
janvier 2009 Journées Franophones des Langages Appliatifs JFLA09Caluls appliatifs de mahines relationnellesGérard Huet & Benoît RazetCentre INRIA de Paris-RoquenourtGerard.Huet�inria.frBenoit.Razet�inria.frRésuméCe texte est un support du ours �Automates, transduteurs et mahines d'Eilenbergappliatives dans la boîte à outils Zen � Appliations au traitement de la langue� de GérardHuet aux vingtièmes journées franophones des langages appliatifs (JFLA2009) à Saint-Quentinsur Isère. Le ours omporte trois volets. Tout d'abord, les strutures de base de la boîte àoutils Zen de traitement de données linguistiques sont présentées. Cette bibliothèque de modulesObjetive Caml, disponible librement sous forme soure ave liene LGPL en http://sanskrit.inria.fr/ZEN/, est ommentée en style Oamlweb dans le doument http://sanskrit.inria.fr/ZEN/zen.pdf. Le ours omporte ensuite une démonstration de plate-forme de traitement dusanskrit, utilisant ette bibliothèque pour les niveaux phonologiques et morphologiques, pour lareprésentation des lexiques et des transduteurs, en�n pour la lemmatisation, la segmentation,l'étiquetage et l'analyse super�ielle. Cette plate-forme, entièrement implémentée en OCaml, estutilisable omme servie Web à l'URL http://sanskrit.inria.fr/. Les tables morphologiquesdu sanskrit qu'elle onstruit sont disponibles librement sous forme XML/DTD ave lieneLGPLLR. en http://sanskrit.inria.fr/DATA/XML/.Le ours montre en�n omment les divers proessus à l'÷uvre dans ette appliation sont desas partiuliers de mahines d'Eilenberg �nies au sens de Benoît Razet. La méthodologie peutse omprendre omme le as �ni d'un modèle de alul non déterministe très général, faisantommuniquer des mahines relationnelles exéutant des ations non déterministes. Ce alulest exprimé fontionnellement par un alul progressif de �ots de solutions, géré par un moniteurséquentiel appelé �moteur réatif� et paramétré par une stratégie de reherhe. L'artile en anglaisqui suit présente suintement ette méthodologie et donne quelques référenes omplémentaires.Ce matériau a déjà été présenté dans ses grandes lignes par Gérard Huet au ours �StruturesInformatiques et Logiques pour la Modélisation Linguistique� (MPRI 2-27-1) à Paris à l'automne2008, ainsi qu'au tutoriel �Eilenberg mahines, the Zen toolkit, and appliations to SanskritComputational Linguistis� de Gérard Huet et Benoît Razet au ongrès ICON-2008 (6thInternational Conferene On Natural Language Proessing) à Pune, Inde, en déembre 2008.La thèse de Benoît Razet (à paraître en 2009) développe omplètement e modèle de alul,donne des extensions équitables au as in�ni, dérit omplètement la ompilation du ontr�le àpartir d'expressions régulières, et valide formellement les propriétés (orretion et omplétude) dumoteur réatif par une erti�ation dans le système de preuves Coq.

1

Huet & Razet Computing with Relational MahinesAbstratWe give a quik presentation of the X-mahines of Eilenberg, a generalisation of�nite state automata suitable for general non-deterministi omputation. Suh mahinesomplement an automaton, seen as its ontrol omponent, with a omputation omponentover a data domain spei�ed as an ation algebra. Ations are interpreted as binaryrelations over the data domain, strutured by regular expression operations. We showvarious strategies for the sequential simulation of our relational mahines, using variantsof the reation engine. In a partiular ase of �nite mahines, we show that bottom-upsearh yields an e�ient omplete simulator.Relational mahines may be omposed in a modular fashion, sine atomi ations ofone mahine may be mapped to the harateristi relation of other relational mahinesating as its parameters.The ontrol omponents of mahines is ompiled from regular expressions. Several suhtranslations have been proposed in the literature, that we brie�y survey.Our view of mahines is ompletely appliative. They may be de�ned onstrutivelyin type theory, where the orretness of their simulation may be formally heked. Fromformal proofs in the Coq proof assistant, e�ient funtional programs in the ObjetiveCaml programming language may be mehanially extrated.Most of this material is extrated from the (forthoming) Ph.D. thesis of Benoît Razet.1. Mahines1.1. Relational mahinesWe shall de�ne a notion of abstrat mahine inspired from the work of Eilenberg (X-mahines,presented in [8℄). Our mahines are non-deterministi in nature. They omprise a ontrol omponent,similar to the transitions state diagram of a (non-deterministi) automaton. These transitions arelabeled by ation generators. Ation expressions over free generators, generalizing regular expressionsfrom the theory of languages, provide a spei�ation language for the ontrol omponent of mahines.A program, or ation expression, ompiles into ontrol omponents aording to various translations.Control omponents in their turn may ompile further into transition matries or other representations.Our mahines also omprise a data omponent, endowed with a relational semantis. That is, weinterpret ation generators by semanti attahments to binary relations over the data domain. Theserelations are themselves represented as funtions from data elements to streams of data elements. Thisappliative apparatus replaes by lear mathematial notions the imperative omponents of traditionalautomata (tapes, reading head, ounters, staks, et).We shall now formalise these notions in a way whih will exhibit the symmetry between ontroland data. First of all, we postulate a �nite set Σ of parameters standing for the names of the primitiveoperations of the mahine, alled generators.For the ontrol omponent, we postulate a �nite set S of states and a transition relation mapinterpreting eah generator as a (binary) relation over S. This transition relation interpretation isusually presented urri�ed as a transition funtion δ mapping eah state in S to a �nite set of pairs
(a, q) with a a generator and q a state. This set is implemented as a �nite list of suh pairs.Finally, we selet in S a set of initial states and a set of aepting states.For the data omponent, we postulate a set D of data values and a omputation relation mapinterpreting eah generator as a (binary) relation over D. Similarly as for the ontrol omponent, we2

Computing with Relational Mahinesshall urrify this relation map as a omputation funtion mapping eah generator a in Σ to a funtion
ρ(a) in D → ℘(D). Now the situation is not like for ontrol, sine D and thus ℘(D) may be in�nite.In order to have a onstrutive haraterization, we shall assume that D is reursively enumerable,and that eah ρ(a) maps d ∈ D to a reursively enumerable subset of ℘(D). We shall represent suhsubsets as progressively omputed streams of values, as we shall explain in due time.1.2. Progressive relations as streamsWe reall that a reursively enumerable subset of ω is the range of a partial reursive funtion in
ω ⇀ ω, or equivalently it is either empty or the range of a (total) reursive funtion in ω → ω. Noneof these two de�nitions is totally satisfying, sine in the �rst de�nition we may loop on some valuesof the parameter, obliging us to dovetail the omputations in order to obtain a sequene of elementswhih enumerates ompletely the set, and in the seond we may stutter enumerating the same elementin multiple ways. This stuttering annot be totally eliminated without looping, for instane for �nitesets. Furthermore, demanding total funtions is a bit illusory. It means either we restrit ourservesto a non Turing-omplete algorithmi desription language (suh as primitive reursive programs), orelse we annot deide the totality of algorithms demanded by the de�nition.We shall here assume that our algorithmi desription language is ML, i.e. typed lambda-alulusevaluated in all by value with a reursion operator, indutive types and parametri modules. Morepreisely, we shall present all our algorithms in the Objetive Caml implementation.In this framework we may de�ne omputable streams over a parametri datatype data as follows:type stream 'data =[Void
| Stream of 'data and delay 'data℄and delay 'data = unit → stream 'data;This expresses that a stream of data values is either Void, representing the empty set, or else a pairStream(d,f) with d of type data, and f a frozen stream value, representing the set {d}∪F , where Fmay be omputed as the stream f(), where () is syntax for the anonial element in type unit. Usingthis indutive parametri datatype, we may now de�ne progressive relations by the following type:type relation 'data = 'data → stream 'data;1.3. Kernel mahinesWe now have all the ingredients to de�ne the module signature of kernel mahines:module type EMK = sigtype generator;type data;type state;value transition: state → list (generator × state);value initial: list state;value aept: state → bool;value semantis : generator → relation data;end;In the following, we shall ontinue to use Σ (resp. D, S, δ, ρ) as shorthand for generator (resp.date, state, transition, semantis). We also write I for initial and T for the set of aeptingstates (for whih the prediate aept is true). 3

Huet & RazetA mahine is like a blakbox, whih evolves through series of non-deterministi omputation steps.At any point of the omputation, its status is haraterized by the pair (s, d) of its urrent state s ∈ Sand its urrent data value d ∈ D. Suh a pair is alled a ell.A omputation step issued from ell (s, d) onsists in hoosing a transition (a, s′) ∈ δ(s) and avalue d′ ∈ ρ(a)(d). If any of these hoies fails, beause the orresponding set is empty, the mahineis said to be bloked; otherwise, the omputation step sueeds, and the mahine has as status thenew ell (s′, d′). We write (s, d)
a
→ (s′, d′).A omputation path onsists of suh omputations steps:

(s0, d0)
a1→ (s1, d1)

a2→ (s2, d2)...
an→ (sn, dn)The omputation is said to be aepting whenever s0 ∈ I and sn ∈ T , in whih ase we say that themahine aepts input d0 and omputes output dn. Remark that (d0, dn) belongs to the graph of theomposition of relations labeling the path: ρ(a1) ◦ ρ(a2) ◦ ...ρ(an).We have thus a very general model of relational alulus. Our mahines ompute relations over thedata domain D, and we shall thus speak of D-mahines. The �mahine language� has for instrutionsthe ation generators. Ations ompose by omputation. Furthermore, a high level programminglanguage for relational alulus may be designed as an ation alulus. The obvious point of departurefor this alulus is to onsider regular expressions, in other words the free Kleene algebra generated bythe set of generators. We know from automata theory various translations from regular expressionsto �nite-state automata. Every suh translation gives us a ompiler of our ation algebra into theontrol omponents of our mahines: S, δ, I and T . The data omponents, D and ρ, o�er a leanmathematial abstration over the imperative paraphernalia of lassial automata: reading heads,tapes, et. And we get immediately a programming language enrihing the mahine language ofprimitive ations by omposition, iteration, and hoie.Indeed, a �nite automaton over alphabet Σ is readily emulated by the mahine with generatorset Σ having its state transition graph as its ontrol omponent, and having for data domain thefree monoid of ations Σ∗. Eah generator a is interpreted in the semantis as the (funtional)relation ρ(a) = L−1

a =def {(a · w, w) | w ∈ Σ∗} whih �reads the input tape�. And indeed thelanguage reognized by the automaton is retrieved as the omposition of ations along all aeptingomputations. Here the data omputation is merely a trae of the di�erent states of the �input tape�.This example is a simple one, and data omputation is deterministi, sine ρ(a) is a partial funtion.We may say that suh a mahine is �data driven�. Control will be deterministi too, provided theunderlying automaton is deterministi, sine every δ(s) will then have a unique non-bloking transition.But remark that the same ontrol omponent may be assoiated with di�erent semantis. For instane,with ρ(a) = Ra =def {(w, w·a) | w ∈ Γ∗}, the mahine will enumerate with its aepting omputationsthe regular language reognized by the automaton.Let us now turn towards the ation alulus.2. AtionsAtions may be omposed. We write A ·B for the omposition of ations A and B. This orrespondsto the omposition of the underlying relations.Ations may be iterated. We write A+ for the iteration of ation A. This orresponds to thetransitive losure of the underlying relation. We postulate an identity ation 1 orresponding to theunderlying identity relation.Ations may be summed. We write A + B for the sum of ations A and B. This orresponds tothe union of the underlying relations. We note A∗ for 1 + A+. We also postulate an empty ation 0.4

Computing with Relational MahinesThe algebrai struture of ations is that of a omposition monoid:
(A ·B) · C = A · (B · C)

A · 1 = 1 · A = Aand for union, an idempotent abelian monoid:
(A + B) + C = A + (B + C)

A + B = B + A

A + 0 = 0 + A = A

A + A = Averifying distributivity:
A · (B + C) = A ·B + A · C

(A + B) · C = A · C + B · C

A · 0 = 0 ·A = 0and thus, so far ations form an idempotent semiring. De�ning A ≤ B =def A + B = B, the partialordering ≤ makes the algebra of ations an upper semilattie.As for iteration (whih will be interpreted over relations by transitive-re�exive losure), we followPratt [15℄ in adding impliations between ations, in order to get an algebrai variety (as opposed toKleene algebras, whih only form a quasi variety, i.e. need onditional identities for their ompleteaxiomatisation). Thus we postulate ← and →, orresponding to relational semi-omplements:
ρ→ σ = {(v, w) | ∀u uρv ⇒ uσw}

σ ← ρ = {(u, w) | ∀v wρv ⇒ uσv}and we axiomatise ations as residuation algebras, following Kozen [14℄:
A · C ≤ B ⇔ C ≤ A→ B

C ·A ≤ B ⇔ C ≤ B ← Aor alternatively we may replae these two equivalenes by the following equational axioms:
A · (A→ B) ≤ B

(B ← A) · A ≤ B

A→ B ≤ A→ (B + C)

B ← A ≤ (B + C)← A

A ≤ B → (B ·A)

A ≤ (A ·B)← BWe may now get Pratt's ation algebras by axiomatizing iteration as pure indution:
1 + A + A∗ ·A∗ ≤ A∗

(A→ A)∗ = A→ A

(A← A)∗ = A← A5

Huet & RazetThe residuation/impliation operations may be seen as the right interpolants to extendonservatively Kleene algebras to the variety of ation algebras. Regular expressions and theirompilation extend graefully to ation expressions, and the residuation operations orrespond toBrzozowki's derivatives.Furthermore, following Kozen [14℄, we may wish to enrih our ations with a multipliativeoperation ∩, orresponding to relation intersetion, verifying lower semilattie axioms:
(A ∩B) ∩ C = A ∩ (B ∩ C)

A ∩B = B ∩A

A ∩A = Aand ompleting to a lattie struture with:
A + (A ∩B) = A

A ∩ (A + B) = Aobtaining thus Kozen's ation latties, the right struture for matrix omputation.We remark that suh strutures go in the diretion of logial languages, sine union, intersetionand residuation laws are valid Heyting algebras axioms. We are still far from the omplete Booleanalgebra struture of relations, though.3. Behaviour and interfaesWe reall that we de�ned above the aepting omputations of a mahine, and for eah suhomputation its ompound ation, obtained by omposing the generating relations of eah omputationstep. Let us all behaviour of a mahineM the set of all suh ompound ations, noted |M|.Now we de�ne the harateristi relation of a mahine M as the union of the semantis of itsbehaviour:
||M|| =

⋃

a∈|M|

ρ(a)Charateristi relations are the relational interpretation over the data domain D of the ation langagereognized by the underlying automaton. They allow us to ompose our mahines in modular fashion.3.1. Modular onstrution of mahinesNow that we understand that a D-mahine implements a relation over D, we may ompose mahinesvertially, as follows. Let A be a (non-deterministi) automaton over alphabet Σ, and for every a ∈ Σlet Na be a D-mahine over some generator set Σa. We may now turn A into a D-mahine overgenerator set Σ by taking A as its ontrol omponent, and extending it by a data omponent havingas semantis the funtion mapping a ∈ Σ to ||Na||.We may thus onstrut large mahines from smaller ones omputing on the same data domain. Atypial example of appliation for omputational linguistis is to do morphologial treatment (suhas segmentation and tagging of some orpus) in a lexion-direted way. The alphabet Σ de�nes thelexial ategories or parts of speeh, eah mahine Na implements aess to the lexion of ategory a,the automaton A de�nes the morphologial geometry, and the omposite mahine M implements alexion-direted parts-of-speeh tagger. By appropriate extension of the lexion mahinesNa, morpho-phonemi treatment at the juntion of the words may be e�eted, suh as omplete sandhi analysisfor Sanskrit [11, 12℄. 6

Computing with Relational Mahines3.2. InterfaesWhat we desribed so far is the Eilenberg mahine kernel, onsisting of its ontrol and data elements.We may omplete this desription by an interfae, omposed of an input domain D−, an output domain
D+, an input relation φ− and an output relation φ+. A mahine M ompleted by this interfae Ide�nes a relation φ(M, I) : D− → D+ by omposition:

φ(M, I) = φ− ◦ ||M|| ◦ φ+4. Finite mahinesWe shall now present an important speial ase of mahines whih exhibit a �nite behaviour.The relation ρ : D → D′ is said to be loally �nite if for every d ∈ D the set ρ(d) is �nite. Themahine M is said loally �nite if every relation ρ(a) is loally �nite [9℄. The mahine M is saidn÷therian if all its omputations are �nite in length.We remark that a mahine is n÷therian when its data domain D is a well-founded ordering forthe order relation > generated by:
d > d′ ⇐ ∃a ∈ Σ d′ ∈ ρ(a)(d)Indeed, if there existed an in�nite omputation, there would exist an in�nite sub-sequene goingthrough the same state. But the onverse is not true, sine a mahine may terminate for a reasondepending of its ontrol.Finally, we say that a mahine is �nite if it is loally �nite and n÷therian.We say that a mahine is sequential [8℄ i� for eah ell value (s, d) ourring in a omputationthere exists at most one omputation transition issued from it, i.e. if δ(s) is a set of pairs

{(ρ1, s1), (ρ2, s2), ...(ρn, sn)} suh that for at most one 1 ≤ k ≤ n the set ρk(d) is non empty, and ifsuh k exists then ρk(d) is a singleton. This ondition demands that on one hand the transition relationof the underlying automaton is a partial funtion, that is the automaton must be deterministi, andon the other hand that the relations leading out of a state s be partial funtions over the subset of Dwhih is reahable by omputation leading to s. We remark that a sequential mahine may neverthelessgenerate several solutions, sine a terminal ell is not neessarily bloking further omputation.4.1. Examples4.1.1. Non deterministi �nite automataLet us onsider a non-deterministi automaton A with parameters (S, I, T, δ). We onstrut anEilenberg mahine M solving the word problem for the rational language |A| reognized by theautomaton. M has Σ for generating set, and it takes A for its ontrol omponent. For the dataomponent, we take D = Σ∗, and the semantis is ρ(a) = L−1
a =def {(a ·w, w) | w ∈ Σ∗}, as explainedabove.We may hek that ρ(w) = 1 i� w ∈ |A|. It is easy to hek thatM is �nite, sine data dereases inlength, and semantis is a partial funtion. When A is a deterministi automaton,M is a sequentialmahine.Another mahine with the same ontrol omponent may be de�ned to enumerate all the words inset |A|. In general it will neither be �nite, nor sequential.7

Huet & Razet4.1.2. Rational transduersLet Σ and Γ be two �nite alphabets. A transduer A : Σ ⇒ Γ is similar to a (non-deterministi)automaton, whose transitions are labeled with pairs of words in D = Σ∗×Γ∗. Let Ω be the (�nite) setof labels ourring as labels of the transitions of A. The transition graph of A may thus be onsideredas an ordinary non-deterministi automaton over generator alphabet Ω, and onstitutes the ontrolomponent of the mahines we shall de�ne to solve various transdutions tasks.We reall that a transduer �reads its input� on an input tape representing a word in Σ∗ and �printsits output� on an output tape representing a word in Γ∗. On transition (w, w′) it reads o� w on theinput tape, and if suessful appends w′ to its output tape. If by a suession of transitions startingfrom an initial state with input i and empty output it reahes an aepting state with empty inputand output o, we say that (i, o) belongs to the rational relation in Σ⇒ Γ reognized by the transduer
A, whih we shall write |A|. We shall now solve various deision problems on |A| using mahineswhih use A for ontrol and D for data, but replae the tapes by various semanti funtions:1. Reognition. Given (w, w′) ∈ D, deide whether (w, w′) ∈ |A|.2. Synthesis. Given w ∈ Σ∗, ompute its image |A|(w) ⊂ Γ∗.3. Analysis. Given w ∈ Γ∗, ompute the inverse image |A−1|(w) ⊂ Σ∗.Reognition. The semantis ρ is de�ned by ρ(σ, γ) = L−1

σ × L−1
γ . Like for ordinary automata weobtain a �nite mahine, provided the transduer has no transition labeled (ǫ, ǫ), sine at least oneof the two lengths dereases. We hoose as interfae D− = Σ∗ × Γ∗, φ− = IdΣ∗×Γ∗ , D+ = 0, 1,

φ+(w, w′) = 1 i� w = w′ = ǫ.Synthesis. The semantis ρ is de�ned by ρ(σ, γ) = L−1
σ ×Rγ , with Rγ =def {(w, w · γ) | w ∈ Γ∗}.We hoose as interfae D− = Σ∗, φ− = {(w, (w, ǫ)) | w ∈ Σ∗}, D+ = Γ∗, φ+ = {(ǫ, w′), w′) | w′ ∈ Γ∗}.We get |A| = φ− ◦ ||M|| ◦ φ+. Suh a mahine is loally �nite, sine relations L−1

σ and Rγ are partialfuntions. However, it may not be n÷therian, sine there may exist transitions labeled with ations
(ǫ, w). Atually the mahine is n÷therian i� yles of suh transitions do not our, i� the set |A|(w)is �nite for every w ∈ Σ∗ [16℄.Analysis. Symmetri to synthesis, replaing L−1

σ by Rσ and Rγ by L−1
γ .4.1.3. Orale mahinesLet D be an arbitrary set, and P an arbitarry prediate over D. We onsider the relation ρ over Dde�ned as the restrition of identity to the data elements verifying P : ρ(d) = {d} if P (d), ρ(d) = ∅otherwise. We de�ne in a anonial way the mahine whose ontrol omponent is the automaton Awith two states S = {0, 1}, I = {0} and T = {1}, and transition funtion δ de�ned by δ(0) = {(ρ, 1)}and δ(1) = ∅. This mahine is a sequential �nite mahine, that deides in one omputational stepwhether its input veri�es P . Our restrition of Eilenberg mahines to omputable relations limits suhorales to reursive prediates, but of arbitrary omplexity. More generally, our mahines reursivelyenumerate arbitrary reursively enumerable sets, and are therefore Turing omplete.5. Reative engineWe may simulate the omputations of a �nite Eilenberg mahine by adapting the notion de reativeengine of the Zen library [10, 11, 12, 16℄. 8

Computing with Relational Mahines5.1. The depth-�rst searh reative enginemodule Engine (Mahine: EMK) = strutopen Mahine;type hoie = list (generator × state);(* We stak baktrak hoie points in a resumption *)type baktrak =[Reat of data and state
| Choose of data and hoie and delay data and state℄and resumption = list baktrak;(* The 3 internal loops of the reative engine *)(* reat: data → state → resumption → stream data *)value re reat d q res =let h = transition q in(* we need to ompute [hoose d h res℄ but firstwe deliver data [d℄ to the stream of solutions when [q℄ is aepting *)if aept qthen Stream d (fun () → hoose d h res) (* Solution d found *)else hoose d h res(* hoose: data → hoie → resumption → stream data *)and hoose d h res =math h with[[℄ → resume res
| [(g, q') :: rest ℄ → math semantis g d with[Void → hoose d rest res

| Stream d' del → reat d' q' [Choose d rest del q' :: res ℄℄℄(* The sheduler whih baktraks in depth-first exploration *)(* resume: resumption → stream data *)and resume res =math res with[[℄ → Void
| [Reat d q :: rest ℄ → reat d q rest
| [Choose d h del q' :: rest ℄ →math del () with (* we unfreeze the delayed stream of solutions *)[Void → hoose d h rest (* finally we look for next pending hoie *)
| Stream d' del' → reat d' q' [Choose d h del' q' :: rest ℄℄℄;(* Note that these are just loops, sine the reursive alls are terminal *)9

Huet & Razet(* Simulating the harateristi relation: relation data *)value simulation d =let re init_res l a =math l with[[℄ → a
| [q :: rest ℄ → init_res rest [Reat d q :: a ℄℄ inresume (init_res initial [℄);end; (* module Engine *)5.2. Corretness, ompleteness, erti�ationBenoît Razet showed in [17℄ a formal proof of orretness and ompleteness of the simulation of a�nite mahine by the above reative engine. Furthermore, it is possible to extrat mehanially fromthis proof ML algorithms idential to the ones we showed above.5.3. A General reative engine, driven by a strategyWhen a mahine is not �nite, and in partiular when there are in�nite omputation paths, the bottom-up engine above may loop, and the simulation is not omplete. In order to remedy this, we shall hangethe �xed last-in �rst-out poliy of resumption management, and replae it by a more general strategygiven as a parameter of the mahine.open Eilenberg;module Engine (Mahine: EMK) = strutopen Mahine;type hoie = list (generator × state);(* We separate the ontrol hoies and the data relation hoies *)type baktrak =[Reat of data and state
| Choose of data and hoie
| Relate of stream data and state℄; Now resumption is an abstrat data type, given in a module Resumption, passed as argument tothe Strategy funtor, generalizing a baktrak stak.module Strategy (* resumption management *)(Resumption : sigtype resumption;value empty: resumption;value pop: resumption → option (baktrak × resumption);value push: baktrak → resumption → resumption;end) =strutopen Resumption; 10

Computing with Relational MahinesNow we de�ne a more parametri reative engine, using an exploration strategy as parameter.(* reat: data → state → resumption → stream data *)value re reat d q res =let h = transition q inif aept q (* Solution d found? *)then Stream d (fun () → resume (push (Choose d h) res))else resume (push (Choose d h) res)(* hoose: data → hoie → resumption → stream data *)and hoose d h res =math h with[[℄ → resume res
| [(g, q') :: rest ℄ →let res' = push (Choose d rest) res inrelate (semantis g d) q' res'℄(* relate: stream data → state → resumption → stream data *)and relate str q res =math str with[Void → resume res
| Stream d del → let str = del () inresume (push (Reat d q) (push (Relate str q) res))℄(* resume: resumption → stream data *)and resume res =math pop res with[None → Void
| Some (b, rest) →math b with[Reat d q → reat d q rest
| Choose d h → hoose d h rest
| Relate str q → relate str q rest℄℄;(* harateristi_relation: relation data *)value simulation d =let re init_res l a =math l with[[℄ → a
| [q :: rest ℄ → init_res rest (push (Reat d q) a)℄ inresume (init_res initial empty);end; (* module Strategy *) 11

Huet & Razet5.4. A few typial strategiesWe now give a few variations on searh strategies. First of all, we show how the original depth-�rstreative engine may be obtained by a DepthFirst strategy module, adequate for Finite EilenbergMahines.module DepthFirst = struttype resumption = list baktrak;value empty = [℄;value push b res = [b :: res ℄;value pop res =math res with[[℄ → None
| [b :: rest ℄ → Some (b,rest)℄;end; (* module DepthFirst *)Next we examine the speial ase of sequential mahines, where omputations are deterministi.The following simple Seq tati is adapted to this ase.module Seq = struttype resumption = list baktrak;value empty = [℄;value push b res =math b with[Reat _ _ → [b :: res ℄
| Choose _ _ → [b ℄ (* ut : the list ontains only one element *)
| Relate _ _ → res (* no other delay *)℄;value pop res =math res with[[℄ → None
| [b :: rest ℄ → Some (b,rest)℄;end; (* module Seq *)Finally, we show how to simulate in a fair way a general mahine with a Complete tati, whihsans the state spae in a top-down boustrophedon manner.module Complete = struttype resumption = (list baktrak × list baktrak);value empty = ([℄,[℄);value push b res =let (left,right) = res in(left, [b :: right ℄);value pop res =let (left,right) = res inmath left with[[℄ → math right with[[℄ → None

| [r :: rrest ℄ → Some (r, (rrest,[℄))℄
| [l :: lrest ℄ → Some (l, (lrest,right))12

Computing with Relational Mahines℄;end; (* module Complete *)Now we may build the various modules enapsulating the various strategies.module FEM = Strategy DepthFirst; (* The bottom-up engine *)module Sequential_Engine = Strategy Seq; (* The sequential engine *)module Complete_Engine = Strategy Complete; (* The fair engine *)end; (* module Engine *)6. From regular expressions to automataOur motivation here is the design of a language for desribing the ontrol part of Eilenberg mahines.The ontrol part of Eilenberg mahines is a �nite automaton. It leads us naturally to regularexpressions and their translations into �nite automata.There have been more than 50 years of researh on the problem of ompilation (or translation)of regular expressions into automata. It started with Kleene who stated the equivalene betweenthe lass of languages reognized by �nite automata and the lass of languages de�ned by regularexpressions. This topi is partiularly fruitful beause it has appliations to string searh algorithms,iruits, synhronous languages, omputational linguistis, et. This wide range of appliations leadsto several automata and regular expressions variants.Usually, an algorithm ompiling regular expressions into automata is desribed in an imperativeprogramming style for managing states and edges: states are alloated, merged or removed and soon onerning the edges. Surprisingly it seems that there is an appliative manner for desribingeah of the well-known algorithms. This methodology leads to a formal de�nition of the algorithmexhibiting important invariants. Of ourse we are areful to maintain the theoretial omplexity ofthe algorithms.We fous on fast translations, whose time omplexity is linear or quadrati with respet to thesize of the regular expression. First we present Thompson's algorithm [18℄ and then we review otheralgorithms that are onerned by our methodology.Let us mention Brzozowski's algorithm [5℄ whih translates a regular expression (even with booleanoperators) into a deterministi automaton. Unfortunately, the omplexity is theoretially exponential.Nevertheless, it introdued the notion of regular expression derivative whih is a fundamental ideapervading other algorithms.6.1. Thompson's algorithmThompson presented his algorithm in 1968 and it is one of the most famous translations. It omputesa �nite non-deterministi automaton with ǫ-moves in linear time.Let us �rst de�ne regular expressions as the following datatype:type regexp 'a =[One
| Symb of 'a
| Union of regexp 'a and regexp 'a
| Con of regexp 'a and regexp 'a
| Star of regexp 'a℄; 13

Huet & RazetThe onstrutor One of arity 0 is for the 1 element of the orresponding ation algebra. Thefollowing onstrutor Symb of arity 1 is the node for a generator. The type for the generator isabstrat as expressed by the type parameter 'a in the de�nition. The two following onstrutors areUnion and Con of arity 2 and desribe union and onatenation operations. The last onstrutorStar is for the iteration or Kleene's star operator.Now we have given the datatype for the input of our algorithm, let us present the datatype for theoutput (automata). We hoose to implement states of the automaton with integers:type state = int;Automata obtained by Thompson's algorithm are non-deterministi and furthermore with ǫ-moves.We shall implement the ontrol graph of suh non-deterministi automata as a list of fanout pairsassoiating a list of labeled transitions to a state. This amounts to enoding a set of edges s
a
→ s′ ortriples (s, a, s′) as an assoiation list.type fanout 'a = (state * list (label 'a * state))and label 'a = option 'aand transitions 'a = list (fanout 'a);type automaton 'a = (state * transitions 'a * state);A label is of type option 'a beause it may be either an ǫ-move of value None or a generator a ofvalue Some a. Note that even if they are non-deterministi, the automata we onsider have only oneinitial and one aepting state.We shall instaniate the transition funtion of the ontrol omponent of our mahines byomposing the transitions list omponent of the onstruted automaton with the primitiveList.asso, as we shall show later in setion 7.Thompson's algorithm an be summarized very shortly in a graphial way:

The algorithm performs a reursive traversal of the expression and eah ase orresponds to a drawing.It is presented in the order of the datatype de�nition: 1, generator, union, onatenation and Kleene'sstar.(* thompson: regexp 'a → automaton 'a *)value thompson e =let re aux e t n =(* e is urrent regexp, t aumulates the state spae,n is last reated loation *) 14

Computing with Relational Mahinesmath e with[One → let n1=n+1 and n2=n+2 in(n1, [(n1, [(None, n2) ℄) :: t ℄, n2)
| Symb s → let n1=n+1 and n2=n+2 in(n1, [(n1, [(Some s, n2) ℄) :: t ℄, n2)
| Union e1 e2 →let (i1,t1,f1) = aux e1 t n inlet (i2,t2,f2) = aux e2 t1 f1 inlet n1=f2+1 and n2=f2+2 in(n1, [(n1, [(None, i1); (None, i2) ℄) ::[(f1, [(None, n2) ℄) ::[(f2, [(None, n2) ℄) :: t2 ℄ ℄ ℄, n2)
| Con e1 e2 →let (i1,t1,f1) = aux e1 t n inlet (i2,t2,f2) = aux e2 t1 f1 in(i1, [(f1, [(None, i2) ℄) :: t2 ℄, f2)
| Star e1 →let (i1,t1,f1) = aux e1 t n inlet n1=f1+1 and n2=f1+2 inlet t1' = [(f1, [(None, i1); (None, n2) ℄) :: t1 ℄ in(n1, [(n1, [(None, i1); (None, n2) ℄) :: t1' ℄, n2)℄ inaux e [℄ 0; The algorithm onstruts the automaton from the regular expression with a single reursivetraversal of the expression. States are reated at eah node enountered in the expression: eahonstrutor reates 2 states exept the onatenation Con that does not reate any state. Remark theinvariant of the reursion: eah regular subexpression builds an automaton (i, fan, f) with 0 < i < fand dom(fan) = [k..f − 1]. States are alloated so that disjoint subexpressions onstrut disjointsegments [i..f]. This invariant of the thompson funtion implies that we have to add �nally a last(empty) fanout for the �nal state.(* thompson_alg: regexp 'a → automaton 'a *)value thompson_alg e =let (i,t,f) = thompson e in(i, [(f,[℄) :: t℄, f); The funtion thompson_alg implements Thompson's algorithm in linear time and spae beauseit performs a unique traversal of the expression.6.2. Other algorithmsWe have seen that Thompson's algorithm is linear and an be implemented in an appliative manner.Let us mention also Berry-Sethi's algorithm [3℄ that omputes a non-deterministi automaton (without

ǫ-move), more preisely a Glushkov automaton. This onstrution is quadrati and we provided animplementation of it in ML [12℄. In 2003, Ilie and Yu [13℄ introdued the Follow automata whih arealso non-deterministi automata. Champarnaud, Niart and Ziadi showed in 2004 [6℄ that the Followautomaton is a quotient of the one produed by the Berry-Sethi algorithm (i.e. some states are mergedtogether). They also provide an algorithm implementing the Follow onstrution in quadrati time.The appliative implementation of the Berry-Sethi algorithm may be extended to yield the Follow15

Huet & Razetautomaton. Also, in 1996 Antimirov proposed an algorithm [2℄ that ompiles even smaller automatathan the ones obtained by the Follow onstrution, provided the input regular expression is presentedin star normal form (as desribed in [4℄). The algorithm presented originally was polynomial in O(n5)but Champarnaud and Ziadi [7℄ proposed yet another implementation in quadrati time.It is possible to validate these various ompiling algorithms using some of the algebrai lawsof ation algebras we presented in Setion2. In partiular, use of idempoteny to ollapse stateswill indiate that the orresponding onstrution does not preserve the notion of multipliity ofsolutions. Furthermore, suh a notion of multipliity, as well as weighted automata modeling statistialproperties, generalise to the treatment of valuation semi-rings, for whih Allauzen and Mohri [1℄propose extensions of the various algorithms.7. Working out an exampleWe brie�y disussed above how to implement as a mahine a �nite automaton reognizing a regularlanguage. We may use for instane Thompson's algorithm to ompile the automaton from a regularexpression de�ning the language. This example will show that reognizing the language and generatingthe language are two instanes of mahines whih share the same ontrol omponent, and vary onlyon the data domain and its assoiated semantis. Furthermore, we show in the reognition part thatwe may ompute the multipliities of the analysed string. However, note that this is possible beauseThompson's onstrution preserves this notion of multipliity.Let us work out ompletely this method with the regular language de�ned by the regular expression
(a∗b + aa(b∗))∗.(* An example: reognition and generation of a regular language L *)(* L = (a*b |aa(b)*)* *)value exp =let a = Symb 'a' inlet b = Symb 'b' inlet astarb = Con (Star a) b inlet aabstar = Con a (Con a (Star b)) inStar (Union astarb aabstar);value (i,fan,t) = thompson_alg exp;value graph n = List.asso n fan;value delay_eos = fun () → Void;value unit_stream x = Stream x delay_eos;module AutoReog = struttype data = list har;type state = int;type generator = option har;value transition = graph;value initial = [i ℄;value aept s = (s = t);value semantis tape = math with 16

Computing with Relational Mahines[None → unit_stream tape
| Some → math tape with[[℄ → Void
| [' :: rest ℄ → if = ' then unit_stream rest else Void℄℄;end (* AutoReog *);module LanguageDeriv = Engine AutoReog;(* The Reog module ontrols the output of the sub-mahineLanguageDeriv, insuring that its input is exhausted *)module Reog = struttype data = list har;type state = [S1 |S2 |S3 ℄;type generator = int;value transition = fun[S1 → [(1,S2) ℄
| S2 → [(2,S3) ℄
| S3 → [℄℄;value initial = [S1 ℄;value aept s = (s = S3);value semantis g tape = math g with[1 → LanguageDeriv.Complete_Engine.simulation tape
| 2 → if tape = [℄ then unit_stream tape else Void
| _ → assert False℄;end (* Reog *);module WordReog = Engine Reog;module AutoGen = struttype data = list har;type state = int;type generator = option har;value transition = graph;value initial = [i ℄;value aept s = (s = t);value semantis tape =math with[None → unit_stream tape
| Some → unit_stream [:: tape ℄℄;end (* AutoGen *);module AutoGenBound = struttype data = (list har * int); (* string with redit bound *)type state = int;type generator = option har;value transition = graph; 17

Huet & Razetvalue initial = [i ℄;value aept s = (s = t);value semantis (tape, n) =if n < 0 then Voidelse math with[None → unit_stream (tape, n)
| Some → unit_stream ([:: tape ℄, n-1)℄;end (* AutoGenBound *);module WordGen = Engine AutoGen;module WordGenBound = Engine AutoGenBound;(* Servie funtions on harater streams for testing *)(* print har list *)value print_l l =let re aux l = math l with[[℄ → ()
| [:: rest ℄ → let () = print_har in aux rest℄ indo { aux l; print_string "\n" };value iter_stream f str =let re aux str = math str with[Void → ()
| Stream v del → let () = f v in aux (del ())℄ inaux str;value print_l2 (tape,_) = print_l tape;value ut str n =let re aux i str =if i ≥ n then Voidelse math str with[Void → Void
| Stream v del → Stream v (fun () → aux (i+1) (del ()))℄ inaux 0 str;value ount s =let re aux s n =math s with[Void → n
| Stream _ del → aux (del ()) (n+1)℄ inaux s 0;(* Now we show typial invoations: *)print_string "Reognition of word `aaaa' with multipliity: ";18

Computing with Relational Mahinesprint_int (ount (WordReog.FEM.simulation ['a' ; 'a' ; 'a' ; 'a' ℄));print_newline ();print_string "Reognition of word `aab' with multipliity: ";print_int (ount (WordReog.FEM.simulation ['a' ; 'a' ; 'b' ℄));print_newline ();(* Remark that we generate mirror images of words in L *)print_string "First 10 words in ~L in a omplete enumeration:\n";iter_stream print_l (ut (WordGen.Complete_Engine.simulation [℄) 10);print_string "All words in ~L of length bounded by 3:\n";iter_stream print_l2 (WordGenBound.FEM.simulation ([℄,3));The output of exeuting the above ode is shown below:Reognition of word `aaaa' with multipliity: 1Reognition of word `aab' with multipliity: 3First 10 words in ~L in a omplete enumeration:bbaaabaabaabaaabbaabbbaaaaAll words in ~L of length bounded by 3:baabbabababbbbbbaabbbaabaaaaConlusionWe presented a general model of non-deterministi omputation based on a omputable version ofEilenberg mahines. Suh relational mahines omplement a non-deterministi �nite state automatonover an alphabet of relation generators with a semantis funtion interpreting eah relation funtionallyas a map from data elements to streams of data elements. The relations thus omputed form anation algebra in the sense of Pratt. We survey some algorithms whih permit to ompile the ontrolomponent of our mahines from regular expressions. The data omponent is implemented as an MLmodule onsistent with an EMK interfae. We show how to simulate our non-deterministi mahineswith a reative engine, parameterized by a strategy. Under appropriate fairness assumptions of thestrategy the simulation is omplete. An important speial ase is that of �nite mahines, for whihthe bottom-up strategy is omplete, while being e�iently implemented as a �owhart algorithm.19

Huet & RazetBibliographie[1℄ C. Allauzen and M. Mohri. A uni�ed onstrution of the Glushkov, Follow, and Antimirovautomata. Springer-Verlag LNCS, 4162:110�121, 2006.[2℄ V. Antimirov. Partial derivatives of regular expressions and �nite automaton onstrutions.Theor. Comput. Si., 155(2):291�319, 1996.[3℄ G. Berry and R. Sethi. From regular expressions to deterministi automata. Theoretial ComputerSiene, 48(1):117�126, 1986.[4℄ A. Brüggemann-Klein. Regular expressions into �nite automata. Theor. Comput. Si.,120(2):197�213, 1993.[5℄ J. A. Brzozowski. Derivatives of regular expressions. J. Asso. Comp. Mah., 11(4):481�494,Otober 1964.[6℄ J.-M. Champarnaud, F. Niart, and D. Ziadi. Computing the follow automaton of an expression.In CIAA, pages 90�101, 2004.[7℄ J.-M. Champarnaud and D. Ziadi. Computing the equation automaton of a regular expressionin o(s2) spae and time. In CPM, pages 157�168, 2001.[8℄ S. Eilenberg. Automata, Languages, and Mahines, volume A. Aademi Press, 1974.[9℄ G. Huet. Con�uent redutions: Abstrat properties and appliations to term rewriting systems.J. ACM, 27,4:797�821, 1980.[10℄ G. Huet. The Zen omputational linguistis toolkit: Lexion strutures and morphologyomputations using a modular funtional programming language. In Tutorial, LanguageEngineering Conferene LEC'2002, 2002.[11℄ G. Huet. A funtional toolkit for morphologial and phonologial proessing, appliation to aSanskrit tagger. J. Funtional Programming, 15,4:573�614, 2005.[12℄ G. Huet and B. Razet. The reative engine for modular transduers. In K. Futatsugi, J.-P.Jouannaud, and J. Meseguer, editors, Algebra, Meaning and Computation, Essays Dediated toJoseph A. Goguen on the Oasion of His 65th Birthday, pages 355�374. Springer-Verlag LNCSvol. 4060, 2006.[13℄ L. Ilie and S. Yu. Follow automata. Inf. Comput., 186(1):140�162, 2003.[14℄ D. Kozen. On ation algebras. In J. van Eijk and A. Visser, editors, Logi and InformationFlow, pages 78�88. MIT Press, 1994.[15℄ V. Pratt. Ation logi and pure indution. In Workshop on Logis in Arti�ial Intelligene.Springer-Verlag LNCS vol. 478, 1991.[16℄ B. Razet. Finite Eilenberg mahines. In O. Ibarra and B. Ravikumar, editors, Proeedings ofCIIA 2008, pages 242�251. Springer-Verlag LNCS vol. 5148, 2008. http://gallium.inria.fr/~razet/fem.pdf[17℄ B. Razet. Simulating �nite Eilenberg mahines with a reative engine. In Proeedings ofMSFP 2008. Eletri Notes in Theoretial Computer Siene, 2008. http://gallium.inria.fr/~razet/PDF/razet_msfp08.pdf[18℄ K. Thompson. Programming tehniques: Regular expression searh algorithm. Commun. ACM,11(6):419�422, 1968. 20

