
From lexical trees
to effective Eilenberg machines:

the Zen toolkit for computational linguistics

Gérard Huet

Emeritus, Inria Paris-Rocquencourt

Linguistics Department,
Stanford University
January 16th, 2014

What is Zen?

• Zen was designed 10 years ago as a CL toolkit

• In the form of a library in the functional language ML

• Mostly simple data structures and algorithms

• “Do it yourself” kind of toolkit

• Open source free software as LGPL Ocaml library

Data structures
Data structures are mathematical structures usable as
structural data representations fit for efficient processing by
effective algorithms.
The first data structure is product, used to construct pairs of
values.

(1,True);

- : (int * bool) = (1, True)

Pairing, noted infix as (_,_), is doubly polymorphic:

fun x y -> (x,y);

- : ’a -> ’b -> (’a * ’b) = <fun>

ML is λ-calculus typed in the polymorphic extension of
Church’s simple theory of types, with a let operator, conditional
and recursion. A primitive integer library provides efficient
arithmetic. It is Turing-complete, and permits principal typing
inference.

Recursive type definitions
Enumeration types just list their constructors.

type boolean = [True | False];

Lists have two constructions, Nil and Cons, with specific syntax.

[];

- : list ’a = []

[1 :: []];

- : list int = [1]

[1; 3; 7];

- : list int = [1; 3; 7]

value rec nth n = fun (* n>0 *)

[[] -> failwith "index out of scope"

| [x :: l] -> if n=1 then x else nth (n-1) l

];

Recursive type definitions
Enumeration types just list their constructors.

type boolean = [True | False];

Lists have two constructions, Nil and Cons, with specific syntax.

[];

- : list ’a = []

[1 :: []];

- : list int = [1]

[1; 3; 7];

- : list int = [1; 3; 7]

value rec nth n = fun (* n>0 *)

[[] -> failwith "index out of scope"

| [x :: l] -> if n=1 then x else nth (n-1) l

];

Recursive type definitions
Enumeration types just list their constructors.

type boolean = [True | False];

Lists have two constructions, Nil and Cons, with specific syntax.

[];

- : list ’a = []

[1 :: []];

- : list int = [1]

[1; 3; 7];

- : list int = [1; 3; 7]

value rec nth n = fun (* n>0 *)

[[] -> failwith "index out of scope"

| [x :: l] -> if n=1 then x else nth (n-1) l

];

Recursive type definitions
Enumeration types just list their constructors.

type boolean = [True | False];

Lists have two constructions, Nil and Cons, with specific syntax.

[];

- : list ’a = []

[1 :: []];

- : list int = [1]

[1; 3; 7];

- : list int = [1; 3; 7]

value rec nth n = fun (* n>0 *)

[[] -> failwith "index out of scope"

| [x :: l] -> if n=1 then x else nth (n-1) l

];

Recursive type definitions
Enumeration types just list their constructors.

type boolean = [True | False];

Lists have two constructions, Nil and Cons, with specific syntax.

[];

- : list ’a = []

[1 :: []];

- : list int = [1]

[1; 3; 7];

- : list int = [1; 3; 7]

value rec nth n = fun (* n>0 *)

[[] -> failwith "index out of scope"

| [x :: l] -> if n=1 then x else nth (n-1) l

];

Searching with a key: a-lists

type alist ’a ’b = list (’a * ’b);

type alist ’a ’b = list (’a * ’b)

Trees and forests

type tree = [Tree of forest]

and forest = list tree

;

value tree1 =

Tree [Tree [Tree [Tree []

; Tree [Tree []

; Tree []

]

]

; Tree [Tree []

; Tree []

]

]

; Tree []

]

;

Trees and forests

type tree = [Tree of forest]

and forest = list tree

;

value tree1 =

Tree [Tree [Tree [Tree []

; Tree [Tree []

; Tree []

]

]

; Tree [Tree []

; Tree []

]

]

; Tree []

]

;

Trees and forests
We shall index in a tree with a path, encoded as a list of
positive integers.

type path = list int;

value rec access t path = match t with

[Tree f -> match path with

[[] -> t

| [n :: rest] -> access (nth n f) rest

]

];

access tree1 [1; 1];

access tree1 [1; 1; 2];

access tree1 [3];

Our trees ‘store’ finite sets of sequences of natural numbers,
closed under two operations, left and up, where left means ‘left
sibling’, and up means ‘ancestor’. Such sets are shared by initial
prefixes of the sequences.

Trees and forests
We shall index in a tree with a path, encoded as a list of
positive integers.

type path = list int;

value rec access t path = match t with

[Tree f -> match path with

[[] -> t

| [n :: rest] -> access (nth n f) rest

]

];

access tree1 [1; 1];

access tree1 [1; 1; 2];

access tree1 [3];

Our trees ‘store’ finite sets of sequences of natural numbers,
closed under two operations, left and up, where left means ‘left
sibling’, and up means ‘ancestor’. Such sets are shared by initial
prefixes of the sequences.

The contents of a tree

The following tree traversal is an exercise in recursive
list-processing, using the primitives of the Ocaml List library.

value contents = traverse []

where rec traverse pref = fun

[Tree l -> let (down,_) =

let f (l,n) t = (l @ (traverse [n :: pref] t),n+1) in

List.fold_left f ([],0) l in [List.rev pref :: down]

];

contents tree1;

[[];

[1];

[1; 1];

[1; 1; 1];

[1; 1; 2];

[1; 1; 2; 1];

[1; 1; 2; 2];

[1; 2];

[1; 2; 1];

[1; 2; 2];

[2]

]

Note that the result of contents lists the sequences in
lexicographic ordering.

Data, information, data structure

We usually think of a data structure as some container shape,
holding data at certain places. Here, it looks like the tree data
structure is not holding any data, it is just a container shape.
But this shape itself is some kind of intrinsic information, and
this is what the contents function reveals. This implicit data is
simply the shape of the structure. Reading out the data is just
navigating successfully in the structure.

The shape is the data !
This is reminiscent of Marshall McLuhan’s maxim: The
medium is the message !

Data, information, data structure

We usually think of a data structure as some container shape,
holding data at certain places. Here, it looks like the tree data
structure is not holding any data, it is just a container shape.
But this shape itself is some kind of intrinsic information, and
this is what the contents function reveals. This implicit data is
simply the shape of the structure. Reading out the data is just
navigating successfully in the structure. The shape is the data !

This is reminiscent of Marshall McLuhan’s maxim: The
medium is the message !

Data, information, data structure

We usually think of a data structure as some container shape,
holding data at certain places. Here, it looks like the tree data
structure is not holding any data, it is just a container shape.
But this shape itself is some kind of intrinsic information, and
this is what the contents function reveals. This implicit data is
simply the shape of the structure. Reading out the data is just
navigating successfully in the structure. The shape is the data !
This is reminiscent of Marshall McLuhan’s maxim: The
medium is the message !

Sparse trees

We now make our structure sparse, by removing the closure
conditions. This is achieved with two devices. Firstly, every
node of the tree is marked with a Boolean value, indicating
whether the path that indexes it is in the set or not. Secondly,
siblings of a given node are labeled with an explicit integer key,
instead of being implicitly labeled according to their position.
The labels of common siblings are assumed to be in increasing
order, but are not necessarily a sequence of contiguous natural
numbers. Such sparse structures are called tries.

type trie = [Trie of (bool * arcs)]

and arcs = list (int * trie)

;

You may think of a trie as a tree-like graph, with integers
labeling the arcs.

Example

For instance, the set of integer sequences

[[1]; [3; 1; 18]; [3; 1; 20]]

is canonically represented by the trie:

value trie1 =

Trie(False,

[(1,Trie(True,[]))

;(3,Trie(False,[(1,Trie(False,[(18,Trie(True,[]))

;(20,Trie(True,[]))

]))

]))

]);

Contents of a trie

Similar algorithm to the one giving the contents of a tree:

value contents = traverse []

where rec traverse pref = fun

[Trie (b,l) -> let down =

let f l (n,t) = l @ (traverse [n :: pref] t) in

List.fold_left f [] l in

if b then [List.rev pref :: down] else down

]

;

and we may check:

contents trie1;

(* [[1]; [3; 1; 18]; [3; 1; 20]] *)

Words

type letter = int (* letter or phoneme *)

and word = list letter

;

Note that we are not using for our word representations the ML
type of strings (which in OCaml are arrays of characters/bytes).
Strings are convenient for English texts (using the 7-bit low half
of ASCII) or other European languages (using the ISO-LATIN
subsets of full 8-bit ASCII), and they are more compact than
lists of integers, but basic operations like pattern matching are
awkward, and they limit the size of the alphabet to 256, which
is insufficient for the treatment of many languages’ written
representations, specially for multi-lingual documents.

Words (continued)

New format standards such as Unicode have complex primitives
for their manipulation, and are better reserved for interface
modules than for central morphological operations. We could
have used an abstract type of characters, leaving to module
instantiation their precise definition, but here we chose the
simple solution of using machine integers for their
representation, which is sufficient for large alphabets (in Ocaml,
this limits the alphabet size to 1073741823), and to use
conversion functions [encode] and [decode] between words and
strings. In the Sanskrit application, we use the first 50 natural
numbers as the character codes of the Sanskrit phonemes,
whereas string translations take care of transliterations, roman
diacritics notations such as IAST, and encodings of devanāgar̄ı
syllabic glyphs.

Encode/decode
Here is Zen’s Ascii module:

(* encode : string -> word *)

(* decode : word -> string *)

value encode str = List.map int_of_char (List2.explode str)

and decode word = List2.implode (List.map char_of_int word)

;

Let us consider a slight variant of decode:

value my_decode w = List2.implode

(List.map (fun n -> char_of_int (n+96)) w) ^ "\n";

let display w = print_string (my_decode w) in

List.iter display (contents trie1);

a

car

cat

Ah ah! trie1 was hiding an English dictionary !

Encode/decode
Here is Zen’s Ascii module:

(* encode : string -> word *)

(* decode : word -> string *)

value encode str = List.map int_of_char (List2.explode str)

and decode word = List2.implode (List.map char_of_int word)

;

Let us consider a slight variant of decode:

value my_decode w = List2.implode

(List.map (fun n -> char_of_int (n+96)) w) ^ "\n";

let display w = print_string (my_decode w) in

List.iter display (contents trie1);

a

car

cat

Ah ah! trie1 was hiding an English dictionary !

Dictionaries

We encode dictionaries as tries (also called lexical trees).
Looking up a word in the dictionary amounts to interpret the
word as an access path in the trie, and to return the boolean at
that location (or False if it is outside its tree domain).
You may also think of a trie as a deterministic finite-state
automaton, whose states are the nodes (accepting states if they
are labeled True).
Building dictionaries efficienty from lists of words is explained
in the Zen notes with data structures giving fast access to
focused trees called zippers.
Such dictionaries share the entries of the dictionary having a
common prefix (such as ‘car’ and ‘cat’ in the example, since
their common initial prefix ‘ca’ is shared). Furthermore, we can
do better by sharing entries having a common suffix, using
dynamic programming techniques.

Sharing

The Zen notes expose a universal sharing function, applying to
any applicative data-structure. This generalizes the well-known
technique that produces a directed acyclic graph (dag) from a
tree, by bottom-up traversal with the help of a hashing
function. Applied to tries, it yields the corresponding minimal
automaton.
Applying the sharing function to a trie dictionary yields a
compressed structure, while preserving its type as a trie, and
thus preserving all the operations of the trie library.

Efficiency considerations

If we apply our technique to a list of 180000 English words,
taken from an ASCII file of 2 MB, we obtain a trie of 4.5 MB,
which shrinks to 1.1 MB by sharing. The whole operation takes
about 1s on a 2MHz PC.
Measurements show that the time complexity is linear with the
size of the lexicon This is consistent with algorithmic analysis,
since it is known that tries compress dictionaries up to a linear
entropy factor, and that perfect hashing compresses trees in
dags in linear time.

Decorated tries

The next idea is to decorate our dictionaries with annotations,
such as morphological analyses of the (inflected) words stored in
them.

(* Tries storing decorated words. *)

type deco ’a = [Deco of (list ’a * darcs ’a)]

and darcs ’a = list (Word.letter * deco ’a)

;

Typically, the type variable ’a will be instanciated by the
structure of lemmas carrying the morphological features of the
form coresponding to the access path to the node.
Decorated tries have the same operations as tries, of which they
are a natural extension. In particular, they can be compressed
with sharing of common morphological structures.

Differential words

The main problem is how to store succintly the stem that
produces a given form. The idea is to denote the stem as a
relative function of the inflected form, encoded as an editing
distance in the structure.
To this end, we define a datatype delta of differential words. A
differential word is a notation permitting to retrieve a word w

from another word w’ sharing a common prefix. It denotes the
minimal path connecting the words in a trie, as a sequence of
ups and downs: if d = (n, u) we go up n times and then down
along word u.

type delta = (int * word) (* differential words *)

;

Diff

We compute the difference between w and w′ as a differential
word diff w w′ = (|w1|, w2) where w = p.w1 and w′ = p.w2,
with maximal common prefix p.

(* diff : word -> word -> delta *)

value rec diff w w’ = match w with

[[] -> (0,w’)

| [c :: r] -> match w’ with

[[] -> (length w,[])

| [c’ :: r’] -> if c = c’ then diff r r’

else (length w,w’)

]

];

Patch (a tribute to UNIX)

Conversely, w′ is retrieved from w and d = diff w w′ as
patch d w:

(* patch : delta -> word -> word *)

value patch (n,dw) w =

let p = List2.truncate n (mirror w) in

List2.unstack p dw;

Note how diff and patch are related to their UNIX homonyms.

Example: English plural

cats : { plural cat }

dogs : { plural dog }

Both share the morphology { plural stem } with stem

represented as the differential word (1,[]). Along with all
regular plurals. When sharing the dictionary of forms, all the
lemmas of regular plurals are shared. Thus, the structure
holding the morphological information is of same size as the
dictionary of stems. We just need a few extra bits for irregular
pairs (mouse,mice), (spy, spies), (leaf, leaves), (foot, feet), (ox,
oxen), (sheep,sheep), etc.

Derivational morphology

The same ideas may be applied to derivational morphology,
where stems are represented relatively to roots. According to
morphological processes, the ideas of differential words may be
adapted for succinct encoding.
Note that lemmatization/stemming is just look-up in the
structure of decorated dictionaries of inflected forms.

More of the same

Our decorated tries give a systematic treatment to finite-state
morpho-phonetics. They can be adapted to more complex
operations expressible as regular relations, such as segmentation
and shallow parsing.
This technology has given rise to a new paradigm of relational
programming with effective Eilenberg machines. The sandhi
viccheda algorithm of the Sanskrit Heritage platform is a prime
example of this methodology.

The 3 golden rules of non-deterministic programming

• Identify well your search state space

• Prove termination or at least fairness

• Represent states as non-mutable data

The 3 golden rules of non-deterministic programming

• Identify well your search state space

• Prove termination or at least fairness

• Represent states as non-mutable data

The 3 golden rules of non-deterministic programming

• Identify well your search state space

• Prove termination or at least fairness

• Represent states as non-mutable data

The 3 golden rules of non-deterministic programming

• Identify well your search state space

• Prove termination or at least fairness

• Represent states as non-mutable data

The reactive engine (terminating case)

Let us assume that we search for all elements y such that xR∗y
for a given x, where R is a relation which is locally finite and
noetherian.
It is easy to enumerate all the solutions using a iterative
bottom-up search procedure in a coroutine fashion.
This is extendable to solving problems defined in terms of
rational relations obeying certain convergence conditions. The
Zen module Reactive engine is adapted to this task, and a
completeness of its simulation may be formally proved in the
proof assistant Coq.
This offers an elegant, efficient and complete solution to the
Segmentation of classical Sanskrit, implementing sandhi
viccheda in the Sanskrit Heritage engine.

Eilenberg Machines

These results may be set in the general theory of Eilenberg
Machines.
First, Benôıt Razet coined the notion of Finite Eilenberg
Machine, and showed that the reactive engine could be
generalized to their deterministic simulation. He went on to
define in his Ph.D. general Effective Eilenberg Machines, using
streams to represent progressive relations, and generalizing the
reactive engine with selection tactics. These machines are
modular, and may be composed both horizontally and vertically.

Sanskrit morphology as a 2-level machine

Sanskrit morphology as a 2-level machine

Eilenberg Machines for Relational Programming

Actions of the machine are effective relations, semantically
attached to the action generators. The Control component is
the transition graph of a non-determinitic automaton on this
alphabet, properly represented as a decorated trie with virtual
addresses for representing loops. The Data component
computes partial recursive relations on a computation domain
where sets of values are represented as lazy streams. Pratt’s
Action algebras offer a proper basis for the semantics of both
Control and Data.
This paradigm of relational programming offers an elegant
mixture of finite-state methods and Turing-complete
computations. It may be put to use for general
non-deterministic computations, as we saw, but may be
envisioned as a general paradigm for distributed programming
as well.

Icalp 1972

Benôıt Razet

