Computing with Relational Machines

Gérard Huet and Benoit Razet

INRIA Paris-Rocquencourt

In memory of Peter Landin

Abstract. We propose a relational computing paradigm based on Eilen-
berg machines, an effective version of Eilenberg’s X-machines suitable
for general non-deterministic computation. An Eilenberg machine gen-
eralises a finite-state automaton, seen as its control component, with a
computation component over a data domain specified as an action alge-
bra. Actions are interpreted as binary relations over the data domain.
We show various strategies for the sequential simulation of our relational
machines, using variants of the reactive engine. In a particular case of
finite machines, we show that bottom-up search yields an efficient com-
plete simulator.

Relational machines may be composed in a modular fashion, since atomic
actions of one machine can be mapped to the characteristic relation of
other relational machines acting as its parameters.

The control components of machines can be compiled from regular ex-
pressions. Several such translations have been proposed in the literature,
which we briefly survey.

Our view of machines is completely applicative. They can be defined con-
structively in type theory, where the correctness of their simulation may
be formally checked. From formal proofs in the Coq proof assistant, effi-
cient functional programs in the Objective Caml programming language
can be mechanically extracted.

Most of this material is extracted from the doctoral research of the second
author[21]. A preliminary version of this paper was presented as a tutorial
at ICON’2008 in Pune, Maharashtra, in December 2008.

1 Introduction

Peter Landin deserves special credit for the effective dissemination of functional
programming. His landmark paper “The next 700 programming languages” [18]
introduces a crucial extension ISWIM of pure lambda-calculus for use as a pro-
gramming language, firstly by proposing the let notation for explicit redexes, and
secondly by adding primitive control operators for conditional and recursion, and
primitive data structures such as booleans and integers for direct higher-order
recursions. ISWIM was complemented by a polymorphic type system and the
operators of cartesian product by Robin Milner, yielding a very clean functional
language, ML, fit for deterministic programming.

Computing in a non-deterministic way has not been adapted to a uniform
elegant programming language in the same manner so far. Of course, Dijkstra’s
Guarded Command Language (GCL) allows non-deterministic choice in pattern
matching, but it stayed as a pencil and paper language usable for proofs in
predicate transformer semantics, rather than production programming. Prolog
is an attempt at logic programming seen as the non-deterministic search for the
satisfiability of Horn clauses, but it is notoriously weak at controling the search
for solutions, in the absence of programmable tactics. The Prolog user can control
this search solely by reordering the clauses of the program, and inserting “cut”
primitives that break the applicative semantics of the language. Later constraint
programming languages suffer similar problems, and the user of such “black-
box computers” is torn between his fear of ad-hoc programming of backtracking
processes in a conventional deterministic language, and his loathing of being the
hostage of generic tactics ill-fitted to his particular problem.

Actually non-deterministic computation is fairly straightforward if one has a
clear notion of the search space of the problem, if fairness is enforced (either by
termination or by non-starvation tactics), and if higher-order applicative pro-
gramming is used. Higher-order gives you continuations and streams for your
enumerative processes, and when you resume search at backtracking points you
retrieve the stored state of the computing thread, without risk of corruption by
side effects. This style of programming may be systematized within a very gen-
eral framework for relational computation, using ML as its core deterministic
engine. Furthermore, the control of such non-deterministic relational search fits
well within a very elegant proposal of Samuel Eilenberg for generalizing finite-
state automata with more abstract X-machines[9]. Formal semantics of com-
putable relations may then be developed within the actions algebras of Vaughan
Pratt[19].

We propose here this relational programming paradigm, implemented as an
ML library of parametric modules, as a tribute to Peter Landin and Samuel
Eilenberg.

2 Machines

2.1 Relational machines

We shall define a notion of abstract machine inspired from the work of Eilenberg
(X-machines, presented in his magnum opus on automata theory[9]). Our ma-
chines are non-deterministic in nature. They comprise a control component, sim-
ilar to the transitions state diagram of a (non-deterministic) automaton. These
transitions are labeled by action generators. Action expressions over free gen-
erators, generalizing regular expressions from the theory of languages, provide
a specification language for the control component of machines. A program, or
action expression, compiles into control components according to various transla-
tions. Control components in their turn may be compiled further into transition
matrices or other representations.

Our machines also comprise a data component, endowed with a relational
semantics. That is, we interpret action generators by semantic attachments to
binary relations over the data domain. These relations are themselves represented
as functions from data elements to streams of data elements. This applicative
apparatus replaces the imperative components of traditional automata (tapes,
reading head, counters, stacks, etc) by clear mathematical notions.

We shall now formalise these notions in a way that will exhibit the symmetry
between control and data. First of all, we postulate a finite set X of parame-
ters standing for the names of the primitive operations of the machine, called
generators.

For the control component, we postulate a finite set S of states and a tran-
sition relation map interpreting each generator as a (binary) relation over S.
This transition relation interpretation is usually presented as a curried transi-
tion function ¢ mapping each state in S to a finite set of pairs (a,q) with a a
generator and ¢ a state. This set can in turn be implemented as a finite list of
such pairs.

Finally, we select in S a set of initial states and a set of accepting states.

For the data component, we postulate a set D of data values and a com-
putation relation map interpreting each generator as a (binary) relation over
D. Similarly as for the control component, we shall curry this relation map as
a computation function mapping each generator a in X to a function p(a) in
D — p(D). Now the situation is different from control, since D and thus (D)
may be infinite. In order to have a constructive characterization, we shall as-
sume that D is recursively enumerable, and that each p(a) maps d € D to a
recursively enumerable subset of p(D). We shall represent such subsets as pro-
gressively computed streams of values, as we shall explain in due time.

2.2 Progressive relations as streams

We recall that a recursively enumerable subset of w is the range of a partial
recursive function in w — w, or equivalently it is either empty or the range of
a (total) recursive function in w — w. None of these two definitions is totally
satisfying, since in the first definition we may loop on some values of the param-
eter, obliging us to dovetail the computations in order to obtain a sequence of
elements that completely enumerates the set, and in the second we may stut-
ter enumerating the same element in multiple ways. This stuttering cannot be
totally eliminated without looping, for instance for finite sets. Furthermore, de-
manding total functions is a bit illusory. It means either we restrict ourserves to
a non Turing-complete algorithmic description language (such as primitive re-
cursive programs), or else we cannot decide the totality of algorithms demanded
by the definition.

We shall here assume that our algorithmic description language is ML, in
other words, typed lambda-calculus evaluated in call by value with a recur-
sion operator, inductive types and parametric modules. More precisely, we shall
present all our algorithms in Pidgin ML, actually the so-called “revised syntax”
of Objective Caml.

In this framework we can define computable streams over a parametric datatype
data as follows:

type stream ’data =

[Void

| Stream of ’data and delay ’data
]

and delay ’data = unit — stream ’data;

This definition expresses that a stream of data values is either Void, repre-
senting the empty set, or else a pair Stream(d,f) with d of type data, and f a
frozen stream value, representing the set {d} U F', where F' may be computed as
the stream f(), where () is syntax for the canonical element in type unit. Using
this inductive parametric datatype, we may now define progressive relations by
the following type:

type relation ’data = ’data — stream ’data;

2.3 Kernel machines

We now have all the ingredients to define the module signature of kernel ma-
chines:

module type EMK = sig

type generator;

type data;

type state;

value transition: state — list (generator X state);
value initial: list state;

value accept: state — bool;

value semantics : generator — relation data;

end;

In the following, we shall continue to use X' (resp. D, S, ¢, p) as shorthand
for generator (resp. date, state, transition, semantics). We also write I for
initial and T for the set of accepting states (for which the predicate accept
is true).

A machine is like a blackbox, which evolves through series of non-deterministic
computation steps. At any point of the computation, its status is characterized
by the pair (s,d) of its current state s € S and its current data value d € D.
Such a pair is called a cell.

A computation step issued from cell (s, d) consists in choosing a transition
(a,s") € 6(s) and a value d’ € p(a)(d). If any of these choices fails, because the
corresponding set is empty, the machine is said to be blocked; otherwise, the
computation step succeeds, and the machine has as status the new cell (s',d’).
We write (s,d) % (s, d").

A computation path is a finite sequence of such computations steps:

(s0,do) 2 (s1,d1) 3 (s2,d2)... 3 (s, dn)

The computation is said to be accepting whenever sg € I and s, € T, in which
case we say that the machine accepts input dy and computes output d,. Note
that (dp,d,) belongs to the graph of the composition of relations labeling the
path: p(a1) o p(az) o ...p(an).

We have thus a very general model of relational calculus. Our machines com-
pute relations over the data domain D, and we shall thus speak of D-machines.
The “machine language” has the action generators for instructions. Actions com-
pose by computation. Furthermore, a high-level programming language for re-
lational calculus may be designed as an action calculus. The obvious point of
departure for this calculus is to consider regular expressions, in other words the
free Kleene algebra generated by the set of generators. We know from automata
theory various translations from regular expressions to finite-state automata.
Every such translation gives us a compiler of our action algebra into the control
components of our machines: S, d, I and T'. The data components, D and p, offer
a clean mathematical abstraction over the imperative paraphernalia of classical
automata: reading heads, tapes, etc. And we get immediately a programming
language enriching the machine language of primitive actions by composition,
iteration, and choice.

Indeed, a finite automaton over alphabet X' is readily emulated by the ma-
chine with generator set X having its state transition graph as its control com-
ponent, and admitting the free monoid of actions X* for data domain. Each
generator a is interpreted in the semantics as the (functional) relation p(a) =
L7t =4 {(a-w,w) | w € X*} which “reads the input tape”. And indeed the
language recognized by the automaton is retrieved as the composition of actions
along all accepting computations. Here the data computation is merely a trace
of the different states of the “input tape”.

This example is a particularly simple one, in which data computation is
deterministic, since in this case p(a) is a partial function. We may say that
such a machine is “data driven”. Control will be deterministic too, provided the
underlying automaton is deterministic, since every d(s) will then have a unique
non-blocking transition. But note that the same control component could be
associated with different semantics. For instance, with p(a) = Ry =gy {(w, w -
a) | w € I'*}, the machine will enumerate with its accepting computations the
regular language recognized by the automaton.

Let us now turn towards the action calculus.

3 Actions

Actions may be composed. We write A - B for the composition of actions A and
B. This operator corresponds to the composition of the underlying relations.
Actions may be iterated. We write AT for the iteration of action A. This
operator corresponds to the transitive closure of the underlying relation. We
postulate an identity action 1 corresponding to the underlying identity relation.

Actions may be summed. We write A + B for the sum of actions A and B.
This corresponds to the union of the underlying relations. We note A* for 1+ A™.
We also postulate an empty action 0.

The algebraic structure of actions is that of a composition monoid:

(A-B)-C=A-(B-0C)
Al=1.A=4

It is completed, for union, as an idempotent abelian monoid:
(A+B)+C=A+(B+C)

A+B=B+4
A+0=0+A=A4A
A+A=A

We postulate distributivity of these two operations:
A-(B+C)=A-B+A-C

(A+B)-C=A-C+B-C
A0=0-4A=0

Thus, so far, actions form an idempotent semiring. Defining A < B =45 A+B =
B, the partial ordering < makes the algebra of actions an upper semilattice.

As for iteration (which will be interpreted over relations by transitive-reflexive
closure), we follow Pratt [19] in adding implications between actions, in order
to get an algebraic variety. This is in contradistinction with Kleene algebras,
which only form a quasi variety, and need conditional identities for their com-
plete axiomatisation as shown by Kozen[16]. Nevertheless, actions algebras form
a conservative extension of Kleene algebras, and thus do not introduce spurious
consequences for regular expressions.

Thus we postulate < and —, corresponding to relational semi-complements:

p— o ={(v,w) | Vu upv = uow}
o — p={(u,w) | Yv wpv = uov}
and we axiomatise actions as residuation algebras, following Kozen [17]:
A-C<B&(C<A—B

C-A<B&(C<B+—A

or alternatively we may replace these two equivalences by the following equa-
tional axioms:

A-(A-B)<B

A—B<A— (B+0)
B+— A< (B+C)« A
A<B—(B-A)
A<(A-B)—B

We may now get Pratt’s action algebras by axiomatizing iteration as ‘pure
induction’:

1+ A+ A" A< A"
(A=A =A— A
(A—A)*=A— A

The residuation/implication operations may be seen as the right interpolants
to extend conservatively Kleene algebras to the variety of action algebras.

Furthermore, following Kozen [17], we may wish to enrich our actions with a
multiplicative operation N, corresponding to relation intersection, verifying lower
semilattice axioms:

(ANB)NC =AN(BNC)
ANB=BNA

ANA=A
We may also complete to a lattice structure with:

A+ (ANnB)=A

AN(A+B)=A

Thus we obtain Kozen’s action lattices, the right structure for matrix computa-
tion.

We remark that such structures go in the direction of logical languages,
since union, intersection and residuation laws are valid Heyting algebras axioms.
Further extensions of interest to be envisioned are the inverse A (corresponding in
the regular languages model to string reversal), the complement A~ , and the pair
of derivatives A\ B and A / B (also called quotients). Residuals and derivatives
are related through the identities A — B = (A\ B~) and symmetrically B «—
A = (B~ /A) . We remark that we are still far from the complete Boolean
algebra structure of relations, though.

4 Behaviour, modularity, and interfaces

We recall that we defined above the accepting computations of a machine, and
for each such computation its compound action, obtained by composing the
generating relations of each computation step. Let us call behaviour of a machine
M the set of all such compound actions, noted |M|.

Now we define the characteristic relation of a machine M as the union of the
semantics of its behaviour:

M= |J el

a€|M|

Characteristic relations are the relational interpretation over the data domain
D of the action langage recognized by the underlying automaton. They allow us
to compose our machines in modular fashion.

4.1 Modular construction of machines

Now that we understand that a D-machine implements a relation over D, we
may compose machines vertically as follows. Let A be a (non-deterministic)
automaton over alphabet X, and for every a € X let N, be a D-machine over
some generator set ;. We may now turn .4 into a D-machine over generator set
X by taking A as its control component, and extending it by a data component
having as semantics the function mapping a € X to ||JNg]|.

We may thus construct large machines from smaller ones computing on the
same data domain. A typical example of application for computational linguis-
tics is to do morphological treatment (such as segmentation and tagging of some
corpus) in a lexicon-directed way. The alphabet X' defines the lexical categories
or parts of speech, each machine N, implements access to the lexicon of category
a, the automaton A defines the morphological geometry, and the composite ma-
chine M implements a lexicon-directed parts-of-speech tagger. By appropriate
extension of the lexicon machines A,, morpho-phonemic treatment at the junc-
tion of the words may be effected, such as complete sandhi analysis for Sanskrit.
This was the motivating example for which the Zen toolkit was designed [13, 14].

4.2 Interfaces

What we described so far is the Eilenberg machine kernel, consisting of its control
and data elements. We may complete this description by an interface, composed
of an input domain D_, an output domain D, an input relation ¢_ : D_ — D
and an output relation ¢4 : D — Dy . A kernel machine M completed by this
interface I defines a relation ¢(M,I) : D_ — D, by composition:

PM,I) = ¢_o|[M]|opy

5 Finite machines

We shall now present an important special case of machines which exhibit a
finite behaviour.

The relation p: D — D’ is said to be locally finite if for every d € D the set
p(d) of elements of D related to d is finite. The machine M is said to be locally
finite if every generating relation p(a) is locally finite [11]. The machine M is
said to be ncetherian if all its computations are finite in length.

We remark that a machine is noetherian when its data domain D is a well-
founded ordering for the order relation > generated by:

d>d <« Jae X d € pla)(d)

Indeed, if there existed an infinite computation, there would exist an infinite
sub-sequence going through the same state. But the converse is not true, since
a machine may terminate for reasons depending of its control.

Finally, we say that a machine is finite if it is locally finite and noetherian.

We say that a machine kernel is deterministic [9] iff |I| < 1 and for each cell
value (s,d) occurring in a computation there exists at most one computation
transition issued from it, i.e. if 6(s) is a set of pairs {(p1, s1), (p2, $2), ---(Pn, Sn)}
such that for at most one 1 < k < n the set pi(d) is non empty, and if such
k exists then p(d) is a singleton. This condition demands that on one hand
the transition relation of the underlying automaton be a partial function, that
is the automaton must be deterministic, and on the other hand that the rela-
tions leading out of a state s be partial functions over the subset of D which is
reachable by computations leading to s. We extend this property to a machine
with interface by requiring that its input relation ¢_ and its output relation ¢
be partial functions. We remark that a deterministic machine may nevertheless
generate several solutions, since a terminal cell is not necessarily blocking further
computation. Under certain extra conditions, such a machine computes a partial
function (see chapter X, section 8 of Eilenberg’s treatise [9]).

5.1 Examples

Non deterministic finite automata Let us consider a non-deterministic au-
tomaton A with parameters (S, 1,T,d). We construct an Eilenberg machine M
solving the word problem for the regular language |A| recognized by the au-
tomaton. M has X for generating set, and it takes A for its control component.
For the data component, we take D = X* and the semantics is defined as
pla) = Lyt =ger {(a-w,w) | w € T*}, as explained above.

We may check that p(w) = 1 iff w € | A|. It is easy to check that M is finite,
since data decreases in length, and semantics is a partial function. When A is a
deterministic automaton, M is a deterministic machine.

Another machine with the same control component may be defined to enu-
merate all the words in set |A|. In general it will neither be finite, nor determin-
istic.

10

Rational transducers Let X and I' be two finite alphabets. A transducer
A : ¥ = T is similar to a (non-deterministic) automaton, whose transitions
are labeled with pairs of words in D = X* x I'*. Let {2 be the (finite) set of
labels occurring as labels of the transitions of .A. The transition graph of A may
thus be considered as an ordinary non-deterministic automaton over generator
alphabet (2, and constitutes the control component of the machines we shall
define to solve various transductions tasks.

We recall that a transducer “reads its input” on an input tape representing
a word in X* and “prints its output” on an output tape representing a word
in I'*. On transition (w,w’) it reads off w on the input tape, and if successful
appends w’ to its output tape. If by a succession of transitions starting from an
initial state with input ¢ and empty output it reaches an accepting state with
empty input and output o, we say that (¢, 0) belongs to the rational relation in
Y = I recognized by the transducer .4, which we shall write |.A|. We shall now
solve various decision problems on |.A| using machines which use A for control
and D for data, but replace the tapes by various semantic functions:

1. Recognition. Given (w,w’) € D, decide whether (w,w’) € |A|.
2. Synthesis. Given w € X*, compute its image |A|(w) C I'*.
3. Analysis. Given w € I'*, compute the inverse image |A~1|(w) C X*.

Recognition. The semantics p is defined by p(o,7) = L;! x L 1. Like for
ordinary automata we obtain a finite machine, provided the transducer has no
transition labeled (¢, €), since at least one of the two lengths decreases. We choose
as interface D_ = X* x I'*) ¢_ = Ids+xr+, Dy = 0,1, ¢ (w,w’) = 1 iff
w=w =e.

Synthesis. The semantics p is defined by p(o,7) = L; ' x R, with R =ges
{(w,w -v) | w e I'*}. We choose as interface D_ = X*, ¢_ = {(w, (w,€)) | w €
T, Dy = I, 64 = {(e;w),w) | o € T*}. We get | A = g_ o |LM]| o 5.
Such a machine is locally finite, since relations L' and R, are partial functions.
However, it may not be neetherian, since there may exist transitions labeled with
actions (e, w). Actually the machine is ncetherian iff cycles of such transitions
do not occur, i.e., iff the set |A|(w) is finite for every w € X* (see Razet [20]).

Analysis. Symmetric to synthesis, replacing L' by R, and R, by Ly L

Oracle machines Let D be an arbitrary set, and P an arbitrary predicate over
D. We consider the relation p over D defined as the restriction of identity to the
data elements verifying P: p(d) = {d} if P(d), p(d) = 0 otherwise. We define
in a canonical way the machine whose control component is the automaton A
with two states S = {0,1}, I = {0} and T = {1}, and transition function ¢
defined by 6(0) = {(p,1)} and §(1) = @. This machine is a deterministic finite
machine, that decides in one computational step whether its input verifies P.
Our restriction of finite Eilenberg machines to computable relations limits such
oracles to recursive predicates, but of arbitrary complexity. More generally, our
machines recursively enumerate arbitrary recursively enumerable sets, and are
therefore Turing complete.

11
6 Reactive engine

We may simulate the computations of a finite Eilenberg machine by adapting
the notion de reactive engine of the Zen library [12-14,20]. The engine is a
deterministic simulator of the non-deterministic machine.

6.1 The depth-first search reactive engine

We start with a simple depth-first search engine, appropriate for finite machines.
We define the engine as an ML functor, that is a module taking as parameter a
kernel machine.

module Engine (Machine: EMK) = struct
open Machine;

type choice = list (generator X state);

(* We stack backtrack choice points in a resumption *)
type backtrack =

[React of data and state

| Choose of data and choice and delay data and state

]

and resumption = list backtrack;
(* The 3 internal loops of the reactive engine (using terminal calls) *)

(* react: data — state — resumption — stream data *)
value rec react d q res =
let ch = transition q in
(* We need to compute [choose d ch res] but first
we deliver data [d] to the stream of solutions when [q] %is accepting *)
if accept q
then Stream d (fun () — choose d ch res) (* Solution d found *)
else choose d ch res

(* choose: data — choice — resumption — stream data *)

and choose d ch res =

match ch with

[[1 — resume res

| [(g, q’) :: rest] — match semantics g d with
[Void — choose d rest res
| Stream d’ del — react 4’ q’ [Choose d rest del q’ :: res]
]

(* The scheduler which backtracks in depth-first exploration *)

12

(* resume: resumption — stream data *)

and resume res =

match res with

[0 — Void

| [React d q :: rest] — react d q rest

| [Choose d ch del g’ :: rest] —
match del () with (* We thaw the delayed stream of solutions *)
[Void — choose d ch rest (* Finally we look for next pending choice *)
| Stream d’ del’ — react d’ q’ [Choose d ch del’ g’ :: rest]
]

]

>

(* Simulating the characteristic relation: relation data *)
value simulation d =
let rec init_res 1 acc =
match 1 with
[1 — acc
| [q :: rest] — init_res rest [React d q :: acc]
1 in
resume (init_res initial [])

end; (* module Engine *)

This reactive engine has a very simple management of pending choices, since
the backtrack choices are stored on a resumption stack, last-in first-out. It is
very fast, since the ML compiler replaces the terminal calls by jumps. It is the
workhorse of the original motivating application, Sanskrit sentence segmentation
[13].

6.2 Correctness, completeness, certification

A proof of correctness and completeness of this simulator was given by Huet in
the case of segmentation transducers [13]. Benoit Razet generalized the proof to
the general case of finite Eilenberg machines, and formalized it in the Coq proof
assistant [22]. From the formal proof object it is possible to extract mechanically
ML algorithms identical to the ones we showed above.

6.3 A general reactive engine, driven by a strategy

When a machine is not finite, and in particular when there are infinite compu-
tation paths, the above bottom-up engine may loop, and the simulation is not
complete. In order to remedy this problem, we shall change the specific last-in
first-out policy of resumption management, and replace it by a more general
strategy, given as an extra parameter of the machine.

13
open Eilenberg;

module Engine (Machine: EMK) = struct
open Machine;

type choice = list (generator X state);

(* We separate the control choices and the data relation chotices *)
type backtrack =

[React of data and state

| Choose of data and choice

| Relate of stream data and state

]

Now resumption is an abstract data type, given in a module Resumption,

passed as argument to the Strategy functor, and generalizing a backtrack stack.

module Strategy (* resumption management *)
(Resumption : sig
type resumption;
value empty: resumption;
value pop: resumption — option (backtrack X resumption);
value push: backtrack — resumption — resumption;
end) =
struct

open Resumption;

We now modify the reactive engine, so that resumption management is gov-
erned by the given strategy.

(* react: data — state — resumption — stream data *)
value rec react d q res =
let ch = transition q in
if accept q (* Solution d found? *)
then Stream d (fun () — resume (push (Choose d ch) res))
else resume (push (Choose d ch) res)

(* choose: data — choice — resumption — stream data *)
and choose d ch res =
match ch with
[[1 — resume res
| [(g, q’) :: rest] —
let res’ = push (Choose d rest) res in
relate (semantics g d) q’ res’

]

14

(* relate: stream data — state — resumption — stream data *)
and relate str q res =
match str with
[Void — resume res
| Stream d del —
let str = del () in
resume (push (React d q) (push (Relate str q) res))
]

(* resume: resumption — stream data *)
and resume res =
match pop res with
[None — Void
| Some (b, rest) —
match b with
[React d q — react d q rest
| Choose d ch — choose d ch rest
| Relate str q — relate str q rest
]
]

’

(* characteristic_relation: relation data *)
value simulation d =
let rec init_res 1 acc =
match 1 with
[[T — acc
| [q :: rest] — init_res rest (push (React d q) acc)
] in
resume (init_res initial empty)

’

end; (* module Strategy *)

6.4 A few typical strategies

We now give a few variations on search strategies. First of all, we show how the
original depth-first reactive engine may be obtained by a DepthFirst strategy
module, adequate for finite Eilenberg machines.

module DepthFirst = struct
type resumption = list backtrack;
value empty = [];
value push b res = [b :: res];
value pop res =

match res with

15

[[— None
| [b :: rest] — Some (b,rest)
1;

end; (* module DepthFirst *)

For the record, here is a breadth-first strategy module, using FIFO queues
for resumption management:

module BreadthFirst = struct
type resumption = (list backtrack * list backtrack);
value empty = ([1,[1);
value push b res =
let (input, output) = res in
([b :: input], output)
value pop res =
let (input, output) = res in
match output with
[[1 — let new_output = List.rev input in
match new_output with

[[— None
| [b :: rest] — Some (b, ([],rest))
]

| [b :: rest] — Some (b, (input,rest))

]
end; (* module BreadthFirst *)

We remark that there is a cost involved in reversing the input list above, and
that suppressing this reversing operation yields a more efficient machine working
in a “boustrophedon” manner, while keeping a fairness property:

module Fair = struct
type resumption = (list backtrack x list backtrack);
value empty = ([1,[1);
value push b res =
let (left,right) = res in
(left, [b :: right 1)
value pop res =
let (left,right) = res in
match left with
[1 — match right with
[I — Nomne
| [r :: rrest 1] — Some (r, (rrest,[]))
]
| [1 :: lrest] — Some (1, (lrest,right))
]

16

end; (* module Fair *)

Finally, we examine the special case of deterministic machines. The following
simple Det tactic is adapted to this case.

module Det = struct
type resumption = list backtrack;
value empty = [];
value push b res =
match b with

[React _ _ — [b :: res]

| Choose _ _ — [b] (* cut : the list contains only one element *)
| Relate _ _ — res (* no other delay *)

1;

value pop res =
match res with
[[1 — None
| [b :: rest] — Some (b,rest)
1
end; (* module Det *)

Now we may build the various modules encapsulating the various strategies.

module FEM = Strategy DepthFirst; (* The bottom-up engine *)
module Fair_Engine = Strategy Fair; (* 4 fair engine *)
module Deterministic_Engine = Strategy Det; (* The deterministic one *)

end; (* module Engine *)

Nevertheless, a complete evaluation strategy in the general case demands a
more complex stream definition, where the computation is sliced into provably
terminating states. This extension is discussed in Razet’s thesis [21].

7 From regular expressions to automata

Our motivation here is the design of a language for describing the control part of
Eilenberg machines. The control part of Eilenberg machines is a finite automa-
ton. It naturally leads us to regular expressions and their translations into finite
automata.

There have been more than 50 years of research on the problem of compilation
(or translation) of regular expressions into automata. It started with Kleene
who stated the equivalence between the class of languages recognized by finite
automata and the class of languages defined by regular expressions. This topic
is particularly fruitful because it has applications to string-search algorithms,
circuits, synchronous languages, computational linguistics, etc. This wide range
of applications leads one to several automata and regular-expressions variants.

17

Usually, an algorithm compiling regular expressions into automata is de-
scribed in an imperative programming style for managing states and edges: states
are allocated, merged or removed and so on concerning the edges. However, and
this may seem somewhat surprising, it is possible to describe each of the well-
known algorithms in an applicative manner, while preserving its computational
complexity. This methodology leads to formal definitions of the algorithms ex-
hibiting important invariants, an essential step towards their formal verification.

We focus on fast translations, whose time complexity is linear or quadratic
with respect to the size of the regular expression. First we present Thompson’s
algorithm [23] and then we review other algorithms that are may be put to use
by our methodology.

Let us mention Brzozowski’s algorithm [5], which translates a regular ex-
pression (even with Boolean operators) into a deterministic automaton. Unfor-
tunately, its complexity is theoretically exponential in space and time. Nev-
ertheless, it introduced the notion of regular expression derivative which is a
fundamental idea pervading other algorithms.

7.1 Thompson’s algorithm

Thompson presented his algorithm in 1968 and it is one of the most famous
translations. It computes a finite non-deterministic automaton with e-moves in
linear time.

Let us first define regular expressions as the following datatype:

type regexp ’a =
[One
| Symb of ’a
| Union of regexp ’a and regexp ’a
| Conc of regexp ’a and regexp ’a
| Star of regexp ’a

1;

The constructor One of arity 0 is for the 1 element of the corresponding action
algebra. The following constructor Symb of arity 1 is the node for a generator.
The type for the generator is abstract as expressed by the type parameter ’a
in the definition. The two following constructors are Union and Conc of arity 2
and describe union and concatenation operations. The last constructor Star is
for the iteration or Kleene’s star operator.

Now that we have given the datatype for the input of our algorithm, let us
present the datatype for the output (automata). We choose to implement states
of the automaton with integers:

type state = int;

Automata obtained by Thompson’s algorithm are non-deterministic and fur-
thermore may contain e-moves. We shall implement the control graph of such
non-deterministic automata as a list of fanout pairs associating a list of labeled

18

transitions to a state. This method amounts to encoding a set of edges s — s’
or triples (s, a,s’) as an association list.

type fanout ’a = (state x list (label ’a x state))

and label ’a = option ’a

and transitions ’a = list (fanout ’a)

type automaton ’a = (state X transitions ’a X state);

A label is of type option ’a because it may either be an e-move of value None
or a generator a of value Some a. Note that even if they are non-deterministic,
the automata we consider have only one initial and one accepting state.

We shall instantiate the transition function of the control component of
our machines by composing the transitions list component of the constructed
automaton with the primitive List.assoc, as we shall show later in section 8.

Thompson’s algorithm can be summarized succinctly in a graphical way:

050 00

.@, ¢

€
-
“Xg 3 :

o, ()«

The algorithm performs a recursive traversal of the expression and each case
corresponds to a drawing. It is presented in the order of the datatype definition:
1, generator, union, concatenation and Kleene’s star.

(* thompson: regexp ’a — automaton ’a *)
value thompson e =
let rec aux e t n =
(* e ts current regexp, t accumulates the state space,
n is the latest created location *)
match e with
[One — let ni=n+1 and n2=n+2 in
(n1, [(m1, [(None, n2) 1) :: t 1, n2)
| Symb s — let nl=n+1 and n2=n+2 in
(n1, [(n1, [(Some s, n2) 1) :: t 1, n2)
| Union el e2 —
let (i1,t1,f1) = aux el t n iIn

19

let (i2,t2,f2) = aux e2 t1 f1 in
let n1=f2+1 and n2=f2+2 in
(n1, [(n1, [(None, il); (Nome, i2) 1)
[(f1, [(None, n2) 1)
[(£2, [(None, n2) 1) :: t2 1 1 1, n2)
| Conc el e2 —
let (i1,t1,f1) aux el t n in
let (i2,t2,f2) = aux e2 t1 f1 in
(i1, [(f1, [(Nome, i2) 1) :: t2 1, £2)
| Star el —
let (i1,t1,f1) = aux el t n in
let n1=f1+1 and n2=f1+2 in
let t1> = [(f1, [(None, il1l); (None, n2)]) :: t1] in
(n1, [(n1, [(None, il1l); (Nome, n2) 1) :: ti1’], n2)
1 in
aux e [] O

The algorithm constructs the automaton from the regular expression with a
single recursive traversal of the expression. States are created at each node en-
countered in the expression: each constructor creates two states except the con-
catenation Conc that does not create any state. Notice the invariant of the recur-
sion: each regular subexpression builds an automaton (i, fan, f) with 0 <i < f
and dom(fan) = [k..f — 1]. States are allocated so that disjoint subexpressions
construct disjoint segments [i..f]. This invariant of the thompson function im-
plies that we have to add a last (empty) fanout for the final state.

(* thompson_alg: regezp ’a — automaton ’a *)
value thompson_alg e =

let (i,t,f) = thompson e in

G, [, 000 :: t1, £)

>

The function thompson_alg implements Thompson’s algorithm in linear time
and space because it performs a unique traversal of the expression.

7.2 Other algorithms

We have seen that Thompson’s algorithm is linear, produces an automaton of
size linear in the size of the regular expression, and can be implemented in an
applicative manner. Let us mention also Berry and Sethi’s algorithm [3] that
computes a non-deterministic automaton (without e-move), more precisely a
Glushkov automaton. This construction is quadratic and we provided an im-
plementation of it in ML [14]. In 2003, Ilie and Yu [15] introduced the Follow
automata which are also non-deterministic automata. Actually, Champarnaud,
Nicart and Ziadi [6] showed that the Follow automaton is a quotient of the
one produced by the Berry-Sethi algorithm (i.e., some states are merged to-
gether) and they provide an algorithm implementing the Follow construction

20

in quadratic time. The applicative implementation of the Berry-Sethi algorithm
may be extended to yield the Follow automaton [21]. Finally, in 1996 Antimirov
proposed an algorithm [2] that compiles even smaller automata than the ones
obtained by the Follow construction, provided the input regular expression is
presented in star normal form (as defined by Bruggemann [4]). The algorithm
presented originally was polynomial in O(n®) but Champarnaud and Ziadi [7, 8]
proposed yet another implementation in quadratic time.

It is possible to validate these various compiling algorithms using some of the
algebraic laws of action algebras we presented in Section 3. In particular, using
idempotency to collapse states will indicate that the corresponding construction
does not preserve the notion of multiplicity of solutions. Furthermore, such a
notion of multiplicity, as well as weighted automata modeling statistical prop-
erties, generalise to the treatment of valuation semi-rings, for which Allauzen
and Mohri [1] propose extensions of the various algorithms. Recently Fischer et
al. [10] presented a functional program implementing efficiently the matching
problem for weighted regular expressions.

8 A worked-out example

We briefly discussed above how to implement as a machine a finite automaton
recognizing a regular language. We may use for instance Thompson’s algorithm
to compile the automaton from a regular expression defining the language. This
example will show that recognizing the language and generating the language are
two instances of machines which share the same control component, and vary
only on the data domain and its associated semantics. Furthermore, we show
in the recognition part that we may compute the multiplicities of the analysed
string. However, note that this is possible only because Thompson’s construction
preserves this notion of multiplicity.

Let us work out completely this method with the regular language defined
by the regular expression (a*b + aa(b*))*.

(* An example: recognition and gemeration of a regular language L *)

(* L = (a*b + aa(b)*)* x)

value exp =
let a = Symb ’a’ in
let b = Symb ’b’ in

let astarb = Conc (Star a) b in
let aabstar = Conc a (Conc a (Star b)) in
Star (Union astarb aabstar)

value (i,fan,t) = thompson_alg exp

value graph n = List.assoc n fan

value delay_eos = fun () — Void

;
value unit_stream x = Stream x delay_eos

)

module AutoRecog = struct
type data = list char;
type state = int;
type generator = option char;
value transition = graph;
value initial = [i];
value accept s = (s = t);
value semantics c tape = match c with
[None — unit_stream tape
| Some ¢ — match tape with
[[— Void
| [¢’ :: rest] — if ¢ = ¢’ then unit_stream rest else Void
]
1;
end (* AutoRecog *)
module LanguageDeriv = Engine AutoRecog
(* The Recog module controls the output of the sub-machine
LanguageDeriv, tinsuring that its input is ezhausted *)
module Recog = struct
type data = list char;
type state = [S1 |S2 |83 1;
type generator = int;
value transition = fun
[s1 — [(1,82)]
| 82 — [(2,83)]
| 83 — [1
1;
value initial = [S1];
value accept s = (s = S3);
value semantics g tape = match g with
[1 — LanguageDeriv.Fair_Engine.simulation tape
| 2 — if tape = []1 then unit_stream tape else Void
| _ — assert False
1;
end (* Recog *)
module WordRecog = Engine Recog

module AutoGen = struct

22

type data = list char;
type state = int;
type generator = option char;
value transition = graph;
value initial = [i];
value accept s = (s = t);
value semantics c tape =
match c with
[None — unit_stream tape
| Some ¢ — unit_stream [¢ :: tape]
1;
end (* AutoGen *)
module AutoGenBound = struct
type data = (list char X int); (* string with credit bound *)
type state = int;
type generator = option char;
value transition = graph;
value initial = [i]1;
value accept s = (s = t);
value semantics c (tape, n) =
if n < 0 then Void
else match ¢ with
[None — unit_stream (tape, n)
| Some ¢ — unit_stream ([¢ :: tape 1, n-1)
1;
end (* AutoGenBound *)
module WordGen = Engine AutoGen;
module WordGenBound = Engine AutoGenBound;

(* Service functions on character streams for testing *)
(* print char list *)

value print_cl 1 =
let rec aux 1 = match 1 with

(0O—- 0
| [¢ :: rest] — let () = print_char ¢ in aux rest
1 in

do { aux 1; print_string "\n" }
value iter_stream f str =
let rec aux str = match str with
[Void — O
| Stream v del — let () = £ v in aux (del ()

23

] in
aux str
value print_cl2 (tape,_) = print_cl tape
value cut str n =
let rec aux i str =
if i > n then Void
else match str with
[Void — Void
| Stream v del — Stream v (fun () — aux (i+1) (del ()))
] in
aux O str
value count s =
let rec aux s n =
match s with
[Void —» n
| Stream _ del — aux (del ()) (n+1)
1 in
aux s O

>

print_string "Recognition of word, ‘aaaa’ with multiplicity:y";
print_int (count (WordRecog.FEM.simulation [’a’ ; ’a’ ; ’a’ ; ’a’ 1));
print_newline ();

print_string "Recognition of word, ‘aab’ with multiplicity:,";
print_int (count (WordRecog.FEM.simulation [’a’ ; ’a’ ; ’b’ 1));
print_newline ();

(* Remark that we gemerate mirror tmages of words in L *)
print_string "First,10_words,in,,"Lin a complete ,enumeration:\n";
iter_stream print_cl (cut (WordGen.Fair_Engine.simulation []) 10);

print_string "All words,in L of length bounded by, 3:\n";
iter_stream print_cl2 (WordGenBound.FEM.simulation ([],3));

We now show the output of executing the above code:

Recognition of word ‘aaaa’ with multiplicity: 1
Recognition of word ‘aab’ with multiplicity: 3
First 10 words in L in a complete enumeration:

b
ba
aa

24

baa
baa
baaa
bbaa
bb
baaaa
A1l words in L of length bounded by 3:
baa
bba
ba
bab
bbb
bb
aab

b

baa
baa
aa

The running-time of the reactive engine on these small examples is negligible.
However the reactive engine performs a backtracking search that has an expo-
nential complexity (this exponential behavior is observable using longer words
in the recognition problem). Considering the generality of the relational machine
model we propose, the backtracking search is an adequate technique for solving
general problem. For specific problems, there might exist specific algorithms re-
ducing the complexity; for instance, the recognition problem for automata on
words can be solved in O(mn) with m the size of the regular expression and n
the length of the word (See Fischer et al. [10]).

Conclusion

We have presented a general model of non-deterministic computation based on a
computable version of Eilenberg machines. Such relational machines complement
a non-deterministic finite-state automaton over an alphabet of relation genera-
tors with a semantics function interpreting each relation functionally as a map
from data elements to streams of data elements. The relations thus computed
form an action algebra in the sense of Pratt. We have surveyed several algorithms
that permit to compile the control component of our machines from regular ex-
pressions. The data component is implemented as an ML module consistent with
an EMK interface. We have shown how to simulate our non-deterministic machines
with a reactive engine, parameterized by a strategy. Under appropriate fairness
assumptions of the strategy, the simulation is complete. An important special
case is that of finite machines, for which the bottom-up strategy is complete,
while being efficiently implemented as a flowchart algorithm.

25

We believe this applicative model of relational computing is a sound general
basis for non-deterministic search processes. It encompasses the usual applica-
tions to parsing/recognition but also to generation of formal languages. It also
applies to logic programming, constraints processing, database querying, and
proof search for automated proof assistants. It provides a clean framework in
which to develop applications to natural-language processing and similar ‘arti-
ficial intelligence’ problems. The flexible nature of the search strategy parame-
ter allows one to account for statistical-optimisation techniques such as hidden
Markov chains. Extensions of the action algebras to numerical operators (max,
plus) should allow the adaptation of these techniques to important operations
research applications such as optimisation. Finally, the ubiquitous nature of rela-
tions ought to allow the extension of this model to various models of distributed
processing.

References

1. C. Allauzen and M. Mohri. A unified construction of the Glushkov, Follow, and
Antimirov automata. Springer-Verlag LNCS, 4162:110-121, 2006.

2. V. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci., 155(2):291-319, 1996.

3. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48(1):117-126, 1986.

4. A. Briiggemann-Klein. Regular expressions into finite automata. Theor. Comput.
Sci., 120(2):197-213, 1993.

5. J. A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comp. Mach.,
11(4):481-494, October 1964.

6. J.-M. Champarnaud, F. Nicart, and D. Ziadi. From the ZPC structure of a regular
expression to its follow automaton. International Journal of Algebra and Compu-
tation (IJAC), 16(1):17-34, 2006.

7. J.-M. Champarnaud and D. Ziadi. From c-continuations to new quadratic algo-
rithms for automaton synthesis. International Journal of Algebra and Computation
(IJAC), 11(6):707-736, 2001.

8. J.-M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and
finite automaton constructions. Theoretical Computer Science, 289(1):137 — 163,
2002.

9. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

10. S. Fischer, F. Huch, and T. Wilke. A play on regular expressions: functional pearl.
In Proceedings of the 15th ACM SIGPLAN international conference on Functional
programming, ICFP 10, pages 357-368, New York, NY, USA, 2010. ACM.

11. G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. J. ACM, 27,4:797-821, 1980.

12. G. Huet. The Zen computational linguistics toolkit: Lexicon structures and mor-
phology computations using a modular functional programming language. In Tu-
torial, Language Engineering Conference LEC’2002, 2002.

13. G. Huet. A functional toolkit for morphological and phonological processing, ap-
plication to a Sanskrit tagger. J. Functional Programming, 15,4:573-614, 2005.

26

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

G. Huet and B. Razet. The reactive engine for modular transducers. In K. Futat-
sugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning and Computa-
tion, FEssays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday,
pages 355—374. Springer-Verlag LNCS vol. 4060, 2006.

L. Llie and S. Yu. Follow automata. Inf. Comput., 186(1):140-162, 2003.

D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366-390, 1994.

D. Kozen. On action algebras. In J. van Eijck and A. Visser, editors, Logic and
Information Flow, pages 78—88. MIT Press, 1994.

P. Landin. The next 700 programming languages. CACM, 9,3:157-166, 1966.

V. Pratt. Action logic and pure induction. In Workshop on Logics in Artificial
Intelligence. Springer-Verlag LNCS vol. 478, 1991.

B. Razet. Finite Eilenberg machines. In O. Ibarra and B. Ravikumar, editors,
Proceedings of CIIA 2008, pages 242-251. Springer-Verlag LNCS vol. 5148, 2008.
http://gallium.inria.fr/~razet/fem.pdf

B. Razet. Machines d’FEilenberg Effectives. PhD thesis, Université Denis Diderot
(Paris 7), 20009.

B. Razet. Simulating finite Eilenberg machines with a reactive engine. FElectronic
Notes in Theoretical Computer Science, 229(5):119 — 134, 2011. Proceedings of the
Second Workshop on Mathematically Structured Functional Programming (MSFP
2008).

K. Thompson. Programming techniques: Regular expression search algorithm.
Commun. ACM, 11(6):419-422, 1968.

