāh. (TS 1.1.2.1)
malhām 7→ mal÷hām (TS 1.8.19.1)

V1 is the ‘v’ phoneme
For the ‘v’ phoneme as the first consonant in the sequence, there are two
possibilities for V2:

• V2 is a mute: In this case V2 can only be an ‘n’ or n. phoneme.

man̄ıs.āmos.is.t.hadāvne 7→ man̄ıs.āmos.is.t.hadāv÷nne (TS 1.6.12.3)
dadhikrāvn. o akāris.am 7→ dadhikrāv÷n.n. o akāris.am (1.5.11.4)

• V2 is the phoneme ‘y’, ‘r’ or ‘l’: The fundamental rule applies, i.e., the
phoneme ‘v’ is duplicated, e.g.,

divyā āpo 7→ divvyā āpo (TS 6.1.2.3)
t̄ıvro raso 7→ t̄ıvvro raso (TS 5.6.1.3)
prayajuravl̄ınāt 7→ prayajuravvl̄ınāt (TS 6.1.2.4)

14There is a detailed and good study of the phonetics of svarabhakti-s as described in the
śiks.ā texts in Mohanty (2015). My main concern is not the phonetics of the svarabhakti-
s, rather where it occurs and how it is treated in TT recitation. The svarabhakti of
the ‘l’ phoneme is slightly different from the non-conjunct ‘l’ phoneme, but even trained
pan.d. ita-s sometimes blur the distinction.



Tamil Taittirīyaka-s 197

V1 is the sibilant ‘́s’, ‘s.’ or ‘s’
• V2 is a mute: As per the TYP 14.9, after an unvoiced spirant, the first

mute of the series is inserted as abhinidhāna:

aghos.ādūs.mān. ah. parah. prathamo ′bhinidhāna-sparśaparāttasya
sasthānah. |

After an unvoiced spirant, a first consonant (of the same
series as the) mute following it, (is inserted as) ab-
hinidhāna.

Some illustrative examples are

śus.men. od 7→ śus.pmen. od (TS 1.2.8.1)
prasnāt̄ıh. 7→ prastnāt̄ıh. (TS 2.6.11.2)
vis.n. o 7→ vis.t.n. o (TS 1.1.3.1)

• V2 is a semi-vowel: The fundamental rule applies, i.e., the sibilant is
duplicated. Some examples are

ava sya vara 7→ avassya vara (TS 1.2.3.3)
śísriye 7→ śísśriye (TS 1.5.3.1)
uttamaśloko 7→ uttamaśśloko (TS 5.7.4.3)
aśvamedhah. 7→ aśśvamedhah. (TS 5.7.5.3)

V1 is the phoneme ‘r’
The ‘r’ phoneme is not duplicated as per TYP 14.15, avasāne ra-visarjan̄ıya-
jihvāmūliyopadhmān̄ıyāh. . The rule of Paus.karasādi (TYP 14.2) and some
unnamed teachers (TYP 14.3), applicable to the ‘l’ and ‘v’ phonemes are
applicable to the ‘r’ phoneme as well, as per TYP 14.4 rephāt param. ca.
However, note that all consonants after the ‘r’ phoneme are duplicated as
per TYP 14.4, whereas only the mutes are duplicated after the ‘l’ and ‘v’
phonemes.

• V2 is a mute: Only the mute is duplicated, and if the mute is aspi-
rated, then the corresponding unaspirated mute is duplicated. In the
Grantha texts, the duplicated ‘t’ before a ‘th’ phoneme and a ‘d’ before
a ‘dh’ phoneme are explicitly printed, as mentioned previously.



198 B Ramakrishnan

sāś̄ırken. a 7→ sāś̄ırkken. a (TS 1.6.10.4)
ūrdhvā yasyāmatih. 7→ ūrddhvā yasyāmatih. (TS 1.2.6.1)

• V2 is the phoneme ‘y’, ‘l’ or ‘v’: This is similar to the previous case of
V2 being a mute. The clarity of the duplicated syllable even by trained
pan.d. ita-s however varies quite a bit. It is quite probable that there was
a tradition of svarabhakti of the ‘r’ phoneme which occur before the
semi-vowels, which is reflected in this variation among the pan.d. ita-s.
This can be seen from the kāt.haka section of the Taittir̄ıya brāhman. a,
where the word sūrya is said to have three syllables in it, and would
make sense if the ‘r’ phoneme was pronounced as a svarabhakti, which
is considered to be a vowel as per the TYP.15

paryāgata 7→ paryyāgata (TS 1.6.10.3)
tairlokam 7→ tairllokam (TS 5.2.1.7)
evā no dūrve 7→ evā no dūrvve (TS 5.2.8.3)

• V2 is the phoneme ‘́s’, ‘s.’ or ‘s’: The phoneme ‘r’ attains svarabhakti
if the series has only two consonants, i.e, the series is of the form S1r[
ś|s.|s ]S2, and this type of svarabhakti is called the harin. ı̄. This is from
the rule in TYP 14.16 listing exceptions to duplication

ūs.mā svaraparah.

Clearly, if there is a third consonant following the ‘́s’, ‘s.’ or ‘s’
phonemes, there is no svarabhakti of the ‘r’ phoneme and the other
usual duplication rules take over. Some examples are:

15See the Kāt.haka 1.9 (Rā Kr.s.n. amūrti śāstri and Rā Gan. eśvaradrāvid. ah. 2003a) where
the eight-syllabled mantra of sūrya is described as ghr.n. iriti dve aks.ar

ıı
e | sūrya iti tr̄ın.

ı
ı |

āditya iti tr̄ın.
ı
ı |. The mantra is thus ghr.n. ih. sūrya ādityah. . This should be only 7 syllables

as per the regular mode of counting syllables. The later Sūryopanis.ad (A. Mahadeva
Sastri 1921) describes the eight syllabled mantra by adding the salutation Om before this
mantra, i.e., om. ghr.n. ih. sūrya ādityah. , and thus getting the correct number of syllables.
The verses from the Sūryopanis.ad 7 are omityekāks.aram. brahma | ghr.n. iriti dve aks.are
| sūrya ityaks.aradvayam | āditya iti tr̄ın. yaks.arān. i | etasyaiva sūryasyās.t.āks.aro manuh.
||. If the kāt.haka śākhin-s actually pronounced the ‘r’ phoneme before a ‘y’ phoneme as
a svarabhakti, then this feature is not preserved in the recitation of this praśna by the
TTs, while some other phonological peculiarities of the kāt.haka praśna-s are still preserved
by the TTs. It seems quite likely that the ‘r’ phoneme before the semi-vowels received
differing treatment from various Vedic groups, and at least some of them continue to this
day, e.g., the Tamil R. gvedin-s actually duplicate the ‘r’ phoneme before the semi-vowels.



Tamil Taittirīyaka-s 199

darśapūrn. amāsau 7→ dar÷śapūrn. amāsau (TS 1.6.7.1)
vars.avr.ddham 7→ var÷s.avr.ddham (TS 1.1.2.1)
barsam 7→ bar÷sam (TS 2.5.7.1)
ubhayataśś̄ırs.n. ı̄ 7→ ubhayataśś̄ırs.t.n. ı̄ (TS 1.2.4.2)
dārśyam 7→ dārśśyam (TS 3.2.2.3)

• V2 is the h phoneme: The ‘r’ phoneme again attains svarabhakti un-
der conditions similar to the ‘́s’, ‘s.’ or ‘s’ phonemes and this type is
called the karen. ū. Just like the ‘l’ phoneme svarabhakti-s, these two
svarabhakti-s are pronounced in an identical fashion, although they
are classified under two different names.

barhis.ā 7→ bar÷his.ā (TS 1.6.7.2)

However, there is an important exception to the karen. ū svarabhakti.
If V1 has the svarita accent and V2 has the anudātta accent, then the
‘r’ phoneme does not attain svarabhakti, and there is duplication of
the h phoneme. This rule is not found in the TYP or the two main
śiks.ā-s, but is followed in the Grantha texts and TT recitation.

etadb
ı
arhirhy

ı
es.ah. 7→ etadb

ı
arhhirhy

ı
es.ah. (TA 4.5.5)

• Special case of the form S1rr. : This form is also not explicitly described
in the TYP or the main śiks.ā texts. However, the ‘r’ phoneme stays
non-conjunct, and is pronounced very similar to the svarabhakti.16

V1 is the phoneme ‘h’
The ‘h’ phoneme is not excluded from duplication in the TYP and TT
recitations, although Pān. ini and the SYP exempt it.17

• V2 is a mute: In this case V2 has to be the ‘n. ’, ‘n’, or the ‘m’ phoneme.
However, there is a peculiarity in the TYP when the ‘n. ’, ‘n’, or the ‘m’
phonemes occur after the ‘h’ phoneme. A so called nāsikya is inserted
after the ‘h’ phoneme

16The pronunciation of the ‘r’ phoneme in this situation should be contrasted with that
of the Tamil R. g-vedin-s, who do not pronounce it with a svarabhakti like sound.

17For example, the SYP 4.100, enjoins duplication of any consonant following the ‘r’
and ‘h’ phonemes, pram. tu rephahakārābhyām.



200 B Ramakrishnan

hakārānnan. anamaparānnāsikyam 21.14
From a ‘h’ phoneme (with the phonemes) ‘n’, ‘n’ or ‘m’

following (it), a nasal-sound (occurs)

Whitney (Whitney 1871) translates it as “After h, when followed by
n, n. or m, is inserted a nāsikya”, which is quite reasonable. However,
as he points out the commentator actually interprets this statement
as ‘h’ phoneme itself taking up a nasal sound.18 Whitney points out
that this is not a straightforward interpretation of this sutra and his
contention seems correct, when the previous sūtra-s and the commen-
tators explanation of those are examined. The pronunciation of the
nasals after the ‘h’ phoneme seems to have a variety of opinions, but
the TT pronounce these conjunct consonants with the nasal before the
‘h’ phoneme and transitioning to the ‘h’ phoneme towards the tail-end
of the nasal. This is what the commentator of the TYP seems to have
in mind as well.

• V2 is a semi-vowel: The fundamental rule applies, i.e., the phoneme
‘h’ is duplicated.

gr.hyate 7→ gr.hhyate (TS 6.5.10.1)
prahriyate 7→ prahhriyate (TS 7.5.15.1)
ś̄ıtikāvati hlāduke 7→ ś̄ıtikāvatihhlāduke (TA 6.4.1 )
bahv̄ıbhih. 7→ bahhv̄ıbhih. (TS 6.5.9.2)

Anusvāra

The conversion of the anusvāra at the end of a word is generally the same
as in Pān. ini, where the anusvāra is usually transformed into a nasal of
the same group (savarn. a-anunāsika). The difference in TT recitation is in
how it is treated before the sibilants, the ‘r’ phoneme and some notable
exemptions. The Grantha texts explicitly specify the transformation of the
anusvāra unlike the Devanāgar̄ı texts which simply use the anusvāra symbol
(a dot above the line) before the mutes and leave it to the reader to make
the conversion, which is not trivial during recitation. In fact, one of the sure
ways of identifying a low quality recitation is to see if the reciter substitutes
the ‘m’ phoneme for the anusvāra. Since this is a phonologically important

18The commentary says: tasmān nan. ama-param. hakāram. āruhya nāsikyam. bhavati,
Thus, h when followed by n, n. or m becomes an inserted nāsikya.



Tamil Taittirīyaka-s 201

distinction, I point out the rules governing the anusvāra, although it is
exempt from duplication, which is the main topic of this paper.

• V1 is the ‘r’, ‘́s’, ‘s.’, ‘s’ or ‘h’ phoneme: The anusvāra remains and does
not become a nasal as per TYP 5.29 na repha parah. , the ‘r’ phoneme
being specified explicitly since the anusvāra is transformed in the case
of the other semi-vowels. In these cases where the anusvāra does not
become a savarn. a-anunāsika, the sarvasammata śiksā-43 specifies:

adhyāye taittir̄ıyān. āmanusvāro yadā bhavet |
tadādyardho gakārah. syādaparastvanunāsikah. ||
In the recitation of Taittir̄ıyaka-s, when the anusvāra is

present,
Then, a half gakāra sound followed by the anunāsika is

(chanted).

This should be contrasted with the recitation of the Tamil R. g-vedin-
s.19 The Vyāsa śiks.ā further specifies

hrasvāddvittvamanusvārah. prāpnuyātsam. yute pare | 341
tadanusvārapūrvaśca sam. yogādirdvirucyate || 342
After a short (vowel) the anusvāra attains doubling, if the

following (ūs.man) is in a conjunct consonant,
That ūs.man which has the anusvāra prior, is said twice due

to being conjoined (with a consonant).

Note that this is the case if the sibilant following the anusvāra is not
followed by a mute. If it is, then the rule TYP 14.9 needs to be applied
further and the sibilant itself is not duplicated but the corresponding
first mute is inserted as abhinidhāna. In summary, the pronunciation
of the anusvāra differs as follows:

– If V1 is followed by a vowel, then the sound is like “g-m”, where
the “g” has a svarabhakti like quality to it. Note that this will
always be the case with the ‘r’ phoneme. The following two cases
apply only to the sibilants.

– If V1 is followed by a consonant and S1 was long, the the sound
is like “g”, an ardha-gakāra.

19The R. k-prātísākhya actually requires doubling of the sibilants after the anusvāra.



202 B Ramakrishnan

– If V1 is followed by a consonant and S1 was short, the the sound
is like “g-g”, i.e., a pure phoneme ‘g’ sound followed by an ardha-
gakāra.

In the Grantha texts, the first two cases are denoted by the vedic
anusvāra symbol, whereas the last case is the duplicated vedic
anusvāra. Some examples are:

ādityānām̃. sadasi 7→ ādityānām̃. sadasi (TS 1.1.11.2)
is.am̃. raȳın. ām 7→ is.am̃. raȳın. ām (TS 1.1.14.1)
aśravam̃. hi 7→ aśravam̃. hi (TA 1.1.14.1)
vayam̃. syāma 7→ vayam̃. ssyāma (TB 2.11.4.28)
indram̃. sthaviram 7→ indram̃. stthaviram (TB 2.4.2.20)

• V1 is a mute or the phonemes ‘y’, ‘l’ or ‘v’: The TYP rules governing
the behavior are similar to Pān. ini and as follows

nakāro anunāsikam TYP 5.26
makāra sparśaparastasya sasthānamanunāsikam TYP 5.27
antasthāparaśca savarn. amanunāsikam TYP 5.28

Examples are not provided in this case since these rules are well known
even in the classical Sanskrit.

• Special cases: In the Vyāsa śiks.ā

jñaghnottaro makāraścedanusvāro ′tra kevalah. | 166
dvimātra iti vijñeyo hyanyadharmavivarjitah. | 167
The ‘m’ phoneme before a jña or ghna (exists) as just an

anusvāra,
This is known to be two mātra-s (in length), and indeed

obtains a different quality.

This duration (mātra) lengthening is reflected in actual TT practice
and a distinct pause occurs after the anusvāra. The duration of the
pause is somewhat variable. Distinct pauses can be noted in the chant-
ing of such anusvāra-s in (Sarma et al. 2004) and the pan.d. ita-s from
the Sringeri vedapāt.haśāla, but in my field study I have observed some
pan.d. ita-s do not pause very clearly, and the pause is clear only to the
trained ear. The sarvasammata śiksā-32 elaborates further:



Tamil Taittirīyaka-s 203

nakis.t.am. ghnanti sam. jñānam. priyam. jñātim. tathaiva ca |
dhūm. ks.n. ā dam. ks.n. ava ityatrānusvāro ′pi vidharmakah. ||
In the places with nakis.t.am. ghnanti, sam. jñānam. , priyam.

jñātim. ,
dhūm. ks.n. ā and dam. ks.n. ava, the anusvāra (is pronounced

with a) different quality.

Note that this vidharma quality is observed whenever the com-
bination m. jña occurs, as specified by the vyāsa śiks.ā, e.g.,
sam. jñapayantyaindrah. in TS 6.3.11.2, which is not covered by the
verse quoted above. However the other cases, dhūm. ks.n. ā and
dam. ks.n. ava, quoted above are pronounced the same way, i.e., with the
lengthening of the duration. Interestingly, it is not an anusvāra, but
rather the consonant ṅ, which has the extended mātra. This phono-
logical flourish can be clearly heard in authentic TT recitations. Thus
the actual TT practice is a combination of the specification of the two
śiks.ā-s.

Phonological peculiarities with V1 being the ‘n’ phoneme
Some phonological peculiarities of the ‘n’ phoneme in TT recitation are
known only from tradition and are reflected in the Grantha texts.

• The first is when the ‘n’ phoneme occurs in the conjunct consonant
nts, which would become nths as per TYP 14.12. The ‘n’ phoneme
obtains vidharma, just like the cases described previously. In practice,
a pause occurs after the ‘n’ phoneme.20 The Grantha texts print out
a standalone ‘n’ phoneme in this case.

• The second peculiarity is when the conjunct consonant npr occurs. In
this case, the Grantha texts print the ‘n’ phoneme as a standalone
consonant, but it neither gets vidharma nor is pronounced like an ‘n’
phoneme at the end of a pada and which is not duplicated (described
in the next section). It reflects the fact that the ‘n’ phoneme is just
not duplicated, although the basic TYP rule would enjoin it.

20This pause is also reflected in the ‘n’ phoneme obtaining the svarita accent if the
previous vowel had the svarita accent.



204 B Ramakrishnan

Thus a standalone ‘n’ phoneme is pronounced in different ways, depending
on the context where it occurs. These two rules are not reflected in Rā
Kr.s.n. amūrti śāstri and Rā Gan. eśvaradrāvid. ah. (2003a).

V1 is nakāra or ṅakāra at the end of a pada
This is a distinct feature of the TT recitation, where in some cases the ‘n’
phoneme or the ṅakāra are not duplicated when occurring at the end of a
word and followed by a consonant in the next word. Note that the TYP
does not have any explicit rules for this and some rules can be found in the
śiks.ā-s. This case has been explained very well along with examples in the
introduction to Rā Kr.s.n. amūrti śāstri and Rā Gan. eśvaradrāvid. ah. (2003a).
Thus, the examples will not be repeated in this paper. However, I will
summarize the account from the śiks.ā-s and what happens in actual TT
recitations. The sarvasammata śiksā-45 says:

padāntasya nakārasya yavahes.u pares.u vai |
nakārayavahāstatra tvasam. yuktāh. prak̄ırtitāh. ||
The ‘n’ phoneme at the end of a word, followed (by) ya, va or

ha (in the next word),
There, the ‘n’ phoneme and the following ya, va or ha are well

known as not conjoined.

The Vyāsa śiks.ā on the other hand says:

yavahe parasthes.u nakāraścāntagastviti | 364
nasyāntagasya d̄ırghāttu yavahe he ca halpare | 365
parairebhirhi tasyaiva na syāt sam. yuktatā tathā | 366
The ‘n’ phoneme at the end (of a word) which comes prior to a

yakāra, vakāra or hakāra (in the next word is not duplicated).
The ‘n’ phoneme at the end of (a word) which occurs after a

long (vowel) and followed by a yakāra, vakāra or hakāra, or
a ‘h’ phoneme followed by a consonant

(The ‘n’ phoneme) followed by these exists without (becoming
a) conjunct (consonant).

Clearly there is a difference in the account between the two śiks.ā-s, since
the Vyāsa śiks.ā restricts the non-duplication to a word-end ‘n’ phoneme
which is preceded by a long vowel. However, neither reflect the true



Tamil Taittirīyaka-s 205

state of affairs in actual TT recitation, which is much more compli-
cated and includes the ṅakāra as well. It is actually summarized in the
sarvalaks.an. amañjar̄ısaṅgrahah. quoted under the above sūtra-s of the Vyāsa
śiks.ā (Ācārya Śr̄ıpat.t.ābhirāmaśāstri 1976),

prāpnuto ′ntau ṅanau dvitvam. vya-vr. -hr. -vra-parau ca re |
hrasvānno vaparo dvitvam. sarvatra yottarastu ṅah. ||
The ṅa and na at the end of a word are duplicated when followed

by vya, vr. , hr. , vra or the ‘r’ phoneme (in the next word)
The ‘n’ phoneme preceeded by a short vowel and followed by a ‘v’

phoneme is duplicated, and the ṅakāra is always duplicated
when followed by a ‘y’ phoneme.

The non-duplicated consonant is pronounced almost like a svarabhakti, but
not quite the same, and the TTs pause very slightly after the ‘n’ or the
‘ṅ’ phonemes, although this may not be discernible to the untrained ear.
In the Grantha texts, this non-conjunction is again denoted by having the
phonemes ‘n’ phoneme or ‘ṅ’ as a standalone consonant. (Rā Kr.s.n. amūrti
śāstri and Rā Gan. eśvaradrāvid. ah. 2003a) again use the ÷ symbol to delineate
this behavior.

Rules for the visarga
The visarga changes into the corresponding sibilants in general, except be-
fore the conjunct consonant21 ks.a. This means that before the ka and pa
series, the visarga will change into the jihvāmūl̄ıya and the upadhmān̄ıya
respectively. The key rule in duplication is TYP 14.9, which was quoted
previously. After the unvoiced sibilants, namely the jihvāmūl̄ıya and the
upadhmān̄ıya, the first mute of the series, i.e., k and p, are inserted as ab-
hinidhāna. Note that the jihvāmūl̄ıya and the upadhmān̄ıya themselves are
exempted from duplication as per TYP 14.15. A point to note here about
the Grantha texts is that they convert the visarga to the corresponding
sibilant if followed by śa, s.a or sa. Otherwise, the use the visarga symbol,
including before the conjunct consonant ks.a. It is up to the reader to map
it into the jihvāmūl̄ıya, upadhmān̄ıya, or an actual visarga. Some examples
are:

21See TYP na ks.aparah. . Note that the ks.a itself would be converted to khs.a as per
TYP 14.12.



206 B Ramakrishnan

yah. sāvitram 7→ yassāvitram (TB 3.10.9.36)
śukrah. śukraśocis.ā 7→ śukraśśukraśocis.ā (TB 1.1.1.2)
yah. kr. ttikāsu 7→ yah.kkr. ttikāsu (TB 1.1.2.6)
śukrapāh. pran. ayantu 7→ śukrapāh.ppran. ayantu (TB 1.1.1.1)
ghanāghanah. ks.obhanah. 7→ ghanāghanah. ks.obhanah. (TS 1.2.1.1)

2.1 A note on insertion of consonants
There are several cases where consonants are inserted, even in the absence
of conjunct consonants, e.g., as described in TYP 14.8. Since these happen
in the absence of conjunct consonants, most texts including those in the
Devanāgar̄ı script, specify this explicitly. Thus, these cases are not treated
in this paper. Another instance of insertion is the so-called yama or twin,
described in the TYP 21.12-13, where a corresponding twin is inserted when
a non-nasal mute is followed by a nasal mute. Strictly speaking, this de-
scribes the phonetic phenomenon when a non-nasal sound transition to a
nasal sound, and can be excluded from the category of consonant duplica-
tion.

3 Algebraic Formulation
It is assumed for the sake of textual processing that white space exists be-
tween two consonants only in the case of a word-end ‘ṅ’ or ‘n’ phoneme.
The reason is that only these cases have an effect on pronunciation in cer-
tain cases. In practice, useless white space can be erased easily in software
developed in high-level languages such as Perl very easily. Note that there
can be a white space between a vowel and a consonant, namely splitting
across different words when there is no conjunction, to make the text more
readable. The following notation is used to write concise equations:

• [ ] denotes a white space

• [x1|x2| · · · |xk] represents k possible choices. If there are k possible
choices in the LHS of the equation, there will be k possible choices in
the RHS of the equation and the corresponding choices will be at the
same position (index).

• The ÷ sign will be used to represent non-conjunctivity.

• The {r} or {l} notation are used to represent the svarabhakti-s.



Tamil Taittirīyaka-s 207

• A standalone ‘n’ phoneme stands for the special case of it before the
conjunct consonants beginning with pr.

• The ∗ symbol is used after the vyañjana to indicate the vidharmatva.

• Wikners transliteration for the anudātta and svarita are adopted.22

A mathematical representation of the rules, which affect a nakāra or
ṅakāra before a white space, i.e., happening at the end of a pada, is as
follows:

Sn[ ]l = l̃l (.2)
S [n|ṅ] [ ] [vya|vr. |hr. |vra|r] = S [n|ṅ] [vya|vr. |hr. |vra|r] (.3)

Shn[ ]v = Shnv (.4)
Sdn[ ]v = Sdn÷ v (.5)
Sn[ ]y = Sn÷ y (.6)
Sṅ[ ]y = Sṅṅy (.7)
Sṅ[ ]v = Sṅ÷ v (.8)
Shn[ ]h = Shnn÷ h (.9)
Sdn[ ]h = Sdn÷ h (.10)

22See https://ctan.org/tex-archive/language/sanskrit.

https://ctan.org/tex-archive/language/sanskrit


208 B Ramakrishnan

The rest of the duplication is as follows:

S1C
i1,j1
1 V0 · · ·VlS2 = S1C

i1,j1
1 V0 · · ·VlS2,

if V0 = Ci1,j2 andj2 ̸= 5 orV0 = V1 = Ci1,5

= S1C
i1,j1−1+j1mod2Ci1,j1

1 V0 · · ·VlS2,

otherwise (.11)
S1 [r|l|v]Ci1,j1

1 V0 · · ·VlS2 = S1 [r|l|v]Ci1,j1
1 V0 · · ·VlS2,

if V0 = Ci1,j2 andj2 ̸= 5 orV0 = V1 = Ci1,5

= S1 [r|l|v]Ci1,j1−1+j1mod2Ci1,j1
1 V0 · · ·VlS2,

otherwise (.12)
S1 [r|l]UaS2 = S1 [{r} | {l}]UaS2 (.13)

S1rr. = S1r ÷ r. (.14)
S1!rh_S2 = S1!rhh_S2 (.15)

S1rAV0V1 · · ·VkS2 = S1rAV0V1 · · ·VkS2, if V0 = A

= S1rAAV0V1 · · ·VkS2, otherwise (.16)
S1rUCi1,j1

1 V0 · · ·VlS2 = S1rUCi1,1Ci1,j1V0 · · ·VlS2 (.17)
S1rUAV0 · · ·VlS2 = S1rUUAV0 · · ·VlS2 (.18)

bailv[a|o] = bailv÷ v[a|o] (.19)
S1ṃ [jña|ghna] = S1ṃ ∗ [jña|ghna] (.20)
[da|dhū]m. ks.n. a = [da|dhū] ṅ ∗ khs.n. a (.21)



Tamil Taittirīyaka-s 209

Figure 1
ND-FST for processing V1 = mute



210 B Ramakrishnan

4 Non-deterministic Finite State Transducer Rep-
resentation

A Non-Deterministic Finite State Transducer (FST) is a 7-tuple (Sipser
2006) (Q,Σ,Γ, δ, ω, q0, F )

1. Q is a finite set called the states

2. Σ is a finite set called the alphabet

3. Γ is a finite set called the output alphabet

4. δ is the transition function

5. ω is the output function

6. q0 is the start state

7. F is the set of accept states

The processing is done in units of one sentence. The start state is the
beginning of new sentence. The accept state is when the virāma symbol (|),
i.e., the end of a sentence, is detected. The symbol ϕ stands for a white-space
between two words. Each sentence can be processed multiple times to apply
all the rules. Of course, in actual software, this could be parallelized for
faster processing. Two ND-FST processing engines are illustrated. Figure
1 shows the processing cycle when V1 is a mute. The whitespace between
words are denoted by the symbol ϕ. Note that some “super-states” are
used (denoted by gray filling) in order to simplify the diagram. Each super-
state will have to be broken into 5 different normal states for the 5 different
series in the mutes. Figure 2 shows the processing for a word-end ‘ṅ’ or ‘n’
phoneme. Clearly, ND-FSTs can be developed for all the other rule-groups
as well.



Tamil Taittirīyaka-s 211

Figure 2
ND-FST for processing the ‘n’ phoneme at the end of a pada



212 B Ramakrishnan

5 Software for Studying Duplication
A software using the Perl programming language has been developed to
study duplication and will be placed in the public domain. This software
accepts an input file which contains Yajurveda sentences in the Wikner
transliteration format. Rules such as svarabhakti, etc., are implemented and
an output file with text in Wikner’s transliteration format, using principles
similar to the Grantha texts, is produced. As an option, all duplicated
consonants can also be explicitly specified. This can be included in an
skt file, which serves as the input to Wikner’s pre-processor (which was
written in the C programming language). Note that the Wikner’s C code
was modified slightly to accommodate some TT accentuations and syllables,
which are not available from the regular pre-processor. Finally, xelatex can
be used to generate pdfs from the tex output of the modified Wikner pre-
processor.

6 Some Examples of Duplication
Examples of typesetting are given below with regular Devanāgar̄ı typesetting
first, Grantha-mode typesetting next, and finally the Grantha-mode with
all duplicated syllables. This will clearly illustrate the differences between
the Grantha mode and traditional Devanāgar̄ı typesetting, as well as how
consonants are duplicated. It should be noted that these do not cover all
the TYP duplication rules.

1. Example 1, TA 3.12.33.

(a) sahasr
ı
aś̄ırs.ā pur

ı
us.ah. | sahasrāks.ah. sahasr

ı
apāt | sa bhūm

ı
ım.

vísvat
ı
o vr. tvā | aty ı

atis.t.haddaśām. gulam | pur ı
us.a evedam̃. sarv

ıı
am

| yadbhūtam. yacca bhavy
ıı
am | utām ı

r. tattvasyeś
ı
ānah. | yadann ı

enā

tiroh
ı
ati | etāv ı

ānasya mahimā | atojyāyā
ı
m̃. śca pūr

ı
us.ah. ||

(b) sahasr
ı
aś̄ır÷s.ā pur

ı
us.ah. | sahasrākhs.assahasr

ı
apāt | sa bhūm˜

ı
ıvvísvat

ı
o

vr. tvā | aty
ı
atis.t.haddaśāṅgulam | pur

ı
us.a evedam̃. sarv

ıı
am |

yadbhūtãyyacca bhavy
ıı
am | utām

ı
r. tattvasyeś

ı
ānah. | yadann

ı
enā

tiroh
ı
ati | etāv ı

ānasya mahimā | atojyāyā
ı
m̃. śca pūr

ı
us.ah. ||

(c) sahassr
ı
aś̄ır÷s.ā pur

ı
us.ah. | sahassrākkhs.assahassr

ı
apāt | sa

bhūm˜
ı
ıvvísśvat

ı
o vr. ttvā | atty

ı
atis.t.t.haddaśāṅgulam | pur

ı
us.a



Tamil Taittirīyaka-s 213

evedam̃. sarv
ıı
am | yaddbhūtãyyacca bhavvy

ıı
am | utām

ı
r. tatt-

vassyeś
ı
ānah. | yadann

ı
enā tiroh

ı
ati | etāv

ı
ānassya mahimā |

atojjyāyā
ı
m̃. śca pūr

ı
us.ah. ||

2. Example 2, TB 1.1.1.

(a) brahma sam. dh
ı
attam. tanm

ı
e jinvatam | ks.atram̃. sam. dh

ı
attam.

tanm
ı
e jinvatam | is.am̃. sam. dh

ı
attam. tām. m

ı
e jinvatam | ūrjam̃.

sam. dh
ı
attam. tām. m

ı
e jinvatam | rayim̃. sam. dh

ı
attam. tām. m

ı
e

jinvatam | pus.t.im̃. sam. dh
ı
attam. tām. m

ı
e jinvatam | prajām̃.

sam. dh
ı
attam. tām. m

ı
e jinvatam | paśūntsam. dh

ı
attam. tānm

ı
e jin-

vatam | stut ı
o ′si jan

ı
adhāh. | devāstv ı

ā śukrapāh. pran.
ı
ayantu ||

(b) brahma sandh
ı
attantanm

ı
e jinvatam | khs.atram̃. sandh

ı
attantanm

ı
e

jinvatam | is.am̃. sandh
ı
attantām. m

ı
e jinvatam | ūrjam̃.

sandh
ı
attantām. m

ı
e jinvatam | rayim̃. sandh

ı
attantām. m

ı
e jinvatam

| pus.t.im̃. sandh
ı
attantām. m

ı
e jinvatam | prajām̃. sandh

ı
attantām.

m
ı
e jinvatam | paśūnthsandh

ı
attantānm

ı
e jinvatam | stut

ı
o ′si

jan
ı
adhāh. | devāstv ı

ā śukrapāh. pran.
ı
ayantu ||

(c) brahma sandh
ı
attantannm

ı
e jinnvatam | khs.attram̃. sandh

ı
attanta-

nnm
ı
e jinnvatam | is.am̃. sandh

ı
attantām. m

ı
e jinnvatam | ūrjjam̃.

sandh
ı
attantām. m

ı
e jinnvatam | rayim̃. sandh

ı
attantām. m

ı
e jin-

nvatam | pus.t.t.im̃. sandh
ı
attantām. m

ı
e jinnvatam | prajām̃.

sandh
ı
attantām. m

ı
e jinnvatam | paśūnthsandh ı

attantānnm
ı
e jin-

nvatam | stut ı
o ′si jan

ı
adhāh. | devāsttv ı

ā śukkrapāh.ppran.
ı
ayantu

||

3. Example 3, TA 1.22.86.1.

(a) pus.karaparn. aih. pus.karadan.d. aih. pus.karaísc
ı
a sam̃. sth̄ırya |

(b) pus.karaparn. aih. pus.karadan.d. aih. pus.karaísc
ı
a sam̃. sth̄ırya |

(c) pus.kkaraparn.n. aih. ppus.kkaradan.d. aih. ppus.kkaraíscc
ı
a sam̃. stth̄ıryya

|

7 Conclusion
Duplication of consonants is uniquely complex and creates many interesting
phonological flourishes in TT recitation. The duplication largely follows the
TYP and the two main śiks.ā -s, though not completely. The instances where



214 B Ramakrishnan

the śiks.ā -s add additional rules and where the two main śiks.ā -s disagree
with each other have been pointed out. All aspects of duplication and the
exceptions can be appreciated only by a trained ear. Duplication can be
expressed by algebraic equations as well as by an ND-FST. A Perl script has
been written to output the duplicated consonants in an exact manner. The
phonetic basis of duplication and comparisons between different Taittir̄ıya
traditions would be interesting future projects.

Acknowledgments
I would like to first thank my father for introducing me to the fascinating
subject of vedic chanting at a very early age. I would like to thank all
my teachers, and in particular, the following teachers have offered invalu-
able insights on chanting: Śr̄ı Nārāyan. a Śāstrin. ah. of Mylapore, Chennai,
Śr̄ı Śr̄ıkan. t.ha Ācāryāh. of Los Angeles, California, Śr̄ı Yajñeśvara Śāstrin. ah.
of Chicago, Illinois, and Śr̄ı Satyanārāyan. a Bhat.t.āh. of Andover, Mas-
sachusetts. I would like to thank the reviewers whose comments greatly
helped improve the clarity of the presentation.



References
A. Mahadeva Sastri. 1921. Sāmānya Vedānta Upanis.ads with the Commen-

tary of Sri Upanishad-Brahma-Yogin. Adyar Library.
Ācārya Śr̄ıpat.t.ābhirāmaśāstri. 1976. Vyāsaśiks.ā Śr̄ısūryanārāyan. asūrāva-

dhāni-viracita-vedataijasākhyayā vyākhyayā Śr̄ırājāghanapāt.hi-viracita-
sarva-laks.an. amañjaryāssaṅgrahen. a ca sametā. Veda-mīmāṃsānusandhāna-
kendra.

Allen, W. S. 1953. Phonetics in Ancient India. Oxford University Press.
Finke, Otto A. 1886. Die Sarvasammata Siksa mit Commentar, her-

augegeben, iibersetzt und erklart. Druck der Dieterichschen Univ.-
Bruchdruckerei.

John Lazarus. 1878. A Tamil Grammar: Designed for Use in Colleges and
Schools. John Snow and Co., Ludgate Hill.

Larios, Borayin. 2017. Embodying the Vedas - Traditional Vedic Schools of
Contemporary Maharashtra. De Gruyter Open Access Hinduism.

Mohanty, Monalisa. 2015. An analysis of svarabhakti in Yajurveda with refer-
ence to Yajurvedic Siksa texts. http://hdl.handle.net/10603/128613,
Department of Sanskrit, Utkal University.

Nārāyan. a Śāstr̄ı, T. S. 1930. Taitir̄ıyayajurbrāhman. am. prathamabhāgam. ,
sasvaram. Śāradavilāsamudrāks.araśālā, Kumbha -ghon. am.

— 1931. Taitir̄ıyayajurbrāhman. am. dvit̄ıyabhāgam. , sasvaram. Śāradavilāsa-
mudrāks.araśālā, Kumbha -ghon. am.

— 1935. Taitir̄ıyayajurbrāhman. am. tr. t̄ıyabhāgam. , sasvaram. Śāradavilāsa-
mudrāks.araśālā, Kumbha -ghon. am.

— Undated(a). Facsimile copy of Kr.s.n. a yajurved̄ıya tait̄ır̄ıya-sam. hitā
dvit̄ıyabhāgam. , sasvaram. Śāradavilāsamudrāks.araśālā, Kumbha -
ghon. am.

— Undated(b). Facsimile copy of Kr.s.n. a yajurved̄ıya tait̄ır̄ıya-sam. hitā
prathamabhāgam. , sasvaram. Śāradavilāsamudrāks.araśālā, Kumbha -
ghon. am.

Rā Kr.s.n. amūrti śāstri and Rā Gan. eśvaradrāvid. ah. . 2003a. Kr.s.n. a yajurved̄ıya
tait̄ır̄ıya-brāhman. am. Śr̄ınr. sim. hapriyā.

— 2003b. Kr.s.n. a yajurved̄ıya tait̄ır̄ıya-sam. hitā. Śr̄ınr. sim. hapriyā.

215

http://hdl.handle.net/10603/128613


216 B Ramakrishnan

Raja, C. Kunhan. 1937. “Notes on Sanskrit-Malayalam Phonetics”. In: Jour-
nal of Oriental Research of the University of Madras, Vol. I, Part 2, pp.
1-4.

Rastogi, Shrimati Indu. 1967. The Śuklayajuh. -Prātísākhya of Kātyāyana,
Critically edited from original manuscripts with English translation of
the text. The Chowkamba Sanskrit Series Office, Varanasi-1.

Sarma, Sridhara, Sundaresa Ghanapathi, Visvanatha Ghanapathi, and Ga-
janana Sarma. 2004. Sri Krishna Yajurvedam: Samhitai and Shakhai.
Vediclinks, Chennai.

Sastri, Mangal Deva. 1931. The R.gveda with the commentary of Uvaṭa:
Volume II Text in Sūtra form and Commentary with Critical Apparatus.
The Indian Press Limited, Allahabad.

Scharf, Peter and Malcolm Hyman. 2009. Linguistic Issues in Encoding San-
skrit. Motilal Banarsidass, Delhi.

Scharfe, Harmut. 1973. Grammatical Literature in Sanskrit. Otto
Harrasowitz-Wiesbaden.

Sipser, Michael. 2006. Introduction to the Theory of Computation, 2nd Edi-
tion. Cengage Learning, Boston, MA.

Staal, Frits. 1961. Nambudiri Veda Recitation. ś-Gravenhage : Mouton.
Vaidyanāthasāstri. 1905. Taittirriya Āran. yakam, kāt.hakabhāgasahitam.

drāvid. apāt.hakramayutañca. Śāradavilāsamudrāks.araśālā, Kumbha -
ghon. am.

Vasu, Srisa Candra. 1898. The As.t.ādhyāȳı of Pān. ini interpreted according to
The Kāśikāvr. tti of Jayāditya and Vāmana and translated into English,
Book VIII. Sindhu Charan Bose.

Whitney, William Dwight. 1863. The Atharva Prātísākhya or Śaunakīya
Caturādhyāyikā. Journal of the American Oriental Society, Vol. 7, 1860-
1863, pp. 333-615.

— 1871. The Taittir̄ıya Prātísākhya with its commentary, The Tribhās.ya
Ratna: Text, Translation, and Notes. American Oriental Society.



Word complementation in Classical Sanskrit
Brendan S. Gillon

Abstract: Classical Sanskrit has very flexible word order. This presents
a challenge to the application to Classical Sanskrit of categorial gram-
mars and their type logical extensions, which generally assume a fixed
total order on the words of the language. The paper outlines the facts
pertaining to complementation in Classical Sanskrit and proposes a
form of the cancellation rule which accommodates Classical Sanskrit’s
free word order of words and their complements.

1 Introduction
Syntacticians generally distinguish between complements and modifiers.
Generative syntacticians, wittingly or unwittingly, use some form of a cat-
egorial grammar to handle complementation. This approach works well
enough for those fragments of a language where complement order is rigid,
but it does not handle in a satisfactory way derogations from rigid word or-
der. Moreover, for languages such as Classical Sanskrit, where complement
word order appears to be completely free, off the shelf categorial grammars
are utterly unsatisfactory. However, it is possible to alter the standard
version of a categorial grammar to accommodate in a deft fashion the free
ordering of a word’s complements, as found, for example, in Classical San-
skrit. The basic idea is to take advantage of the mathematically well-known
equivalence between sequences of length n on a set and functions from the
set of positive integers up to and including n into the set.

Like other Indo-European languages, Classical Sanskrit distinguishes be-
tween nouns, verbs, adjectives and prepositions. And like other languages,
its words from each of these categories have complements, some obligatory,
some optional and some even excluded. In what follows, I shall assume
that the reader knows these distinctions and how they apply. I shall also
assume that words are assigned lexical categories which are ordered pairs.

217



218 Gillon

The first coordinate is its part of speech and its second is a complement list.
For example, the English verb to greet is assigned the category ⟨V, ⟨NP⟩⟩,
where V indicates that the word is a verb and where ⟨NP⟩ indicates that
it requires a noun phrase complement. The English verb to introduce is
assigned the category ⟨V, ⟨NP,PP⟩⟩, where the complement list shows that
the verb takes two complements, a noun phrase complement, followed by a
prepositional phrase complement. Intransitive verbs are assigned the cat-
egory ⟨V, ⟨ ⟩⟩. In other words, intransitive verbs have empty complement
lists. To enhance readability, I shall write the labels for these categories
with the part of speech label to the left of a colon and the complement list
to the right. Here are the categories of the three verbs just mentioned in
this modified notation: V : ⟨NP⟩, V : ⟨NP,PP⟩ and V : ⟨ ⟩.

The remainder of the paper proceeds in two steps. The first step is to
set out the data pertaining to complementation in Classical Sanskrit. The
Classical Sanskrit data are drawn from Apte’s A Practical Sanskrit-English
Dictionary (Apte 1957), Monier-Williams’s A Sanskrit English Dictionary
(Monier-Williams 1899) and Apte’s Student guide to Sanskrit composition
(Apte 1885). To help fix ideas, I shall provide examples from English as well.
These data are taken from Gillon (2018), which in turn draws on Quirk et al.
(1985) and Huddleston (2002). The second step is to set out the proposal.
I shall conclude the paper with an overview both of what has been covered
and of what has not been.

2 Survey of the data
We begin with prepositions since their complements are the simplest to de-
scribe. In English, in and into are both prepositions. They both admit a
single complement. The preposition into requires a complement, the prepo-
sition in does not. The latter permits its complement to be omitted. When
the complement of a preposition is omitted, the argument corresponding
to the omitted complement has its value determined contextually, either
through its cotext or its setting, in ways familiar from the ways in which
third-person pronouns have their values fixed contextually.
(1) Dan stood in front of the house. When the phone rang,

*he suddenly ran into.
he suddenly ran in.



Word complementation in Classical Sanskrit 219

(where the asterisk is the usual sign meaning that the expression to which
it is prefixed is judged as odd.)

English, as it happens, also has words, traditionally classified as adverbs,
which are often, but not always, compounded from prepositions and which
exclude a complement. For example, the English adverb afterwards, though
it expresses a binary relation, excludes any complement.1

(2) Alice lived in Montreal until 2010.
Afterwards, she moved to Vancouver.
After that, she moved to Vancouver.

Many Classical Sanskrit prepositions take a complement for which, as
is well known, its case has to be specified. For example, the complement
of the preposition adhas takes a noun phrase whose head is the sixth case,
for example, tarūṇām adhas (beneath the trees) (Apte 1885, §112). As
with English, some Classical Sanskrit prepositions, for example upari, have
optional complements:
(3.1) muhūrtād upari (Monier-Williams (1899) sv upari)

after a minute
(3.2) upari payaḥ pibet (Monier-Williams (1899) sv upari)

afterwards he should drink milk
Next come adjectives. Though not common, some English adjectives

require a complement.
(4.1) *Max is averse.
(4.2) Max is averse to games.

(Quirk et al. 1985, ch. 16.69)
Others admit optional complements. When omitted, their construal is either
contextually fixed, as illustrated by the examples in (5), or is reciprocal, as
illustrated by the examples in (6).
(5.1) Bill lives faraway.

Bill lives faraway from here.
(5.2) Although Bill lives faraway, he visits his parents regularly.

Although Bill lives faraway from them, he visits his parents regu-
larly.

1Similar examples are found in French and are detailed in Grevisse (1964, §901).



220 Gillon

Though cases where an adjective expresses a binary relation but excludes
a complement are rare, they do exist. The English adjective alike, which
excludes any complement, is particularly instructive in this regard, since it
has two synonyms, the adjective similar whose complement is optional, and
the preposition like, whose complement is obligatory.
(6.1) Bill and Carol are alike.
(6.2) Bill and Carol are similar (to each other).
(6.3) Bill and Carol are like each other.

Classical Sanskrit adjectives too take complements and the case of their
complements has to be specified. For example, the adjective sukha, in the
sense of good for, takes a fourth case complement. Other adjectives include
dūra (distant), which takes a sixth case complement, kovida (proficient)
which takes a seventh case complement, sama (same) which takes a third
place complement, prabhu (being a match for) which takes a fourth case
complement and kalpa (fit), nikaṭa (near) and samīpa (near), which all take
sixth case complements.

English relational nouns are nouns with complements. A few require
a complement, such as the word lack (Herbst 1988, p. 5) or sake (Chris
Barker pc). A few exclude complements, such as stranger and foreigner.
Most, however, admit optional complements. This is true, for example,
of kinship nouns. When their complements are omitted, the construal of
the missing complement is indefinite, or existential, as is illustrated by the
equivalence of the sentences in (7).
(7.1) Bill is a father.
(7.2) Bill is a father of someone.

Finally, many nouns resulting from the nominalization of a verb also admit
optional complements, even if the complements of the verbs from which they
derive are obligatory.

While it is unclear whether or not Classical Sanskrit has relational nouns
whose complements are required or excluded, it is obvious that it has rela-
tional nouns with optional complements. This is the case for kinship nouns.
It is also true for nouns such as pārśva (side), paryanta (edge), viṣaya (ob-
ject), sthāna (object) (Apte 1885, §11b: U4). The default case assignment
is the sixth case, but other case assignments are also possible, for example,
the seventh case for kāraṇa (cause) or spṛha (desire).

We now come to verbs and their complements. To fix ideas, let me
summarize the situation with verbs in English. Like other well-studied lan-



Word complementation in Classical Sanskrit 221

guages, English verbs may take none, one, two, or sometimes even three
complements. An English verb which admits no complement (e.g., to bloom)
is known as an intransitive verb. English linguistics has no term for verbs
which take exactly one complement. However, traditional English grammar
does have a term for verbs which takes an adjective phrase as its sole com-
plement. They are called copular, or linking, verbs. They include verbs
such as to appear, to become and to sound. It also has a term for verbs
which take a noun phrase as its sole complement. As the reader knows,
they are called transitive verbs. But English also has verbs whose sole com-
plements are prepositional phrases such as to approve of, to rely on and to
wallow in, among many, many others. In addition, English has verbs whose
sole complements are clauses, where clauses include finite interrogative and
declarative clauses, interrogative and declarative infinitival phrases , and
gerundial phrases. Here are examples of each of these kinds of verbs: to
note, to wonder, to decide, to recall and to enjoy.

English verbs may also take two complements. The best known of such
verbs are verbs such as to give, one complement of which is known as the
direct object and the second as the indirect object. However, other pairs
of complements are also common, for example, where one complement is a
noun phrase and the other an adjective phrase (e.g., to consider) or where
one is a noun-phrase or prepositional phrase and the other is a clause (e.g.,
to convince and to say respectively). Finally, there are a few verbs which
take three complements such as to bet, to trade and to transfer.

Let us now turn to Classical Sanskrit verbs. There has been no study
of word complementation in Classical Sanskrit, not even of just verb com-
plementation. Still, enough for my purposes here can be gleaned from the
sources mentioned earlier. Classical Sanskrit, like other Indo-European lan-
guages has verbs with no complements, one complement, two complements,
and three complements. Verbs with just one complement include verbs
whose sole complement is a clause, an adjective phrase, and a noun phrase.
I do not know whether or not Classical Sanskrit has any verbs whose sole
complement is either an adverbial phrase or a prepositional phrase. Verbs
with two complements include verbs where one complement is a noun phrase
and the other either another noun phrase, an adjective phrase, or a clause,
where a clause may be an interrogative or declarative finite clause, a par-
ticipial phrase or an infinitival phrase. There are also a few verbs with three
complements.

I shall illustrate the principal features of verb complements with verbs



222 Gillon

taking just one complement. The noun phrase complements of single com-
plement Classical Sanskrit verbs, though typically taking the second case,
may, depending on the verb, take any of the seven cases. The verb ghrā
(to smell) takes a second case nominal complement, while tuṣ (to be pleased
with) takes a third case nominal complement, ruc (to please) takes a fourth
case nominal complement, viyuj (to separate from) a fifth case, samjñā (to
remember with regret) a sixth case nominal complement and vyavahṛ (to
deal with) a seventh case complement. In addition, copular verbs such as
vṛt (to be) take a first case complement, which may be either a noun or an
adjective.

Copular verbs exhibit an important property of many words which take
complements: the single complement they admit may be from any of several
categories. I shall refer to words which admit alternate complements polyva-
lent complements. The copular verb is the best-known example. In English,
the copular verb admits one complement which may be either an adjective
phrase, a noun phrase, a prepositional phrase or an adverbial phrase; in
Classical Sanskrit, the complement may be a noun phrase in any of the
seven cases, an adjective phrase or a prepositional phrase.

Another polyvalent Classical Sanskrit verb, well known to students of
Classical Sanskrit grammar, is the verb div (to play), whose complement is
a noun phrase in either the third (instrumental) or second (accusative) case.
(Apte 1885, §59 obs.)
(8.1) akṣair dīvyati.

He plays dice.
(8.2) akṣān dīvyati.

He plays dice.
English also has many, many such verbs. A particularly compelling exam-
ple is the English verb to appoint, which admits alternately a prepositional
phrase complement and a noun phrase complement, for this verb is synony-
mous with another English verb to choose, which admits only a prepositional
phrase complement.
(9.1) Dan appointed Alice as chief minister.
(9.2) Dan appointed Alice chief minister.
(10.3) Dan chose Alice as chief minister.
(10.4) *Dan chose Alice chief minister.

Though polyvalency is common with verbs, it is not unique to verbs.



Word complementation in Classical Sanskrit 223

Another feature of verb complements is their optionality. I call words
with optional complements polyadic. It is a feature of all word classes in En-
glish and it seems to be common in other languages, including both Chinese
and Classical Sanskrit. (Details pertaining to polyadic Classical Sanskrit
words are given in Gillon (2015).)

3 Proposal
Let me now turn to the proposal. To understand the proposal for Classical
Sanskrit complementation, let me sketch out the proposal for complementa-
tion in English. The reader familiar with categorial grammar will immedi-
ately recognize the similarity between the phrase formation rule given below
for English and the cancellation rule of categorial grammar.

Careful study of English complementation (Quirk et al. (1985); Huddle-
ston (2002)) shows that English verbs alone have nearly four dozen kinds of
complements. (The details are found in (Gillon 2018, ch. 10). The general
schema, to a first order approximation, is this:
(11) english phrase formation rule schema

If e|X:⟨C1, . . . ,Cn⟩ and fi|Ci, for each i ∈ Z+
n , then ef1 . . . fn|X:⟨ ⟩

(where 1 ≤ i ≤ n).
In the schema, e, f1, . . . , fn are expressions. Each expression which is

a simple word is assigned a category of the form X:⟨C1, . . . ,Cn⟩, where
X is either A (adjective), N (noun), P (preposition) or V (verb) and Ci

is a complement, which itself may be a phrase, such as a noun phrase,
an adjective phrase, a verb phrase, a prepositional hrase, or a clause of
some kind. In effect, the rule says that, when an expression is assigned a
lexical category which admits n complements is followed by n complements
of corresponding categories, the resulting expression forms a phrase, that
is, it forms a constituent requiring no complements. Obviously, this is an
enriched cancellation rule, as familiar from categorial grammar. (See Gillon
(2012) for details, as well as Gillon (2018, ch. 10).)

An application of an instance of the cancellation rule is given in the
derivation below, where the expression greeting Bill is assigned the category
VP, which is an abbreviation for V:⟨ ⟩.



224 Gillon

Alice
NP

greeted
V:⟨NP⟩

Bill
NP

VP
S

In the derivation above, the total, or linear, order of the expressions matters,
as one expects for English. Also, since we are talking about complementation
here and subject noun phrases are not complements, the last step results
from an additional rule for clause formation.

While every instance of phrase formation in English is an instance of this
schema, not all instances of this schema are instances of phrase formation
in English. For example, it is thought that no English word has more than
three complements. It, therefore, follows all instances of the schema where
n is greater than or equal to 4 do not form English phrases.

Associated with the syntactic rule in (9) is the following semantic rule.
(12) english phrase valuation rule schema

Let ⟨U, i⟩ be a structure for an English lexicon.
If e|X:⟨C1, . . . ,Cn⟩ and fj |Cj , for each j ∈ Z+

n , then
vi(ef1 . . . fn|X:⟨ ⟩) = {x : ⟨x, y1, . . . , yn⟩ ∈ vi(e|X:⟨C1, . . . ,Cn⟩) and
yj ∈ vi(fj |Cj), for each j ∈ Z+

n }.

Before seeing how these schemata can be generalized to handle words
with alternate complements and optional complements, let us see how these
simpler schemata can be applied to Classical Sanskrit. The basic idea is to
change the correspondence between a complement list and the complements
by having two n-tuples of the same length to the requirement that there be
a bijective function from the complements onto the complement list which
preserves various syntactic specifications of the complement expressions. In
particular, the bijection must preserve phrasal and clausal categories and,
in the case of phrases, preserve the case of a phrase’s head noun.
(13) sanskrit phrase formation rule schema

Let e|X:⟨C1, . . . ,Cn⟩, let fj |Aj , for each j ∈ Z+
n , and let g be

a bijection from {Ai : i ∈ Z+
n } into {Cj : j ∈ Z+

n } such that the
phrasal category and case, if the category has case, of A is identical
with that of g(A). Then, ef1 . . . fn|X:⟨ ⟩.

Consider the verb trai (to rescue), which takes two complements:



Word complementation in Classical Sanskrit 225

(14) bhīmād duḥśāsanaṃ trātum.
to save Duḥśāsana from Bhīma.
(Apte 1885, §78: Ve 3)

Its lexical entry is trai|⟨NP2,NP5⟩, where the subscripts indicate the case
requirement on the noun phrase complement. Now consider the expressions
bhīmād, duḥśāsanaṃ and trātum, under any ordering, form a constituent
and there is a bijection from the expressions bhīmād and duḥśāsanaṃ into
the complement list ⟨NP2,NP5⟩ which preserves the phrasal category and
the case associated with the phrasal category.

trātum
V:⟨NP2,NP5⟩

duḥśāsanaṃ
NP2

bhīmād
NP5

VP
In the derivation tree above, the expressions are not totally ordered with
respect to one another. In other words, any permutation of the lexical items
results in the same derivational step. This, of course, contrasts with English.

Let us now consider a conservative extension of the categories and the
cancellation rule which permits a simple treatment of word polyvalence. The
basic idea is to replace each specification of a complement in the comple-
ment list with a set of complement categories. In the case where a word has
just one complement for a position in its complement list, then its position
is filled with a singleton set whose sole member is the relevant category; if
the position has more than one complement which can be associated with
the position, then it is assigned the set of all the categories associated with
it. Cancellation occurs when a complement to the word occurs in the cor-
responding set in the complement list.
(15) phrase formation rule schema (first extension)

For each j ∈ Z+
n , let Cj be a complement category, let Cj be a

non-empty subset of the complement categories and let Cj be a
member of Cj .
If e|X:⟨C1, . . . ,Cn⟩ and fj |Cj , for each j ∈ Z+

n , then ef1 . . . fn|X:⟨ ⟩.
For example, the verb to choose takes one complement and its complement
is a noun phrase, whereas the verb to appoint takes one complement but its
complement may be either a noun phrase or a prepositional phrase (headed
by the preposition as). The contrasting complement lists are illustrated
below in the contrasting lexical entries for the two verbs.



226 Gillon

(16.1) appoint|V:⟨{NP}, {NP,PP}⟩
(16.2) choose|V:⟨{NP}, {PP}⟩

Here are examples of Classical Sanskrit polyvalent verbs:
(17.1) div|V:⟨{NP2,NP3}⟩
(17.2) namaskṛ|V:⟨{NP2,NP4}⟩
(17.3) praṇam|V:⟨{NP2,NP4,NP6}⟩

We must now adjust the semantic rule schema paired with the extended-
phrase formation rule schema so that the semantic rule schema accommo-
dates the revisions in the phrase formation rule schema.
(16) phrase valuation rule schema (first extension)

Let ⟨U, i⟩ be a structure for an English lexicon.
For each j ∈ Z+

n , let Cj be a complement category, let Cj be a
non-empty subset of the complement categories and let Cj be a
member of Cj .
If e|X:⟨C1, . . . , Cn⟩ and if fj |Cj (for each j ∈ Z+

n ), then
vi(ef1 . . . fn|X:⟨ ⟩) = {x : ⟨x, y1, . . . , yn⟩ ∈ vi(e|X:⟨C1, . . . , Cn⟩) and
yj ∈ vi(fj |Cj), for each j ∈ Z+

n }.
The final complication, occasioned by polyadic words, or words with op-

tional complements, has been addressed for English and it can be addressed
for Classical Sanskrit, but it is not possible to set out the details in the brief
time allotted for the paper.

4 Conclusion
As should be well known, the treatments in generative linguistics of the for-
mation of a phrase from its head and the head’s complements amounts to
some form of the cancellation rule of Categorial Grammar. While this rule
works for phrases where the word order of the head word and its comple-
ments is total, or linear, it does not apply to languages where the order is
not. Classical Sanskrit is such a language. In this paper, I have shown how
a simple enrichment of lexical categories and a modest change in the can-
cellation rule permits languages where the head word and its complements
are freely ordered to be brought within the purview of a cancellation rule.
In addition, I showed how the enrichment can be conservatively extended to
handle complement polyvalence, that is, where expressions of different syn-



Word complementation in Classical Sanskrit 227

tactic categories may appear in the same complement position. Finally, I
stated, but did not show, that the conservative extension can be still further
extended conservatively to apply to complement polyadicity, that is, where
complements to a word are optional.

Three important points were not addressed: how is a clause formed from
a subject noun phrase and a verb phrase; how does one distinguish in Clas-
sical Sanskrit complements from modifiers; and how does the cancellation
rule introduced here affect computational complexity. Let me bring this
brief article to a close by saying a few words about each point.

Since the focus on this paper is complementation, the question of the
correct rule for clause formation does not arise, aside from providing an ex-
ample derivation of an entire clause. Of course, in Categorial Grammar and
its various type logical enrichments, the usual way to handle the formation
of a clause from a subject noun phrase and a verb-phrase is through the
cancellation rule, in effect, treating the subject noun phrase as a kind of
complement to the verb. But this is not empirically satisfactory, as it col-
lapses the distinction between complements and subjects, something which
may in fact be warranted in the case of Classical Sanskrit.

The second point pertains to how to distinguish between modifiers and
complements in Classical Sanskrit. There is some debate among linguists
as to how to make this distinction. Distinguishing between modifiers and
complements is an empirical question and one whose answer will vary from
language to language. It is not a question which has been addressed either
by scholars using contemporary linguistic ideas or by scholars of the Indian
grammatical tradition. The latter fact is not surprising, since complementa-
tion is not a notion used in the Indian grammatical tradition. Nonetheless,
languages do share properties, and in the absence of empirical work on the
subject, I have followed the lead of what are generally regarded as comple-
ments in the study of various Indo-European languages, of which Classical
Sanskrit is an example.

Finally, I have not addressed the question of the computational tractabil-
ity of the enriched cancellation rules proposed here. This important ques-
tion, raised by a reviewer, is not one I am currently in a position to address.2

2In this regard, let me bring to the reader’s attention work by Alexander Dikovsky
and collaborators seeks to address the problem which relatively free word order poses
for a cancellation rule of the kind found in categorial grammar: Dekhtyar and Dikovsky
(2008) and Dekhtyar, Dikovsky, and Karlov (2015). This work was kindly brought to my
attention by a reviewer of this paper.



References
Apte, Vāman Shivarām. 1885. The Student’s Guide to Sanskrit Composition.

A Treatise on Sanskrit Syntax for Use of Schools and Colleges. Poona,
India: Lokasamgraha Press.

— 1957. The practical Sanskrit-English dictionary. Poona, India: Prasad
Prakashan.

Dekhtyar, Michael I. and Alexander Ja. Dikovsky. 2008. “Generalized
categorial dependency grammars”. In: Pillars of Computer Science
(Trakhtenbrot Festschrift). Vol. 4800. LNCS. Berlin, Germany: Springer,
pp. 230–255.

Dekhtyar, Michael I., Alexander Ja. Dikovsky, and Boris Karlov. 2015.
“Categorial dependency grammars”. Theoretical Computer Science
579pp. 33–63.

Gillon, Brendan S. 2012. “Implicit complements: a dilemma for model the-
oretic semantics”. Linguistics and Philosophy 35.4pp. 313–359.

— 2015. “Constituency and cotextual dependence in Classical Sanskrit”.
In: Sanskrit syntax: selected papers presented at the seminar on Sanskrit
syntax and discourse structures. Ed. by Peter M. Scharf. The Sanskrit
Library, pp. 237–267.

— 2018. Grammatical structure and its interpretation: an introduction to
natural language semantics. Cambridge, Massachusetts: MIT Press.

Grevisse, Maurice. 1964. Le Bon Usage. Gembloux, Belgium: Duculot.
Herbst, Thomas. 1988. “A valency model for nouns in English”. Journal of

Linguistics 24pp. 265–301.
Huddleston, Rodney. 2002. “The clause: complements”. In: The Cambridge

grammar of the English language. Ed. by Rodney Huddleston and Geof-
frey K. Pullum. Cambridge University Press, pp. 213–322.

Monier-Williams, Monier. 1899. A Sanskrit English dictionary. Oxford, Eng-
land: Oxford University Press.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, and Jan Svartik.
1985. A comprehensive grammar of the English language. London, Eng-
land: Longman.

228



TEITagger: Raising the standard for digital texts
to facilitate interchange with linguistic software

Peter M. Scharf

Abstract: For several years, members of the International Sanskrit Com-
putational Linguistics Consortium working to facilitate interchange
between digital repositories of Sanskrit texts, and digital parsers and
syntactic analyzers have recognized the need to standardize refer-
ence to particular passages in digital texts. XML has emerged as
the most important standard format for document structure and data
interchange, and TEI as the most important standard for the XML
markup of textual documents. TEI provides methods to precisely de-
scribe divisions in texts from major sections to individual morphemes,
and to associate various versions with each other. Responsible text
archives, such as TITUS and SARIT, have adopted the TEI stan-
dard for their texts. After a workshop to train doctoral candidates
at the Rashtriya Sanskrit Sansthan to mark-up texts in accordance
with TEI in May 2017, the Sanskrit Library developed software to
semi-automate the process with extensive use of regular expressions
and meter-identification software, and is currently marking-up all of
its texts using the TEITagger. The result will be a large repository
of digital Sanskrit texts that can furnish text to the Sanskrit Heritage
parser and the University of Hyderabad’s parser and syntax analyzer
to allow passages parsed and analyzed for dependency structure to be
interlinked with their originals.

1 XML and TEI
In the age in which oral productions and hand-written documents were the
predominant mode of expressing knowledge and exchanging information,
each individual articulation or manuscript had its own format determined
by the author and heard or read by other individuals. In the age of the print
medium, presses produced multiple copies of individual productions which

229



230 Scharf

could be widely distributed to numerous other individuals. At the outset of
the digital age, as Scharf and Hyman (2011, p. 2) and Scharf (2014, p. 16)
noted, presentation of individual productions imitated the print medium.
Document creators and software engineers created works to present knowl-
edge to human readers. As Goldfarb (1990) noted, unfortunately the ten-
dency persists as “their worst habits” as if their production were meant only
for human eyes, and had no need to coordinate with software developed by
others. In 1969, however, Goldfarb, Mosher, and Lorie at International
Business Machines Corporation (IBM) developed the Generalized Markup
Language (GML), so called based on their initials (Goldfarb 1990, p. xiv), to
mark up documents in terms of the inherent character of their constituents,
such as prose, header, list, table, etc., to enable software to format the docu-
ments variously for various devices, such as printers and display screens, by
specifying a display profile without changing the document itself (Wikipedia
contributors 2017). Over the next decade, Goldfarb and others developed
the international Standard Generalized Markup Language (SGML), Interna-
tional Standards Organization (ISO) document 8897, to describe documents
according to their structural and other semantic elements without reference
to how such elements should be displayed. Thus in contrast to the Hyper-
Text Markup Language (HTML) which was designed to specify the display
format of a text, SGML separates the inherent structure of a document from
how it is presented to human readers and “allows coded text to be reused
in ways not anticipated by the coder” (Goldfarb 1990, p. xiii).

The eXtensible Markup Language (XML) is an open-source meta-
language consisting of a stripped-down version of SGML formally adopted
as a standard by the World Wide Web Consortium (W3C) in February 1998.
In the couple of decades since, XML has become the single most important
standard format for document structure and data interchange. Wüstner,
Buxmann, and Braun (1998) noted, “XML has quickly emerged as an essen-
tial building block for new technologies, offering a flexible way to create and
share information formats and content across the Internet, the World Wide
Web, and other networks.” Benko (2000, p. 5) noted, “XML is expected
to become the dominant format for electronic data interchange (EDI).” A
few years ago, Zazueta (2014) noted, “XML emerged as a front runner to
represent data exchanged via APIs early on;” whereas “Javascript Object
Notation (JSON), emerged as a standard for easily exchanging Javascript
object data between systems.” He continues,



TEITagger 231

API designers these days tend to land on one of two formats
for exchanging data between their servers and client developers
- XML or JSON. Though a number of different formats for data
have been designed and promoted over the years, XML’s built
in validation properties and JSON’s agility have helped both
formats emerge as leaders in the API space.”

Benko (2000, p. 2) also noted that two of the seven benefits the W3C defines
for establishing XML include the following:

• Allow industries to define platform-independent protocols for the ex-
change of data.

• Deliver information to user agents in a form that allows automatic
processing after receipt.

As a simple metalanguage consisting of just seven characters (<, >, /,
=, ", ', ␣), XML allows users to develop markup languages of an unlim-
ited variety. In order to facilitate interchange of textual documents, the
Text Encoding Initiative (TEI) developed a community-based standard for
the representation and encoding of texts in digital form. The TEI Guide-
lines for Electronic Text Encoding and Interchange define and document a
markup language for representing the structural, renditional, and concep-
tual features of texts. They focus (though not exclusively) on the encoding
of documents in the humanities and social sciences, and in particular on the
representation of primary source materials for research and analysis. The
Text Encoding Initiative also makes the Guidelines and XML schema that
validate them available under an open-source license. TEI has become the
most important standard for the XML markup of textual documents. Hence
to facilitate the interchange, cross-reference, and unanticipated use of digital
Sanskrit text, it is imperative that digital archives of Sanskrit texts make
their texts available encoded in XML in accordance with the TEI Guidelines.

2 Sanskrit digital archives and the use of TEI
A number of organizations and individuals, such as GoogleBooks, The Mil-
lion Books Project, Archive.org, the Digital Library of India, and the Vedic
Reserve at Maharishi International University, have made images and PDF
documents of Sanskrit printed texts available, and a number of libraries,



232 Scharf

such as the University of Pennsylvania in Philadelphia and the Raghunath
Temple Sanskrit Manuscript Library in Jammu, have made images of their
Sanskrit manuscripts available. Such productions have greatly facilitated
access to primary source materials; yet that access is limited exclusively to
being read by a human being. Although Jim Funderburk developed software
to search headwords in a list and highlight that headword in digital images
of dictionary pages, and Scharf and Bunker developed software to approxi-
mate the location of passages in digital images of Sanskrit manuscripts, the
results of such software are also merely displays for a human reader. PDFs
do not facilitate automatic processing after receipt.

Numerous groups and individuals of various backgrounds have created
digital editions of Sanskrit texts and made them available on portable digital
storage media and the Web. As opposed to image data, these documents
consist of machine-readable character data. Most of these are structured
in simple data structures, such as lines of text numbered with a composite
chapter-section-line number, in text files or directly in HTML files. These
documents are intended to permit access by a human to passages by search-
ing as well as for sequential reading. While the various providers of dig-
ital text are too numerous to mention, one site has emerged as a central
registry. The Göttingen Register of Electronic Texts in Indian Languages
(GRETIL) lists about eight hundred such Sanskrit texts. These texts are
openly available for download so that others may subject them to various
sorts of linguistic processing such as metrical, morphological, and syntactic
analysis. As great a service as making these texts available in digital form is,
GRETIL exerted minimal discipline on its early contributors so that there is
great variability in the specification of metadata. In many cases, the source
edition of the text is unknown. In addition, each contributor was free to
structure the document as he wished, so there is great variability in the
manner of formatting verse and enumerating lines.

Although GRETIL offers the texts in a few common standard encod-
ings including UTF8 Unicode Romanization, there is variability in how the
contributors employed capitalization, encoded diphthongs versus contiguous
vowel sequences, punctuation, etc. Texts available from other sources use
Devanāgarī Unicode, different ASCII meta-encodings, or legacy pre-Unicode
fonts. Scharf and Hyman (2011) and Scharf (2014) have already dealt with
the issues regarding character encoding. Here I address higher-lever text
and document structure encoding.

Even by 2006, at the start of the International digital Sanskrit library



TEITagger 233

integration project, the Thesaurus Indogermanischer Text- und Sprachma-
terialien (TITUS), which contributed its texts for integration with dictio-
naries produced by the Cologne Digital Sanskrit Dictionaries project via
morphological analysis software produced by Scharf and Hyman at Brown,
had begun partially using TEI tags to mark up the structure of its texts
and metadata. Over the past four years, the Search and Retrieval of Indic
Texts project (SARIT) marked up all of the texts which had previously been
made available in various ad hoc formats at the Indology website, and some
twenty additional texts, in a consistent encoding in accordance with the TEI
standard. The site (http://sarit.indology.info) currently houses fifty-
nine Sanskrit TEI documents made available under a Creative Commons
license and provides clear instructions for how to mark up Sanskrit texts in
accordance with TEI.

3 TEI training
At the bequest of the SARIT project, in an initial attempt to spur large-
scale encoding of Sanskrit texts in accordance with the TEI standard, I
conducted a one-week e-text tutorial at the Rashtriya Sanskrit Sansthan’s
Jaipur campus in February 2010. While several participants produced TEI
versions of small portions of texts, the workshop failed to instigate the col-
laboration of technical expertise and abundant Sanskrit-knowing labor that
SARIT had hoped. In May 2017, however, I was invited by the Rashtriya
Sanskrit Samsthan to conduct a two-week TEI workshop at its Ganga Nath
Jha campus in Allahabad. There I trained twenty Sanskrit doctoral can-
didates in how to encode texts and catalogue manuscripts in accordance
with TEI Guidelines. In an additional week I worked with these students
to encode twenty Sanskrit works in accordance with TEI, ten of which were
delivered complete in the next month.

During the workshop, I trained students to analyze the structure of a
plain text data-file with Sanskrit text in numbered lines or verses and to
construct regular expressions to recognize strings of text with fixed num-
bers of syllables. We constructed regular expressions to recognize a few
common verse patterns and had the students submit the verses found to
the Sanskrit Library’s meter analyzer produced and described by Melnad,
Goyal, and Scharf (2015a,b). Once we knew that verses with a certain num-
ber of syllables were typically in a certain metrical pattern, we constructed

http://sarit.indology.info


234 Scharf

replacement expressions to transform the recognized pattern to well-formed
TEI line group elements (lg) with subordinate line (l) and segment ele-
ments (seg) for each verse quarter (pāda) and to insert type, analysis, and
metrical pattern attributes (type, ana, met) in the (lg) tag. The replace-
ment expressions inserted the enumeration provided by the source document
in (n) and (xml:id) attributes in the (lg) tag, and typed and lettered the
verse quarters as well. Where complex numbers compiled the numbers of
text divisions, subdivisions, and passages within subdivisions, the regular
expression placed just the last in a separate group, and the replacement ex-
pression inserted that number in the value of the n attribute while putting
the whole number in the value of the xml:id attribute. For example, the
regular expression and replacement expression shown in Figure 1 was pri-
marily responsible for transforming the following verse of the Bhagavadgītā
(in Sanskrit Library ASCII encoding) to the well-structured TEI (lg) ele-
ment with its subsidiaries shown in Figure 2:

06024070a ApUryamARam acalapratizWaM; samudram ApaH
praviSanti yadvat
06024070c tadvat kAmA yaM praviSanti sarve; sa SAntim Ap-
noti na kAmakAmI

I say, “primarily responsible,” because in fact the leading zeroes on the
number of the verse were captured by this regular expression so that ‘070’
was inserted in the value of the n attribute; an additional regular expression
removed them.

Now one will notice that the original text document conveniently indi-
cated the break between the two verse quarters in each line of a Triṣṭubh
verse by a semicolon and space. This indication allowed the regular expres-
sion to group just the text of each verse quarter without leading or trailing
spaces. However, no such indication was given for the break between verse
quarters in an Anuṣṭubh verse because there is frequently no word-break at
the pāda boundary of the ubiquitous śloka. One would want to preserve
the information whether or not there is a word break there, yet would not
want a pāda to begin with a space. Hence after a regular expression inserted
each verse quarter in a seg element, subsequent regular expressions moved
leading spaces, where found, from the beginning of the second seg to the
end of the first and set the second verse quarter on a separate line. Thus
the first verse of the Bhagavadgītā,



TEITagger 235

Figure 1
Regular expression and replacement expression to transform a plain text

verse in Triṣṭubh meter to TEI



236 Scharf

Figure 2
Bhagavadgītā 2.70 in Triṣṭubh meter

06023001a Darmakzetre kurukzetre samavetA yuyutsavaH
06023001c mAmakAH pARqavAS cEva kim akurvata saMjaya

was marked up in TEI and reformatted as shown in Figure 3 with each verse
quarter in a separate seg element.

I also trained students in the workshop to compose regular expressions to
capture the speaker lines such as Dhr�tarāṣṭra uvāca that introduce speeches
and to compose replacement expressions to put these in speaker elements.
Similarly, I taught them to mark up prose sentences and paragraphs in s
and p elements, to put speeches in sp elements, to insert head and trailer
elements, to locate and capture enumeration of divisions, to insert div el-
ements, to insert the whole in body and text elements, to insert page and
line break elements, and to mark up bibliography. I then had them insert
these elements in a teiHeader template in the TEI element, and to validate
the complete TEI document. Figure 4 shows the first short speech of the
Bhagāvadgītā with the speaker element in the context of parent sp, div,
body, and text opening tags. Let me remark that guidelines for how to
mark up Sanskrit text in accordance with TEI are conveniently available on
the SARIT website.1

1http://sarit.indology.info/exist/apps/sarit-pm/docs/
encoding-guidelines-simple.html

http://sarit.indology.info/exist/apps/sarit-pm/docs/encoding-guidelines-simple.html
http://sarit.indology.info/exist/apps/sarit-pm/docs/encoding-guidelines-simple.html


TEITagger 237

Figure 3
Bhagavadgītā 1.1 in Anuṣṭubh meter

Figure 4
TEI markup of a speech in the context of division, body, and text elements



238 Scharf

4 TEITagger software
After the experience of teaching Sanskrit students with minimal technical
literacy to transform a plain text document to well-structured XML in ac-
cordance with TEI in a series of well-ordered steps, it occurred to me that
I could also teach a machine to do the same. Ralph Bunker, the technical
director of the Sanskrit Library, had previously developed software called
Linguistic Mapper at my request so that I could compile a driver file that
contained a sequence of regular and replacement expressions that imple-
mented historical sound change rules between a proto-language and a de-
scendant language. We created TEITagger by modifying Linguistic Mapper
to process a series of such sets of regular and replacement expressions that
matched specified numbers of syllables in certain arrangements that approx-
imated metrical patterns. By creating a regular expression that counted the
correct number of syllables per pāda we could convert every such verse to
proper TEI markup in lg elements, with each line in an l element, and each
pāda in a seg element. At the same time we could number the verse in
an n attribute, insert an xml:id, and insert the presumed meter name and
metrical pattern in a type attribute. The meter name and metrical pattern
in the first version of TEITagger was presumed on the basis of the sylla-
ble count, not automatically checked against a pattern of light and heavy
syllables.

We then revised TEITagger to include the feature of submitting a seg-
ment of text that matched a certain regular expression to our meter identi-
fication software that would identify the meter of a whole verse by checking
the passage against specified patterns of light and heavy syllables as defined
by classical metrical texts. If a match is found TEITagger version 2 au-
tomatically inserts the meter name, general type, and metrical pattern in
type, ana, and met attributes of the lg element. To simplify the regular
expression formulation in the command driver file for this program, we com-
posed macros to represent vowels, consonants, syllables, syllable codas, and
the typical terms used in the lines that introduce speeches. These macros
are shown in Figure 5.

To further simplify testing segments of text for any meter type with any
number of syllables, we introduced an iterative loop command and iteration
variable in version 3. Thus, for example, with a command that consists of
the single regular expression and replacement expression shown in Figure
6, TEITagger can evaluate every segment of text in a file with four verse



TEITagger 239

quarters each consisting of n syllables per verse quarter, where the variable
n is tested in order from 28–1 thereby testing for all of the verses with the
same number of syllables per verse quarter. Metrical patterns with the same
number of syllables per verse quarter include all 468 of the samavr�tta and
upajāti types as well as some of the ardhasamavr�tta and viṣamavr�tta type.
Similar expressions can be composed to match verses with unequal numbers
of syllables per verse quarter. Such metrical patterns include those of the
ardhasamavr�tta type and mātrāvr�tta type as well as irregular variations of
more regular patterns. The current version (17) also passes verse lines and
individual pādas to the meter analyzer to detect their patterns in irregular
verses.

Figure 5
TEITagger macros



240 Scharf

Figure 6
TEITagger iterative command to match verses with four pādas with n
syllables per pāda, where an arbitrary range can be specified for n.



TEITagger 241

The TEITagger driver file also accepts commands to insert header and
footer files so that one can add the opening XML file tags, open and close
body and text tags, open and close TEI tags, and a teiHeader. Finally,
TEITagger will pretty print the file if it is a valid XML file.

5 Philological use of the TEITagger software
Metrical analysis of Vedic, epic, and classical Sanskrit texts is not new.
For instance, metrical analysis of the Mahābhārata has produced interesting
results that bear on the critical composition of the text and its history.
Edgerton (1939) distinguished regular versus irregular varieties of Triṣṭu-
bh and Jagatī meters that were significantly divided between the Virāṭa-
parvan and Sabhāparvan respectively and thereby demonstrated separate
composition and probably subsequent insertion of the Virāṭaparvan in the
text of the Mahābhārata. He also described several regular patterns in the
hypermetric and hypometric irregular varieties based upon the location of
the caesura.

Fitzgerald (2006) reported the results of analyzing a database of the Tri-
ṣṭubh and Jagatī verses he assembled over the past couple of decades. He
analyzed these metrical patterns into five segments: initial and final sylla-
bles, and three sets of three syllables each: the opening, break, and cadence.
He identified three standard varieties of Triṣṭubh: (1) a regular Upajāti con-
sisting of the alternating pādas of Indravajrā and Upendravajrā, (2) Śālinī,
and (3) Vātormī; and a standard variety of Jagatī: an Upajāti consisting of
alternating pādas of Vaṁśasthā and Indravaṁśā. Fitzgerald (2009) isolated
two measurable variables: (1) the degree of uniformity among the pādas of
the Triṣṭubh stanzas, and (2) the set of major Triṣṭubh features that were
eliminated in the creation of the classical standard triṣṭubh. He isolated
passages on the basis of runs of Triṣṭubh and Jagatī verses and measured
the uniformity within verses in these passages to attempt to locate discon-
tinuities that might signal different periods of composition of the passages.
Fitzgerald (2004) argued, “if we are able to make reasonable arguments
about historical fissures in the text, we thereby enrich our understanding of
the text’s possible meanings …by distinguishing multiple voices, dialogical
tension, and innovation within the otherwise synchronic, unitary, received
text.” In his careful unpublished study of the episode of the dice match, he
was able to counter the conclusions of Söhnen-Thieme (1999), and to con-



242 Scharf

clude that “this whole episode, the Upajāti passage of chapter 60 in which
Duḥśāsana drags Draupadī into the sabhā by the hair, is likely later than
most or all of the rest of this episode.”

Work of the sort that Edgerton and Fitzgerald have done with careful
evaluation of statistics gathered with great effort over a long time could be
vastly simplified and assisted by the automation provided by TEITagger.
After testing TEITagger version 2 on the Bhagavadgītā, within a week, I
tagged the entire critical edition of the Mahābhārata, including those with
irregular patterns such as those with hypermetric or hypometric pādas. A
driver file of nearly a thousand lines individually matched every possible
combination of the syllable counts per pāda, triple-line and single line verses
as well as the normal double-line verses. For example, a separate set of a
regular expression and its replacement expression targets triple-line Triṣṭu-
bh verses with a hypermetric first pāda, another targets such verses with
a hypermetric second pāda, etc. The driver file assumed that such deviant
metrical patterns ought to be classified under a certain type despite the
failure of the meter analyzer to find a regular type. The task preceded and
inspired the development of our iteration command and commands to send
verse lines and pādas to the meter analyzer described in the previous section.
The driver file I developed to tag the Bhāgavatapurāṇa with these features
added consists of only 318 lines.

TEITagger version 2 tagged 73,436 verses and 1,057 prose sentences in
386 paragraphs. The verses include 68,860 Anuṣṭubhs, 2,970 Triṣṭubhs,
431 Jagatī, 322 Indravajrā, 0 Upendravajrā, 496 of the standard Upajāti
variety alternating the two preceding, 88 Śālā, 78 Vāṇī (other Upajātis),
31 Aparavaktra (an ardhasamavr�tta meter), 22 Praharṣiṇī, 16 Rucirā, 9
Mālinī, 4 Vasantatilakā, 4 Puṣpitāgrā, 1 Śārdūlavikrīḍita, 1 Halamukhī, 1
Āryāgīti (a type of Āryā), 1 mixture of half Kāmakrīḍā and half Kāmu-
kī, and a hundred unidentified. The unidentified metrical patterns include
for instance, 1 mixture of half Kāmukī and half unidentified, 1 mixture of
a deviant pāda with subsequent Anuṣṭubh, jagatī, and Triṣṭubh pādas, as
well as 98 other uninvestigated unidentified patterns.

The results of TEITagger version 2 are presented in Table 1 in compar-
ison with some of the results Fitzgerald (2009) reported. One can see that
there is a minor discrepancy of one passage in the enumeration of the prose
passages. The cause of this discrepancy needs to be investigated. Yet oth-
erwise there is astonishing consistency in the enumeration of the prose and
verse passages. There is a discrepancy of just two verses of the Anuṣṭubh



TEITagger 243

meter. The discrepancy of 41 Triṣṭubh/Jagatī verses and 52 fancy meters
is probably largely due to TEITagger’s incorrect assumption that a number
of irregular meters with 11–12 syllables per pāda were of this type rather
than fancy metrical patterns. For if the meter analyzer failed to identify a
verse, TEITagger relied on syllable count alone to classify it.

Using TEITagger version 17 with the more refined feature of sending
verse lines and quarters to the meter analyzer, and with some revision of
the meter analyzer itself, I reevaluated the metrical patterns of the Mahā-
bhārata. In this version, I made no assumptions about the conformity of
deviant patterns to regular types; instead, where the meter analyzer failed
to find a match for a verse, I permitted it to seek a match of each line of
the meter, and failing to find a match for a line, to seek a match for each
pāda in the line. Where lines or pādas within a verse were identified as the
same, the metrical information was combined so that along with a single
type classification for the verse only the deviant lines or pādas are classified
separately. Labels consisting of the meter names in SLP1 for each different
meter found within a verse are separated by a forward slash in the value of
the type-attribute of the lg-element that contains the verse in the TEI file.
These labels are preceded by letters indicating the pādas so labeled.

Table 2 shows the numbers of verses with one to six metrical identifi-
cations for the verse as a whole or parts of the verse individually. Table
3 shows the meters recognized. Column three of Table 3 shows the num-
ber of the meter indicated in column one that was recognized as a verse.
Column four shows the number of additional sets of double lines recognized
within triple-line meters. Column five shows the number of lines recognized
in verses not recognized as verses or sets of double lines. Column six shows
the number of pādas recognized in lines not recognized as lines. The first
line of each section divided by double horizontal lines tallies the numbers
of that general metrical type. Rows beginning with Upajāti in bold in the
Triṣṭubh and Jagatī sections tally the numbers for the Upajāti type patterns
listed in subsequent rows within the same section. The Upajāti numbers are
included in the tally for the section as a whole as well. At the bottom of
the table, the row labeled Identified in bold summarizes the total number of
verses, additional pairs of lines, additional lines, and additional verse quar-
ters recognized. The row labeled No type shows the number of verses not
recognized before querying the meter analyzer regarding lines and pādas,
and the total number of pādas that remain unidentified. The pādas that
remain unidentified are provided with the label no_type within the value



244 Scharf

Table 1
Metrical and non-metrical passages in the Mahābhārata identified by

TEITagger v. 2
compared with those identified by Fitzgerald

passage type syllables/pāda TEITagger Fitzgerald
2009

passages 73,822 73,821
prose
paragraphs 386 385
sentences 1,057
verse 73,436 73,436
Anuṣṭubh 8 68,860 68,858
Triṣṭubh/Jagatī 11–12 4,385 4,426
Triṣṭubh 11 2,970
Indravajrā 11 322
Upendravajrā 11 0
Upajāti 11 662
Indravajrā/Upendravajrā 11 496
Śālā 11 88
Vāṇī 11 78
Jagatī 12 431
Fancy meters 100 152
Halamukhī 9 1
Aparavaktra 13/12 31
Puṣpitāgrā 12/13 4
Praharṣiṇī 13 22
Rucirā 13 16
Vasantatilakā 14 4
Mālinī 15 9
Kāmakrīḍā/Kāmukī 15/16 1
Śārdūlavikrīḍita 19 1
Āryāgīti 7 caturmātrās + 2 1
unidentified 100



TEITagger 245

of the type-attribute in the TEI file. No lines or line pairs are so labeled
because if they are unidentified their pādas are sent to the meter analyzer
individually for analysis. The row labeled Total in bold shows the total
number of verses in the Mahābhārata in column three but in column six just
the total number of pādas analyzed individually.

Table 2
Mixed metrical patterns in the Mahābhārata identified by TEITagger v. 17

type identified not fully total
single 70,242 3,194 73,436
mixed 689 2,505 3,194
double 85 4 89
triple 468 994 1,462
quadruple 129 1,451 1,580
quintuple 5 23 28
sextuple 2 33 35

TEITagger version 17 found matches for each of the fourteen varieties
of Triṣṭubh Upajāti patterns and the several Jagatī Upajāti patterns named
separately. It also found several additional samavr�tta metrical patterns for
lines and verse quarters not found by analyzing whole verses. Rows headed
by these meter names show blanks in the columns for verses and lines where
no verses or lines of that type were found. These initial results of applying
TEITagger to analyze the metrical patterns in theMahābhārata demonstrate
its capacity to reveal detailed information about a massive work and to mark
up the results in a way that permits computational compilation so that these
results may be presented to scholars in ways that may inspire further insight.

Table 3
Metrical patterns in the Mahābhārata identified by TEITagger v. 17

meter type syllables/ verse 2/3 lines line quarter
pāda

Anuṣṭubh 8 68,360 10 521 633
Anuṣṭubh3 8 68,322 10 518 610
Pramāṇikā 8 38 0 1 22
Vidyunmālā 8 2 1



246 Scharf

meter type syllables verse 2/3 lines line quarter
pāda

Vibhā 8 6
Haṁsaruta 8 1
Triṣṭubh 11 1,355 62 970 3,252
Indravajrā 11 171 3 271 941
Upendravajrā 11 94 0 174 805
Vātormī 11 1 30 0 597
Rathoddhatā 11 5 0 0 0
Śālinī 11 38 0 0 909
Upajāti 11 1,046 29 525 0
Bhadrā 11 68 2 167 0
Haṁsī 11 90 0 188 0
Kīrti 11 114 3 0 0
Vāṇī 11 98 4 0 0
Mālā 11 73 1 0 0
Śālā 11 82 0 170 0
Māyā 11 50 3 0 0
Jāyā 11 50 1 0 0
Bālā 11 82 5 0 0
Ārdrā 11 68 3 0 0
Rāmā 11 62 1 0 0
R�ddhi 11 85 3 0 0
Buddhi 11 67 2 0 0
Siddhi 11 57 1 0 0
Jagatī 12 411 4 94 343
Vaṁśasthā 12 359 3 73 181
Indravaṁśā 12 1 0 5 95
Bhujaṅgaprayāta 12 3 0 0 0
Kāmadattā 12 4
Vaiśvadevī 12 3 55
Śruti 12 2 8
Upajāti 12 48 0 16 0
Śaṅkhanidhi 12 1 0 2 0
Padmanidhi 12 2 0 14 0
Vaṁśamālā 12 45 1 0 0
Fancy 116 0 37 32



TEITagger 247

meter type syllables verse 2/3 lines line quarter
pāda

Halamukhī 9 1 0 0 0
Śuddhavirāj 10 1
Aparavaktra 13/12 27 0 3 0
Puṣpitāgrā 12/13 33 0 3 0
Praharṣiṇī 13 8 0 1 1
Rucirā 13 28 0 11 28
Prabhavatī 13 1
Vasantatilakā 14 3 0 0 1
Praharaṇakalikā 14 1 0
Mālinī 15 9 0 0 0
Śārdūlavikrīḍita 19 1 0 0 0
Upagīti 5cm+l+1cm+g 6 0 29 0
Āryāgīti 7cm+gg 0 0 1 0
Identified 70,242 76 1,622 4,267
No type 3,194 4,297
Total 73,436 8,564

6 Communication between TEI files and linguistic
software

As mentioned in section 1, one of the principal benefits of encoding Sanskrit
texts using TEI XML is to fulfill the need to coordinate directly, without
human intervention, with software developed by others, possibly in ways
not anticipated. In particular, by encoding Sanskrit texts in TEI we antic-
ipate coordinating a large repository of digital Sanskrit texts with parsers
and syntax analyzers, such as the Sanskrit Heritage parser and the Uni-
versity of Hyderabad’s .sMa;sa;a;Da;n�a;a. TEI provides robust standardized methods
to coordinate various versions of texts and to refer to particular divisions
and segments within a text so that parsed and syntactically analyzed pas-
sages may be interlinked with their originals. Naturally, the highest lev-
els of coordination between versions would require standardized identifica-
tion of the repository that houses the original file from which a passage
was taken and submitted to a linguistic analysis tool on another site. An
attribute value pair such as simply repository='sl', or more officially
repository='US-RiPrSl' using the International Standard Identifier for



248 Scharf

Libraries and Related Organizations (ISIL), ISO 15511, might identify the
Sanskrit Library as the repository. Obviously standardized identification
of the file within the repository is required, either by collection and item
identifiers or by filename. These identifiers should be interpretable pro-
grammatically as a URL, or be a URL directly provided with a submis-
sion. For example, if I submit the first verse of the unanalyzed text of
the Mahābhārata to the Sanskrit Heritage parser I might provide the URL
http://sanskritlibrary.org/texts/tei/mbh1.xml with my submission.

A second level of standardized identification is required to identify the
type of analysis. When the Sanskrit Library analyzed the TITUS archive’s
texts for inclusion in 2006, it discovered a surprising variety in the degree and
type of analysis of sandhi. Some of these encoding practices can be specified
in the encoding description of a document. However, standard designation
of various degrees of analysis is needed to coordinate versions. At the least,
one might consider standard designation for the types of analysis of Sanskrit
texts described in Table 4. For clarity, it is strongly recommended that these
different degrees of analysis be located in separate files, not combined in a
single file. TEI provides simple means of coordinating such versions by
synchronizing element identifiers (xml:id).

Once a file containing the version of a text with a specific degree of analy-
sis is identified, standardized reference to particular sections and passages is
required. TEI provides machine-readable methods for declaring the element
used and the structure of references within two elements of the teiHeader:

• tagsDecl
• refsDecl

The tagging declaration may be used to document the usage of specific tags
in the text and their rendition.2 Figure 7 shows the tagsDecl element used
for the Sanskrit Library’s TEI edition of the critical edition of the Mahā-
bhārata. Because the value of the partial attribute is specified as false, the
tags listed as values of the gi attribute of the tagUsage elements are all the
elements and the only elements that occur under the text element. The lg,
l, and seg elements are used to mark up verses as shown in figures 2, 3,
and 4, in the last of which are shown also the use of the body, div, sp, and
speaker elements. The p and s elements are used to mark up paragraphs

2See the TEI P5 guidelines at http://www.tei-c.org/release/doc/tei-p5-doc/en/
html/HD.html#HD57, and http://www.tei-c.org/release/doc/tei-p5-doc/en/html/
ref-tagsDecl.html

http://sanskritlibrary.org/texts/tei/mbh1.xml
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD57
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD57
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-tagsDecl.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-tagsDecl.html


TEITagger 249

Table 4
Degrees of analysis of Sanskrit texts

1. continuous text (saṁhitā-pāṭha)
a. with breaks only where permitted in Devanāgarī script, i.e. only

after word-final vowels, visarga or anusvāra
b. with breaks where permitted in Roman script, i.e. after conso-

nants as well
c. with breaks where permitted in Roman script with designation

immediately following characters representing sounds that result
from single replacement sandhi at word boundaries

2. sandhi-analyzed text (pada-pāṭha)
a. with word final visarga throughout, without designation of com-

pound constituents
b. distinguishing visarga originating in final s from visarga from final

r
c. with designation (but not analysis) of compound constituents as

permitted in Devanāgarī script, i.e. after constituent-final vowels,
visarga or anusvāra

d. with designation (but not analysis) of compound constituents as
permitted in Roman script, i.e. after constituent-final consonants
as well

e. with designation (but not analysis) of compound constituents as
permitted in Roman script, with designation immediately follow-
ing characters representing sounds that result from single replace-
ment sandhi at constituent boundaries

f. with analysis of sandhi between compound constituents as well
3. morphologically analyzed text
4. lexically and morphologically analyzed text
5. syntactically analyzed text

a. dependency structure
b. phrase structure



250 Scharf

and sentences in prose. The numbers listed as values of the occurs attribute
in the tagUsage elements indicate the number of occurrences of the element
named in the value of the gi attribute. The numbers shown are those for the
Svargārohaṇaparvan. Those mentioned as values of the selector attribute
of the rendition element with xml:id='skt' are all the elements and the
only elements that render Sanskrit text in SLP1 to be transcoded to Unicode
Roman, Devanagari, or another Indic Unicode encoding for redisplay. These
elements provide all that is necessary to extract Sanskrit text from the
encoding for display in HTML, and for submission as a unit to metrical,
morphological and syntactic analysis software. The attribute values of the
elements listed in the rendition element with xml:id='sktat' lists all the
attributes and the only attributes whose values are Sanskrit text in SLP1 to
be transcoded. These attribute values are Sanskrit terms that might be used
to display menus in an HTML display to select divisions such as parvan, and
adhyāya.

The reference declaration describes the reference system used in the
text.3 TEI offers the possibility of describing the pattern of canonical ref-
erences formally in a manner amenable to machine processing. A regular
expression describing the pattern of the canonical reference is paired with a
replacement expression that describes the path to the attributes that con-
tain the referenced numbers (n attributes of div and lg elements in verse in
the Mahābhārata, and of p, and s in prose). Figure 8 shows the refsDecl
element of the Sanskrit Library’s TEI edition of the Svargārohaṇaparvan.
The pattern shown in the matchPattern attribute of the first cRefPattern
element describes a canonical reference to any verse quarter in the Mahā-
bhārata. The three sets of digits separated by periods refer to the parvan,
adhyāya, and verse; the letter refers to the pāda, for example, 6.24.70a refers
to the first pāda of the seventieth verse of the twenty-fourth adhyāya of the
sixth parvan shown in Figure 2. (The 24th adhyāya of that parvan is the
second in the Bhagavadgītā.) The first of the two cRefPattern elements
gives a replacement expression that matches a path that has verses directly
as children of a div element; the second, one that has verses as children
of an intervening sp element within an adhyāya. Subsequent cRefPattern
elements describe shorter references to whole verses, adhyāyas, and parvans.
These elements and attributes directly provide an unambiguous method to

3See the TEI P5 Guidelines at http://www.tei-c.org/release/doc/tei-p5-doc/en/
html/HD.html#HD54, and http://www.tei-c.org/release/doc/tei-p5-doc/en/html/
ref-refsDecl.html

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD54
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD54
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-refsDecl.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-refsDecl.html


TEITagger 251

Figure 7
The tagsDecl element in the Sanskrit Library’s TEI edition of the

Svargārohaṇaparvan of the Mahābhārata



252 Scharf

resolve canonical references to particular passages. Yet, processed in the op-
posite direction, from the replacement path to the match expression, the ref-
erences provide a means to compose canonical references from n attributes.

Once a standard system of exact references to specific passages in un-
analyzed continuous text has been adopted, reference to various versions
of analyzed passages are easily constructed by specifying in addition the
degree of analysis described in Table 4. One method of doing this in a
TEI document would be to specify the degree of analysis as a value of the
ana attribute of the text element. Another would be for archives to add a
standard addition to the filename.

Linguistic software that produces TEI output would add elements sub-
ordinate to those containing text in the TEI document that contains the
continuous text. A document that contains analyzed sandhi but no further
analysis would insert each word (pada), including compounds (samasta-pa-
da), in a w element. A document that contains compound analysis would
insert the lexical constituents of compounds in a w element subordinate to
the compound’s w element. Although the types of analysis described in Ta-
ble 4 do not envision tagging non-lexical morphemes such as the infix a and
suffix ti in the verb gacchati, such morphemes would be inserted in an m
element. TEI provides attributes that may be used for lexical and mor-
phological analysis of each word in a w element. The stem of the word is
made the value of the lemma attribute. We have chosen to make the lexical
identifier a value of the type attribute and the morphological identifier a
value of the subtype attribute. Figure 9 shows our TEI mark up of the
sandhi analysis of the first verse of the Bhagavadgītā, MBh. 6.23.1, and
Figure 10 shows our TEI mark up of the lexical and morphological analysis
of the same verse. Where authors deliberately compose passages that are
amenable to more than one analysis (śleṣa), alternative analyses — whether
of verses, lines, verse quarters, prose passages, or individual words — may
be analyzed in separate files where, in order to permit coordination, they
may be supplied with the identical division numbers and xml:ids as their
unanalyzed passages and the preferred analysis.

As a result of standardized coordination of markup and reference be-
tween Sanskrit text archives and Sanskrit computational software, HTML
displays showing the unanalyzed version of a verse might be able to include
a set of links to various analyzed versions for the convenience of students
and scholars of Sanskrit. Conversely, displays of the results of analysis of a
passage might also provide links to the unanalyzed source.



TEITagger 253

Figure 8
The refsDecl element in the Sanskrit Library’s TEI edition of the

Svargārohaṇaparvan of the Mahābhārata



254 Scharf

Figure 9
TEI mark up of the sandhi analysis of MBh. 6.23.1, the first verse of the

Bhagavadgītā



TEITagger 255

Figure 10
TEI mark up of the lexical and morphological analysis of MBh. 6.23.1, the

first verse of the Bhagavadgītā



References
Benko, Matthew. 2000. Understanding XML. Tech. rep. url: https : / /

faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%
20-%20Understanding%20XML%20draft%20TN.pdf.

Edgerton, Franklin. 1939. “The epic triṣṭubh and its hypermetric varieties”.
Journal of the American Oriental Society 59.2pp. 159–174. doi: www.
jstor.org/stable/594060.

Fitzgerald, James L. “A meter-guided analysis and discussion of the dicing
match of the Sabhāparvan of the Mahābhārata”.

— 2006. “Toward a database of the non-anuṣṭubh verses of the Mahābhā-
rata”. In: Epics, Khilas, and Purāṇas. continuities and ruptures. Pro-
ceedings of the Third Dubrovnik International Conference on the San-
skrit Epics and Purāṇas. Ed. by Petteri Koskikallio. Zagreb: Croatian
Academy of Sciences and Arts, pp. 137–148.

— 2009. “A preliminary study of the 681 triṣṭubh passages of of the Mahā-
bhārata”. In: Epic undertakings. proceedings of the 12th World Sanskrit
Conference. Ed. by Robert Goldman and Muneo Tokunaga. Delhi: Moti-
lal Banarsidass, pp. 95–117.

Goldfarb, Charles F. 1990. The SGML Handbook. Oxford: Clarendon Press.
Melnad, Keshav, Pawan Goyal, and Peter M. Scharf. 2015a. “Identification

of meter in Sanskrit verse”. In: Sanskrit syntax. selected papers presented
at the seminar on Sanskrit syntax and discourse structures, 13–15 June
2013, Université Paris Diderot, with a bibliography of recent research by
Hans Henrich Hock. Providence: The Sanskrit Library, pp. 325–346.

— 2015b. “Updating Meter Identifying Tool (MIT)”. In: (Bangkok, June 28–
July 2, 2015). Paper presented at the 16th World Sanskrit Conference,
Bankok.

Scharf, Peter M. 2014. “Linguistic issues and intelligent technological solu-
tions in encoding Sanskrit”. Document numérique 16.3pp. 15–29.

Scharf, Peter M. and Malcolm D. Hyman. 2011. Linguistic issues in encoding
Sanskrit. Delhi: Motilal Banarsidass.

Söhnen-Thieme, Renate. 1999. “On the composition of the Dyūtaparvan of
the Mahābhārata”. In: Composing a Tradition. Proceedings of the First
Dubrovnik International Conference on the Sanskrit Epics and Purāṇas,

256

https://faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%20-%20Understanding%20XML%20draft%20TN.pdf
https://faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%20-%20Understanding%20XML%20draft%20TN.pdf
https://faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%20-%20Understanding%20XML%20draft%20TN.pdf
https://doi.org/www.jstor.org/stable/594060
https://doi.org/www.jstor.org/stable/594060


TEITagger 257

August 1997. Ed. by Mary Brockington and Peter Schreiner. Zagreb:
Croatian Academy of Sciences and Arts, pp. 139–154.

Wikipedia contributors. 2017. IBM Generalized Markup Language. In:
Wikipedia. The Free Encyclopedia. Wikipedia.

Wüstner, E., P. Buxmann, and O. Braun. 1998. “XML — The Extensible
Markup Language and its Use in the Field of EDI”. In: Handbook on
architectures of information systems. Ed. by P. Bernus, K. Mertins, and
G. Schmidt. International Handbooks on Information Systems. Berlin,
Heidelberg: Springer.

Zazueta, Rob. 2014. API data exchange. XML vs. JSON. How do you spell
API? url: https://www.mashery.com/blog/api-data-exchange-
xml-vs-json.

https://www.mashery.com/blog/api-data-exchange-xml-vs-json
https://www.mashery.com/blog/api-data-exchange-xml-vs-json




Preliminary Design of a Sanskrit Corpus Manager
Gérard Huet and Idir Lankri

Abstract: We propose a methodology for the collaborative annotation of
digitalized Sanskrit corpus tagged with grammatical information. The
main features of the proposal are a fine grain view of the corpus at the
sentence level, allowing expression of inter-textuality, sparse represen-
tation allowing non-necessarily sequential acquisition, and distributed
collaborative development using Git technology. A prototype Sanskrit
Corpus Manager has been implemented as a proof of concept, in the
framework of the Sanskrit Heritage Platform. Possible extensions and
potential problems are discussed.

1 Introduction
Several digital libraries for Sanskrit corpus have been developed so far. We
may mention the GRETIL site of Göttingen’s University,1 with a fair cov-
erage, under various formats. The Sarit site,2 developed by Dominik Wu-
jastyk, Patrick McAllister and other Indology colleagues, contains a smaller
corpus, but it follows a uniform format compliant with the Text Encoding
Initiative (TEI) standard, and has a nice interface. Furthermore it bene-
fits from a collaborative acquisition framework using Git technology. The
Sanskrit Library3 developed by Peter Scharf and colleagues, also follows
the TEI, and benefits from the tagging services of the Sanskrit Heritage
Platform, since individual sentences link to its segmentation cum tagging
service. DCS4 developed at Heidelberg University by Oliver Hellwig, is the
most advanced from the point of view of linguistic analysis, since it is fully

1Göttingen Register of Electronic Texts in Indian Languages http://gretil.sub.
uni-goettingen.de/gretil.htm

2Search And Retrieval of Indic Texts http://sarit.indology.info
3Sanskrit Library http://www.sanskritlibrary.org
4Digital Corpus of Sanskrit http://kjc-sv013.kjc.uni-heidelberg.de/dcs/

259

http://gretil.sub.uni-goettingen.de/gretil.htm
http://gretil.sub.uni-goettingen.de/gretil.htm
http://sarit.indology.info
http://www.sanskritlibrary.org
http://kjc-sv013.kjc.uni-heidelberg.de/dcs/


260 Huet and Lankri

annotated with morphological tags indexing a lexicon of stems. Its develop-
ment involved several iterations of deep learning algorithms (Hellwig 2009,
2015, 2016). Covering at present 560,000 sentences, it is today the closest
analogue for Sanskrit of the Perseus Digital Library for Greek and Latin
corpus.5

Several other efforts are currently under development, although unfortu-
nately with little standardization effort. Not all digital libraries are publicly
available. For instance, the TITUS Thesaurus of Indo-European text6 is
accessible only to scholars participating in the acquisition effort.

There exist now several computational linguistics tools that process San-
skrit text in order to parse it under a grammatical representation that can be
considered an approximation to a formal paraphrase of its meaning. Typi-
cally, a sentence will yield a stream of morphological tags. The DCS analyser
of Oliver Hellwig, based on statistical alignment on a data base of lemmas
trained from a seed of human-annotated tags, has the advantage of being
fully automatic. The Sanskrit Heritage Platform under development at Inria
Paris offers a service of segmentation with tagging (at two levels, inflection
and morphology of stems), linking into a choice of two dictionaries. It also
has a surface parser using kāraka analysis that can be used for learners on
simple sentences, but is not sufficient for corpus processing (Huet 2007). It
also links with Amba Kulkarni’s Saṃsādhanī analyser,7 that helps produce
a dependency graph (Kulkarni 2013). This structure captures the semantic
role (kāraka) analysis of a sentence, provided it is not too dislocated. Fur-
thermore, an auxiliary tool helps the annotator to transform a dislocated
sentence into its prose order by proper permutation of its segments.

Thus it seems that the time is ripe to consider establishing a common
repository that would store digital Sanskrit libraries in annotated form,
either automatically, or with the help of competent annotators using inter-
active tools. We present here a preliminary proposal for the design of a
Sanskrit corpus manager concept, that could serve as a seed repository for
the collaborative editing of texts, and that could support navigation and
search through appropriate further tools. We have developed a simplified
implementation of the concept, using technology available off-the-shelf as
free software. We shall conclude by listing problems in the managing of a
joint corpus repository.

5Perseus http://www.perseus.tufts.edu/hopper/
6TITUS http://titus.uni-frankfurt.de/index.htm
7Saṃsādhanī http://scl.samsaadhanii.in

http://www.perseus.tufts.edu/hopper/
http://titus.uni-frankfurt.de/index.htm
http://scl.samsaadhanii.in


Sanskrit Corpus Manager 261

2 Specificities of Sanskrit corpus
Processing Sanskrit by computer is in some sense easier than processing
other natural languages, at least if we restrict ourselves to the classical
language. It benefits of the grammatical tradition [vyākaraṇa] dating back
from hoary times, since the grammar of Sanskrit was fixed by Pāṇini 25
centuries ago in his Aṣṭadyāyī, which was initially descriptive, but later
became prescriptive. Classical Sanskrit was not the vernacular local prakrit,
which is used only in the theater. It was the language of the educated [śiṣṭa].
And thus, it was assumed grammatically correct, which means that we may
align our segmentations to a precise recursive definition.

Granted, there are many non-Paninian forms in epics literature, and
there are many corrupted texts. But we may record exceptions, and cor-
rupted texts may perhaps be amended. Of course philologists will shudder at
the thought of amending texts, but they must excuse my irreverence, consid-
ering that in my professional trade, programs with bugs must be corrected,
and only secondarily treated as historical artifacts in the version-maintaining
repository. The main merit of mistakes is to trace possible filiations of ver-
sions, since scribes often copied without amending their sources, and thus
errors would be transmitted. But this assumption is not always met, and
thus the classical phylogenetic tradition is challenged (Hanneder 2017). In
any case, I am making the assumption that the corpus recorded in the global
repository has been edited to the point of being grammatically correct. Pos-
sibly as a result of the interactive use of grammatical tools, in as much as
they may be used as editing assistants.

Actually, the Sanskrit language is not that regular. Even seemingly reg-
ular processes such as compounding pose problems in the proper analysis of
written texts, since compounding is not associative, and accent is not marked
in writing. Furthermore, there are many different styles, not just prose and
poetry. The grammatical sūtra style is very concise, closer to algebraic rules,
with phonemes used both for linguistic and meta-linguistic notation. The
śāstra style of scholastic Sanskrit (Tubb and Boose 2007) is also highly artifi-
cial. The Indian tradition of formal debate (vāda) (Tripathi 2016) produced
texts that are layers upon layers of commentaries, with counter-arguments
(pūrvapakṣa) alternating with upheld theses (uttarapakṣa, siddhānta). Po-
ets indulged in obscure constructions, rare lexemes, very long compounds,
and dislocated sentences. Furthermore, the inherent ambiguity of phonetic
enunciations where word boundaries are blurred by sandhi gave rise to a



262 Huet and Lankri

whole new genre of śleṣa – double entendre – where ambiguous segmenta-
tion yields possibly opposite meanings (Bronner 2010). For instance, con-
sider nakṣatrapathavartinā rājñā from Daṇḍin’s Kāvyādarśa. It may mean
a glorious king “following the path of the stars” (nakṣatra-patha-vartinā
rājñā), or a despicable king, “not following a noble path” (na kṣatra-patha-
vartinā rājñā), playing on the oronyms nakṣatra and na kṣatra. Here specific
philological apparatus is needed in order to display the two readings, it is
not just a matter of choice between segmentations, since both readings are
intended. But if linear text is given up in benefit of graphical display, we
may visualise the mixed two readings as shown in our Reader tool, see Figure
1.

Figure 1
Daṇḍin’s prototype śleṣa

Other difficulties in interpreting Sanskrit text are the absence of distinc-
tive sign for proper names (like capitals in Roman script), making e.g. kṛṣṇa
ambiguous between the divine hero and the black color, and the ambiguity
of prādi compounds such as nirvācya, that may mean “what should not be
talked about” (with nis preposition acting as negation) as well as “what
should be explained” (now compositional future participle of verb nirvac).
Another problem, at the discourse level this time, is indirect speech, whose
ending is marked with particle iti, but whose beginning must be guessed
from the context. All these reasons show that editing a text in order to
express several possible meanings with distinct morphological annotations,
explained through distinct grammatical analyses, is a much more difficult
task than simply listing raw sentences in sandhied form.



Sanskrit Corpus Manager 263

Finally, Sanskrit literature abounds in inter-textuality features. Mantras
are quoted, stories are retold in a manifold manner, bards adapt orally
transmitted tales, learned commentaries pile up on each other, numerous
anthologies of poems and maxims (subhāṣita, nyāya) share a lot of material,
mahākāvyas expand episodes of epics, etc.

Considering all these difficulties, we propose a set-up for progressive
computer-aided tagging of selected portions of corpus, with documented
intertextuality, as an alternative to TEI-style full digitalization of corpus
in raw form. Thus one of the important requirements is that the (partial)
corpus be represented at a low level of granularity, typically a śloka for
poetry, or a sentence for prose.

3 Available technology
The main paradigm of the proposed annotation scheme is that it should
be a distributed service, not just available from a server for consultation
of readers, but itself the locus of collaborative annotation activity. This is
in line with the recommendation of Peter Robinson (Robinson 2009): “The
most radical impact of the digital revolution is to transform scholarly editing
from the work of single scholars, working on their own on single editions, to
a collaborative, dynamic and fluid enterprise spanning many scholars and
many materials”.

In the software development domain, now Git technology (Chacon and
Straub 2014) is the de facto standard for such collaborative development.
Originally designed to serve as versioning cum distribution for the Linux
effort, it quickly replaced all previous software management systems. It has
several implementations, one managing the GitHub site, popular for open-
source development. The GitLab software offers additional functionalities,
notably in terms of security.

A Git project consists of branches evolving with time, each branch carry-
ing a hierarchy of files. The hierarchy corresponds directly to the structure
of the file system of the host operating system. The files typically contain
source code of software, and of its documentation. But they may be of what-
ever format. Collaborators of the project have a local copy of the relevant
branch on their own computer station. So they may not only compile and
install locally the software, but they may modify it and add to it. After local
testing, the developer may request the supervisor of the branch to update



264 Huet and Lankri

the global site with his modifications. On approval, the software merges the
modifications with the current version, a possibly complex operation.

Git is a major change of paradigm in the collaborative development of
massive efforts. It is now used for the dynamic management of documents
of various nature. This is a mature technology, with the finest available
algorithms in distributed computing, alignment, compaction, cryptography.
It looks like the ideal collaborative tool for developers of a digital library.

The other obvious technological decision is to use Web technology for the
user interface. HTML and XML support Unicode for presenting all writing
systems. Web services are now the absolute standard for distributed services.

4 Implementing a prototype as a proof of concept
A 2-months effort in summer 2017 was defined as a student Master project.
The second author, in the Master program of University Paris Diderot, and
an Ocaml expert, was offered an internship at Inria for its implementation.
He familiarized himself rapidly with the sources of the Sanskrit Heritage
Platform, put at this occasion on Inria’s GitLab site for distributed devel-
opment under Git. At the same time, a second Git project was launched as
the Sanskrit Heritage Resources, to distribute the lexical resources used by
the Platform machinery, as well as the Sanskrit morphology XML databanks
that it produces.

The requirement was to implement a corpus manager as a Web service,
using the Sanskrit Heritage Platform as interactive tagging service, and
producing progressively an annotated corpus as a sub-branch of the Sanskrit
Heritage Resources Git project. The hierarchical structure of the corpus is
directly mapped on the directory structure of the UNIX file system.

4.1 The Sanskrit Heritage Corpus Manager
Three levels of capabilities have been defined. The Reader capacity is avail-
able to any user. As its name indicates, he is only allowed to read the library,
but not to modify it. The Annotator capacity allows addition and correction
to the corpus files. The Manager capacity allows addition and correction
to the directory structure. These three capacities are mapped respectively
to permissions of the UNIX file system, and to roles in the Sanskrit corpus
project, initially located as a component of the Sanskrit Heritage Resources
Git project.



Sanskrit Corpus Manager 265

Texts are available as leaves of the directory structure, such as
“KAvya/BANa/KAdambarI/”. In Manager mode, one may add to this
structure, or edit it. In Reader mode one may navigate through it, through
a simple Web interface with scrolling menus. In Annotator mode you may
add to the text, or give corrections. For instance, let us assume that,
in Annotator mode, we input a sentence in the initially empty directory
“KAvya/BANa/KAdambarI/”. We are forwarded to the Sanskrit Heritage
Reader page (Goyal and Huet 2016), where we input in the text window the
following string:

rajojuṣe janmani sattvavṛttaye sthitau prajānā.m pralaye tamaḥspṛśe |
ajāya sargasthitināśahetave trayīmayāya triguṇātmane namaḥ ||

The segmenter returns with 155,520 solutions represented on a single
HTML page as a graphical display where the annotator, if familiar with the
tool, very quickly converges to the desired solution (in 13 clicks). When
this is done, a Save button prompts the annotator, who may save this seg-
mentation in the corpus, or abort. On saving he is returned to the cor-
pus interface, which prompts him for the next sentence. The screen he
sees at this point is represented in Figure 2. It indicates that now branch
“KAvya/BANa/KAdambarI/” supports a text where sentence 1 is now listed
(in IAST notation according to local settings, could be Devanāgarī or both).

Figure 2
After saving sentence 1

This sentence 1 is itself a link, to the display of the Heritage reader, as
shown in Figure 3. Note that this is what we saved, showing the unique so-



266 Huet and Lankri

lution selected by the annotator. Note also that what we see is just the usual
display of the Reader: you may click on segment rectangles in order to get
their morphology. The morphology is itself linked to the dictionary, which
can be set either to the Sanskrit-French Heritage dictionary maintained at
the site, or to the electronic version of the Sanskrit-English Monier-Williams
dictionary. It is not just an HTML static page, it is a dynamic page where
all services of the Platform are available. Including backtracking on the
annotator choices, via the Undo service! You may also click on the Unique
Solution tick and continue the analysis with gender agreement. Or by click-
ing on the UoH Analysis Mode tick, go further into kāraka analysis with
Amba Kulkarni’s dependency analyser. Thus, it would be easy to extend
the service with other displays under various analyses, provided with proper
meta-data.

Figure 3
Displaying sentence 1

Now let us return to Figure 2. Please note the “> 1” button. It invites
the annotator to continue his tagging task, with another sentence. If you
click on it, a scrolling menu prompts you with the sentence number, and an
Add button. You may at this point choose not to continue in sequence, for
instance choose sentence 4. On pressing Add we are back in the loop with
the Reader.

After entering sentence 4, we get the image of this piece of corpus as
Figure 4. There are now two mouse-sensitive buttons: one marked “2 –
3” for filling the hole between 1 and 4, the other one, marked “> 4”, for
entering sentences after the 4th one. This illustrates the partial nature of
the annotated corpus. Scholars may concentrate on often quoted parts, or
verses they have a special interest in, without having to tag continuously
from the beginning of the work. This is important, in view of the non-
fully-automatic nature of the annotating task. It also allows work splitting



Sanskrit Corpus Manager 267

between annotators of the same text. Merging their contributions will be
managed by the Git mechanisms.

Figure 4
After annotating sentences 1 and 4

When a Reader browses the corpus, he will see exactly the same display,
except that the adding buttons will not appear.

When an annotator has completed some tagging, he may call a rou-
tine that will store his annotations in the local repertory of the Corpus Git
project. He may then use the commit Git command to commit his annota-
tions, with proper documentation. Once in a while he may distribute his
contributions to the community by using the push Git command in order
to merge his work with those of the other annotators, under control of the
project Managers.

4.2 Application to citations analysis in the Heritage dictio-
nary

This prototype of a corpus manager has been implemented as an auxil-
iary service of the Heritage platform segmenter. It is currently being put
to use to manage citations in the Heritage hypertext dictionary. Its cur-
rent 800 citations are being progressively tagged, and entered in a stan-
dalone branch “Heritage_citations” of the corpus. The corpus structure is
implemented as a sub-project of the Heritage_Resources Git project, and
as such is incorporated in the Heritage_platform server data, at installa-
tion time. Thus the facility is available for testing to whoever installs the
two software packages through Inria’s GitLab server, as projects https://
gitlab.inria.fr/huet/Heritage_Resources.git and https://gitlab.
inria.fr/huet/Heritage_Platform.git respectively. The public server

https://gitlab.inria.fr/huet/Heritage_Resources.git
https://gitlab.inria.fr/huet/Heritage_Resources.git
https://gitlab.inria.fr/huet/Heritage_Platform.git
https://gitlab.inria.fr/huet/Heritage_Platform.git


268 Huet and Lankri

site http://sanskrit.inria.fr has been updated with the corpus man-
ager, available as a “Corpus” service from the site directory at the bottom
of its pages. Of course only Reader mode is available at the public site.
But the distribution version, available through Git, will allow annotators to
develop their own tagged corpus, and possibly merge them in the common
Git repository when registered as an official Annotator.

An example of such analysed citation may be viewed in our dictionary
at entry kunda. Please visit URL http://sanskrit.inria.fr/DICO/21.
html#kunda. This entry is illustrated by a quotation from śloka 6.25 of
Kālidāsa’s Ṛitusaṃhāra, underlined as mouse-sensitive. Clicking on it brings
you to the corresponding corpus page, where the sentence is displayed as a
list of colored segments, as shown in Figure 5. Clicking on a segment brings
its lemma, with lexicon access to the root items. Although it has the same
look-and-feel as the segmentation tool, it is actually displayed by the corpus
manager, navigating in Reader mode in its “Heritage_citations” branch.
This can be verified by clicking on the “Continue reading” button, which
brings you to this branch directory, where the śloka appears as item 10.
This shows the smooth integration of this tool within other services.

Figure 5
Annotated quotation

5 Extending the prototype to other tools
The extreme simplicity of this design makes it easily extensible to other
grammatical tools implemented as Web services. All that is needed to in-
corporate them is to include a save button in the pages that return the
result of their analysis, with the functionality of saving their HTML source
in the corpus hierarchy. Or, even, in the style of our own implementation,

http://sanskrit.inria.fr
http://sanskrit.inria.fr/DICO/21.html#kunda
http://sanskrit.inria.fr/DICO/21.html#kunda


Sanskrit Corpus Manager 269

to store the sentence analysis data as parameters for the invocation of a
dynamic corpus crawler. Conversely the Add facility of the corpus manager
will have to be made aware of the variety of such services, and its display ac-
commodated to show all analyses of the given śloka by the various services.
This assumes of course that these services are reachable from the putative
annotators, either installed on their station’s own Web server, or available
at publicly available Internet servers. The Heritage set of services may be
used both ways, since it is itself distributed as an open-source system from
its Git project repository. Should the concept prove itself useful, it would
be easy to separate the Corpus Manager from the Heritage distribution, and
make it a stand-alone facility.

It is to be remarked that having several grammatical tools available
for displaying corpus in analysed form does not induce any commitment
on a standard display, each tool may keep its look-and-feel, and links to
its specific functionalities. We are not demanding either to synchronize or
align taggings effected by various tools. Annotators using one tool may
tag sentences irrespective of whether they have been already processed with
some other tool. All we have to agree on is the directory structure and its
metadata format (under control by the Git users with Manager capability),
and in the designation scheme of individual files representing the analyses.

6 Design of inter-textuality functionalities
This simple prototype provides for the moment a strictly hierarchical view
of the corpus. This is too restrictive, since it allows no sharing. For instance,
in the skeleton corpus of “Heritage_citations”, we would like to link item
10 to its original in Ṛtusaṃhāra. Of course we could enter its duplicate
in its proper branch, say “KAvya/KAlidAsa/Ritusamhara/6/25”. But we
would like to document this by recording its “absolute” link in the “Her-
itage_citations” branch at item 10. This would be an easy extension of the
current mechanism. But this is only one simple example of inter-textuality.
Some of the citations are not to a full śloka, but perhaps to a portion, or
a simplification, or a reordering of some original quotation. Thus we would
need to design a notation to document such partial sharing between different
branches of the corpus.



270 Huet and Lankri

6.1 Collating recensions and manuscript segments
We also want to be able to use the tool for recording, and comparing, vari-
ous manuscripts traditions of the same text. Actually, the idea of this low-
granularity corpus representation arose from a presentation by Pr Brocking-
ton at a seminar in Paris in december 2016 (Brockington 2016). He showed
there two representations of various manuscripts of Sanskrit epics.

The first one, extracted from traditional phylogenetic methods (Phillips-
Rodriguez, Howe, and Windram 2009) represents a tree of manuscripts of
Mahābhārata, expressing the growth of the material over time. It has been
obtained through phylogenetic analysis performed on sargas 43-47, 51, 59-60
and 64-65 of the Dyūtaparvan by the Supernetwork method in the SplitsTree
package. The sigla used are those of the Critical Edition, with J substituted
for Ñ and Z for Ś. It is reproduced in Figure 6 below (courtesy Wendy
Phillips).

The second one is a Venn diagram of Rāmāyaṇa’s manuscript relation-
ships, reproduced in Figure 7 (taken from (Brockington 2000), courtesy
John Brockington). This Venn diagram representation (possibly completed
by the suitable ordering of the verse portions) is a more informative view of
relationships between manuscript groups, since it represents the (multi-)set
of all ślokas of all manuscripts, each one represented as a subset, possi-
bly intersecting in complex ways with other manuscripts. In other words,
the Rāmāyaṇa is there considered as a Boolean expression in terms of its
manuscripts segments, a more detailed concept than the phylogenic tree, al-
though not currently producible automatically from recensions in an obvious
manner.

This suggests that our śloka-level corpus ought to accommodate notation
amenable to express complex sharing relationships between the manuscripts,
such as:

A = B [1− 250] ;C [5− 23] ;B [251− 300]

expressing that manuscript A is the same as B with interpolation of a portion
of C. Such sharing relationships ought to turn into extra annotations on the
corpus data representations, so that navigation through the various versions
would be available.



Sanskrit Corpus Manager 271

Figure 6
Phylogenetic analysis

Figure 7
Venn diagram

6.2 Paths management on shared corpus
It should be obvious at this point that an extra level of abstraction is needed
in order to be able to name contiguous portions of corpus recensions that
are shared across manuscript versions, such as C [5− 23] in the notation
above. This path in our corpus tree is shared between recensions A and
C. If we want to express this sharing in our corpus structure, and thus
avoid the duplication of śloka annotations between A and C, we shall need
to introduce the notion of path through a dag8 of branches, of which our
corpus structure is only a specific spanning tree. This induces a need to
express the concept of the successor of a śloka node along a given path,
since in our example node B.250 has successor B.251 along path B, but
C.5 instead along path A. Thus we need to record this information in node
B.250, so that we may later navigate along path A by following the path
B until its 250th node, and then continue from node C.5, until node C.23,
which will be followed by node B.251 along the A path.

This of course assumes that the numbering of ślokas is now a function
of its path, so that e.g. śloka B.251 appears at index 269 along path A,
since śloka B.251 is shared with A.269 The same mechanism could allow
for instance to assign to index Bhagavadgītā.1.1 the same śloka as Mahāb-
hārata.6.63.23.

8directed acyclic graph



272 Huet and Lankri

The determination of the portions of text that are amenable to sharing
is decided by the human corpus managers/annotators, not a fully automatic
process, since we do not want to share maximally by identifying all identical
ślokas across all texts. For instance, we shall not identify all the evocations
of a ritual mantra across all texts, with absurd cluttering of a unique node
with all possible successors in all the texts. Furthermore, we do not want
that two occurrences of the same verse in one text lead to looping paths.

6.3 Cohabitation of readings
Representing the padapātha form of a Sanskrit utterance is the first level of
its interpretation. Assigning morphology to its segments is a further level
of interpretation. Assigning kāraka semantic roles consistent with nominal
cases and verbal voices is still a deeper interpretation; linking anaphoric
references to their antecedent and cataphoric ones to their postcedent, to-
gether with entity-name recognition, brings analysis at the discourse level.
Accommodating these various levels of analysis of a text will need adapta-
tions to our corpus representation structure. The basic idea is that a piece of
corpus represents more than the raw text as a stream of phonemes, and that
paths through the fine-grain structure represent not just a list of phonetic
productions, but a specific reading of this text.

Thus we must admit paths that represent different glosses of a given text,
possibly contradictory. For instance, we would need different path assign-
ments for Bhagavadgītā according to Śaṅkara and to Madhva respectively,
so that e.g. BhG{24.2.17} appears as nāsatovidyatebhāvonābhāvovidyate-
sataḥ on the first path, and nāsatovidyate’bhāvonābhāvovidyatesataḥ on the
second.9 Note that in this example, the use of avagraha does disambiguate
the two readings, but as stream of phonemes they are the same. This is
a case showing that we need two different nodes in our corpus representa-
tion for common phonetic material, since their meanings are not compatible.
Note that the two readings are oronyms, but this is not a case of śleṣa, where
the two meanings are intended. We could talk of XOR-oronyms, contrasted
with AND-oronyms (the genuine śleṣas), for which we want to represent the
two readings together in the same structure. The XOR/AND terminology
stems from Boolean algebras in Stone form, such as Venn diagrams.

Genuine śleṣas are often used for expressing simili figures of style, as
Bāṇa demonstrated ad nauseum in Kādambarī. Their translation in lan-

9communicated by Pr. Madhav Deshpande



Sanskrit Corpus Manager 273

guages such as French or English necessitates heavy paraphrases weaving the
description and its metaphor as coordinated phrases.10 Giving a notation to
represent the two readings without duplication is an interesting challenge:
we want to represent minimally the two segmentations while sharing their
common segments. Note that the graphical interface of the Heritage Reader
gives a possible solution to this problem, since we may keep the two sets of
segments, without any duplication, by trimming all segments that appear
in neither. See Figure 1.

The design of a proper notation for annotated corpus is beyond the scope
of the present paper, and is the affair of professional philologists, but our
prototype could provide a test bed for such experiments.

Actually, we could also include in the corpus directories information
concerning studies of a particular śloka or portion of text, mentioning bib-
liographic references to relevant literature. It could also refer to discussions
concerning specific grammatical points, respective validity of the various an-
notations, etc. Each Sanskrit śloka could have its own blog page, and the
global corpus structure could evolve into social networking for Sanskrit text!

7 Remaining problems
Our toy corpus manager raises serious issues which will have to be well
assessed before scaling up to a durable infrastructure.

First of all, we are suggesting that a common repository of analysed
Sanskrit text be agreed upon by both developers of computational linguistics
tools and scholars managing digital libraries. This raises issues of a legal and
sociological nature. Certain institutions will want to control what they deem
is their intellectual property. Certain scholars will refuse to compromise
with their freedom of doing things their own way. Even if a critical mass of
individuals agree on sharing their work on a common source-free repository,
we know from experience that committee work is not always optimum to
design a technical artifact. Apparently simple issues such as the naming of
branches may reveal complex problems, the solutions of which may not be
easy to agree on.

10In French, śleṣa is limited to curiosities like the holorime “Gal, amant de la Reine, alla,
tour magnanime, galamment de l’arène à la tour Magne à Nîmes” and jokes like “mon
frère est ma sœur” playing on the oronyms ma sœur/masseur



274 Huet and Lankri

Another important issue is durability. Our proposal assumes that the
analyzing tools will be perennial, in as much as their proper availability is
necessary for the display of their analyses. This is implicit from the fact
that we are not restricting ourselves to displaying static XML or HTML
pages, but allow the execution of Web services (cgi-bin executables in the
Web jargon) which demand availability of programming languages and their
compilers over the life span of the digital library. Thus robustness and main-
tainability of the satellite tools are critical. Versioning is another issue, since
our analysis tools are not finished products, but experimental software that
keeps evolving, and that may depend on lexical resources that also evolve
themselves. Thus non-regression analysis tools will have to be developed,
in order to correct taggings that are no longer identified or are no longer
unique after a change of version. However, please note that improvements
in precision that do not compromise recall often do not require revisiting
the analysed corpus, which should be robust to such upward-compatible
improvements.

Finally, let us emphasize that our proposal concerns just the foundations
of a collaborative framework for the grammatical annotation of Sanskrit
text, and has no pretense at providing philological tools such as collating
software. Such tools will have to be re-thought over this low-level represen-
tation of the corpus.

8 Conclusion
We have presented general ideas concerning a Sanskrit corpus manager, and
implemented a prototype with the Sanskrit Heritage Platform to test the
main concepts. The main design imperative is that corpus managing ought
to be a collaborative effort, allowing text annotation on a variety of gram-
matical analysis services. The prototype implementation, in a restricted
setting, shows that the infrastructure development is actually rather simple,
if one uses off-the-shelf technology such as Web services and Git reposito-
ries. It is hoped that this proposal will spur interest from philologists and
computational linguists, and hopefully contribute to their increased collab-
oration.



References
Brockington, John. 2000. “Textual Studies in Vālmīki’s Rāmāyaṇa”. In: Epic

Threads: John Brockington on the Sanskrit Epics. Ed. by Greg Bailey
and Mary Brockington. Oxford University Press, New Delhi, pp. 195–
206.

— 2016. “Regions and recensions, scripts and manuscripts: the textual his-
tory of the Rāmayaṇa and Mahābhārata”. In: Issues in Indian Philol-
ogy: Traditions, Editions, Translations/Transfers. (Abstract) Collège de
France.

Bronner, Yigal. 2010. Extreme poetry. Columbia University Press, New York.
Chacon, Scott and Ben Straub. 2014. Pro Git. Apress (available as https:

//git-scm.com/book/en/v2).
Goyal, Pawan and Gérard Huet. 2016. “Design and analysis of a lean in-

terface for Sanskrit corpus annotation”. Journal of Linguistic Modeling
4.2pp. 117–126.

Hanneder, Jürgen. 2017. To edit or not to edit. Pune Indological Series I,
Aditya Prakashan, Pune.

Hellwig, Oliver. 2009. “SanskritTagger, a Stochastic Lexical and POS tag-
ger for Sanskrit”. In: Sanskrit Computational Linguistics 1 & 2. Ed. by
Gérard Huet, Amba Kulkarni, and Peter Scharf. Springer-Verlag LNAI
5402, pp. 266–277.

— 2015. “Using Recurrent Neural Networks for joint compound splitting
and Sandhi resolution in Sanskrit”. In: Proceedings, 7th Language and
Technology Conference. Ed. by Zygmunt Vetulani and Joseph Mariani.
Springer-Verlag LNAI (to appear).

— 2016. “Improving the Morphological Analysis of Classical Sanskrit”. In:
Proceedings, 6th Workshop on South and Southeast Asian Natural Lan-
guages. Association for Computational Linguistics, pp. 142–151.

Huet, Gérard. 2007. “Shallow syntax analysis in Sanskrit guided by semantic
nets constraints”. In: Proceedings of the 2006 International Workshop
on Research Issues in Digital Libraries. Kolkata, West Bengal, India:
ACM. doi: http://doi.acm.org/10.1145/1364742.1364750. url:
yquem.inria.fr/~huet/PUBLIC/IWRIDL.pdf.

Kulkarni, Amba. 2013. “A Deterministic Dependency Parser with Dynamic
Programming for Sanskrit”. In: Proceedings of the Second International

275

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://doi.org/http://doi.acm.org/10.1145/1364742.1364750
yquem.inria.fr/~huet/PUBLIC/IWRIDL.pdf


276 Huet and Lankri

Conference on Dependency Linguistics (DepLing 2013). Prague, Czech
Republic: Charles University in Prague, Matfyzpress, Prague, Czech Re-
public, pp. 157–166. url: http://www.aclweb.org/anthology/W13-
3718.

Phillips-Rodriguez, Wendy J., Christopher J. Howe, and Heather F. Win-
dram. 2009. “Chi-Squares and the Phenomenon of “Change of Exem-
plar” in the Dyūtaparvan”. In: Sanskrit Computational Linguistics 1 &
2. Ed. by Gérard Huet, Amba Kulkarni, and Peter Scharf. Springer-
Verlag LNAI 5402, pp. 380–390.

Robinson, Peter. 2009. “Towards a Scholarly Editing System for the Next
Decades”. In: Sanskrit Computational Linguistics 1 & 2. Ed. by Gérard
Huet, Amba Kulkarni, and Peter Scharf. Springer-Verlag LNAI 5402,
pp. 346–357.

Scharf, Peter. 2018. “TEITagger: Raising the standard for digital texts to
facilitate interchange with linguistic software”. In: Computational San-
skrit & the Digital Humanities. Ed. by Gérard Huet and Amba Kulkarni.
D.K. Publishers, New Delhi.

Tripathi, Radhavallabh. 2016. Vāda in Theory and Practice. D.K. Print-
world, New Delhi.

Tubb, Gary A. and Emery R. Boose. 2007. Scholastic Sanskrit. Columbia
University, New York.

http://www.aclweb.org/anthology/W13-3718
http://www.aclweb.org/anthology/W13-3718


Enriching the digital edition of the Kāśikāvr̥tti by
adding variants from the Nyāsa and Padamañjarī

Tanuja P. Ajotikar, Anuja P. Ajotikar, and Peter M.

Scharf

1 Introduction

1.1 Importance of the present work
As is well-known, theKaśikāvr̥tti (KV.), written by Jayāditya and Vāmana in
the seventh century ce, is the oldest extant complete running commentary
on Pāṇini’s Aṣṭādhyāyī (A.). While several complete editions of the text
have been published, and a critical edition by Sharma, Deshpande, and Pad-
hye (1969–1970), it is known that the KV. has textual problems. Sharma,
Deshpande, and Padhye’s critical edition is based on only nine manuscripts
as well as four previous editions while in the New Catalogus Catalogorum
Raghavan and Kunjunni Raja (1968, 116b–188a) have noticed more than
two hundred manuscripts. Efforts to produce a truly critical edition begun
nearly thirty years ago led to the publication of an edition of the pratyāhāra
section by Haag and Vergiani (2009). Now with new funding under the di-
rection of Malhar Kulkarni at the Indian Institute of Technology Bombay, a
project promises to produce an edition of the first pāda of the first adhyāya.

Manuscripts in India last no more than about five hundred years. The
oldest readable manuscript of the KV. dates only to the early fifteenth cen-
tury. Yet several centuries earlier, the KV. was commented upon in the Kā-
śikāvivaraṇapañjikā by Jinendrabuddhi in the eighth or ninth century and
then in the Padamañjarī by Haradatta in the thirteenth century. These
commentators provide information about the constitution of the text of
KV. in several ways: by direct citation and incipits, as well as less directly
by a discussion on the text. The information provided by commentators

277



278 Ajotikar, Ajotikar and Scharf

hundreds of years prior to the oldest manuscript is invaluable to reliably
establish the text of the KV. It would be extremely helpful for the commu-
nity of Sanskrit grammarians if an edition supplemented with the readings
available in the commentaries of the KV. is made available.

The Osmania edition seldom mentions variants reported in the commen-
taries, and, when it does, occasionally does so erroneously. Kulkarni et al.
(2016) include an appendix indicating which readings of the Osmania edi-
tion of the KV. on the pratyāhāra sūtras are supported by the Nyāsa (NY.)
and Padamañjarī (PM.). In that appendix, they use various signs to indi-
cate which reading is supported by NY., which is supported by PM., and
which is supported by both of them. It is a useful appendix, yet it covers
a small fraction of the text and it lacks information concerning readings in
commentaries that differ from the Osmania edition, whether the PM., which
is a later commentary, is aware of the reading given by the NY., how many
readings are regarded as wrong by these commentators, etc. Therefore,
there is a need to create an edition that presents this information accurately
for the whole text to the community of Sanskrit grammarians in particular
and Sanskrit scholars in general.

2 Method of data collection
The complex, diffuse, and extensive nature of the data in the commentaries
regarding readings in the KV. begs for systematic digital methodology. The
digital medium provides a means to collect and organize complex informa-
tion reliably, and to present that information in multiple uncomplicated
views. The Text-Encoding Initiative (TEI) provides a means to indicate
supporting and variant readings in a critical apparatus. The digital text
of the Osmania edition (1970) of the KV. is available from the Sanskrit Li-
brary in a sandhi-analyzed form in the Sanskrit Library’s Phonetic Encoding
(SLP1). Hence we choose to undertake the production of a digital edition
of the sandhi-analyzed KV. with critical apparatus tagged in accordance
with TEI in SLP1. We proceed in this undertaking despite the fact that the
source digital text is not yet reliably proofread and is not yet itself marked
up according to TEI. We propose to so mark it up during the course of our
work in accordance with the method demonstrated by Scharf (2018).



Enriching the digital edition of the Kāśikāvr̥tti 279

2.1 TEI critical apparatus tags
TEI offers the following elements and attributes to mark up a critical appa-
ratus:

1. The app (apparatus) element is used to group together each lemma
and all its variations; it has two child elements: lem and rdg.

2. The lem (lemma) element is an optional child of the app element. In
this context, the term lemma signifies the accepted reading in the base
text.

3. The rdg (reading) element is a required child of the app element used
to indicate variations from the base text.

4. The loc (location) attribute of the app element specifies the location
of the lemma in the base text.

5. The wit (witness) attribute specifies which commentary supports the
reading. This attribute is used in both of the elements lem and rdg.

6. The type attribute is used to specify whether the reading is termed
occasional, wrong or desired in the apparatus.

At present the loc attribute specifies only the canonical number of the sūtra
under which the lemma occurs. In a sandhi-analyzed TEI text fully marked
as described by Scharf (2018), the location will be specified in addition
precisely to the paragraph, sentence, and possibly word.

2.2 Sigla
The wit attribute’s values are sigla that indicate which commentary and
variants reported in commentaries witness a particular reading. The follow-
ing sigla are used:

1. ny stands for the reading given by the Nyāsa.

2. pm stands for the reading given by the Padamañjarī.



280 Ajotikar, Ajotikar and Scharf

2.3 Types of readings
Four different types of readings are found in each of the two commentaries.
We indicate these by the following values of the type attribute in SLP1
encoding:

1. apapAWa indicates that the reading is considered wrong by the com-
mentator.

2. kvacit indicates that the reading is mentioned as a variant found by
the commentator somewhere other than in his principal text.

3. yukta indicates that the reading in question is not received by the
commentator, but suggested by him as the correct reading.

4. pratIka indicates that the reading is an incipit that supports but is
not identical to the lemma.

2.4 Samples
Below are shown three samples of TEI tagging in our critical apparatus.
The first shows a lemma supported by both commentaries. The second
shows a lemma for which each commentator has given a different reading.
The readings are assumed to be found by each commentator in his principal
manuscript of the KV. since the readings are provided without any comment
regarding their source. The third example shows a lemma supported by
Jinendrabuddhi’s principal text and partially supported by Haradatta’s, yet
for which Jinendrabuddhi remarks that the reading in another manuscript
is incorrect.

<app loc='A1.1.1'>
<lem wit='ny pm'>vfdDiSabdaH</lem>

</app>

<app loc='A1.1.2'>
<lem>jayanti</lem>
<rdg wit='ny'>paWanti paWan</rdg>
<rdg wit='pm'>pacanti jayanti</rdg>

</app>

<app loc='A1.1.30'>
<lem wit='ny'>tvayakA kftam</lem>



Enriching the digital edition of the Kāśikāvr̥tti 281

<rdg wit='ny' type='apapAWa'>tvakayA</rdg>
<rdg wit='pm' type='partial'>tvayakA</rdg>

</app>

3 Issues

3.1 Data representation
Gathering comments regarding readings from commentaries differs from the
collation of manuscripts. When a critical edition is prepared, the assumption
is that each manuscript covers the entire span of text edited unless comments
to the contrary are made in the manuscript description in the introduction
or a comment regarding omission is made in the critical apparatus. Hence
only variants are reported in the critical apparatus and it is assumed that si-
lence regarding a witness reports its support for the adopted text. Readings
that are identical to the lemma are not reported. In contrast, commentaries
on scientific texts, and on grammatical texts in particular, generally do not
mention or comment upon every word of their base text. Even the KV.,
as a commentary on every sūtra of the Aṣṭādhyāyī, does not mention every
word of every sūtra as there found. Subcommentaries as a rule specifically
mention only a small proportion of the words in the base text. Since the
full text is not always cited, one cannot assume that silence regarding read-
ing in the base text indicates support. Therefore, while collecting readings
from the commentaries, it is necessary to note explicit comments regarding
support along with variants. The notation of positive readings, as well as
variants, has the additional advantage of allowing us to analyze how much
of the existing text in the Osmania edition is supported by each of these
commentaries.

To compile statistics concerning the percent of text covered, supported,
and departed from by the commentaries calls for a consistent unit of enu-
meration. Traditional accounting of the extent of text in India used the
orthographic syllable (º:»a:=) as the basic unit. The most accurate modern
method would be to use the character. We plan to use characters in the
phonetic encoding scheme SLP1. Neither a word nor a reading can accu-
rately serve as such a unit as will become clear shortly; however, tabulating
lemmata and calculating the number of characters in each will provide an
accurate measure of the extent covered by each commentary.



282 Ajotikar, Ajotikar and Scharf

3.2 Omissions
Omissions are recorded in TEI with an empty rdg tag and optionally sup-
plied with a cause attribute that explains the reason for the deletion of the
text. Possible values of the cause attribute suggested by the TEI editors
include for example the following:

1. homeoarchy, which indicates the accidental skipping of a line of text
because its beginning is similar to preceding or following lines, and

2. haplography, which indicates the inadvertent omission of a repeated
written letter or letters.

While such explanations may be relevant for omissions in manuscripts, they
are hardly relevant to edited commentaries where presumably editors have
corrected such errors. The reason for the absence of a certain word or
sentence in any commentary is usually inexplicable. Hence it is not useful
to use the cause attribute. To represent the absence of a segment of the
base text in the commentary, an empty rdg element is used, for example,
as follows:

On A. 1.1.51 o+=+¾'a;pa:=H , while explaining the importance of the first word
oH in the sūtra, the KV. as in the Osmania edition gives two counterexam-
ples, Kea;ya;m,a and .gea;ya;m,a. Both the NY. and PM. witness and explain the first
counterexample. The text of the NY. quotes the example and states its
derivation as follows: Kea;ya;�a;ma;�a;ta Á IR ..ca Ka;naH I+.�a;ta k�+.a;p,a Á I+.k+:a:=+(ãÉa;a;nta;a;de ;ZaH Á º;a;�ç Åu +¾aH Á.1
The PM. says: Kea;ya;�a;ma;�a;ta Á IR ..ca Ka;naH Á. They then both proceed directly to the
derivation of the counterexample to the second word in the sūtra, .sa;Ea;Da;a;ta;
a;kH ,
skipping any mention or discussion of the word .gea;ya;m,a given in the Osmania
edition. The fact that both commentaries proceed from the explanation of
the first example relevant to the first word in the sūtra directly to discussion
relevant to the second word in the sūtra implies that the second counterex-
ample on the first word in the Osmania edition was not in the text of the
KV. referred to by the NY. and PM. The omission of the second word by
the commentators is represented by an empty rdg element as follows:

<app loc='A1.1.51'>
<lem>geyam</lem>
<rdg wit='ny pm'/>

1We cite the text of the Osmania editions with sandhi as is but drop quotes and
references, and use only the daṇḍa as punctuation.



Enriching the digital edition of the Kāśikāvr̥tti 283

</app>

3.3 Problem in lemmatizing words as examples
It is not always appropriate to select individual words as the unit of a lemma.
Frequently sentences are used as examples, particularly where interword
phonetic changes are demonstrated or where syntax is relevant. Each such
example should be understood as a single unit rather than as a series of
individual words. For instance, A. 1.1.12 º;d;sa;ea ma;a;t,a terms :pra;gxa;hùÅ:a a vowel IR
or � preceded by a m,a in forms of the demonstrative pronoun º;d;s,a, thereby
preventing by A. 6.1.125 sandhi with a following vowel such as would occur
by A. 6.1.77. If A. 1.1.12 did not include the word º;d;saH , then any vowel IR
or � preceded by a m,a would be termed :pra;gxa;hùÅ:a and not undergo sandhi. The
KV. on this rule shows the importance of the word º;d;saH by citing two
counterexamples: Za;}ya:�a and d;a;
a;q+.}ya:�a. If each of these counterexamples were
represented as a sequence of two individual words with sandhi analyzed Za-
;m�a;a º:�a, d;a;
a;q+.m�a;a º:�a, as currently in the sandhi-analyzed digital edition, the
significance of the counterexamples would vanish. Hence, sandhi is restored
in these and similar cases, and each such example is treated as a single
lemma.

3.4 Problems in lemmatizing altered sequences of examples

The KV. cites two examples on A. 1.1.51: k+:ta;Ra and h;ta;Ra. The order of
the examples is significant in establishing the correct text; hence how that
order is attested in both manuscripts and commentaries is pertinent. The
NY. quotes these examples in the same order as k+:ta;Ra Á h;ta;Ra I+.�a;ta before further
explaining each form. If there were a variant that inserted another example
between these two examples, then certainly that variant would be post-NY.
It would be possible to represent each of these examples in a separate app
element and to represent an addition by an app element between them that
pairs a rdg element with an empty lem element. Conversely, it would be
possible to represent an omission by an app element that pairs a lem element
with an empty rdg element. However, such a method is more cumbersome
and generally not adopted in critical editing. Hence, where the sequence
of examples is an issue showing some variation in the commentaries, the
sequence is represented by tagging those examples in a single app element.

<app loc='A1.1.51'>



284 Ajotikar, Ajotikar and Scharf

<lem wit='ny'>kartA hartA</lem>
</app>

Similarly, in many cases it is simpler and more comprehensible to an-
notate variants of a sentence by taking the whole sentence as a single unit
rather than its phrases or individual words as units. For example, on A.
1.1.57, the Osmania edition reads tua;
a;k k+:tRa;v.yea na .~Ta;a;�a;na;va;d, Ba;va;�a;ta Á and the
NY. reads tua;
a;k na .~Ta;a;�a;na;va;;�ÂåÅ +va;t�a;a;�a;ta Á. Since positive readings are reported as well
as variants, there are three ways to report this reading. One way is to tag
every word and report the absence of the word k+:tRa;v.yea as an omission. The
second way would be to tag the phrase tua;
a;k k+:tRa;v.yea, and the third would be
to tag the entire sentence. Under either of the first two methods, we still
require app elements to represent the support of the manuscripts for the
other words or phrase in the sentence. Hence it is simpler to tag the whole
sentence as a single unit and to treat the reading available in the NY. as a
single variant as follows:

<app loc='A1.1.57'>
<lem>tuki kartavye na sTAnivat Bavati</lem>
<rdg wit='ny'>tuki na sTAnivat Bavati</rdg>

</app>

Moreover, it is often the case that if an edition selects small units such
as individual words and represents variants in the form of the omission of
those words, the reader requires more effort to understand what the exact
reading of the witness is because he has to reconstruct the sentence from
fragments. Sanskrit commentators themselves describe such additional ef-
fort as prolixity of understanding (:pra;�a;ta;pa;
a:�a;ga;Ea:=+va). Thus, we tag the data on
the level of the word, phrase, or sentence according to the demand of the
situation. The following are a couple of additional examples of the omission
of words handled as variants of phrases or sentences.

Under A. 1.1.47, the Osmania edition reads .~Ta;a;nea-ya;ea;ga-:pra;tya;ya;pa:=+tva;~ya º;ya;m,a
º;pa;va;a;dH Á. The PM. omits the word º;ya;m,a and reads .~Ta;a;nea;ya;ea;ga;pra;tya;ya;pa:=+tva;~ya;a;pa-
;va;a;dH Á. Instead of representing this omission in three app elements, the first
and third taking .~Ta;a;nea;ya;ea;ga;pra;tya;ya;pa:=+tva;~ya and º;pa;va;a;dH as lemmata with the PM.
as witness, and the second with º;ya;m,a as lemma and an empty rdg element
with the PM. as witness, we treat the whole sentence as a single variant and
tag it in a lem element under a single app element as follows:

<app loc='A1.1.47'>
<lem>sTAneyogapratyayaparatvasya ayam apavAdaH</lem>



Enriching the digital edition of the Kāśikāvr̥tti 285

<rdg wit='pmvar'>sTAneyogapratyayaparatvasya apavAdaH</rdg>
</app>

On A. 1.1.48 the KV. reads: :=E º;�a;ta;�a:= Á na;Ea º;�a;ta;nua Á The NY. reads º;�a;ta;�a:= Á
º;�a;ta;nua I+.�a;ta Á According to the Osmania edition, the KV. supplies the examples
º;�a;ta;�a:= and º;�a;ta;nua with the base words :=E and na;Ea of the final constituents of the
compounds which undergo replacement of their final vowels with a short
vowel by A. 1.2.47. Both the NY. and PM. omit these base words and attest
only the examples. This can be represented in three ways: (1) by taking
each word individually and representing :=E and na;Ea as omitted, (2) by taking
the set of both examples as a single unit and representing the omission of
these two base words as one variant, or (3) by the medial course of taking
each set of base word plus example as a unit and representing the omission
of the base word in each as a variant consisting of just the example. Here
we chose the third course and placed each set of base word and example
in a lem element under an app element and the reading in a rdg element
witnessed by the NY. and PM. as follows:

<app loc='A1.1.48'>
<lem>rE atiri</lem>
<rdg wit='ny pm'>atiri</rdg>

</app>
<app loc='A1.1.48'>

<lem>nO atinu</lem>
<rdg wit='ny pm'>atinu</rdg>

</app>

3.5 Difference in order

On A. 1.1.47 the Osmania edition has three examples: ;
a;va:�+:¾a;�a:;dÄâ , mua:úãÁ*.a;�a;ta, and
:pa;ya;Ma;�a;sa. The NY. has the variant .�+:¾a;�a:;dÄâ without the preverb ;
a;va instead of
;
a;va:�+:¾a;�a:;dÄâ , and places this example last in an order different from that of
the Osmania edition: mua:úãÁ*.a;�a;ta, :pa;ya;Ma;�a;sa, and finally .�+:¾a;�a:;dÄâ . Two differences are
relevant: the change in the order of examples, and a variant for one of
them. As above, these differences could be represented as an omission and
an addition. However, it is simpler to tag all three words in the KV. in a
single lem element under one app element, to treat the reading in the NY. as
a single variant, and to record it in a single rdg element.

<app loc='A1.1.47'>
<lem>viruRadDi . muYcati . payAMsi .</lem>



286 Ajotikar, Ajotikar and Scharf

<rdg wit='ny'>muYcati . payAMsi . ruRadDi</rdg>
</app>

3.6 Inferring readings from explanations
Jinendrabuddhi and Haradatta often provide explanations that permit one
to infer that they had certain readings of the Kāśikāvr̥tti even though they
do not directly cite the reading. For example, the Osmania edition on A.
1.3.63, º;a;}å.pra;tya;ya;va;tkx +:Va;ea Y;nua;pra;ya;ea;ga;~ya, cites two examples: IR +»a;a:úãÁ*.a;kÒe and IR +.h;a:úãÁ*.a;kÒe .
The NY. comments on these examples as follows:

IR +»a;a:úãÁ*.a;kÒe I+.tya;a;
a;d Á IR +»a d;ZRa;nea Á IR +.h ..cea;�;a;ya;a;m,a Á �+:h ;
a;va;ta;keR Á ;�a;l+.f, Á I+ja;a;de H
I+.tya;a;
a;d;na;aYY;m,a Á º;a;maH I+.�a;ta le +.lR u +.k, Á
IR +»a;a:úãÁ*.a;kÒe etc. After the roots IR +»,a ‘see’, IR +.h, ‘strive’, and �+:h, ‘con-
jecture’, the affix ;�a;l+.f, is introduced (by A. 3.2.115); º;a;m,a is in-
troduced by A. 3.1.36 I+ja;a;de ;(ãÉa gua:�+:ma;ta;ea Y;nxa;.cCH ; and the affix ;�a;l+.f,
is deleted by A. 2.4.81 º;a;maH .

Here the NY. refers to three verbal roots, namely IR +»,a, IR +.h, , and �+:h, . The
Osmania edition gives only two forms which are derived from the roots IR +»,a
and IR +.h, . The citation of the additional verbal root �+:h, in the NY. is relevant
to the form �+:h;a:úãÁ*.a;kÒe which must have been an additional example. Hence
the text of the KV. received by the NY. must have had three examples,
the third of which the established text in the Osmania edition lacks. We
tag such an inferred reading in the same way we tag a direct reading. An
addition is tagged conversely to the way an omission is tagged by providing
an empty lem-element with an associated reading in a separate app-element
(cf. §3.2). Thus the present case is tagged as follows:

<app loc='A1.3.67'>
<lem wit='ny pm'>IkzAYcakre</lem>

</app>
<app loc='A1.3.67'>

<lem/>
<rdg wit='ny'>UhAYcakre</rdg>

</app>

Similarly, under A. 1.4.20 º;ya;sma;ya;a;d� ;a;�a;na C+.nd;�a;sa, the KV. explains the
purpose of the rule in the following words: Ba;pa;d;sa;V¼a;a;�a;Da;k+:a:=e ;
a;va;Da;a;na;a;t,a .tea;na mua;Kea;na
.sa;a;Dua;tva;ma;ya;sma;ya;a;d� ;a;na;a;m,a ;
a;va;D�a;a;ya;tea Á ‘By means of the inclusion of this rule in the
section headed by the terms :pa;d and Ba, the fact that the words included in the



Enriching the digital edition of the Kāśikāvr̥tti 287

list beginning with º;ya;sma;ya are correct is provided.’ In this explanation, the
Osmania includes the phrase .tea;na mua;Kea;na. The NY. comments on this sentence
as follows: k+:TMa :pua;na:=e +Sa;Ma .sa;a;Dua;tvMa ;
a;va;D�a;a;ya;ta I+.tya;a;h Ba;pa;d;sMa;¼a;a;�a;Da;k+:a:=e I+.tya;a;
a;d Á dõ ;a:=+m,a Á mua;Ka-
;m,a Á o+.pa;a;ya I+.tya;na;Ta;Ra;nta:=m,a Á ‘In answer to the question, “But how is the validity
of these words established?” he says, “By means of the inclusion of this rule
in the section headed by the terms :pa;d and Ba etc.” dõ ;a:= ‘door’, mua;Ka ‘mouth’,
o+.pa;a;ya ‘means’ — there is no difference in meaning. Because of the fact that
the words mua;Ka and o+.pa;a;ya follow the word dõ ;a:=, they may serve to explain the
latter. In that case, the word mua;Ka would not be a quotation from the base
text. Hence, Jinendrabuddhi’s comment may indicate that the word dõ ;a:= was
read instead of the word mua;Ka in the version of the KV. available to him. The
sentence in the reading received by Jinendrabuddhi would then have been
the following: Ba;pa;d;sa;V¼a;a;�a;Da;k+:a:=e ;
a;va;Da;a;na;a:�ea;na dõ ;a:=e +¾a .sa;a;Dua;tva;ma;ya;sma;ya;a;d� ;a;na;Ma ;
a;va;D�a;a;ya;tea Á
The PM. demonstrates that this supposition is correct and that Haradatta
received the same reading as Jinendrabuddhi. For Haradatta states ya;
a;d .sa-
;V¼a;a ;
a;va;D�a;a;yea;ta º;a;na;nta;ya;Ra;;�ÂåÅ +sa;V¼a;a;
a;va;Da;a;na;dõ ;a:=e +¾Ea;va ;�a;na;pa;a;ta;nMa .~ya;a;t,a …Ba;pa;d;sMa;¼a;a;�a;Da;k+:a:=e I+.tya;a;
a;d Á
dõ ;a:=+m,a o+.pa;a;yaH Á ‘If this rule provided a term, due to the fact that it occurs just
after (the provision of the term Ba in A. 1.4.18), mention would be made
only of words that occur by the provision of the term Ba. The term :pa;d would
not occur, nor would the conjunction of the terms Ba and :pa;d. …Ba;pa;d;sMa;¼a;a-
;�a;Da;k+:a:=e etc. The word dõ ;a:= means o+.pa;a;ya.’ The PM. explicitly mentions the
word dõ ;a:=e +¾a and does not mention the word mua;Ka at all. Instead it explains
the word dõ ;a:= by the word o+.pa;a;ya. Hence, the PM. clarifies the statement in
the NY. and must be based on the same text that inspired the statement in
the NY. Although neither Jinendrabuddhi nor Haradatta refers to the word
dõ ;a:=e +¾a directly as a citation by using the word I+.�a;ta after it, their comments
are a direct indication of a variant of the reading in the Osmania edition.
We represent this case as follows:

<app loc='A1.4.20'>
<lem>muKena</lem>
<rdg wit='ny pm'>dvAreRa</rdg>

</app>

The following is another case where Haradatta’s comments imply a vari-
ant reading. Under A. 1.4.3 yUa .~:�a;a;K.ya;Ea na;d� ;a, the KV. explains the word yUa in the
sūtra as IR ..ca � ..ca yUa. The PM. quotes this statment in the KV. and further
says, ëÐÅëÁ*:+:�a;.ca:�ua ;
a;va;Ba;��+.a;nta;mea;va :pa;F:�a;tea ‘But in some places the form is read ending in
a nominal termination.’ This statement indicates that the nominative dual



288 Ajotikar, Ajotikar and Scharf

form yva;Ea was read in some manuscript available to Haradatta. We represent
this inferred reading in the apparatus as follows:

<app loc='A1.4.3'>
<lem wit='ny pm'>I ca U ca yU</lem>
<rdg wit='pm' type='kvacit'>yvO</rdg>

</app>

3.7 Mistakes in the editions of the commentaries
Unfortunately the editions of the NY. and PM. include mistakes. We have
discovered errors of mistaken sandhi analysis, mistaken sentence division,
and mistaken quotation in our work so far. The following are three examples.

On A. 1.1.39, there is a set of counterexamples: º;a;Da;yea, ;�a;.ca;k
 +:a;SRa;vea, and
ku +:}Ba;k+:a:=e +ByaH . The Osmania edition of the NY. reads ;�a;.ca;k
 +:a;SRa;vaH I+.�a;ta Á At first
glance, it seems that this is a variant for ;�a;.ca;k
 +:a;SRa;vea. ;�a;.ca;k
 +:a;SRa;vea is the dative
singular of the nominal base ;�a;.ca;k
 +:a;SRua, and ;�a;.ca;k
 +:a;SRa;vaH is the nominative plural.
The description of the form in the NY. is of the dative singular. The NY.
explicitly states that the form is a dative singular of the nominal base ;�a;.ca;k
 +:a-
;SRua, formed by applying the fourth-triplet nominal termination :ze and the gua;¾a
replacement of the final vowel o by A. 7.3.111 ;Gea;
a;zR +.�a;ta. Thus the nominative
plural form ;�a;.ca;k
 +:a;SRa;vaH does not fit the description given by the NY., and the
correct form is ;�a;.ca;k
 +:a;SRa;vea. Hence there is no variant for the word ;�a;.ca;k
 +:a;SRa;vea in
KV. in the text of the NY.

How did the erroneous word ;�a;.ca;k
 +:a;SRa;vaH come to be found in the edition
of the NY.? The editors of the Osmania editions often analyze sandhi in an
attempt to be helpful to readers. Their original manuscripts must all have
read ;�a;.ca;k
 +:a;SRa;va I+.�a;ta with regular sandhi. In the Osmania edition of the NY.,
the editors regularly analyze sandhi of examples and quotations followed by
I+.�a;ta and place them in quotation marks. The sandhi of ;�a;.ca;k
 +:a;SRa;va I+.�a;ta can be
analyzed in two ways: ;�a;.ca;k
 +:a;SRa;vea I+.�a;ta and ;�a;.ca;k
 +:a;SRa;vaH I+.�a;ta. Thus wrong sandhi
dissolution created what appears to be a variant in the NY. when in fact
the text has no such variant. On the basis of internal evidence, we infer the
correct reading and report it as follows:

<app loc='A1.1.39'>
<lem wit='ny pm'>cikIrzave</lem>

</app>

The same sandhi error is made by the editors of the Osmania edition of
the NY. on A. 1.1.67. The Osmania edition of the KV. states ta;sma;a;t,a I+.�a;ta



Enriching the digital edition of the Kāśikāvr̥tti 289

:pa:úãÁ*.a;}ya;TRa;�a;na;deR ;Za o+�a:=+~yEa;va k+:a;y a Ba;va;�a;ta Á na :pUa;vRa;~ya Á. Here the Sanskrit library sandhi-
analyzed text reads :pa:úãÁ*.a;}ya;TRa;�a;na;deR ;Zea in the locative. The Osmania edition of the
NY. states ta;sma;a;t,a I+.�a;ta Á :pa:úãÁ*.a;}ya;TRa;�a;na;deR ;ZaH I+.�a;ta Á First of all there should not be a
full-stop after I+.�a;ta in the phrase ta;sma;a;t,a I+.�a;ta. Moreover the sandhi-dissolution
:pa:úãÁ*.a;}ya;TRa;�a;na;deR ;ZaH I+.�a;ta is wrong. As in the preceding example, the proper dis-
solution is :pa:úãÁ*.a;}ya;TRa;�a;na;deR ;Zea as in the Sanskrit Library’s sandhi-analyzed text.
Hence we do not report this case as a variant, but take it as support for the
text of the KV. as analyzed in the Sanskrit Library edition and report it as
follows:

<app loc='A1.1.67'>
<lem wit='ny pm'>tasmAt iti paYcamyarTanirdeSe</lem>

</app>

On A. 1.1.56 the Osmania edition of the NY. includes an erroneous
sentence break and erroneous indication of a quotation of the base text.
The Osmania edition of the KV. reads na º;�//////�a;�va;�a;Da:=+na;�//////�a;�va;�a;DaH I+.tya;TRaH Á In the
Osmania edition of the NY., Jinendrabuddhi’s explanation of the compound
º;na;�//////�a;�va;�a;Da is edited as follows: .sa :pua;naH .sa;ma;a;sa;ea ma;yUa:=+v.yMa;sa;k+:a;
a;d;tva;a;t,a .sa;ma;a;sMa kx +:tva;a
na;Vsa;ma;a;saH kx +:taH Á ‘na º;�//////�a;�va;�a;Da:=+na;�//////�a;�va;�a;DaH ’ I+.�a;ta Á The editors of the NY. put a da-
ṇḍa after kx +:taH and put single quotes around na º;�//////�a;�va;�a;Da:=+na;�//////�a;�va;�a;DaH to indicate
that it is a quotation from the KV. This is a mistake. Careful reading of
the text indicates that the d;¾q should be removed and the passage ending
with I+.�a;ta read as a single sentence as follows: .sa :pua;naH .sa;ma;a;sa;ea ma;yUa:=+v.yMa;sa;k+:a;
a;d-
;tva;a;tsa;ma;a;sMa kx +:tva;a na;Vsa;ma;a;saH kx +:ta;ea na;a;�//////�a;�va;�a;Da:=+na;�//////�a;�va;�a;Da;�a:=+�a;ta Á “But that compound,
formed because it is included in the list beginning with ma;yUa:=+v.yMa;sa;k, is formed
as a negative tatpuruṣa compound (na;Vsa;ma;a;sa): na ‘not’ º;�//////�a;�va;�a;Da ‘a phonetic
operation’ = º;na;�//////�a;�va;�a;Da.” The cited phrase na º;�//////�a;�va;�a;Da:=+na;�//////�a;�va;�a;DaH is not a citation
to the KV.; it does not refer to the base text. It is a typical compound
analysis of a nañtatpuruṣa compound. Such an analysis may have been
made originally by a commentator on the KV., even by Jinendrabuddhi
himself, rather than by the authors of the KV.. Hence without independent
support from manuscripts, it should not be adopted in the text of the KV. on
the basis of the explanation provided in the NY.. However, since the editors
of the Osmania edition of the KV. have adopted the sentence na º;�//////�a;�va;�a;Da:=-
+na;�//////�a;�va;�a;DaH I+.tya;TRaH Á in their base text, the editors of the Osmania edition of
the NY. marked na º;�//////�a;�va;�a;DaH º;na;�//////�a;�va;�a;DaH as a quotation from the base text.
Unfortunately this is misleading. If it were a quotation from the base text
it would have included the closing words I+.tya;TRaH Á We do not accept that the



290 Ajotikar, Ajotikar and Scharf

text of the NY. supports the reading na º;�//////�a;�va;�a;Da:=+na;�//////�a;�va;�a;DaH I+.tya;TRaH in the KV.
and hence refrain from including it in our critical apparatus.

3.8 Discrepancies in quotations within different sections in
the same commentary

There are many occasions where the commentary on the KV. on one sūtra
cites text from the KV. on another sūtra. Both the NY. and PM. do this.
We mark these cases as support or variants of the text they cite just as we
do citations to the base text in commentaries on the cited base text under
the same sūtra. If the citation does not differ from commentary on the
base text on the same sūtra, we make no addition. However, if the citation
constitutes a variant that differs from one under the base text on the same
sūtra, or support for the reading of the base that received no support from
the commentary on the base text on the same sūtra, we add an additional
rdg element containing the new reading with a source attribute indicating
the sūtra under which that reading was found.

For example, on A. 2.3.19, the Osmania edition of the KV. reads ;
a;pa;tua:=;�a
;
a;kÒ +:ya;a;
a;d;sa;}ba;nDaH Za;b.de ;na;ea;.cya;tea Á :pua:�a;~ya tua :pra;t�a;a;ya;ma;a;na I+.�a;ta ta;~ya;a;pra;a;Da;a;nya;m,a Á On A. 1.1.56,
the NY. quotes the text exactly as given in the KV. on A. 2.3.19. However,
while commenting on A. 2.3.19, instead of :pua:�a;~ya tua :pra;t�a;a;ya;ma;a;na I+.�a;ta ta;~ya;a;pra;a;Da;a-
;nya;m,a, the NY. quotes :pua:�a;~ya tua :pra;t�a;a;ya;ma;a;na;tva;a;d;pra;a;Da;a;nya;m,a, adding the affix tva;a;t,a
and omitting I+.�a;ta ta;~ya. Thus the NY. gives two different readings for the
same base text at two different places. We report both of these readings as
follows:

<app loc='A2.3.19'>
<lem wit='ny' source='A1.1.56'>pituH atra kriyAdisambanDaH Sabdena ucyate.

putrasya tu pratIyamAnaH iti tasya aprADAnyam</lem>
<rdg wit='ny'>putrasya tu pratIyamAnatvAt aprADAnyam</rdg>

</app>

4 Sample results
Below we report the results of 578 readings gleaned from the our tagged data
of the third quarter of the first chapter of the Aṣṭādhyāyī (A. 1.3). Indicated
is the number of times the commentators agree with or differ from the base
text, agree with or differ from each other, report, approve of or disapprove
of variants.



Enriching the digital edition of the Kāśikāvr̥tti 291

1. Only the NY. agrees with the base text: 227

2. Only the PM. agrees with the base text: 131

3. The NY. and the PM. share the same reading which agrees with the
base text: 155

4. Only the NY. differs from the base text: 24

5. Only the PM. differs from the base text: 23

6. The NY. and the PM. share the same reading which differs from the
base text: 9

7. The NY. and the PM. each mention a reading which differs from the
reading of the other: 6

8. The PM. is aware of variants: 9

9. The PM. received a different reading for which it suggests a better
option: 1

Ten percent (10%) of the readings gleaned from the commentators in A.
1.3 support a change in the base text of the KV. The project of collecting
readings from commentators, therefore, promises to contribute significantly
to the establishment of a more correct text of the KV.

5 Conclusion
The issues discussed demonstrate the depth of understanding required to
determine what each commentator must have read and the care required to
represent that information accurately. The method of preparing a critical
apparatus of readings of the KV. attested in the NY. and PM. described
above provides a reliable and well-structured database of valuable informa-
tion about the text of the KV. and its historical transmission that is both
human and machine-readable. This database will serve as a valuable re-
source for producing a critical edition of the KV. The results of this project
will also reveal the textual history of the KV. between when Jinendrabuddhi
wrote his commentary in the eighth or ninth century, Haradatta wrote his in
the thirteenth century and the more recent dates of the extant manuscripts
of the text. The database will permit one to determine systematically how



292 Ajotikar, Ajotikar and Scharf

much of the text of the KV. was known to each of the commentators. It
will reveal how many variations occurred in the transmission of the text
and how many readings have been lost to us in the course of time. The
methods used in this project are applicable to similar philological work to
prepare an edition and determine the textual history of any Sanskrit text
with commentaries or indeed of any commented text extant in the form of
manuscripts.



References
Haag, Pascale. and Vincenzo Vergiani, eds. 2009. Studies in the Kāśikāvr�tti.

The section on pratyāhāras; critical edition, translation and other con-
tributions. Firenze: Società Editrice Fiorentina. Reprint: London; New
York: Anthem, 2011.

Kulkarni, Malhar, Anuja Ajotikar, Tanuja Ajotikar, and Eivind Kahrs. 2016.
“Discussion on some important variants in the pratyāhārasūtras in the
Kāsikāvr�tti”. In: vyākaraṇaparipr�cchā. proceedings of the Vyākaraṇa sec-
tion of the 16th World Sanskrit Conference, 28 June–2 July 2015, San-
skrit Studies Center, Silpakorn University, Bangkok. Ed. by George Car-
dona and Hideyo Ogawa. New Delhi: D. K. Publishers, pp. 209–236.

Pullela, Ramachandra, ed. 1981a. Śrīharadattamiśraviracitā padamañjarī
kāśikāvyākhyā. Prathamo Bhāgaḥ, 1–4 adhyāyāḥ. Saṁskr�tapariṣadgra-
nthamālā 25. Hyderabad: Sanskrit Parishad, Osmaniya University.

— ed. 1981b. Śrīharadattamiśraviracitā padamañjarī kāśikāvyākhyā.
Dvitīyo Bhagaḥ, 5–8 adhyāyāḥ. Saṁskr�tapariṣadgranthamālā 26. Hyder-
abad: Sanskrit Parishad, Osmaniya University.

— ed. 1985. Nyāsaparākhyā kāśikāvivaraṇapañjikā. Prathamo Bhagaḥ, 1-
4 adhyāyāḥ. Sanskrit Parishad Granthamala 33. Hyderabad: Sanskrit
Parishad, Osmaniya University.

— ed. 1986. Nyāsaparākhyā kāśikāvivaraṇapañjikā. Dvitīyo Bhagaḥ, 5-
8 adhyāyāḥ. Sanskrit Parishad Granthamala 35. Hyderabad: Sanskrit
Parishad, Osmaniya University.

Raghavan, V. and K. Kunjunni Raja. 1968. New Catalogus Catalogorum.
an alphabetical register of Sanskrit and allied works and authors. Vol. 4.
Chennai: University of Madras.

Scharf, Peter M. 2018. “Raising the standard for digital texts to facilitate
interchange with linguistic software”. In: Computational Sanskrit and
Digital Humanities. Papers accepted for presentation in the Computa-
tional Sanskrit and Digital Humanities section of the Seventeenth World
Sanskrit Conference, Vancouver, 9–13 July 2018. Ed. by Gérard P. Huet
and Amba P. Kulkarni. New Delhi: D. K. Publishers. Forthcoming.

Sharma, Aryendra, Khanderao Deshpande, and D. G. Padhye, eds. 1969–
1970. Kāśikā. a commentary on Pāṇini’s grammar by Vāmana & Ja-

293



294 Ajotikar, Ajotikar and Scharf

yāditya. Sanskrit. 2 vols. Sanskrit Academy Series 17, 20. Hyderabad:
Sanskrit Academy, Osmania University. Reprinted in one volume, 2008.



From the Web to the desktop: IIIF-Pack, a
document format for manuscripts using Linked

Data standards
Timothy Bellefleur

Abstract: This paper describes the implementation of a document file
format for the representation of the composite image, text, and ad-
ditional data, focusing on the use case of manuscripts. The organi-
zational methodology follows emerging standards for Linked Data, as
well as some standards already in use by scholars and projects in San-
skrit Digital Humanities. It also presents a model for scholars in need
of organizing this relevant data to begin to do so in a manner that
facilitates future transition into online spaces.

1 Introduction
Textual scholars face a number of practical challenges when organizing and
working with their materials in the digital space. While common, established
formats exist to serve the needs of the individual artifacts of the process
(principally images and text), few adequately provide for the compilation
of these pieces, and fewer still for connections between them. As a result,
scholars typically must make do with collections of related files, deficient
formats, and even ad hoc strategies for organizing and referencing their
data. These issues can be particularly severe for textual projects in Indology,
which often deal with large amounts of data. Solutions to these sorts of
challenges have been developed, but are targeted towards the Internet, where
interconnected networks of disparate data resources are commonplace and
the necessity of navigating through them requires both robust and extensible
standards. However, as theoretically ideal as working in a networked online
space might be, practical concerns of access, convenience, distribution, and

295



296 Bellefleur

portability dictate that we still often require offline documents, even if those
documents are of a particular composite variety.

In this paper, I describe the implementation of a document file for-
mat for the representation of the structured, composite image, text, and
extensible additional data, focusing on the use-case of manuscripts. The
organizational methodology follows emerging standards for Linked Data,
employing the International Image Interoperability Framework (Appleby et
al. 2017b), JSON-LD (Sporny, Kellogg, and Lanthaler 2014), and Web An-
notation Data Model (Sanderson, Ciccarese, and Young 2017) standards
as well as their related ontologies for data description and linking. It also
incorporates some standards already in use by scholars and projects in San-
skrit Digital Humanities, such as the XML-based Text Encoding Initiative
Guidelines (TEI Consortium 2017) for textual representation.

The overall objectives of this project are two-fold. First, it presents
an offline-friendly document format that can serve in many cases as a re-
placement for composite document containers such as Adobe Corporations’
Portable Document Format (PDF) while being immediately more extensible
for the inclusion of textual and other related data as well as interconnections
between the document components. Second, it presents a model for schol-
ars in need of organizing this relevant data to begin to do so in a manner
that facilitates future transition into online spaces with as little friction as
possible.

To provide a specific use case for this project: In Dr. Adheesh Sathaye’s
ongoing digital critical editing work on the medieval Sanskrit story collection
Vetālapañcaviṃśati, the primary dataset includes scans or photographs of
some 90 manuscripts in several different Indic scripts along with electronic
text transcriptions using IAST romanization. Thus far, the most convenient
solution for organizing and storing these resources has been to compile the
manuscript images into PDF files, to keep each transcription as a separate
file, and to annotate each folio in the transcription to its corresponding
PDF page number. While this method is simple enough to implement and
requires no special software besides Adobe Acrobat, it is not ideal for a
number of reasons. Links between text and images are defined, but there is
no easy way to navigate from one to the other; despite being representations
of the same text (facsimile image and electronic text), the files for each
representation of a manuscript are essentially isolated from each other. The
PDF format—however ubiquitous and relatively efficient it functions as a
simple multi-image file format—is difficult to extend, parse, and embed



From the Web to the desktop 297

into other programs, as well as relying on commercial software for optimal
creation and editing. As retrieval of specific folio images, linking textual
transcription data more directly with these images and navigating these
links becomes necessary, it is likely that the project will need to abandon its
current PDF-based scheme. Adopting existing standards for Linked Data
serves the project’s goal of describing its data and relationships between
that data in a well-defined, extensible way, where it will come to include
editorial secondary data in an eventual online space. However, even in their
simplest useful implementations, these standards currently do not provide
comparable simplicity or convenience to that of a single, editable document
file. Furthermore, implementing an online-only method of storage, retrieval,
and editing enforces its own complexities and restrictions on interacting with
the data, especially since the primary data objects can be conceived of simply
as discrete documents of text and image data. By adapting Linked Data
models to the extent necessary for use in an offline idiom, we can maintain
and even increase ease of use for this project (and other document-centric
projects) while simultaneously employing the same methodologies used in
online spaces.

2 Background
The term Linked Data comes from the World Wide Web Consortium’s Se-
mantic Web project and has come to encompass a variety of standards
for identifying, describing, representing, and exchanging structured data
and the relationships between this data using standard Web technologies.
Linked Data formats follow the model of the Resource Description Frame-
work (RDF), which represents data in a graph of resources (nodes or ver-
tices) and the relationships (or edges) between them. A basic premise of
Linked Data is that every node should possess a unique URI (Uniform Re-
source Identifier, like a web address), which may be used to retrieve it or
information about it or be used as an unambiguous reference to the resource
by other objects. Description of the information in these resources is stan-
dardized by the use of a variety of different controlled vocabularies (widely
referred to as “ontologies”) which each define a set of terms and the inter-
pretation of their values.1 A number of syntax notations exist for serializing

1Among the most widespread of these ontologies is the Dublin Core Metadata Initiative
Terms for general metadata (DCMI Usage Board 2012, also used widely in digital libraries



298 Bellefleur

these RDF graphs in existing common formats used in data interchange
such as XML (via RDF/XML) and JSON (via JSON-LD). Employing this
model, further standards have been developed for the representation of spe-
cific complex data structures in a well-defined manner. Among these, the
International Image Interoperability Framework and the Web Annotations
Data Model are central to the design of this project.

The International Image Interoperability Framework (IIIF) is a compre-
hensive Linked Data standard providing a core model for representing image
collections in the JSON-LD format (the Presentation API), as well as a set
of additional APIs for dealing with the querying and presentation of these
resources. IIIF resources may be described in terms of their often-multiple
structural and logical arrangements and divisions and extensively linked
with related resources such as text transcriptions and annotations. These
linkages are facilitated through the use of the World Wide Web Consortium’s
Web Annotations Data Model, which defines a schema for creating detailed
metadata about and relationships between resources, as well as specifying
a flexible set of methods for targeting specific portions of a given resource
relevant to the annotation or relationships involved.

In the IIIF’s core model (see Figure 1), a document consists of a series of
virtual canvases onto which content such as images are associated by means
of annotations (using the Web Annotation Data Model). These canvases
are organized into one or more sequences that provide a logical ordering.
Although each of these component resources has its own unique identifier,
a set of required structural resources is defined within a single manifest re-
source which also contains overall metadata for the document. Additional
resource types such as collections (groupings of manifests), ranges (group-
ings of canvases), annotation lists (collections of annotation data), and lay-
ers (groupings of annotation lists) provide logical structures for organizing
associated data. In some cases, these additional resources may be defined
directly in the manifest. However, most resources representing data beyond
the basic structure of a document are defined externally and their identi-
fiers referenced in the manifest so that they may be retrieved as necessary.
The most ubiquitous of these external resources are annotation lists, which
contain all annotations and resource linkages for canvases besides the basic
associated images.

and archival studies), the Simple Knowledge Organization System for classification and
taxonomy (Miles and Bechhofer 2009), and the Friend of a Friend ontology for describing
persons and agents (Brickley and Miller 2014).



From the Web to the desktop 299

Figure 1
IIIF resource hierarchy (Appleby et al. 2017b).



300 Bellefleur

The IIIF model satisfies all the basic needs of a structured, image-based
document, much like Adobe’s Portable Document Format but in a more eas-
ily parseable and extensible way. For composite documents like manuscripts,
which may not only have multiple divisions and organizational structures
but also associated transcription data, the advantages of the IIIF become
more pronounced. However, since it is designed for use online Linked Data
services and to be efficient for large quantities of variable annotations and
metadata, the IIIF specification only permits a limited number of resources
to be fully described within its manifest and does not specify a method of
packaging additional associated resources together. This leads to a signifi-
cant quantity of individual resource files within an IIIF document’s struc-
ture. For an online service, where these resources can be stored in a database
or as a complex file structure that manages user queries, this poses a minimal
challenge to accessibility in most cases. However, if a user wishes to retrieve
a document’s entire collection of resources all at once, a solution must be
devised. It is a primary aim of this paper to propose such a method that
bridges the divide between complex online structure and simple document
files while maintaining the benefits of the IIIF model.

3 IIIF-Pack Format Structure
The format proposed here, provisionally named IIIF-Pack, provides a
method for packaging an IIIF resource into a single file along with its related
parts and optional external resources. Taking inspiration from the Open-
Document (Durusau and Brauer 2011) and Microsoft Office Open XML
(ISO/IEC 2012) formats, the separate resources are compiled together un-
der a well-defined file and folder structure using the ubiquitous Zip archive
format originally developed by PKWARE and implemented widely in open-
source libraries such as Zlib (Gailly and Adler 2017). This file archive strat-
egy solves the issue of compiling numerous files as well as providing fast,
adequate compression for text-based resources and an index through which
individual files may be efficiently extracted, appended, or removed from the
archive container. While the internal path structure of the Zip format does
not rely on the order of files it contains—this is managed by the central
directory section at the end of the file—it is prudent that the IIIF-Pack
format prioritizes storing static resources at the beginning of the archive to
facilitate performant modification of its contents.



From the Web to the desktop 301

Rather than identifying individual resources with URIs according to
Internet-style addresses, identifiers for resources within the IIIF-Pack file
are defined as absolute pathnames, with the root of the archive acting as
the root of the virtual path. IIIF resources within this structure follow the
recommended nomenclature for given resource types (see Figure 2) with the
leading {scheme}://{host}/{prefix}/{identifier} segments omitted.2
All resources types except “content”3 are assumed to be in the JSON-LD
graph description format. Whenever one IIIF resource is defined within
another, such as in the manifest, these are loaded into the resource graph
along with their parent and become directly accessible by their identifier
name. Where a resource may be requested by its identifier but not already
present within the loaded graph, the local file extension .json is assumed
by the parser and the file is dereferenced from the archive. Accordingly, the
document manifest is stored in the root of the archive as manifest.json
and assigned the URI /manifest.

By directly adopting the IIIF’s organizational model, IIIF-Pack benefits
from more than simply a standardized method of description designed for
complex document structures. It also facilitates easy translation between
both online and offline spaces for projects that may want to transition at
some future point. In that case, all that is required is to extract the files
and add the appropriate {scheme}://{host}/{prefix}/{identifier} to
each resource’s identifier. This process also functions in reverse, should a
project wish to package an existing IIIF resource into a single document file.
Furthermore, it remains closely compatible with software developed to work
with the IIIF standards.

For the initial use case of IIIF-Pack as a document format for
manuscripts, the two principal types of content resources are images and
text transcriptions. In virtually all cases, images make up the largest bulk
of the data in a document, and as such, efficient image compression strategies
are critical. While the IIIF Presentation API does not specify a restricted
set of image formats to be associated with its canvases, the IIIF Image API
(Appleby et al. 2017a) identifies seven commonly-supported formats which

2Implementing IIIF collections in a single package is certainly possible as well, though
not explored here. In this case, the IIIF document “identifier” segment of the path
would need to be defined and retained.

3The IIIF considers “Content” type resources to be any internal resources that are not
IIIF structural resources or annotations. In practice this usually means images, but may
include additional associated data.



302 Bellefleur

Figure 2
IIIF recommended URI patterns (Appleby et al. 2017b).

users may want to extract from a document: JPEG, TIFF, PNG, GIF,
JPEG2000, PDF, and WebP. The inclusion of PDF as an image format in
this list is notable not only for its wide support but also because the PDF
standard supports a variety of highly-efficient algorithms for compressing
bi-level (black and white) images, in particular the JBIG2 standard (Ono
et al. 2000). JBIG2 provides the highest lossless compression of bi-level
images currently available by employing symbol recognition and arithmetic
encoding and is thus invaluable in efficient storage of manuscript images,
many of which may be acquired in black and white as photocopies or print-
outs of microfilm. Individual JBIG2 images may be stored in their own
file containers with a minor increase in efficiency over single-image PDFs,
however, this method is less well-supported, while all major PDF libraries
support decoding the format.

For textual data resources, the prevailing schema in use in Sanskrit Dig-
ital Humanities is the Text Encoding Initiative’s TEI Guidelines (TEI Con-
sortium 2017) and related standards such as EpiDoc (Elliott et al. 2017).
The SARIT project (Wujastyk et al. 2017) is one of the leading contribu-



From the Web to the desktop 303

tors to the adoption of this format in digital Indology today. These XML-
based standards define the representation of tagged, annotated textual con-
tent, structure, and emendation in a variety of flexible ways. Associating
a given part of an XML document to an IIIF canvas is effectively accom-
plished using the Web Annotations Data Model’s selector system, which
supports identifier-based selection through the use of XPath (Robie, Dyck,
and Spiegel 2017), CSS-style selectors (Çelik et al. 2011), and the XPointer
Framework (Grosso et al. 2003), for which the TEI standard has contributed
several registered schemes.

4 IIIF-Pack Example Document
The figures below describe a simple example IIIF-Pack file structure and
its components, using the image and textual data for a single manuscript
from the aforementioned Vetālapañcaviṁśati digital critical edition project.
The manuscript data includes 217 folio images extracted from a PDF doc-
ument into individual JBIG2-compressed files along with a single-file TEI
XML transcription of the text. Figure 3 illustrates the file and folder struc-
ture inside the archive. Figure 4 illustrates the opening portion of the IIIF
manifest file, including the full definition of the first canvas resource in the
document. Figure 5 shows the annotation list for a single canvas, containing
the association of transcription data with the manuscript folio it represents
using XPointer selectors on the associated TEI document. Finally, Figure
6 contains the beginning of the definition file for the transcription layer
resource, which groups together all of the individual annotation lists pro-
viding granular links to each folio’s transcription. Although it is omitted
from Figure 4, the manifest resource is also directly associated with an an-
notation list identifying the full TEI document as a transcription of the full
IIIF resource. The resulting IIIF-Pack file is 20% smaller in size (9.3MB)
than the image source PDF (11.8MB), despite including IIIF structural and
annotation data as well as a text transcription.



304 Bellefleur

Figure 3
Example IIIF-Pack internal file layout.

Figure 4
Beginning of manifest file for example document.



From the Web to the desktop 305

Figure 5
Annotation list for canvas of folio 1 (verso) in example document.

Figure 6
Beginning of transcription layer definition in example document.



306 Bellefleur

5 Software Support
As with many Linked Data standards, general-use software tools for IIIF
resources are fairly sparse. The most mature of these tools is Mirador,
an open-source, web-based image and annotation viewer (Project Mirador
Contributors 2017) designed for digital libraries and museums. The re-
rum.io project, based out of the Center for Digital Humanities at St. Louis
University, has begun to develop online tools and services for facilitating
user onboarding as part of their early adoption of the IIIF model (Cuba,
Hegarty, and Haberberger 2017). The most noteworthy of these is a tool for
generating IIIF manifests and other Presentation API structures from a list
of images. Two actively maintained web server frameworks exist for serving
images according to the IIIF Image API specification, providing support for
retrieving specific canvases or regions of IIIF resources in multiple formats.
Overall, the state of the software suggests that while the IIIF standards
have gained traction, there is still significant work to be done to broaden
their scope of use. For the IIIF-Pack format, I have developed rudimentary
parsing and viewing components in order to test its viability as a proof-of-
concept. These include support for a separate JBIG2-format image decoder
to eliminate the overhead of using single-page PDF files where JBIG2 com-
pression is desired.

The development of two tools is critical to the success of this project:
First, a cross-platform IIIF-Pack file viewer that can display the canvases
along with their associated textual data according to the document’s de-
fined sequences and annotations (see mock-up in Figure 7). I am examining
employing a subset of Mirador as a basis for this application using the cross-
platform Electron framework (GitHub Inc. et al. 2017) employed widely in
desktop software built on web technologies. The second tool simplifies the
workflow of producing a complete IIIF resource structure from source im-
ages and transcriptions and packaging them into an IIIF-Pack file. Following
these, a library that facilitates performant, in-place editing of the IIIF-Pack
file’s resources will provide the full suite of functionality for the document
format. I expect these tools to begin public-facing testing by the first half of
2018 and plan to demonstrate them at the 17th World Sanskrit Conference
in July.



From the Web to the desktop 307

Figure 7
Side-by-side view of manuscript folio image and its TEI-XML

transcription.



308 Bellefleur

6 Conclusion
While this project is in an early stage, I hope that its utility is already appar-
ent. Textual scholars need not abandon the convenience of offline documents
to benefit from advances in structuring and connecting their data. Given
the promise of emerging new standards and the unfortunate state of exist-
ing document formats in meeting a variety of needs, some way of bringing
current advances to bear on the practical needs of scholars is sorely needed.
Furthermore, the broad extensibility of these standards leaves many addi-
tional possibilities left unexplored here—for example, the inclusion of digital
stemmatic and other philological data, or metadata integration with grow-
ing online databases such as PANDiT (Bronner et al. 2017). By adopting
Linked Data standards designed for the web, we may benefit from their
manifest organizational proficiencies and future developments without re-
quiring either that textual work happen natively online or that a significant
reconception of the idea of a document takes place. In doing so, we can
also prepare our work for the ongoing movement into interconnected online
spaces in a less onerous, more effective way.



References
Appleby, Michael, Tom Crane, Robert Sanderson, Jon Stroop, and Simeon

Warner. 2017a. International Image Interoperability Framework Image
API. Version 2.1.1. http://iiif.io/api/image/2.1/. IIIF Consor-
tium.

— 2017b. International Image Interoperability Framework Presentation
API. Version 2.1.1. http://iiif.io/api/presentation/2.1/. IIIF
Consortium.

Brickley, Dan and Libby Miller. 2014. FOAF Vocabulary Specification. Ver-
sion 0.99—Paddington Edition. http : / / xmlns . com / foaf / spec /
20140114.html.

Bronner, Yigal, Omer Kesler, Andrew Ollett, Sheldon Pollock, Karl Potter,
et al. 2017. PANDiT: Prosopographical Database for Indic Texts. http:
//www.panditproject.org/.

Çelik, Tantek, Elika J. Etemad, Daniel Glazman, Ian Hickson, Peter Linss,
and John Williams. 2011. Selectors Level 3. Recommendation. http:
//www.w3.org/TR/2011/REC- css3- selectors- 20110929/. W3C
World Wide Web Consortium.

Cuba, Patric, Donal Hegarty, and Bryan Haberberger. 2017. rerum.io. Cen-
ter for Digital Humanities, St. Louis University. http://rerum.io/.

DCMI Usage Board. 2012. DCMI Metadata Terms. http://dublincore.
org/documents/2012/06/14/dcmi- terms/. Dublin Core Metadata
Initiative.

Durusau, Patrick and Michael Brauer. 2011. Open Document Format for
Office Applications. Version 1.2. OASIS Standard. http://docs.oasis-
open.org/office/v1.2/os/OpenDocument-v1.2-os.html.

Elliott, Tom, Gabriel Bodard, Elli Mylonas, Simona Stoyanova, Charlotte
Tupman, Scott Vanderbilt, et al. 2017. EpiDoc Guidelines: Ancient doc-
uments in TEI XML. Version 8. http://www.stoa.org/epidoc/gl/
latest/.

Gailly, Jean-loup and Mark Adler. 2017. Zlib Compression Library. Version
1.2.11. https://zlib.net/.

GitHub Inc. et al. 2017. Electron framework. http://electronjs.org.

309

http://iiif.io/api/image/2.1/
http://iiif.io/api/presentation/2.1/
http://xmlns.com/foaf/spec/20140114.html
http://xmlns.com/foaf/spec/20140114.html
http://www.panditproject.org/
http://www.panditproject.org/
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
http://rerum.io/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os.html
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os.html
http://www.stoa.org/epidoc/gl/latest/
http://www.stoa.org/epidoc/gl/latest/
https://zlib.net/
http://electronjs.org


310 Bellefleur

Grosso, Paul, Eve Maler, Jonathan Marsh, and Norman Walsh. 2003.
XPointer Framework. Recommendation. http://www.w3.org/TR/2003/
REC-xptr-framework-20030325/. W3C World Wide Web Consortium.

ISO/IEC. 2012. Office Open XML File Formats — Part 2: Open Packaging
Conventions. ISO/IEC Standard 29500-2:2012. http : / / standards .
iso . org / ittf / PubliclyAvailableStandards / c061796 _ ISO _ IEC _
29500-2_2012.zip. International Standards Organization.

Miles, Alistair and Sean Bechhofer. 2009. SKOS Simple Knowledge Organi-
zation System. Recommendation. http://www.w3.org/TR/2009/REC-
skos-reference-20090818/. W3C World Wide Web Consortium.

Ono, Fumitaka, William Rucklidge, Ronald Arps, and Cornel Constanti-
nescu. 2000. “JBIG2: The Ultimate Bi-level Image Coding Standard”. In:
Proceedings of the International Conference on Image Processing, Sep
10–13, 2000. Institute of Electrical and Electronics Engineers (IEEE).

Project Mirador Contributors. 2017. Mirador: Open-source, web based,
multi-window image viewing platform. http://projectmirador.org/.

Robie, Jonathan, Michael Dyck, and Josh Spiegel. 2017. XML Path Lan-
guage (XPath). Version 3.1. Recommendation. https://www.w3.org/
TR/2017/REC-xpath-31-20170321/. W3C World Wide Web Consor-
tium.

Sanderson, Robert, Paolo Ciccarese, and Benjamin Young. 2017. Web An-
notation Data Model. Recommendation. https://www.w3.org/TR/
2017/REC-annotation-model-20170223. W3C World Wide Web Con-
sortium.

Sporny, Manu, Gregg Kellogg, and Markus Lanthaler. 2014. JSON-LD 1.0:
A JSON-based Serialization for Linked Data. Recommendation. https:
//www.w3.org/TR/2014/REC-json-ld-20140116/. W3C World Wide
Web Consortium.

TEI Consortium. 2017. TEI P5: Guidelines for Electronic Text Encoding and
Interchange. Version 3.2.0. http://www.tei-c.org/Guidelines/P5.
TEI Consortium.

Wujastyk, Dominik, Patrick McAllister, Liudmila Olalde, Andrew Ollett,
et al. 2017. SARIT: Search and Retrieval of Indic Texts. http://sarit.
indology.info/.

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c061796_ISO_IEC_29500-2_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c061796_ISO_IEC_29500-2_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c061796_ISO_IEC_29500-2_2012.zip
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://projectmirador.org/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-annotation-model-20170223
https://www.w3.org/TR/2017/REC-annotation-model-20170223
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.tei-c.org/Guidelines/P5
http://sarit.indology.info/
http://sarit.indology.info/


New Vistas to study Bhartṛhari: Cognitive NLP
Jayashree Aanand Gajjam, Diptesh Kanojia and Malhar

Kulkarni

Abstract: A sentence is an important notion in the Indian grammatical
tradition. The collection of the definitions of a sentence can be found
in the text Vākyapadīya written by Bhartṛhari in fifth century C.E.
The grammarian-philosopher Bhartṛhari and his authoritative work
Vākyapadīya have been a matter of study for modern scholars, at least
for more than 50 years, since Ashok Aklujkar submitted his Ph.D.
dissertation at Harvard University. The notions of a sentence and
a word as a meaningful linguistic unit in the language have been a
subject matter for the discussion in many works that followed later on.
While some scholars have applied philological techniques to critically
establish the text of the works of Bhartṛhari, some others have devoted
themselves to exploring philosophical insights from them. Some others
have studied his works from the point of view of modern linguistics,
and psychology. Few others have tried to justify the views by logical
discussions.
In this paper, we present a fresh view to study Bhartṛhari, and his
works, especially the Vākyapadīya. This view is from the field of
Natural Language Processing (NLP), more specifically, what is called
Cognitive NLP. We have studied the definitions of a sentence given
by Bhartṛhari at the beginning of the second chapter of Vākyapadīya.
We have researched one of these definitions by conducting an experi-
ment and following the methodology of silent-reading of Sanskrit para-
graphs. We collect the Gaze-behavior data of participants and ana-
lyze it to understand the underlying comprehension procedure in the
human mind and present our results. We evaluate the statistical sig-
nificance of our results using the T-test and discuss the caveats of our
work. We also present some general remarks on this experiment and
the usefulness of this method for gaining more insights into the work
of Bhartṛhari.

311



312 Gajjam et al

1 Introduction
Language is an integral part of the human communication process. It is
made up of structures. There are sentences, which are made up of words,
which in turn are made up of syllables. There has been a lot of discussion
about which among these is a minimal meaningful unit in the language. The
notions of a sentence and a word have been described in different fields of
knowledge such as grammar, linguistics, philosophy, cognitive science, etc.
Some provide a formal definition of a sentence, while others give the seman-
tic definition. The Vyākaraṇa, Mīmāṃsā and Nyāya schools of thought in
Sanskrit literature hold some views about the nature of a sentence. The
grammarian-philosopher Bhartṛhari enumerated eight definitions of a sen-
tence given by early grammarians and Mīmāṃsakas in the second Kāṇḍa
(Canto) of his authoritative work Vākyapadīya.

The question that how does a human being understand a sentence has
been dealt with in the field of psycholinguistics for the last 20 years. Var-
ious studies conducted in the last decade have addressed this question by
using several experimental methods. There are many off-line tasks1 such
as Grammaticality Judgement task, Thematic Role Assignment task, etc.
which are helpful in examining how the language-users process the com-
plete sentences. In addition to these off-line techniques, psycho-linguists
have investigated a number of sophisticated on-line language comprehension
methodologies. Some of them are behavioral methods such as Acceptability
Judgement, Speed-Accuracy Trade-off, Eye-Movement Behavior, Self-Paced
Reading, etc. Some are neuro-cognitive methods such as electroencephalo-
gram (EEG),2 Event-Related brain Potentials (ERPs),3 functional Magnetic
Resonance Imaging (fMRI),4 Positron Emission Tomography (PET)5 etc.

1These methodologies are called as ‘off-line’ because they study the comprehension
process after the participant performs the task, most of which are the pen-paper methods.

2EEGs measure the electrical activities of the brain while performing a task by applying
electrode/s to the scalp.

3ERPs provide a very high temporal resolution. The spontaneous electrical activity of
the brain is measured non-invasively by means of electrodes applied to the scalp (Choud-
hary 2011).

4fMRIs are BOLD (Blood Oxygen Level Dependent) techniques and used while study-
ing both neurologically healthy adults and people with reading disabilities, mostly the
brain-damaged patients.

5PETs are the neuroimaging techniques which are based on the assumptions that areas
of high radioactivity are correlated with the brain activities.



Bhartṛhari: Cognitive NLP 313

which study the ongoing or real-time cognitive procedure while a partici-
pant performs a task.

This paper addresses one of the eight definitions given by Bhartṛhari.
The main goal is to study this definition from the cognitive point of view
i.e. to study the underlying comprehension procedure in human beings
taking this definition as the foundation. It also allows us to find the cases
of the linguistic behavior of the readers in which this definition holds true.
We use an Eye Tracker device to collect the Gaze (Eye) Movement data of
readers during the procedure of silent reading6 of Sanskrit paragraphs.

Gaze Tracking: An Introduction
Gaze tracking is the process of measuring a gaze point or the movement
of the participants’ eyes. The device which measures the eye-movements is
called as Eye-Tracker. We use an ‘SR-Research Eyelink-1000 Plus’7 which
mainly comprises of two PCs (Host PC and Display PC), a camera and an
infrared illuminator. It performs the monocular eye-tracking with a sam-
pling rate of 500Hz (one sample/2 millisecond). The Host PC is used by
the supervisor for navigating through the experiment. A supervisor can set
up the camera, perform the eye-calibration process, check and correct the
drifts, present the paragraphs to the readers, and record the session on the
Host PC. Similarly, Display PC is used by the reader for reading the para-
graphs and answering the questions. The pupil of the participant is captured
by the camera and the eye-movements are captured by the infrared illumi-
nator. These eye-movements are mapped to the data that is presented to
the participant on the Display PC with the help of some image processing
algorithms.

Eye-Tracker records several eye-movement parameters on the Area of
Interest (AOI) such as Pupil size, Fixations and Saccades. An AOI is an
area of the display that is of the concern, like a word or a sentence or a para-
graph, which in our case is a word. A Fixation is when the gaze is focused

6The oral and silent reading represents the same cognitive process. However, readers
decrease processing time on difficult words in silent as compared to oral reading. (Juel
and Holmes 1981). For the current paper, we focus on the silent-reading methodology of
the paragraphs.

7More information can be found at the link: http://www.sr-research.com

http://www.sr-research.com


314 Gajjam et al

on a particular interest area for 100-500 milliseconds. A Saccade8 is the
movement of gaze between two fixations which occurs at an interval of 150-
175 milliseconds.9 Specifically, due to its high sampling rate, Eye-Tracker
is also able to capture Saccadic-Regressions and similarly Progressions. A
Regression a.k.a Back-tracking is a backward-moving saccadic movement in
which the reader looks back to something that they had read earlier. On
the contrary, a Progression is a forward-moving saccadic path.

The availability of embedded inexpensive eye-trackers on hand-held de-
vices has come close to reality now. This opens avenues to get eye-tracking
data from inexpensive mobile devices from a huge population of online read-
ers non-intrusively, and derive cognitive features. For instance, Cogisen: has
a patent (ID: EP2833308-A1)10 on eye-tracking using an inexpensive mobile
webcam.

Till date, there has been lots of research which have been carried out
using eye movement data on various tasks such as reading (texts, poetry,
musical notes, numerals), typing, scene perception, face perception, math-
ematics, physics, analogies, arithmetic problem-solving and various other
dynamic situations (driving, basketball foul shooting, golf putting, table
tennis, baseball, gymnastics, walking on uneven terrain, mental rotation,
interacting with the computer screens, video game playing, etc.) and me-
dia communication (Lai et al. 2013) etc. Reading researchers have applied
eye-tracking for behavioral studies as surveyed by Rayner (1998). Recently,
some researchers have even used this technique to explore learning processes
in complex learning contexts such as emergent literacy, multimedia learning,
and science problem-solving strategies.

In Section 2, we discuss the related work in the fields of Sanskrit gram-
matical tradition and cognitive NLP. In the next Section 3, we present our
approach which focuses on the experimentation details and we present the
analysis and results in Section 4. Section 5 gives the evaluation of our work,

8The word ‘Saccade’ is a French-origin word. It was Luis Émile Javal (French eye
specialist and a politician) who named the movement of the eyes as ‘Saccades’ for the first
time in 19th C.

9As far as human anatomy is concerned, eyes are never still; there are small move-
ments/tremors of the eyes all the time. They are called as ‘Nystagmus’ (Rayner 1998).
These eye movements are involuntary and hence not measured by the machine. The move-
ments of the eyes which are deliberate, occur at the interval of 150-175 ms and they are
considered as the features for the analysis.

10http://www.sencogi.com

http://www.sencogi.com


Bhartṛhari: Cognitive NLP 315

which is followed by the Section 6 on discussion. We conclude this paper in
Section 7 by suggesting possible future work.

2 Related Work
In this section, we discuss the work that has been done on the notions of
sentence and sentence-meaning by Indian and Western scholars in subsection
2.1. The studies that have been carried out in the fields of Cognitive NLP
are presented in subsection 2.2. We also present a bird’s eye view of our
research area in the figure at the end of this section.

2.1 Sentence Definitions and Comprehension
Sanskrit grammatical tradition is started with Pāṇini’s Ashtadhyayi. Pāṇini
in his work doesn’t define a sentence explicitly. However, few modern schol-
ars attribute a sentence as the base of the derivational process in Pāṇini’s
grammar (Kiparsky and Staal 1969). This view is criticized by Houben
(2008) and SD Joshi and Roodbergen (2008). According to some scholars,
the notion of Kāraka (Huet 2006) or the notion of Sāmarthya (Deshpande
1987; Devasthali 1974) are Pāṇini’s contribution to the syntax. The latter
view is opposed by Mahavir (1984). After Pāṇini, Kātyāyana who wrote
Vārttikas on the rules of Aṣṭādhyāyī gave two definitions of the sentence11

(P.2.1.1 Vt.9) (A sentence is chiefly the action-word, accompanied by the
particle, nominal words, and adjectives) and ekatiṅ vākyaṃ (P.2.1.1 Vt.10)
(a sentence is that [cluster of words] containing a finite verb [as an ele-
ment]). for the first time, which are said to be formal in their nature and
not referring to the meaning content (Laddu 1980; Matilal 1966; Pillai 1971).
Deshpande (1987) argued that Kātyāyana’s claim that each sentence must
have a finite verb relates to the deeper derivational level and not to its sur-
face expressions. Hence, a sentence may or may not contain a finite verb on
the surface level and there can be a purely nominal sentence (Bronkhorst
1990; H. Coward 1976; Tiwari 1997). Patañjali in his Mahābhāṣya discussed
the integrity of a sentence in terms of having only one finite verb. According
to him, a sentence must have only one finite verb, and also purely nominal
sentences may not be considered as complete. The word asti (is) should
be understood in those sentences (Bronkhorst 1990). Modern scholars dis-

11ākhyātaṃ sāvyayakārakaviśeṣaṇaṃ vākyaṃ



316 Gajjam et al

cussed that a sentence having two identical finite verbs12 doesn’t militate
against the integrity of a sentence (Deshpande 1987; Jha 1980; Laddu 1980;
Pillai 1971).

Bhartṛhari, for the first time, deals with the semantic issues in the
second Kāṇḍa i.e Vākyakāṇḍa of Vākyapadīya (VP). We can find a compre-
hensive treatment on various theories of sentence and their meanings along
with their philosophical discussions. He enumerates eight views on the no-
tion of a sentence which are held by earlier theorists in India. The verse
is:

Ākhyātaśabdaḥ saṅghāto jātiḥ saṅghātavartinī
Eko’navayaḥ śabdaḥ kramo buddhyanusaṃhṛtiḥ |
Padamādyaṃ pṛthaksarvaṃ padaṃ sākāṅkṣamityapi
Vākyaṃ prati matirbhinnā bahudhā nyāyavādinam || (VP.II.1-2)

The definitions are as follows: (1) Ākhyātaśabdaḥ- The verb, (2) Saṅghā-
taḥ- A combination of words, (3) Jātiḥ saṅghātavartinī - The universal
in the combination of words, (4) Eko’navayavaḥ śabdaḥ- An utterance
which is one and devoid of parts, (5) Kramaḥ- A sequence of words, (6)
Buddhyanusaṃhṛtiḥ- The single whole meaning principle in the mind, (7)
Padamādyam- The first word, and (8) Pṛthak sarvam padam sākāṇkṣam-
Each word having expectancy for one another. These eight views on the
sentence are held by earlier grammarians and Mīmāṃsakas. They look at
the sentence from different angles depending upon the mental dispositions
formed due to their discipline in different Śāstras.13

The definitions jātiḥ saṅghātavartinī, eko’navayavaḥ śabdaḥ and bud-
dhyanusaṃhṛtiḥ can be categorized under Bhartṛhari’s theory of Sphoṭa
which believes that a sentence is ‘a single undivided utterance’ and its mean-
ing is ‘an instantaneous flash of insight’. This definition is studied by var-
ious modern scholars in their respective works. (H. Coward 1976; Loundo
2015; Pillai 1971; Raja 1968; Sriramamurti 1980; Tiwari 1997). Some mod-
ern scholars have studied the theory of Sphoṭa in different perspectives.
G. H. Coward (1973) showed the logical consistency and psychological ex-
perience14 of Sphoṭa theory, while Houben (1989) compared Bhartṛhari’s

12The definition ekatiṅ vākyaṃ is explained by Patañjali by giving the illustration of
brūhi brūhi, which indicates that a verb repeated is to be regarded as the same. Kaiyyaṭa,
the commentator on the Mahābhāṣya, also takes the term eka as identical.

13Avikalpe’pi vākyārthe vikalpā bhāvanāṣrayāḥ | (VP II.116)
14Coward argues that, according to traditional Indian Yoga, the Sphoṭa view of language

is practically possible. It is both logically consistent and psychologically realizable.



Bhartṛhari: Cognitive NLP 317

Śabda to Saussure’s theory of sign15 (Houben 1989). Later on, Akamatsu
(1993) tried to look at this theory in the philosophical and historical context
of the linguistic theory in India.

In contrast with the theory of Sphoṭa, Mīmāṃsakas hold the view that a
syllable has a reality of its own and the word is a sum-total of the syllables
and the sentence is only words added together. The remaining definitions
such as ākhyātaśabdaḥ, saṅghātaḥ, kramaḥ, padamādyam and pṛthak sarvam
padam sākāṇkṣam are categorized under this view. Various modern Indian
scholars (Bhide 1980; Choudhary 2011; Gangopadhyay 1993; Iyer 1969; Jha
1980; Sriramamurti 1980) have discussed the compositionality of a sentence
in modern times. This view is also studied by various Western psycho-
linguists such as Sanford and Sturt (2002), and criticized by Pagin (2009)
who asserts that it is not enough to understand the meanings of the words to
understand the meaning of the whole sentence. Studies by Foss and Hakes
(1978), Davison (1984), Glucksberg and Danks (2013) and Levy et al. (2012)
proved that the sequence is the important parameter in understanding the
English sentence. Similar studies by McEuen (1946) and Davison (1984)
have shown that people usually tend to skip the first word in the sentence
unless it is semantically loaded.

We study the very first definition i.e. ākhyātaśabdaḥ which states that
a single word ākhyāta (‘The Verb’) is the sentence. The explanation of this
definition as given by Bhartṛhari himself in VP.II.326 suggests that if a mere
verb denotes the definite means of the action (i.e. the agent and accessory)
in the sentence then that verb should also be looked upon as a sentence.16 In
the introduction to the Ambākartrī commentary on the VP by Pt. Raghu-
natha Sarma, he discusses this view by giving examples such as pidhehi.
He mentions that when someone utters the mere verb i.e. pidhehi (‘Close’
[imperative]), it also necessarily conveys the karma of the action which is
dvāram (‘the door’), in which case, the mere verb idhehi can be considered
as a complete sentence17 (Sarma 1980). This view is emphasized by later
modern scholars by saying that if a linguistic string is to be considered as a
sentence, it should have the expectancy on the level of the semantics and not

15Houben suggested that in both the works a purely mental signifier plays an important
role.

16ākhyātaśade niyataṃ sādhanaṃ yatra gamyate |
tadapyekaṃ samāptārthaṃ vākyamityabhidhīyate ||” (VP.II.326)

17pidhehīti …atra dvāramiti karmākṣepāt paripūrṇārthatve ‘dvāraṃ pidhehi’ iti vākyam
bhavatyeva |



318 Gajjam et al

just on the word-level (Laddu 1980; Pillai 1971). As stated by the commen-
tator Puṇyarāja, this definition believes that the meaning of a sentence is of
the nature of an action,18 which means the meaning of the finite verb
becomes the chief qualificand in the cognition that is generated
and other words in the sentence confirm that understanding of a particular
action19 (Huet 2006; Pillai 1971). Moreover, as said in the commentary,
this definition does not deny the status of the sentence of the linguistic
string which contains other words besides the verb. But it emphasizes the
fact that, sometimes a single verb can also convey the complete meaning,
hence can be looked upon as a sentence.20 Depending upon these views
established by the commentary, we can explain the word ākhyātaśabdaḥ
in both ways viz. the compound ākhyātaśabdaḥ is analyzed either as ākhyā-
taḥ eva śabdaḥ (i.e. Karmadhāraya Samāsa- ‘The verb’ [itself can also be
considered as a sentence.]) or as ākhyātaḥ śabdaḥ yasmin tat (i.e. Bahuvrīhi
Samāsa- ‘the linguistic string consisting the verb’ [is a sentence.]),21 both
of which are qualified as ‘a sentence’. However, one cannot decide whether
this definition leaves out purely nominal sentences when it comes to assign
the status of the sentence.22

Some earlier work on this view in the field of Psycholinguistics such as
McEuen (1946) proves that in the English language, the sentence cognition
takes place even if the verb is unavailable. The same view is put forward
later by Choudhary (2011). He showed that in verb-final languages such
as Hindi, comprehenders do not wait for the verb in case they have not

18riyā vākyārhtaḥ |
19Kriyā kriyāntarādbhinnā niyatādhārasādhanā |

Prakrāntā pratipattṛuṇāṃ bhedaḥ sambodhahetavaḥ ||” (VP.II.414)
20tatrākhyātaśabdo vākyamti vādinām ākhyātaśabda eva vākyamiti nābhiprāyaḥ …kintu

kvacid ākhyātaśabdo’pi vākyam, yatra kārakaśabdaprayogaṃ vinā kevlākhyātaśab-
daprayoge’pi vākyārthāvagatiḥ … (Ambākartrī on VP.II.1-2)

21We, in this paper, have studied the latter view, and presented the sentences having
verbs and other words as the stimuli to the participants. For studying the first view,
which requires presenting the only-verb sentences, it would have led to the loss of context
when it comes to the written language cognition. Hence, in stead of presenting only-verb
sentences, we have dropped the agent-denoting word from the sentence, which would help
us to find out, whether the verbs express their means of actions and are as comprehensible
as the sentences having the complements too.

22We also tried to present these kind of sentences, to study if the nominal sentences
are as much comprehensible as the sentences having verbs, or whether it amounts to the
excessive cognitive load in the readers which makes them to consider the verb for the
better understanding of it.



Bhartṛhari: Cognitive NLP 319

been reached to it yet but they process the sentence incrementally. The
study by Osterhout, Holcomb, and Swinney (1994) showed that the verb
has complement-taking properties. Hence, it is the major element in the
procedure of sentence-comprehension.

Considering these studies as the motivation, we test the definition of the
verb by using an experimental method i.e. by using readers’ Eye Move-
ment Behavior on the data which contains verbs, which contains purely
nominal sentences and which lack the agents. We are aware that there might
be some shortcomings with this definition. There can be the cases or sit-
uations in which this definition doesn’t hold true or holds true partially.23

The aim of this paper is to find out the cases in which it does. Hence, we
carry out an experiment to find out the situation in which this definition is
valid and also provide statistical evidence for the same.

2.2 Cognitive NLP
It is very clear from the vast number of studies that Eye Movement be-
havior can be used to infer cognitive processes (Groner 1985; Rayner 1998;
Starr and Rayner 2001). The eye is said to be the window into the brain
as quoted by Majaranta and Bulling (2014). Rayner (1998) has mentioned
in his work that the reading experiments have been carried out in different
languages such as English, French, Dutch, Hebrew, German (Clematide and
Klenne 2013), Finnish, Japanese and Chinese etc. There are few studies on
Indian languages such as Hindi (Ambati and Indurkhya 2009; Choudhary
2011; Husain, Vasishth, and Srinivasan 2014; Salil Joshi, Kanojia, and Bhat-
tacharyya 2013) and on Telugu (Ambati and Indurkhya 2009). The writing
style is mainly from left to right except for Hebrew (right to left). Khan,
Loberg, and Hautala (2017) studied the eye movement behavior on Urdu
numerals which is written bidirectionally. The orthography has been both
horizontal and vertical (Japanese and Chinese). These works have been
taken place at various levels of language such as typographical, orthograph-
ical, phonological (Miellet and Sparrow 2004), lexical (Husain, Vasishth,
and Srinivasan 2014), syntactic (Fodor, Bever, and Garrett 1974), seman-
tic, discourse, stylistic factors, anaphora and coreference (Rayner 1998).
Few studies were conducted on fast readers versus poor readers, children

23Such as in poetry, some concern is also to be given to the sequence (kramaḥ) of the
words. While learning a new language, every word including first word (padamādyaṃ)
seems to play the major role, etc.



320 Gajjam et al

versus adults versus elderly adults, multilingual versus monolinguals (De
Groot 2011), normal readers versus people with reading disabilities such
as dyslexia, aphasia (Levy et al. 2012), brain damages or clinical disabil-
ity (Rayner 1998), schizophrenia, Parkinson’s disease (Caplan and Futter
1986) or oculomotor diseases. Various methodologies were followed such
as eye contingent display change, moving window technique, moving mask
technique, boundary paradigm, Naming task, Rapid Serial Visual Presen-
tation (RSVP) versus Self-paced reading, reading silently versus reading
aloud, etc.

The experiments that took place on reading have been used mainly to
understand the levels underlying the comprehension procedure. Apart from
that, a study for word sense disambiguation for the Hindi Language was
performed by Salil Joshi, Kanojia, and Bhattacharyya (2013) where they
discuss the cognitive load and difficulty in disambiguating verbs amongst
other part-of-speech categories. They also present a brief analysis of disam-
biguating words based on different ontological categories. Martinez-Gómez
and Aizawa (2013) use Bayesian learning to quantify reading difficulty us-
ing readers’ eye-gaze patterns. Mishra, Bhattacharyya, and Carl (2013)
proposes a framework to predict difficulty in translation using a translator’s
eye-gaze patterns. Similarly, A. Joshi et al. (2014) introduce a system for
measuring the difficulties perceived by humans in understanding the senti-
ment expressed in texts. From a computational perspective Mishra, Kanojia,
and Bhattacharyya (2016) predict the readers’ sarcasm understandability,
detects the sarcasm in the text (Mishra, Kanojia, Nagar, et al. 2017a) and
analyze the sentiment in a given sentence (Mishra, Kanojia, Nagar, et al.
2016) by using various features obtained from eye-tracking.

Eye-tracking has been used extensively for Natural Language Processing
(NLP) applications in the field of Computer Science, apart from the immense
amount of studies done in the field of psycholinguistics. Mishra, Kanojia,
Nagar, et al. (2017b) model the complexity of a scan path, and propose the
quantification of lexical and syntactic complexity. They also perform sen-
timent and sarcasm classification (Mishra, Dey, and Bhattacharyya 2017)
using neural networks using eye-tracking data via the use of a convolutional
neural network (CNN) (LeCun et al. 1998). They refer to the confluence of
attempting to solve NLP problems via cognitive psycholinguistics as Cogni-
tive NLP.

Our method of analyzing eye-movement patterns in the Sanskrit lan-
guage is the first of its kind and is inspired by these recent advancements.



Bhartṛhari: Cognitive NLP 321

The Bird’s eye view of our research area is presented in Figure 1. The
highlighted and bold text is our research interest in the current paper.

Figure 1
A brief analysis of our research area

3 Our Approach
We describe our approach to dataset creation in Subsection 3.1, experiment
details which includes participant selection in Subsection 3.2, feature de-
scription in Subsection 3.3, followed by the methodology of the experiment
in Subsection 3.4.

3.1 Dataset Creation
We prepare a dataset of 20 documents consisting of either a prose (Total 13)
or a poetry (a subhāṣita) (Total 7) in the Sanskrit language. Prose docu-
ments mainly contain the stories taken from the texts such as Pañcatantra,
Vaṃśavṛkṣaḥ and Bālanītikathāmālā. Subhāṣitas are taken from the text
Subhāṣitamañjūṣā. The stories are comprised of 10-15 lines each, and each
subhāṣita is 2 - 4 verse long. We create three copies of 20 paragraphs as the
experiment demands and manipulate them as follows:



322 Gajjam et al

• Type A: These are 20 documents that do not contain any changes
from the original documents. They are kept as they were.

• Type B: In this set of documents, we remove the finite and infinite
verbs completely which results in a syntactic violation in the respective
sentences. These are purely nominal sentences. In poetry, instead
of removing the verbs, we replace the verbs with its synonym verb
to maintain the format of the poetry. The motivation behind this
kind of modification is to test how much does a verb contributes to
the comprehension of a sentence, both syntactically and semantically.
There are 20 documents of this kind.

• Type C: Here, the verbs are kept constant but we drop the kartā
in the sentences. kartā being semantically loaded in the sentence, we
choose to drop it for the demand of the experiment i.e. to investigate
whether a mere verb without its agent can denote the meaning of the
whole sentence. Kartās are not removed from the sentences which
did not have finite or infinite verbs in the original document to avoid
the possibility of insufficient information. This kind of modification
will throw some light on the view that the verb itself can be consid-
ered as a sentence. In Type C of poetry, the stimulus is degraded by
replacing the original finite verbs by distant-meaning finite verbs by
retaining the same grammatical category. Even though these verbs
bear the syntactic integrity of the sentence, they tend to be semanti-
cally incompatible with the other words in the linguistic string. This
incompatibility leads to semantic inhibition while processing it, which
in turn allows the reader to reconstruct the meaning of the sentence
all over again. There are 20 documents of this kind.

The paragraphs do not contain text which readers might find difficult to
comprehend. We normalize the text to avoid issues with vocabulary. We
control the orthographical, typographical, and lexical variables that might
affect the outcome of the experiment. We maintain a constant orthography
throughout the dataset. The passages are shown in Devanāgarī script and
the writing style is from left to right. We keep the font size large, customize
the line spacing to optimum and adjust the brightness of the screen for the
comfort of the participant. We ensure that there is no lexical complexity in
the prose. We minimize it by splitting the sandhis (total 70), separating the
compound words with the hyphens (total 51), and also by adding commas



Bhartṛhari: Cognitive NLP 323

in appropriate places for the easier reading. The verses are not subject to
this kind of modification. This forms our original document. Sentences in
the original dataset vary in their nature with respect to the verbs. There
are 7 purely nominal sentences, 33 sentences with no finite verb but the
kṛdantas and 70 sentences having at least one finite verb in them. There are
no single-sentence paragraphs which eliminate the possibility of insufficient
contextual information while reading. In poetry, there are 26 finite verbs in
total, each verse having 3 to 4 finite verbs in it. Two linguists validate our
dataset with 100% agreement that the documents are not incomprehensible.
This forms the ground truth for our experiment.

All these types of documents (i.e. Type A, B, and C) are shuffled in such
a way that no reader gets to read both types of the same paragraph.
Hence, we tried to maintain the counter-balance to remove the bias of the
paragraphs. 20 of such shuffled paragraphs make one final dataset. There
are three final datasets: Datasets 1, 2, and 3. Out of the 20 participants, 7
participants are presented with Dataset 1, 6 participants with Dataset 2 and
remaining 7 participants with Dataset 3. We formulated two multiple-choice
questions in each paragraph. The first question of which is one and the
same for all paragraphs which helps us get the reader’s viewpoint about the
meaningfulness of the paragraph concerned. The second question is based
on the gist of that paragraph which works as a comprehension test for the
readers, which also ensures that people have read attentively and eliminates
the cases of mindless reading. The answers given by the participants on
both questions are used by us to decide the inter-annotator agreement and
the accuracy rate.



324 Gajjam et al

3.2 Experiment Details
We chose 20 participants 24 with a background in Sanskrit.25 They have
been learning Sanskrit for a minimum of 2 years to a maximum of more
than 10 years. The participants are neurologically healthy adults who belong
to the age group of 22 to 38. They are well-acquainted with the Sanskrit
language, however, they were not aware of the modifications made to the
datasets beforehand. All of the participants can understand, read, and speak
multiple languages. While most of the participants are native speakers of
Marathi; few of them have Kannada, Telugu, and Hindi as their native
language.

They are provided with a set of instructions beforehand which mentions
the nature of the task, annotation input method, and necessity of head
movement minimization during the experiment. We also reward them fi-
nancially for their efforts. They are given two sample documents before the
experiment so that they get to know the working of the experimentation
process.

3.3 Feature Description
The eye-tracking device records the activity of the participant’s eye on the
screen and records various features through gaze data. We do not use all
the feature values provided by the device for our analysis, but only the ones
which can provide us with the prominence of a word (interest-area) and in
turn, show us the importance of words that belong to the same category.
These are features which are calculated based on the gaze behavior of the
participant, and we use for our analysis:

24The number of participants is less owing to the restriction that we needed our readers
to know Sanskrit. We chose the readers with a normal or corrected vision since the read-
ers who use bi-focal eyeglasses would pose a minor possibility of erroneous eye-movement
data. Moreover, some other human-related aspects such as very dark or very light irises,
downward-pointing eyelashes, naturally droopy eyelids, the headrest not fitting the per-
son’s head or even the incorrigible head motions amount to the calibration fails and errors
while reading. We aim to increase the number of participants in future experiments.

25We chose to present the Sanskrit data to the participants instead of their native
languages because it would be more faithful to study the definition, taking the same
language which was the lingua franca at the time when these definitions were enlisted.
Nonetheless, we also aim to conduct the same definition on the native speakers and carry
out the contrastive study for a better understanding of the definition.



Bhartṛhari: Cognitive NLP 325

1. Fixation-based features -
Studies have shown that attentional movements and fixations are obli-
gatorily coupled. More fixations on a word are because of incomplete
lexical processes. The more cognitive load will lead to more time spent
on the respective word. There are some variables that affect the time
spent on the word such as word frequency, word predictability, num-
ber of meanings of a word or word familiarity, etc. (Rayner 1998). We
consider the Fixation duration, Total fixation, Fixation Count for the
analysis. These are motivated by Mishra, Kanojia, and Bhattacharyya
(2016)

(a) Fixation Duration (or First Fixation Duration)-
First fixations are fixations occurring during the first pass read-
ing. Intuitively, increased first fixation duration is associated
with more time spent on the words, which accounts for lexical
complexity.

(b) Total Fixation Duration (or Gaze Duration)-
This is a sum of all fixation durations on the interest areas. Some-
times, when there is syntactic ambiguity, a reader re-reads the
already read part of the text in order to disambiguate the text.
Total fixation duration accounts for the sum of all such fixation
durations occurring during the overall reading span.

(c) Fixation Count-
This is the number of fixations in the interest area. If the reader
reads fast, the first fixation duration may not be high even if
the lexical complexity is more. But the number of fixations may
increase in the text. So, fixation count may help capture lexical
complexity in such cases.

2. Regression-based feature -
Regressions are very common in complicated sentences and many re-
gressions are due to comprehension failures. A short saccade to the
left is done to read efficiently. Short within-word saccades show that
a reader is processing the currently fixated word. Longer regression
(back the line) occur because the reader did not understand the text.
Syntactic ambiguity (such as Garden Path sentences etc.), syntac-
tic violation (missing words, replaced words) and syntactic unpre-
dictability lead to shorter saccades and longer regressions. We consider



326 Gajjam et al

the feature Regression Count i.e. a total number of gaze regressions
around the AOI (Ares of Interest).

3. Skip Count -
Our brain doesn’t read every letter by itself. While reading people
keep on jumping to the next word. The predictable target word is
more likely to be skipped than an unpredictable one. We take Skip
count as a feature to calculate the results. Skip count means whether
an interest-area was skipped or not fixated on while reading. This
is calculated as the number of words skipped divided by total word
count. Intuitively, higher skip count should correspond to lesser se-
mantic processing requirements (assuming that skipping is not done
intentionally). Two factors have a big impact on skipping: word length
and contextual constraint. Short words are much more likely to be
skipped than long words. Second, words that are highly constrained
by the prior context are much more likely to be skipped than those
that are not predictable. Word frequency also has an effect on word
skipping, but the effect is smaller than that of predictability.

4. Run Count -
Run count is the number of times an interest-area was read.

5. Dwell Time-based feature -
Dwell time and Dwell Time percentage i.e. the amount of time spent
on an interest-area, and the percentage of time spent on it given the
total number of words.

3.4 Methodology
As described above in Section 3.1, we modified the documents in order to test
the syntactic and semantic prominence of a verb in both prose and poetry.
Such instances of modification of the data may cause a syntactic violation,
semantic inhibition, and leads to insufficient information to comprehend the
document, at the surface level of the language. It enforces the reader to
re-analyze the text. The time taken to analyze a document depends on the
context (Ivanko and Pexman 2003). While analyzing the text, the human
brain would start processing the text in a sequential manner, with the aim of
comprehending the literal meaning. When such an incongruity is perceived,
the brain may initiate a re-analysis to reason out such disparity (Kutas



Bhartṛhari: Cognitive NLP 327

and Hillyard 1980). As information during reading is passed to the brain
through eyes, incongruity may affect the way eye-gaze moves through the
text. Hence, distinctive eye-movement patterns may be observed in the case
of the successful finding of a verb, in contrast to an unsuccessful attempt.

This hypothesis forms the crux of our analysis and we aim to prove this
by creating and analyzing an eye-movement database for sentence semantics.

4 Analysis & Results
As stated above, we collect gaze data from 20 participants and use it for our
analysis. We try to verify the first sentence definition given by Bhartṛhari.
With our work, we find that the verb is the chief contributor to the
sentence-semantics and enjoys more attention than other words in the pro-
cess of sentence comprehension. To study how does a reader uses a verb
in constructing the meaning of a linguistic string, we analyze the time one
spends on the particular verb (dwell-time percentage), the number of times
one backtracks (regression out count) or skips (skip count) the verb, the
number of times the verb is read through (run count) and fixated upon
(fixation count). We analyze these features on the verbs vs. non-verbs in
Datasets 1, 2 and 3 and present the results in the Figures 2 (dwell-time
percentage), 3 (regression count) and 4 (skip count) in the form of graphs.

The analysis of dwell-time percentage, regression count and skip count
proves our point that verbs are prominent elements while constructing the
sentence meaning. It can be clearly seen that verbs are spent more
time on, regressed about more and skipped a lesser number of
times than non-verbs. All the participants except a few correlate with
our hypothesis. We observe that in Figure 2, Participant 5 (P5) has spent
less time on the verbs but we also observe, as shown in Table 1, that P5 lacks
in agreement compared to the other annotators. Participants 11 (P11), 12
(P12), and 18 (P18) do not lack in agreement, still, they do not read verbs
as much as the other consistent participants and hence are clearly outliers.
Even though these four participants have not fixated on the verb for more
time, the number of times they regressed around verbs is significantly higher
as shown in Figure 3. Figure 4 shows that verbs are unanimously skipped
for a lesser number of times than non-verbs, hence it is proved that a reader
cannot afford to skip verbs while constructing the sentence meaning.



328 Gajjam et al

Figure 2
A Comparison of Dwell-Time Percentage on Verbs and Non-Verbs for all

Datasets, and all participants

Figure 3
A Comparison of Regression Count on Verbs and Non-Verbs for all

Datasets, and all participants

Figure 4
A Comparison of Skip Count on Verbs and Non-Verbs for all Datasets,

and all participants



Bhartṛhari: Cognitive NLP 329

We also strengthen this view by analyzing the Type A vs. Type B vs.
Type C documents and also consider the answers provided by the readers
in Section 6.

5 Evaluation
We perform the evaluation of our work and calculate the inter-annotator
agreement (IAA) for each participant with all the others, on the same
dataset. We perform this for both the questions posed to the participants,
separately. We also evaluate the answers provided by the participants to
ensure that none of them were performing an inattentive reading of the
documents. We show our evaluation in Tables 1, 2, and 3 for Dataset 1,
2 and 3 respectively. Overall, the agreement of our participants ranges
between 0.45 (Moderate Agreement) to 0.95 (Almost perfect Agreement)
for Question 1. For Question 2, the agreement ranges from 0.5 (Moderate
Agreement) to 0.95 (Almost perfect Agreement). The Accuracy (Acc),
as shown in the tables, ranges from 0.6 to 1, which means that our
participants were substantially accurate and were attentive during the ex-
periment. The inter-annotator agreement points our the tentative outliers
and helps us analyze the results of our experiment. We find that both the
inter-annotator agreement and accuracy of our experiment are substantial.

We also perform statistical significance tests based on the standard t-test
formulation assuming unequal variances for both variables, for all partici-
pants and display the p-values in Tables 4, 5, 6 for Datasets 1, 2, and 3
respectively. For these datasets, we compare Verbs with all the other words
for the features Regression Count (RC) and Skip Count (SC). We find out
that a number of regressions performed by a user around verbs are much
more than around other words. For these features, we also show the dif-
ference between the means of verbs and non-verbs (MD), and the p-value
(P). Our T-Test parameters were variable values, the hypothesized mean
difference was set to zero, and the expected cut-off for the T-Test is 0.05.
Our evaluations show that these values are statistically significant for most
of the participants.



330 Gajjam et al

Inter-annotator agreement (IAA) and Accuracy (Acc) Scores

Q1 Q2
IAA IAA Acc

P1 0.7 0.5 0.6
P2 0.8 0.9 0.95
P3 0.8 0.9 0.9
P4 0.95 0.95 0.95
P5 0.45 0.85 0.9
P6 0.9 0.55 0.6
P7 0.85 0.7 0.8

Table 1
Dataset 1

Q1 Q2
IAA IAA Acc

P8 0.85 0.9 0.95
P9 0.75 0.6 0.75

P10 0.75 0.8 1
P11 0.65 0.75 0.85
P12 0.7 0.8 0.85
P13 0.85 0.95 1

Table 2
Dataset 2

Q1 Q2
IAA IAA Acc

P14 0.8 0.8 0.75
P15 0.65 0.65 0.75
P16 0.85 0.9 0.95
P17 0.9 0.8 0.7
P18 0.75 0.85 0.85
P19 0.5 0.9 0.9
P20 0.8 0.7 0.8

Table 3
Dataset 3

Mean Difference and p-values from T-Test for Regression Count
(RC) and Skip Count (SC)

RC SC
MD P MD P

P1 0.159 0.000 0.061 0.038
P2 0.234 0.000 0.078 0.012
P3 0.250 0.000 0.180 0.000
P4 0.126 0.001 0.112 0.001
P5 0.062 0.050 0.029 0.194
P6 0.183 0.001 0.064 0.029
P7 0.091 0.029 0.089 0.005

Table 4
Dataset 1

ROC SC
MD P MD P

P8 0.141 0.001 0.129 0.000
P9 0.147 0.001 0.134 0.000

P10 0.112 0.005 0.143 0.000
P11 0.194 0.000 0.025 0.237
P12 0.163 0.003 0.012 0.364
P13 0.211 0.000 0.106 0.001

Table 5
Dataset 2

ROC SC
MD P MD P

P14 0.188 0.000 0.058 0.053
P15 0.072 0.033 0.058 0.053
P16 0.244 0.001 0.077 0.015
P17 0.129 0.003 0.055 0.059
P18 0.120 0.030 -0.030 0.189
P19 0.021 0.247 0.044 0.106
P20 0.253 0.002 0.059 0.049

Table 6
Dataset 3



Bhartṛhari: Cognitive NLP 331

6 Discussion
We discussed the core features of our work i.e. Dwell-time Percentage, Re-
gression Count, Skip Count, Run Count, and Fixation Count in Section
4. In this section, we would like to further analyze the result of work by
exploring the answers provided by our participants. We break down our
documents into the categories of prose and poetry. In Figures 5 and 6, we
show the answer counts of our participants, when they find the documents
absolutely non-meaningful, or lacking information i.e., somewhat meaning-
ful. For all participants, over document Types A, B, and C, we find that
Type A (Original Data) is marked non-meaningful least number of times.

In case of a prose (Figure 5), Type B documents lack verbs. It can
clearly be seen that our participants do not understand the documents most
of the time, and mark them either as completely non-meaningful or lacking
in information. We do not hint them to look for verbs as psycholinguistic
principles do not allow an experiment to be biased in the participants’ mind.
Non-presence of verbs in Type B documents affects both syntax and the
semantics of the documents and it can be seen that purely nominal sentences
fail to convey the complete semantics of the sentence. In Type C for prose
(Figure 5), we see that our participants are confused by the removal of agent-
denoting words, but are still able to grasp the context, and hence their
answers do not depict absolute meaninglessness of the documents. Even
though verbs are retained in document type C, the removal of agent words
leads to insufficient information.

For poetry (Figure 6), Type B documents have the presence of synony-
mous verbs, and Type C have verbs with very distant meanings and no
correlation with the semantics of the original verb present. Hence, Type B
documents are marked as lacking in information by our participants many
times as compared to Type A documents. They do not mark even one of
them as absolutely meaningless as a synonym of a verb is present and they
are still able to grasp the context which bears a strong impact on the con-
clusion we draw. On a similar note, Type C documents that have verbs but
with very distant meanings are marked lacking in information most number
of times, as a correlation cannot be established between the expected sense
of the original verb and the current verb present in the document.

We explore further and manually analyze the saccadic paths of our par-
ticipants to find out that in document types A, B, and C, the saccadic-
regressions vary as per our hypothesis. We present a sample in Figures 8,



332 Gajjam et al

9 and 10. For a randomly chosen single participant, who has above average
IAA and good accuracy, we find that the amount of regression on document
Type c increases in comparison to Type A since the document lacks a agent
in some sentences. But, for Type B, we can observe that the regressions
increase further when the verb is completely removed from the document.

As stated before, the definition that we have studied might not be valid
in all cases. Our aim is to find out the cases in which it does. In the
conclusion of this research, we can say that we have found one such case
in which Bhartṛhari’s definition Ākhyātaśabdaḥ is valid and that is: when
the lexical complexity is minimized in the Sanskrit texts, readers rely on the
verbs in order to understand the complete meaning of the sentence, without
which the sentence-meaning seems incomplete. Hence, we can conclude that
verbs play the most important role in the syntax and semantics of a
sentence, nonetheless, in most of the cases, they demand their complements
(i.e. means of action) to represent the complete semantics of a sentence.
We can also conclude that the purely nominal sentences in Sanskrit are less
meaningful than the corresponding original sentences.

Similarly, we would also like to present Figures 12 (Run Count) and 13
(Fixation Count) which further strengthen our discussion. We can see in
both the figures that a number of times a verb has been read is always more
than the number of times other words have been read.

Figure 5
For Prose

Figure 6
For Poetry

Figure 7
Meaninglessness of documents as reported by Participants on different

document sets



Bhartṛhari: Cognitive NLP 333

Figure 8
Regressions on Type-A

Figure 9
Regressions on Type-B

Figure 10
Regressions on Type-C

Figure 11
Regression sample from a participant

Figure 12
A Comparison of Run Count on Verbs and Non-Verbs for all Datasets,

and all participants

Figure 13
A Comparison of Fixation Count on Verbs and Non-Verbs for all Datasets,

and all participants



334 Gajjam et al

Limitations
The data selected for our experiment does not vary in its nature. We only
use stories in prose, and the poetry is also borrowed from the same text.
We would like to clearly state that we know this is a limitation of our work.
It will be more insightful to conduct similar experiments on different kinds
of texts. For the same experiment on ‘verbs’, data can also be modified in
many other ways. Moreover, a spoken word, when accompanied by gesture
and facial expression and when given a special intonation, can convey much
more than the written word. This experiment it limited to the written
sentences only and it tests the comprehension only from the reader’s point
of view.

7 Conclusion & Future Work
We present a fresh view to study Bhartṛhari’s Vākyapadīya, especially the
definitions given by him on the syntactic and the semantic level. We pick
sentence definition one viz. Ākhyātaśabdaḥ, that the “verb” can also be
considered as a sentence. We discuss his work in brief and perform an ex-
periment to study this definition from a cognitive point of view. We employ
the eye-tracking technique and follow the methodology of silent-reading of
Sanskrit paragraphs to perform the above-mentioned experiment in order to
have a better understanding of the definition. We aim to extend our work
under the purview of Cognitive NLP and use it to resolve computational
problems. With our work, we open a new vista for studying sentence defini-
tions in the cognitive point of view by following an investigational technique.

Our results show that humans tend to read verbs more than they read
other words and they are deemed most important. We assert that verbs play
a prominent role in the syntax and semantics of a sentence, nonetheless, in
most of the cases, they demand their complements to represent the com-
plete semantics of a sentence. It is proved that a human being, cognitively,
searches for a verb in a sentence, without which the unity of a sentence tends
to be incomplete. Purely nominal sentences in the Sanskrit language are less
meaningful than the original sentences. We show the statistical significance
of our results and evaluate them using the standard T-test formulation. We
also discuss the manual analysis of saccadic paths and answers given by our
participants to verify our results. We are aware that, the method followed



Bhartṛhari: Cognitive NLP 335

by us is one way of justifying Bhartṛhari and there could be other ways that
can strengthen the same results.

In the future, we aim to conduct more experiments on different kinds
of texts in the Sanskrit language which have different sentence-construction
styles. For the same experiment on ’verbs’, data can also be modified in other
ways such as- changing the place of the verb in the sentence, removing the
sentence boundary markers, replacing the conjunctions, negatives, discourse
markers, etc. We also aim to verify other sentence definitions using eye-
tracking. We would like to employ other tools such as EEG and work in
multi-lingual settings to further delve deeper into the cognition of a human
mind so that we can understand the definition in a better perspective. We
would also like to study the comprehension among the native speakers vs.
bilingual so that we can study whether the definitions by Bhartṛhari are
generic in nature. We hope to gain more insights into the field of Cognitive
NLP with the help of our work.

Acknowledgements
We thank our senior colleague Dr. Abhijit Mishra who provided insights
and expertise that greatly assisted this research. We are grateful to Vasudev
Aital for his assistance in the data-checking process and all the participants
for being part of this research. We would also like to extend our gratitude
to the reviewers for their comments on an earlier version of the manuscript,
although any errors are our own.



References
Akamatsu, Akihiko. 1993. “Pratibhā and the Meaning of the Sentence in

Bhartṛhari’s Vākyapadīya”. Bhartṛhari: Philosopher and Grammarian,.
eds. Bhate S. and J. Bronkhorst.Pp. 37–44.

Ambati, Bharat Ram and Bipin Indurkhya. 2009. “Effect of jumbling in-
termediate words in Indian languages: An eye-tracking study”. In: Pro-
ceedings of the 31st Annual Conference of the Cognitive Science Society,
Amsterdam, Netherlands.

Bhide, V. V. 1980. “The Concept of the Sentence and the Sentence-Meaning
according to the Pūrva-Mīmāṃsā”. In: Proceedings of the Winter Insti-
tute on Ancient Indian Theories on Sentence-Meaning. University of
Poona.

Bronkhorst, Johannes. 1990. “Pāṇini and the nominal sentence”. Annals of
the Bhandarkar Oriental Research Institute 71.1/4pp. 301–304.

Caplan, David and Christine Futter. 1986. “The roles of sequencing and
verbal working memory in sentence comprehension deficits in Parkinson’s
disease”. Brain and Language 27.1pp. 117–134.

Choudhary, Kamal Kumar. 2011. “Incremental argument interpretation in
a split ergative language: neurophysiological evidence from Hindi”. PhD
thesis. Max Planck Institute for Human Cognitive and Brain Sciences,
Leipzig, Germany.

Clematide, Simon and M Klenne. 2013. “Disambiguation of the semantics of
German prepositions: A case study”. In: Proceedings of the 10th Interna-
tional Workshop on Natural Language Processing and Cognitive Science,
France, pp. 137–150.

Coward, George Harold. 1973. “A Philosophical and Psychological Analysis
of the Sphota Theory of Language as Revelation”. PhD thesis. McMaster
University, Hamilton, Ontario.

Coward, Harold. 1976. “Language as Revelation”. Indian Philosophical
Quarterly 4pp. 447–472.

Davison, Alice. 1984. “Syntactic markedness and the definition of sentence
topic”. Languagepp. 797–846.

De Groot, Annette MB. 2011. Language and cognition in bilinguals and
multilinguals: An introduction. Psychology Press, London, U.K.

336



Bhartṛhari: Cognitive NLP 337

Deshpande, Madhav M. 1987. “Pāṇinian syntax and the changing notion
of sentence”. Annals of the Bhandarkar Oriental Research Institute
68.1/4pp. 55–98.

Devasthali, GV. 1974. “Vakya according to the Munitraya of Sanskrit Gram-
mar”. Charudeva Shastri felicitation volumepp. 206–215.

Fodor, Jerry Alan, Thomas G Bever, and Merrill F Garrett. 1974. The psy-
chology of language. McGraw Hill, New York.

Foss, Donald J and David T Hakes. 1978. Psycholinguistics: An introduction
to the psychology of language. Prentice Hall, New Jersey, U.S.

Gangopadhyay, Malaya. 1993. “Traditional views on sentential meaning and
its implication on language pedagogy”. Indian linguistics 54.1-4pp. 87–
96.

Glucksberg, Sam and Joseph H Danks. 2013. Experimental Psycholinguis-
tics (PLE: Psycholinguistics): An Introduction. Vol. 3. Psychology Press,
London, U.K.

Groner, Rudolf. 1985. Eye movements and human information processing.
Vol. 9. North-Holland Publishing Co.

Houben, Jan EM. 1989. “The sequencelessness of the signifier in Bhartrhari’s
theory of language”. In: Proceedings of the Seventh World Sanskrit Con-
ference, Leiden. Indologica Taurinensia, pp. 119–129.

— 2008. “Pāṇini’s grammar and its computerization: a construction gram-
mar approach”. In: Sanskrit Computational Linguistics. Springer, pp. 6–
25.

Huet, Gérard. 2006. “Shallow syntax analysis in Sanskrit guided by semantic
nets constraints”. In: Proceedings of the 2006 international workshop on
Research issues in digital libraries. ACM, p. 6.

Husain, Samar, Shravan Vasishth, and Narayanan Srinivasan. 2014. “Inte-
gration and prediction difficulty in Hindi sentence comprehension: evi-
dence from an eye-tracking corpus”. Journal of Eye Movement Research
8.2.

Ivanko, Stacey L and Penny M Pexman. 2003. “Context incongruity and
irony processing”. Discourse Processes 35.3pp. 241–279.

Iyer, KA Subramania. 1969. Bhartṛhari: A study of the Vākyapadīya in the
light of the ancient commentaries. Vol. 68. Deccan College Postgraduate
and Research Institute, Poona.

Jha, V. N. 1980. “Naiyāyikas Concept of Pada and Vākya”. In: Proceedings of
the Winter Institute on Ancient Indian Theories on Sentence-Meaning.
University of Poona.



338 Gajjam et al

Joshi, Aditya, Abhijit Mishra, Nivvedan Senthamilselvan, and Pushpak
Bhattacharyya. 2014. “Measuring Sentiment Annotation Complexity of
Text”. In: Association of Computational Linguistics (Daniel Marcu 22
June 2014 to 27 June 2014). Vol. 2. Association for Computational Lin-
guistics.

Joshi, Salil, Diptesh Kanojia, and Pushpak Bhattacharyya. 2013. “More
than meets the eye: Study of Human Cognition in Sense Annotation.”
In: HLT-NAACL, pp. 733–738.

Joshi, SD and JAF Roodbergen. 2008. “Some observations regarding
Pāṇini’s Aṣṭādhyāyī”. Annals of the Bhandarkar Oriental Research In-
stitute 89pp. 109–128.

Juel, Connie and Betty Holmes. 1981. “Oral and silent reading of sentences”.
Reading Research Quarterlypp. 545–568.

Khan, Azizuddin, Otto Loberg, and Jarkko Hautala. 2017. “On the Eye
Movement Control of Changing Reading Direction for a Single Word:
The Case of Reading Numerals in Urdu”. Journal of Psycholinguistic
Researchpp. 1–11.

Kiparsky, Paul and Johan F Staal. 1969. “Syntactic and semantic relations
in Pāṇini”. Foundations of Languagepp. 83–117.

Kutas, Marta and Steven A Hillyard. 1980. “Reading senseless sentences:
Brain potentials reflect semantic incongruity”. Science 207.4427pp. 203–
205.

Laddu, S. D. 1980. “The Concept of Vākya According to Kātyāyana and
Patañjali”. In: Proceedings of the Winter Institute on Ancient Indian
Theories on Sentence-Meaning. University of Poona.

Lai, Meng-Lung, Meng-Jung Tsai, Fang-Ying Yang, Chung-Yuan Hsu, Tzu-
Chien Liu, Silvia Wen-Yu Lee, Min-Hsien Lee, Guo-Li Chiou, Jyh-Chong
Liang, and Chin-Chung Tsai. 2013. “A review of using eye-tracking tech-
nology in exploring learning from 2000 to 2012”. Educational Research
Review 10pp. 90–115.

LeCun, Yann et al. 1998. “LeNet-5, convolutional neural networks”. URL:
http://yann. lecun. com/exdb/lenetp. 20.

Levy, Joshua, Elizabeth Hoover, Gloria Waters, Swathi Kiran, David Ca-
plan, Alex Berardino, and Chaleece Sandberg. 2012. “Effects of syntac-
tic complexity, semantic reversibility, and explicitness on discourse com-
prehension in persons with aphasia and in healthy controls”. American
Journal of Speech-Language Pathology 21.2S154–S165.



Bhartṛhari: Cognitive NLP 339

Loundo, Dilip. 2015. “Bhartṛhari’s Linguistic Ontology and the Semantics
of Ātmanepada”. Sophia 54.2pp. 165–180.

Mahavir. 1984. Samartha Theory of Pāṇini and Sentence Derivation. Mun-
shiram Manoharlal Publishers, New Delhi.

Majaranta, Päivi and Andreas Bulling. 2014. “Eye tracking and eye-based
human–computer interaction”. In: Advances in physiological computing.
Springer, pp. 39–65.

Martinez-Gómez, Pascual and Akiko Aizawa. 2013. “Diagnosing causes of
reading difficulty using bayesian networks”. In: Proceedings of the Sixth
International Joint Conference on Natural Language Processing, Nagoya,
Japan, pp. 1383–1391.

Matilal, Bimal Krishna. 1966. “Indian Theorists on the Nature of the Sen-
tence (vākya)”. Foundations of Languagepp. 377–393.

McEuen, Kathryn. 1946. “Is the Sentence Disintegrating?” The English
Journal 35.8pp. 433–438.

Miellet, Sébastien and Laurent Sparrow. 2004. “Phonological codes are as-
sembled before word fixation: Evidence from boundary paradigm in sen-
tence reading”. Brain and language 90.1pp. 299–310.

Mishra, Abhijit, Pushpak Bhattacharyya, and Michael Carl. 2013. “Auto-
matically Predicting Sentence Translation Difficulty”. In: Proceedings of
the 51st Annual Conference of Association for Computational Linguistics
(ACL), Sofia, Bulgaria.

Mishra, Abhijit, Kuntal Dey, and Pushpak Bhattacharyya. 2017. “Learning
Cognitive Features from Gaze Data for Sentiment and Sarcasm Clas-
sification using Convolutional Neural Network”. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vancouver, Canada. Vol. 1, pp. 377–387.

Mishra, Abhijit, Diptesh Kanojia, and Pushpak Bhattacharyya. 2016. “Pre-
dicting Readers’ Sarcasm Understandability by Modeling Gaze Behav-
ior.” In: The 30th AAAI Conference on Artificial Intelligence, pp. 3747–
3753.

Mishra, Abhijit, Diptesh Kanojia, Seema Nagar, Kuntal Dey, and Push-
pak Bhattacharyya. 2016. “Leveraging Cognitive Features for Sentiment
Analysis”. In: Proceedings of The 20th SIGNLL Conference on Compu-
tational Natural Language Learning, Berlin, Germany. Association for
Computational Linguistics, pp. 156–166.

— 2017a. “Harnessing Cognitive Features for Sarcasm Detection”. CoRR
abs/1701.05574.



340 Gajjam et al

Mishra, Abhijit, Diptesh Kanojia, Seema Nagar, Kuntal Dey, and Pushpak
Bhattacharyya. 2017b. “Scanpath Complexity: Modeling Reading Effort
Using Gaze Information.” In: The 31st AAAI conference on Artificial
Intelligence, pp. 4429–4436.

Osterhout, Lee, Phillip J Holcomb, and David A Swinney. 1994. “Brain
potentials elicited by garden-path sentences: evidence of the application
of verb information during parsing.” Journal of Experimental Psychology:
Learning, Memory, and Cognition 20.4p. 786.

Pagin, Peter. 2009. “Compositionality, understanding, and proofs”. Mind
118.471pp. 713–737.

Pillai, K. Raghavan. 1971. Studies in the Vākyapadīya, Critical Text of Can-
tos I and II. Motilal Banarsidass, Delhi.

Raja, K Kunjanni. 1968. Indian theories of meaning. The Adyar Library
and Research Center, Chennai, Tamil Nadu.

Rayner, Keith. 1998. “Eye movements in reading and information process-
ing: 20 years of research.” Psychological bulletin 124.3p. 372.

Sanford, Anthony J and Patrick Sturt. 2002. “Depth of processing in lan-
guage comprehension: Not noticing the evidence”. Trends in cognitive
sciences 6.9pp. 382–386.

Sarma, Raghunatha. 1980. Vakyapadiya Part II. Sampurnanand Sanskrit
Vishvavidyalaya, Varanasi.

Sriramamurti, P. 1980. “The Meaning of a Sentence is Pratibhā”. In: Pro-
ceedings of the Winter Institute on Ancient Indian Theories on Sentence-
Meaning. University of Poona.

Starr, Matthew S and Keith Rayner. 2001. “Eye movements during reading:
Some current controversies”. Trends in cognitive sciences 5.4pp. 156–163.

Tiwari, DN. 1997. “Bhartrhari on the Indivisibility of Single-word Ex-
pressions and Subordinate Sentences”. Indian Philosophical Quarterly
24pp. 197–216.


	Preface
	Contributors
	A Functional Core for the Computational Aṣṭādhyāyī
	PAIAS: Pāṇini Aṣṭādhyāyī Interpreter As a Service
	Yogyatā as an absence of non-congruity
	An `Ekalavya' Approach to Learning Context Free Grammar Rules for Sanskrit Using Adaptor Grammar
	A user-friendly tool for metrical analysis of Sanskrit verse
	Improving the learnability of classifiers for Sanskrit OCR corrections
	A Tool for Transliteration of Bilingual Texts Involving Sanskrit
	Modeling the Phonology of Consonant Duplication and Allied Changes in the Recitation of Tamil Taittirīyaka-s
	Word complementation in Classical Sanskrit
	TEITagger Raising the standard for digital texts to facilitate interchange with linguistic software
	Preliminary Design of a Sanskrit Corpus Manager
	Enriching the digital edition of the Kāśikāvr̥tti by adding variants from the Nyāsa and Padamañjarī
	From the Web to the desktop: IIIF-Pack, a document format for manuscripts using Linked Data standards
	New Vistas to study Bhartṛhari: Cognitive NLP

