Automata Mista

Gérard Huet

Practical origin

Zen and the Art of Symbolic Computing:

Light and Fast Applicative Algorithms for
Computational Linguistics

Gérard Huet

INRIA

Tries

Tries, or lexical trees, store sparse sets of words sharing initial
prefixes. They are due to René de la Briantais (1959). We use a very
simple representation with lists of siblings.

type trie = [Trie of (bool * forest)]

and forest = list (Word.letter * trie);

Tries are managed (search, insertion, etc) using the zipper technology.

Important remarks

Tries may be considered as deterministic finite state automata graphs
for accepting the (finite) language they represent. This remark is the

basis for many lexicon processing libraries.

Such graphs are acyclic (trees). But more general finite state
automata graphs may be represented as annotated trees. These
annotations account for non-deterministic choice points, and for

virtual pointers in the graph.

Solving a charade

module Short = struct
value lexicon = Lexicon.make lex
”:m.U”:m: w :m.HH._.: w __N.BHN..U”_:Q: w :mm.—u: m :“—.‘._.mH.: w :H: w :.ﬁo__ w __.ﬁomm.ﬁw_.mun.:”_ w

end;
module Charade = Unglue(Short);

Charade.unglue_all (Word.encode "amiabletogether");
Solution 1 amiable together
Solution 2 : amiable to get her
Solution 3 : am i able together

4

Solution am 1 able to get her

_5-

Juncture euphony and its discretization

When successive words are uttered, the minimization of the energy
necessary to reconfigurate the vocal organs at the juncture of the
words provoques a euphony transformation, discretized at the level of

phonemes by a contextual rewrite rule of the form:

[z]ulv — w

This juncture euphony, or external sandhi, is actually recorded in
sanskrit in the written rendering of the sentence. The first linguistic
processing is therefore segmentation, which generalises unglueing into
sandhi analysis.

A

Auto

type lexicon = trie

and rule = (word * word * word);

The rule triple (rev u, v, w) represents the string rewrite ulv — w.

Now for the transducer state space:

[State of (bool * deter * choices) |

and deter = list (letter * auto)

type auto

and choices = list rule;

module Auto = Share (struct type domain=auto;

value size=hash_max; end);

Compiling the lexicon to a minimal transducer

(* build _auto : word -> lexicon -> (auto * stack * int) *)

value rec build_auto occ = fun
[Trie(b,arcs) ->

in

in

in

in
in

in

let local_stack = if b then get_sandhi occ else []
let f (deter,stack,span) (n,t) =
let current = [n::occ] (* current occurrence *)
in let (auto,st,k) = build_auto current t

in ([(n,auto)::deter] ,merge st stack,hashl n k span)
let (deter,stack,span) = fold_left f ([J],[],hash0) arcs
let (h,1) = match stack with

(01 -> (1,0) | [h::1] -> (h,1)]

let key = hash b span h
let s = Auto.share (State(b,deter,h)) key
(s,merge local_stack 1,key) 1;

_ 10 -

Running the Segmenting Transducer

value rec react input output back occ = fun
[State(b,det,choices) ->
(* we try the deterministic space first *)
let deter cont = match input with
[[J -> backtrack cont
| [letter :: rest] ->
try let next_state = List.assoc letter det
in react rest output cont [letter::occ] next_state
with [Not_found -> backtrack cont]
] in
let nondets = if choices=[] then back
else [Next(input,output,occ,choices) : :back]

in if b then
let out = [(occ,Id)::output] (* opt final sandhi *)

11 -

in if input=[] then (out,nondets) (* solution *)
else let alterns = [Init(input,out) :: nondets]

(x we first try the longest matching word *)
in deter alterns
else deter nondets

]
and choose input output back occ = fun
[[—> backtrack back
| [((u,v,w) as rule)::others] —>
let alterns = [Next(input,output,occ,others) :: back]
in if prefix w input then
let tape = advance (length w) input
and out = [(u @ occ,Euphony(rule)): :output]
in if v=[] (* final sandhi *) then

if tape=[] then (out,alterns)
else backtrack alterns

- 12 -

else let next_state = access v
in react tape out alterns v next_state
else backtrack alterns
]
and backtrack = fun

[[1] -> raise Finished
| [resume::back] -> match resume with

[Next (input,output,occ,choices) ->

choose input output back occ choices
| Init(input,output) ->

react input output back [] automaton

_ 13-

Example of Sanskrit Segmentation

process "tacchrutvaa';

Chunk: tacchrutvaa

may be segmented as:
Solution 1

[tad with sandhi d|"s -> cch]

["srutvaa with no sandhi]

_ 14 -

More examples

process "o.mnama.h\"sivaaya";

Solution 1
[om with sandhi m|n -> .mn]
[namas with sandhi s|"s -> .h"s]

["sivaaya with no sandhil

process "sugandhi.mpu.s.tivardhanam";
Solution 1

[sugandhim with sandhi m|p -> .mp]

[pu.s.ti with no sandhi]

[vardhanam with no sandhi]

- 15 -

Sanskrit Tagging

process "sugandhi.mpu.s.tivardhanam";

Solution 1

[sugandhim

< { acc. sg. m. }[sugandhi] > with sandhi ml|p -> .mp]
[pu.s.ti

< { iic. }[pu.s.ti] > with no sandhi]

[vardhanam

< { acc. sg. m. | acc. sg. n. | nom. sg. n.

| voc. sg. n. }[vardhanal > with no sandhi]

_ 16 -

Statistics

The complete automaton construction from the flexed forms lexicon
takes only 9s on a 864MHz PC. We get a very compact automaton,
with only 7337 states, 1438 of which accepting states, fitting in

746KB of memory. Without the sharing, we would have generated
about 200000 states for a size of 6MB!

The total number of sandhi rules is 2802, of which 2411 are
contextual. While 4150 states have no choice points, the remaining
3187 have a non-deterministic component, with a fan-out reaching
164 in the worst situation. However in practice there are never more

than 2 choices for a given input, and segmentation is extremely fast.

_17 -

Soundness and Completeness of the Algorithms

Theorem. If the lexical system (L, R) is strict and weakly
non-overlapping s is an (L,R)-sentence iff the algorithm
(segment_all s) returns a solution; conversely, the (finite) set of all
such solutions exhibits all the proofs for s to be an (L,R)-sentence.

Fact. In classical Sanskrit, external sandhi is strongly

non-overlapping.

Cf. http://pauillac.inria.fr/"huet/FREE/tagger.ps

_ 18 -

A note on termination

Termination is proved by multiset ordering on resumptions.

This allows to state the algorithm as a non-deterministic algorithm,
allowing any strategy for priority of lexicon search versus euphony
prediction, as well as arbitrary selection of resumptions when

backtracking.

This is important, since it leaves all freedom for implementing

arbitrary priority policies learned by corpus training.

~ 19 -

Non-deterministic programming

Non-deterministic programming is no big deal. Why should you
surrender control to a PROLOG blackbox 7

The three golden rules of non-deterministic programming:
e Identify well your search state space
e Represent states as non-mutable data
e Prove termination

The last point is essential for understanding the granularity and

enforcing completeness.

Remark. Multiset ordering is an elegant method for proving
termination of non-deterministic programs, independently of the

sequential strategy of the generation of the solutions.

~ 920 -

Enjoy!
Sanskrit site: http://pauillac.inria.fr/“huet/SKT/

Sandhi Analysis paper:
http://pauvillac.inria.fr/"huet/FREE/tagger.ps

Course notes:
http://pauillac.inria.fr/“huet/ZEN/esslli.ps

http://pauillac.inria.fr/“huet/ZEN/Trento.ps

http://pauillac.inria.fr/“huet/ZEN/Hyderabad.ps
ZEN library: http://pauillac.inria.fr/“huet/ZEN/zen.tar

http://caml.inria.fr/ocaml/

- 921 -

Automata mista

- 929 _

Differential words
type delta = (int * word);

A differential word is a notation permitting to retrieve a word w from
another word w’ sharing a common prefix. It denotes the minimal
path connecting the words in a tree, as a sequence of ups and downs:
if d = (n,u) we go up n times and then down along word wu.

We compute the difference between w and w’ as a differential word
dif f ww = (|lwl],w2) where w = p.wl and w’ = p.w2, with

maximal common prefix p.

The converse of diff : word -> word -> delta is

patch : delta -> word -> word: w’ may be retrieved from w and
d=dif f ww as w' = patch d w.

_ 923 -

type input

type delta
and address

type auto
and deter =

and choices

The automaton structure

word;

(int * word)
= [Global of delta | Local of delta J;

[State of (bool * deter * choices)]

list

(letter * auto)

= list (input * address);

type automaton =

type backtrack =

and resumption =

(array auto * delta);

(input * delta * choices)

list backtrack; (* coroutine resumptions *)

_ 924 -

type input

type delta
and addres

type trans
and deter

and choice

The transducer structure

= word and output = word;

(int * word)
s = [Global of delta | Local of delta];

= [State of (bool * deter * choices) |
= list (letter * trans)

s = list (input * output * address);

type transducer = (array trans * delta);

type backtrack = (input * output * delta * choices)

and resumption = list backtrack; (* coroutine resumptions *)

_ 95 -

Next - hierarchical /modular automata - see Raajiv’s talk ?

