
The Zen Computational Linguistics Toolkit:

Lexicon structures and Morphology computations

Using a modular functional programming language

Gérard Huet

INRIA

LEC’2002, Hyderabad

- 1 -

What the tutorial is about

• A computational platform for Sanskrit

• The ZEN computational morphology toolkit

• Pidgin ML

• The functional programming paradigm for CL

• Concrete programming issues in Objective Caml + Camlp4

• General architecture issues for a CL platform

• Cooperation on free CL resources

Three specific applicative technologies:

• Local processing of focused data

• Sharing

• Finite transducers as lexicon morphisms

- 2 -

What shall not be discussed

• ML vs C++

• ML vs Java

• ML vs Prolog

- 3 -

What shall not be discussed at length

• Objective CAML vs SML

• ML vs Haskell

• ML vs C

• Pidgin ML vs Objective CAML

- 4 -

Basics: lists vs stacks

value l5 = [1; 2; 3; 4; 5];

value s5 = [5; 4; 3; 2; 1];

value rec unstack l s =

match l with

[[] -> s

| [h::t] -> unstack t [h::s]

];

value rev l = unstack l [];

value state3 = ([3; 2; 1],[4; 5]);

- 5 -

Turing machines, Emacs, and Zippers

Zippers. First presentation at FLoC’96. Published as:

G. Huet. The Zipper. J. Functional Programming 7,5 (1997),

549-554.

Large scale implementations in syntax editors within computational

linguistics platforms:

• G. Huet. Lexical morphisms with the Zen platform.

• A. Ranta. Grammatical frameworks.

- 6 -

Contexts as zippers

type tree = [Tree of forest]

and forest = list tree;

type tree_zipper =

[Top

| Zip of (forest * tree_zipper * forest)

];

type focused_tree = (tree_zipper * tree);

A focused tree is a tree with a focus point of interest, i.e. a tree and

a stacked context.

- 7 -

Operations on focused trees

value down (z,t) = match t with

[Tree(forest) -> match forest with

[[] -> raise (Failure "down")

| [hd::tl] -> (Zip([],z,tl),hd)

]

];

value up (z,t) = match z with

[Top -> raise (Failure "up")

| Zip(l,u,r) -> (u, Tree(unstack l [t::r]))

];

- 8 -

More operations on focused trees

value left (z,t) = match z with

[Top -> raise (Failure "left")

| Zip(l,u,r) -> match l with

[[] -> raise (Failure "left")

| [elder::rest] -> (Zip(elders,u,[t::r]),rest)

]

];

value right (z,t) = match z with

[Top -> raise (Failure "right")

| Zip(l,u,r) -> match r with

[[] -> raise (Failure "right")

| [young::rest] -> (Zip([t::l],u,rest),young)

]

];

- 9 -

Applicative updating

value del_l (z,_) = match z with

[Top -> raise (Failure "del_l")

| Zip(l,u,r) -> match l with

[[] -> raise (Failure "del_l")

| [elder::elders] -> (Zip(elders,u,r),elder)

]

];

value replace (z,_) t = (z,t);

- 10 -

Points of view about focused structures

• Manipulation of focused data is local

• Redundant representation - efficiency

• The Interaction Combinators Paradigm

Remark. Zippers are linear contexts. They are superior to Ω-terms,

notably because the approximation ordering is substructural.

The Natural Transformation from tree functors to zipper functors is

Differentiation; Zippers may also be seen as linear functions over

trees.

- 11 -

Back to linguistics

We want to process (parse and generate) natural language sentences,

dialogues, corpuses of various kinds (oral, written, news, books, web

sites, etc). We assume that the data is already digitalised and

discretized as a stream of letters (phonemes for oral data, letters for

written one).

A fundamental entity in this processing is the word. One

traditionally distinguishes processing between streams of letters and

words (morphology, lexical analysis) and processing between words

and sentences (syntax, parsing).

- 12 -

Words

Words are represented as list of positive integers.

type letter = int (* letters or phonemes *)

and word = list letter;

We provide coercions encode : string -> word and

decode : word -> string. Here is lexicographic ordering.

value rec lexico l1 l2 = match l1 with

[[] -> True

| [c1 :: r1] -> match l2 with

[[] -> False

| [c2 :: r2] -> if c2<c1 then False

else if c2=c1 then lexico r1 r2

else True

]];

- 13 -

Differential words

type delta = (int * word);

A differential word is a notation permitting to retrieve a word w from

another word w′ sharing a common prefix. It denotes the minimal

path connecting the words in a tree, as a sequence of ups and downs:

if d = (n, u) we go up n times and then down along word u.

We compute the difference between w and w′ as a differential word

diff w w′ = (|w1|, w2) where w = p.w1 and w′ = p.w2, with

maximal common prefix p.

The converse of diff : word -> word -> delta is

patch : delta -> word -> word: w′ may be retrieved from w and

d = diff w w′ as w′ = patch d w.

- 14 -

Tries

Tries, or laxical trees, store sparse sets of words sharing initial

prefixes. They are due to René de la Briantais (1959). We use a very

simple representation with lists of siblings.

type trie = [Trie of (bool * forest)]

and forest = list (Word.letter * trie);

Tries are managed (search, insertion, etc) using the zipper technology.

- 15 -

Important remarks

Tries may be considered as deterministic finite state automata graphs

for accepting the (finite) language they represent. This remark is the

basis for many lexicon processing libraries.

Such graphs are acyclic (trees). But more general finite state

automata graphs may be represented as annotated trees. These

annotations account for non-deterministic choice points, and for

virtual pointers in the graph.

- 16 -

Lexicon

Here is a simplistic lexicon compiler

make_lex : list string -> trie:

value make_lex =

let enter1 lex c = Trie.enter lex (Word.encode c)

in List.fold_left enter1 Trie.empty;

For instance, with english.lst storing a list of 173528 words, as a

text file of size 2Mb, the command

make_lex < english.lst > english.rem produces a trie

representation as a file of 4.5Mb.

Tries share the words by there prefixes, but common suffixes account

for a lot of redundancy in the structure. We shall eliminate this

redundancy by sharing and get a minimal structure.

- 17 -

The Share Functor

module Share : functor (Algebra:sig type domain = ’a;

value size: int; end) ->

sig value share: Algebra.domain->int->Algebra.domain; end;

That is, Share takes as argument a module Algebra providing a type

domain and an integer value size, and it defines a value share of the

stated type. We assume that the elements from the domain are

presented with an integer key bounded by Algebra.size. That is,

share x k will assume as precondition that 0 ≤ k < Max with

Max =Algebra.size.

We shall construct the sharing map with the help of a hash table,

made up of buckets (k, [e1; e2; ...en]) where each element ei has key k.

- 18 -

Memoizing

type bucket = list Algebra.domain;

value memo = Array.create Algebra.size ([] : bucket);

We shall use a service function search, such that search e l returns

the first y in l such that y = e or or else raises the exception

Not_found.

value search e = List.find (fun x -> x=e);

- 19 -

The share function

value share element key =

let bucket = memo.(key) in

try search element bucket with

[Not_found ->

do {memo.(key):=[element::bucket]; element}

];

Sharing is just recalling!

- 20 -

Compressing trees as dags

We may for instance instantiate Share on the algebra of trees, with a

size hash max depending on the application:

module Dag = Share (struct type domain=tree;

value size=hash_max; end);

And now we compress a trie into a minimal dag using share by a

simple bottom-up traversal, where the key is computed along by

hashing. For this we define a general bottom-up traversal function,

which applies a parametric lookup function to every node and its

associated key.

- 21 -

Dynamic programming

Bottom-up traversing with inductive hash-code computation.

value hash1 key index sum = sum + index*key

and hash forest = forest mod hash_max;

value traverse lookup = travel

where rec travel = fun

[Tree(forest) ->

let f (tries,index,span) t =

let (t0,k) = travel t

in ([t0::tries],index+1,hash1 k index span)

in let (forest0,_,span) = List.fold_left f ([],1,1) forest

in let key = hash span

in (lookup (Tree(rev forest0)) key, key)];

- 22 -

Compressing a tree as a dag

Now, compressing a tree optimally as a minimal dag is simply

effected by a sharing traversal:

value compress = traverse Dag.share;

value minimize tree = let (dag,_) = compress tree in dag;

- 23 -

Advantages and extensions

Hashing keys and size is on the client side : we do not delegate

hashing to Share, which is just an associative memory. This has two

advantages:

• The computation is fully linear

• It is adapted to the statistics of the data

Extension : Auto-sharing types (controlled hash-consing). Suggests a

monad of shared hashed structures accommodating entropy of the

data.

- 24 -

Dagified lexicons

We may dagify a lexicon a posteriori in one pass:

value rec dagify () =

let lexicon = (input_value stdin : Trie.trie)

in let dag = Mini.minimize lexicon in output_value stdout dag;

Or we may maintain a dagified structure by sharing dynamically

when inserting words by appropriate modification of the zipper

operations.

And now if we apply this technique to our english lexicon, with

command dagify <english.rem >small.rem, we now get an

optimal representation which only needs 1Mb of storage, half of the

original ASCII string representation.

- 25 -

Advertisement

The recursive algorithms given so far are fairly straightforward. They

are easy to debug, maintain and modify due to the strong typing

safeguard of ML, and even easy to formally certify. They are

nonetheless efficient enough for production use, thanks to the

optimizing native-code compiler of Objective Caml.

In our Sanskrit application, the trie of 11500 entries is shrunk from

219Kb to 103Kb in 0.1s, whereas the trie of 120000 flexed forms is

shrunk from 1.63Mb to 140Kb in 0.5s on a 864MHz PC. Our trie of

173528 English words is shrunk from 4.5Mb to 1Mb in 2.7s.

Measurements showed that the time complexity is linear with the size

of the lexicon (within comparable sets of words).

- 26 -

Variations

Many variations on tries exist. Optimisations of lexical analysers for

programming languages are described in the Dragon book. But the

dragon book of computational linguistics has not been written yet.

Variation with ternary trees. Ternary trees are inspired from Bentley

and Sedgewick. Ternary trees are more complex than tries, but use

slightly less storage. Access is potentially faster in balanced trees

than tries. A good methodology seems to use tries for edition, and to

translate them to balanced ternary trees for production use with a

fixed lexicon.

The ternary version of our english lexicon takes 3.6Mb, a savings of

20% over its trie version using 4.5Mb. After dag minimization, it

takes 1Mb, a savings of 10% over the trie dag version using 1.1Mb.

For our sanskrit lexicon index, the trie takes 221Kb and the tertree

180Kb. Shared as dags the trie takes 103Kb and the tertree 96Kb.

- 27 -

Decos, Lexmaps, Autos

We understand the Trie structure of a set of Words as a special case

of a finitely based mapping Deco = Word → Annotation in the case

of Boolean annotations shared by prefix arguments (and by common

subexpressions when shared).

We store morphology constructions as being of this type, and we

investigate the reverse mapping by generalising them to relations,

typically inductively defined through finite state machines.

The more sharing we get the better we optimise this data layout. It

is thus of paramount importance that the annotations be local

quasi-morphisms decorations.

- 28 -

Decos

type deco ’a = [Deco of (list ’a * dforest ’a)]

and dforest ’a = list (Word.letter * deco ’a);

We think of the decoration of type list ’a as an information

associated with the word stored at that node.

We can easily generalize sharing to decorated tries. However,

substantial savings will result only if the information at a given node

is a function of the subtrie at that node, i.e. if such information is

defined as a trie morphism.

Definition. A deco is a tree morphism if the information at every

node is a function of the corresponding sub-tree. Such decos preserve

the sharing of the trees they decorate.

- 29 -

Encoding morphological parameters as decorations

We thus profit of the regularity of morphological transformations to

have terse representations of the lexicon decorated by grammatical

information. Thus if all plurals are obtained by adding ‘s’ to the

singular stem except for a few exceptions, we do not pay any cost in

encoding this plural information as an explicit instruction

[pl:suffix s] decorating the stems, since it will not create any new

node except for the few exceptions. As opposed to listing explicitly

the plural form, which would undo all sharing.

In our sanskrit implementation, the various genders associated with a

noun stem are defined in a deco used for producing the flexed forms.

The flexed forms are then generated using an ad-hoc internal sandhi

algorithm, difficult to encode as a finite-state process, and thus

difficult to inverse.

- 30 -

(Aside) The scoping structure of the lexicon

How to find the stem associated with a gender in the lexicon in one

click so that morphology may be displayed - with no need of script or

applet.

Simple distributed architecture - all the computation is done on the

server side.

Maintaining computational invariants in the lexicon augments its

robustness.

- 31 -

Explicit morphology vs implicit morphology

By explicit morphology I mean listing explicitly the forms generated

by morphology operations from root stems, prefixes and suffixes.

By implicit morphology I mean just having programs which will

generate these flexed forms on demand.

Implicit morphology is not enough to recognize the segments of

sentences identical with a flexed form: the morphological functions

must be invertible.

- 32 -

Compromise

On the other hand, the delimitation between implicit and explicit is

blurred since e.g. a finite-state machine state graph may be both

considered a program and a piece of data; for instance, a trie stores

words, but actually the words are “recognized as being in the

lexicon” by “running the lexicon over them as input data”.

Thus we shall represent “explicitly” flexed forms and the information

on how they are derived from root stems as a trie bearing as

decorations instructions on how to “undo morphology” locally. For

this purpose, we shall use the notion of differential word above. We

may now store inverse maps of lexical relations (such as morphology

derivations) using the Lexmap structure.

This way we bypass the (hard) problem of internal sandhi fsm

axiomatisation.

- 33 -

Lexmaps

type inverse ’a = (Word.delta * ’a)

and inverse_map ’a = list (inverse ’a);

type lexmap ’a = [Map of (inverse_map ’a * mforest ’a)]

and mforest ’a = list (Word.letter * lexmap ’a);

Typically, if word w is stored at a node Map([...; (d, r); ...], ...), this

represents the fact that w is the image by relation r of

w′ = patch d w. Such a lexmap is thus a representation of the image

by r of a source lexicon. This representation is invertible, while

preserving maximally the sharing of final substrings, and thus being

amenable to sharing.

Example: cats and dogs sharing their ‘s’ node while implicitly

referring to their respective singular stem.

- 34 -

Lexicon repositories using tries and decos

In a typical computational linguistics application, grammatical

information (part of speech role, gender/number for substantives,

valency and other subcategorization information for verbs, etc) may

be stored as decoration of the lexicon of roots/stems. From such a

decorated trie a morphological processor may compute the lexmap of

all flexed forms, decorated with their derivation information encoded

as an inverse map. This structure may itself be used by a tagging

processor to construct the linear representation of a sentence

decorated by feature structures. Such a representation will support

further processing, such as computing syntactic and functional

structures, typically as solutions of constraint satisfaction problems.

- 35 -

Example: Sanskrit

The main component in our tools is a structured lexical database.

From this database, various hypertext documents may be produced

mechanically. The index CGI engine searches for words by navigating

in a persistent trie index of stem entries. The current database

comprises 12000 items, and its index has a size of 103KB.

When computing this index, another persistent structure is created.

It records in a deco all the genders associated with a noun entry. At

present, this deco records genders for 5700 nouns, and it has a size of

268KB.

We iterate on this genders structure a grammatical engine, which

generates declined forms. This lexmap records about 120000 such

flexed forms with associated grammatical information, and it has a

size of 341KB. A companion trie, without the information, keeps the

index of flexed words as a minimized structure of 140KB.

- 36 -

Finite State Lore

Computational phonology are morphology use extensively finite state

technology: rational languages and relations, transducers,

bimachines, etc.

• Schützenberger

• Koskenniemi

• Kaplan and Kay

Finite state toolsets have been developed, where word

transformations are systematically compiled in a low-level algebra of

finite-state machines operators. Such toolsets have been developed at

Xerox, Paris VII, Bell Labs, Mitsubishi Labs, etc. Compiling

complex rewrite rules in rational transducers may be subtle. We

depart from this fine-grained methodology and propose more direct

translations preserving the structure of the lexicon.

- 37 -

Finite State Machines as Lexicon Morphisms

We start with the remark that a lexicon represented as a trie is

directly the state space representation of the (deterministic) finite

state machine that recognizes its words, and that its minimization

consists exactly in sharing the lexical tree as a dag. We are in a case

where the state graph of such finite languages recognizers is an

acyclic structure. Such a pure data structure may be easily built

without mutable references, which has computational and robustness

advantages.

In the same spirit, we define automata which implement non-trivial

rational relations (and their inversion) and whose state structure is

nonetheless a more or less direct decoration of the lexicon trie. The

crucial notion is that the state structure is a lexicon morphism.

- 38 -

Unglueing

We start with a toy problem which is the simplest case of juncture

analysis, namely when there are no non-trivial juncture rules, and

segmentation consists just in retrieving the words of a sentence glued

together in one long string of characters (or phonemes). Consider for

instance written English. You have a text file consisting of a sequence

of words separated with blanks, and you have a lexicon complete for

this text (for instance, ‘spell’ has been successfully applied). Now,

suppose you make some editing mistake, which removes all spaces,

and the task is to undo this operation to restore the original.

The transducer is defined as a functor, taking the lexicon trie

structure as parameter.

- 39 -

Unglue

module Unglue (Lexicon: sig value lexicon : Trie.trie; end) = struct

type input = Word.word (* input sentence as a word *)

and output = list Word.word; (* output is sequence of words *)

type backtrack = (input * output)

and resumption = list backtrack; (* coroutine resumptions *)

exception Finished;

We define our unglueing reactive engine as a recursive process which

navigates directly on the (flexed) lexicon trie (typically the

compressed trie resulting from the Dag module considered above).

- 40 -

The reactive engine

The reactive engine takes as arguments the (remaining) input, the

(partially constructed) list of words returned as output, a backtrack

stack whose items are (input, output) pairs, the path occ in the state

graph stacking (the reverse of) the current common prefix of the

candidate words, and finally the current trie node as its current

state. When the state is accepting, we push it on the backtrack

stack, because we want to favor possible longer words, and so we

continue reading the input until either we exhaust the input, or the

next input character is inconsistent with the lexicon data.

- 41 -

The reactive engine code

value rec react input output back occ = fun

[Trie(b,forest) ->

if b then let pushout = [occ::output] in

if input=[] then (pushout,back) (* solution found *)

else let pushback = [(input,pushout)::back] in

continue pushback

else continue back

where continue cont = match input with

[[] -> backtrack cont

| [letter :: rest] ->

try let next_state = List.assoc letter forest in

react rest output cont [letter::occ] next_state

with [Not_found -> backtrack cont]

]]

- 42 -

Backtrack

and backtrack = fun

[[] -> raise Finished

| [(input,output)::back] ->

react input output back [] Lexicon.lexicon

];

Now, unglueing a sentence is just calling the reactive engine from the

appropriate initial backtrack situation.

value unglue sentence = backtrack [(sentence,[])];

- 43 -

Remark

Non-deterministic programming is no big deal. Why should you

surrender control to a PROLOG blackbox ?

The three golden rules of non-deterministic programming:

• Identify well your search state space

• Represent states as non-mutable data

• Prove termination

The last point is essential for understanding the granularity and

enforcing completeness.

- 44 -

More on state space considerations

This non-deterministic process (recognizing L∗) uses the same state

space as the lexicon/trie (recognizing L).

This corresponds to the fact that an automaton for L∗ may be

obtained from the automaton for L by inserting ε-moves from

accepting nodes to the initial node. But such transitions may be kept

completely implicit. All you have to do is to manage the necessary

non-determinism (continuing in L which is not in general a prefix

language (i.e. if may happen that both w and w · s are in L) versus

iterating) in the backtrack stack, but you do not have to modify at

all the state space data structure. It is just a shift in point of view

concerning this data.

- 45 -

Still more on state space considerations

Remember that dagified tries define the minimal automaton of a

finite language L.

But it is not the case that this automaton, completed with ε

transitions, is minimal for L∗. Consider for instance L = {a, aa}.

However, note that we are using it as a transducer computing

justifications for a word in L∗ to be a concatenation of precise words

of L, and the minimal automaton does not keep enough information

for that: distinct segmentations of a sentence must be separated.

- 46 -

Childtalk

module Childtalk = struct

value lexicon = Lexicon.make_lex ["boudin";"caca";"pipi"];

end;

module Childish = Unglue(Childtalk);

let (sol,_) = Childish.unglue (Word.encode "pipicacaboudin")

in Childish.print_out sol;

We recover as expected: pipi caca boudin.

- 47 -

Generating several solutions

We resume a resumption with

resume : (resumption -> int -> resumption).

value resume cont n =

let (output,resumption) = backtrack cont in

do { print_string "\n Solution "; print_int n

; print_string " :\n"; print_out output

; resumption };

value unglue_all sentence = restore [(sentence,[])] 1

where rec restore cont n =

try let resumption = resume cont n

in restore resumption (n+1)

with [Finished ->

if n=1 then print_string " No solution found\n" else ()];

- 48 -

Solving a charade

module Short = struct

value lexicon = Lexicon.make_lex

["able"; "am"; "amiable"; "get"; "her"; "i"; "to"; "together"];

end;

module Charade = Unglue(Short);

Charade.unglue_all (Word.encode "amiabletogether");

Solution 1 : amiable together

Solution 2 : amiable to get her

Solution 3 : am i able together

Solution 4 : am i able to get her

- 49 -

Juncture euphony and its discretization

When successive words are uttered, the minimization of the energy

necessary to reconfigurate the vocal organs at the juncture of the

words provoques a euphony transformation, discretized at the level of

phonemes by a contextual rewrite rule of the form:

[x]u|v → w

This juncture euphony, or external sandhi, is actually recorded in

sanskrit in the written rendering of the sentence. The first linguistic

processing is therefore segmentation, which generalises unglueing into

sandhi analysis.

- 50 -

u v

wx

- 51 -

z
u v

w

u

v

x

- 52 -

Auto

type lexicon = trie

and rule = (word * word * word);

The rule triple (rev u, v, w) represents the string rewrite u|v → w.

Now for the transducer state space:

type auto = [State of (bool * deter * choices)]

and deter = list (letter * auto)

and choices = list rule;

module Auto = Share (struct type domain=auto;

value size=hash_max; end);

We assume linear hash functions hash0, hash1, hash.

- 53 -

Compiling the lexicon to a minimal transducer

(* build_auto : word -> lexicon -> (auto * stack * int) *)

value rec build_auto occ = fun

[Trie(b,arcs) ->

let local_stack = if b then get_sandhi occ else []

in let f (deter,stack,span) (n,t) =

let current = [n::occ] (* current occurrence *)

in let (auto,st,k) = build_auto current t

in ([(n,auto)::deter],merge st stack,hash1 n k span)

in let (deter,stack,span) = fold_left f ([],[],hash0) arcs

in let (h,l) = match stack with

[[] -> ([],[]) | [h::l] -> (h,l)]

in let key = hash b span h

in let s = Auto.share (State(b,deter,h)) key

in (s,merge local_stack l,key)];

- 54 -

Segmenting Transducer Data Structures

type transition =

[Euphony of rule (* (rev u,v,w) st u|v -> w *)

| Id (* identity or no sandhi *)

]

and output = list (word * transition);

type backtrack =

[Next of (input * output * word * choices)

| Init of (input * output)

]

and resumption = list backtrack; (* coroutine resumptions *)

exception Finished;

- 55 -

Running the Segmenting Transducer

value rec react input output back occ = fun

[State(b,det,choices) ->

(* we try the deterministic space first *)

let deter cont = match input with

[[] -> backtrack cont

| [letter :: rest] ->

try let next_state = List.assoc letter det

in react rest output cont [letter::occ] next_state

with [Not_found -> backtrack cont]

] in

let nondets = if choices=[] then back

else [Next(input,output,occ,choices)::back]

in if b then

let out = [(occ,Id)::output] (* opt final sandhi *)

- 56 -

in if input=[] then (out,nondets) (* solution *)

else let alterns = [Init(input,out) :: nondets]

(* we first try the longest matching word *)

in deter alterns

else deter nondets

]

and choose input output back occ = fun

[[] -> backtrack back

| [((u,v,w) as rule)::others] ->

let alterns = [Next(input,output,occ,others) :: back]

in if prefix w input then

let tape = advance (length w) input

and out = [(u @ occ,Euphony(rule))::output]

in if v=[] (* final sandhi *) then

if tape=[] then (out,alterns)

else backtrack alterns

- 57 -

else let next_state = access v

in react tape out alterns v next_state

else backtrack alterns

]

and backtrack = fun

[[] -> raise Finished

| [resume::back] -> match resume with

[Next(input,output,occ,choices) ->

choose input output back occ choices

| Init(input,output) ->

react input output back [] automaton

]

];

- 58 -

Example of Sanskrit Segmentation

process "tacchrutvaa";

Chunk: tacchrutvaa

may be segmented as:

Solution 1 :

[tad with sandhi d|"s -> cch]

["srutvaa with no sandhi]

- 59 -

More examples

process "o.mnama.h\"sivaaya";

Solution 1 :

[om with sandhi m|n -> .mn]

[namas with sandhi s|"s -> .h"s]

["sivaaya with no sandhi]

process "sugandhi.mpu.s.tivardhanam";

Solution 1 :

[sugandhim with sandhi m|p -> .mp]

[pu.s.ti with no sandhi]

[vardhanam with no sandhi]

- 60 -

Sanskrit Tagging

process "sugandhi.mpu.s.tivardhanam";

Solution 1 :

[sugandhim

< { acc. sg. m. }[sugandhi] > with sandhi m|p -> .mp]

[pu.s.ti

< { iic. }[pu.s.ti] > with no sandhi]

[vardhanam

< { acc. sg. m. | acc. sg. n. | nom. sg. n.

| voc. sg. n. }[vardhana] > with no sandhi]

- 61 -

Statistics

The complete automaton construction from the flexed forms lexicon

takes only 9s on a 864MHz PC. We get a very compact automaton,

with only 7337 states, 1438 of which accepting states, fitting in

746KB of memory. Without the sharing, we would have generated

about 200000 states for a size of 6MB!

The total number of sandhi rules is 2802, of which 2411 are

contextual. While 4150 states have no choice points, the remaining

3187 have a non-deterministic component, with a fan-out reaching

164 in the worst situation. However in practice there are never more

than 2 choices for a given input, and segmentation is extremely fast.

- 62 -

Overgeneration Problems

Very short particles have to be treated differently, or otherwise there

would be intolerable overgeneration. Probably prosody will have to

come to the rescue. The case of vedic “u”.

Compounds. The bahuvr̄ıhi problem.

Intrinsic overgeneration. a+a=a+ā=ā+a=ā+ā=ā Most s.m. end

with a, many s.f. end with ā, the preverb ā (towards) is frequent, the

prefix a is common (negation). So there is often room for

interpretation !

E.g. na asato vidyate bhāvo na abhāvo vidyate satah.
vs na asato vidyate abhāvo na abhāvo vidyate satah.

Double entendre poetry.

- 63 -

Soundness and Completeness of the Algorithms

Theorem. If the lexical system (L, R) is strict and weakly

non-overlapping s is an (L,R)-sentence iff the algorithm

(segment all s) returns a solution; conversely, the (finite) set of all

such solutions exhibits all the proofs for s to be an (L,R)-sentence.

Fact. In classical Sanskrit, external sandhi is strongly

non-overlapping.

Cf. http://pauillac.inria.fr/~huet/FREE/tagger.ps

- 64 -

Where is the information?

Mel’cuk says “Everything is in the lexicon”.

The key concept is lexicon directed. So most of the information is

indeed in the lexicon. But a lot of phonological information (sandhi

rules) and grammatical knowledge is in the code.

If time permits. A tour of the dictionary structures.

- 65 -

Enjoy!

• Sanskrit site: http://pauillac.inria.fr/~huet/SKT/

• Sandhi Analysis paper:

http://pauillac.inria.fr/~huet/FREE/tagger.ps

• Course notes:

http://pauillac.inria.fr/~huet/ZEN/esslli.ps

• Course slides:

http://pauillac.inria.fr/~huet/ZEN/Trento.ps

• Tutorial slides:

http://pauillac.inria.fr/~huet/ZEN/Hyderabad.ps

• ZEN library: http://pauillac.inria.fr/~huet/ZEN/zen.tar

• Objective Caml: http://caml.inria.fr/ocaml/

- 66 -

What next (on the Sanskrit front)

• Sanskrit 1 Verb morphology, Corpus testing, Lexicon acquisition

mode, Segmentation training, Philology assistant (Scharf, Smith)

• Sanskrit 2 Sentinels, Prosody, Valency checking, Dependency

synthesis

• Sanskrit 3 Discourse analysis: Reference, Scope, Theme, Focus,

Anaphora resolution, Extra-linguistic information

• Sanskrit ∞ Distributed development of multilingual tools, Saving

the Pune dictionary project

- 67 -

What next (on the Zen front)

• Zen maintenance Distribution, Hotline, Users’ club, Coordination

of extensions

• Zen immediate extensions Grafting of regular relations, Rules

compiler

• Towards a more comprehensive generic platform for

computational linguistics, accommodating the levels of Syntax,

Semantics, and Discourse Information Dynamics

- 68 -

