janvier 2009 Journées Francophones des Langages Applicatifs JFLA09

Calculs applicatifs de machines relationnelles

Gérard Huet & Benoit Razet

Centre INRIA de Paris-Rocquencourt
Gerard.Huet@inria.fr
Benoit.Razet@inria.fr

Résumé

Ce texte est un support du cours “Automates, transducteurs et machines d’Eilenberg
applicatives dans la boite a outils Zen — Applications au traitement de la langue” de Gérard
Huet aux vingtiémes journées francophones des langages applicatifs (JFLA2009) & Saint-Quentin
sur Isére. Le cours comporte trois volets. Tout d’abord, les structures de base de la boite a
outils Zen de traitement de données linguistiques sont présentées. Cette bibliothéque de modules
Objective Caml, disponible librement sous forme source avec licence LGPL en http://sanskrit.
inria.fr/ZEN/, est commentée en style Ocamlweb dans le document http://sanskrit.inria.
fr/ZEN/zen.pdf. Le cours comporte ensuite une démonstration de plate-forme de traitement du
sanskrit, utilisant cette bibliothéque pour les niveaux phonologiques et morphologiques, pour la
représentation des lexiques et des transducteurs, enfin pour la lemmatisation, la segmentation,
I’étiquetage et I’analyse superficielle. Cette plate-forme, entiérement implémentée en OCaml, est
utilisable comme service Web a 'URL http://sanskrit.inria.fr/. Les tables morphologiques
du sanskrit qu’elle construit sont disponibles librement sous forme XML/DTD avec licence
LGPLLR. en http://sanskrit.inria.fr/DATA/XML/.

Le cours montre enfin comment les divers processus a 'ceuvre dans cette application sont des
cas particuliers de machines d’Eilenberg finies au sens de Benoit Razet. La méthodologie peut
se comprendre comme le cas fini d’'un modéle de calcul non déterministe trés général, faisant
communiquer des machines relationnelles exécutant des actions non déterministes. Ce calcul
est exprimé fonctionnellement par un calcul progressif de flots de solutions, géré par un moniteur
séquentiel appelé “moteur réactif” et paramétré par une stratégie de recherche. L’article en anglais
qui suit présente succintement cette méthodologie et donne quelques références complémentaires.

Ce matériau a déja été présenté dans ses grandes lignes par Gérard Huet au cours “Structures
Informatiques et Logiques pour la Modélisation Linguistique” (MPRI 2-27-1) a Paris a 'automne
2008, ainsi qu’au tutoriel “Eilenberg machines, the Zen toolkit, and applications to Sanskrit
Computational Linguistics” de Gérard Huet et Benoit Razet au congrés ICON-2008 (6th
International Conference On Natural Language Processing) a Pune, Inde, en décembre 2008.
La theése de Benoit Razet (& paraitre en 2009) développe complétement ce modeéle de calcul,
donne des extensions équitables au cas infini, décrit complétement la compilation du contréle &
partir d’expressions réguliéres, et valide formellement les propriétés (correction et complétude) du
moteur réactif par une certification dans le systéme de preuves Coq.

Huet & Razet

Computing with Relational Machines

Abstract

We give a quick presentation of the X-machines of Eilenberg, a generalisation of
finite state automata suitable for general non-deterministic computation. Such machines
complement an automaton, seen as its control component, with a computation component
over a data domain specified as an action algebra. Actions are interpreted as binary
relations over the data domain, structured by regular expression operations. We show
various strategies for the sequential simulation of our relational machines, using variants
of the reaction engine. In a particular case of finite machines, we show that bottom-up
search yields an efficient complete simulator.

Relational machines may be composed in a modular fashion, since atomic actions of
one machine may be mapped to the characteristic relation of other relational machines
acting as its parameters.

The control components of machines is compiled from regular expressions. Several such
translations have been proposed in the literature, that we briefly survey.

Our view of machines is completely applicative. They may be defined constructively
in type theory, where the correctness of their simulation may be formally checked. From
formal proofs in the Coq proof assistant, efficient functional programs in the Objective
Caml programming language may be mechanically extracted.

Most of this material is extracted from the (forthcoming) Ph.D. thesis of Benoit Razet.

1. Machines

1.1. Relational machines

We shall define a notion of abstract machine inspired from the work of Eilenberg (X-machines,
presented in [8]). Our machines are non-deterministic in nature. They comprise a control component,
similar to the transitions state diagram of a (non-deterministic) automaton. These transitions are
labeled by action generators. Action expressions over free generators, generalizing regular expressions
from the theory of languages, provide a specification language for the control component of machines.
A program, or action expression, compiles into control components according to various translations.
Control components in their turn may compile further into transition matrices or other representations.

Our machines also comprise a data component, endowed with a relational semantics. That is, we
interpret action generators by semantic attachments to binary relations over the data domain. These
relations are themselves represented as functions from data elements to streams of data elements. This
applicative apparatus replaces by clear mathematical notions the imperative components of traditional
automata (tapes, reading head, counters, stacks, etc).

We shall now formalise these notions in a way which will exhibit the symmetry between control
and data. First of all, we postulate a finite set 3 of parameters standing for the names of the primitive
operations of the machine, called generators.

For the control component, we postulate a finite set S of states and a transition relation map
interpreting each generator as a (binary) relation over S. This transition relation interpretation is
usually presented currified as a transition function § mapping each state in S to a finite set of pairs
(a,q) with a a generator and ¢ a state. This set is implemented as a finite list of such pairs.

Finally, we select in S a set of initial states and a set of accepting states.

For the data component, we postulate a set D of data values and a computation relation map
interpreting each generator as a (binary) relation over D. Similarly as for the control component, we

Computing with Relational Machines

shall currify this relation map as a computation function mapping each generator a in ¥ to a function
p(a) in D — p(D). Now the situation is not like for control, since D and thus (D) may be infinite.
In order to have a constructive characterization, we shall assume that D is recursively enumerable,
and that each p(a) maps d € D to a recursively enumerable subset of p(D). We shall represent such
subsets as progressively computed streams of values, as we shall explain in due time.

1.2. Progressive relations as streams

We recall that a recursively enumerable subset of w is the range of a partial recursive function in
w — w, or equivalently it is either empty or the range of a (total) recursive function in w — w. None
of these two definitions is totally satisfying, since in the first definition we may loop on some values
of the parameter, obliging us to dovetail the computations in order to obtain a sequence of elements
which enumerates completely the set, and in the second we may stutter enumerating the same element
in multiple ways. This stuttering cannot be totally eliminated without looping, for instance for finite
sets. Furthermore, demanding total functions is a bit illusory. It means either we restrict ourserves
to a non Turing-complete algorithmic description language (such as primitive recursive programs), or
else we cannot decide the totality of algorithms demanded by the definition.

We shall here assume that our algorithmic description language is ML, i.e. typed lambda-calculus
evaluated in call by value with a recursion operator, inductive types and parametric modules. More
precisely, we shall present all our algorithms in the Objective Caml implementation.

In this framework we may define computable streams over a parametric datatype data as follows:

type stream ’data =

[Void

| Stream of ’data and delay ’data
]

and delay ’data = unit — stream ’data;

This expresses that a stream of data values is either Void, representing the empty set, or else a pair
Stream(d,f) with d of type data, and f a frozen stream value, representing the set {d} U F', where F’
may be computed as the stream f(), where () is syntax for the canonical element in type unit. Using
this inductive parametric datatype, we may now define progressive relations by the following type:

type relation ’data = ’data — stream ’data;

1.3. Kernel machines

We now have all the ingredients to define the module signature of kernel machines:

module type EMK = sig

type generator;

type data;

type state;

value transition: state — list (generator X state);
value initial: list state;

value accept: state — bool;

value semantics : generator — relation data;

end;

In the following, we shall continue to use X (resp. D, S, §, p) as shorthand for generator (resp.
date, state, transition, semantics). We also write I for initial and T for the set of accepting
states (for which the predicate accept is true).

Huet & Razet

A machine is like a blackbox, which evolves through series of non-deterministic computation steps.
At any point of the computation, its status is characterized by the pair (s, d) of its current state s € S
and its current data value d € D. Such a pair is called a cell.

A computation step issued from cell (s,d) consists in choosing a transition (a,s’) € d(s) and a
value d’ € p(a)(d). If any of these choices fails, because the corresponding set is empty, the machine
is said to be blocked; otherwise, the computation step succeeds, and the machine has as status the
new cell (s',d’). We write (s,d) % (s, d’).

A computation path consists of such computations steps:
(So,do) g (Sl,dl) 2) (Sg,dg)... a—n> (Sn,dn)

The computation is said to be accepting whenever so € I and s, € T, in which case we say that the
machine accepts input dy and computes output d,,. Remark that (do,d,,) belongs to the graph of the
composition of relations labeling the path: p(a1) o p(az) o ...p(ay).

We have thus a very general model of relational calculus. Our machines compute relations over the
data domain D, and we shall thus speak of D-machines. The “machine language” has for instructions
the action generators. Actions compose by computation. Furthermore, a high level programming
language for relational calculus may be designed as an action calculus. The obvious point of departure
for this calculus is to consider regular expressions, in other words the free Kleene algebra generated by
the set of generators. We know from automata theory various translations from regular expressions
to finite-state automata. Every such translation gives us a compiler of our action algebra into the
control components of our machines: S, §, I and 7. The data components, D and p, offer a clean
mathematical abstraction over the imperative paraphernalia of classical automata: reading heads,
tapes, etc. And we get immediately a programming language enriching the machine language of
primitive actions by composition, iteration, and choice.

Indeed, a finite automaton over alphabet ¥ is readily emulated by the machine with generator
set > having its state transition graph as its control component, and having for data domain the
free monoid of actions ¥*. Each generator a is interpreted in the semantics as the (functional)
relation p(a) = L;' =4 {(a-w,w) | w € £*} which “reads the input tape’. And indeed the
language recognized by the automaton is retrieved as the composition of actions along all accepting

computations. Here the data computation is merely a trace of the different states of the “input tape”.

This example is a simple one, and data computation is deterministic, since p(a) is a partial function.
We may say that such a machine is “data driven”. Control will be deterministic too, provided the
underlying automaton is deterministic, since every d(s) will then have a unique non-blocking transition.
But remark that the same control component may be associated with different semantics. For instance,
with p(a) = Rq =des {(w,w-a) | w € T'*}, the machine will enumerate with its accepting computations
the regular language recognized by the automaton.

Let us now turn towards the action calculus.

2. Actions

Actions may be composed. We write A - B for the composition of actions A and B. This corresponds
to the composition of the underlying relations.

Actions may be iterated. We write A* for the iteration of action A. This corresponds to the
transitive closure of the underlying relation. We postulate an identity action 1 corresponding to the
underlying identity relation.

Actions may be summed. We write A + B for the sum of actions A and B. This corresponds to
the union of the underlying relations. We note A* for 1 + A™. We also postulate an empty action 0.

Computing with Relational Machines

The algebraic structure of actions is that of a composition monoid:
(A-B)-C=A-(B-QC)

A-1=1-A=A

and for union, an idempotent abelian monoid:
(A+B)+C=A+(B+C)

A+B=B+A
A+0=0+A=A4
A+A=A

verifying distributivity:
A-(B+C)=A-B+A-C

(A+B)-C=A-C+B-C
A0=0-A=0

and thus, so far actions form an idempotent semiring. Defining A < B =4.y A + B = B, the partial
ordering < makes the algebra of actions an upper semilattice.

As for iteration (which will be interpreted over relations by transitive-reflexive closure), we follow
Pratt [15] in adding implications between actions, in order to get an algebraic variety (as opposed to
Kleene algebras, which only form a quasi variety, i.e. need conditional identities for their complete
axiomatisation). Thus we postulate < and —, corresponding to relational semi-complements:

p—o={(v,w)|Yu upv = uow}
o— p={(u,w) | Yo wpv = uov}
and we axiomatise actions as residuation algebras, following Kozen [14]:
A-C<B&(C<A—-B
C-A<B&(C<B+—A
or alternatively we may replace these two equivalences by the following equational axioms:
A-(A—-B)<B
(B—A)-A<B
A—-B<A— (B+0)
B—A<(B+(C)—A
A<B—(B-A)
A<(A-B)<—B
We may now get Pratt’s action algebras by axiomatizing iteration as pure induction:
1+A4+ A" A <A
(A=A =A— A
(A—A)=A—A

Huet & Razet

The residuation/implication operations may be seen as the right interpolants to extend
conservatively Kleene algebras to the variety of action algebras. Regular expressions and their
compilation extend gracefully to action expressions, and the residuation operations correspond to
Brzozowki’s derivatives.

Furthermore, following Kozen [14], we may wish to enrich our actions with a multiplicative
operation N, corresponding to relation intersection, verifying lower semilattice axioms:

(ANB)NC=An(BNC)

ANnB=BnA
ANA=A

and completing to a lattice structure with:
A+(ANB)=A

AN(A+B)=A
obtaining thus Kozen’s action lattices, the right structure for matrix computation.

We remark that such structures go in the direction of logical languages, since union, intersection
and residuation laws are valid Heyting algebras axioms. We are still far from the complete Boolean
algebra structure of relations, though.

3. Behaviour and interfaces

We recall that we defined above the accepting computations of a machine, and for each such
computation its compound action, obtained by composing the generating relations of each computation
step. Let us call behaviour of a machine M the set of all such compound actions, noted | M]|.

Now we define the characteristic relation of a machine M as the union of the semantics of its

behaviour:
Ml = U sla)
a€|M|

Characteristic relations are the relational interpretation over the data domain D of the action langage
recognized by the underlying automaton. They allow us to compose our machines in modular fashion.

3.1. Modular construction of machines

Now that we understand that a D-machine implements a relation over D, we may compose machines
vertically, as follows. Let .4 be a (non-deterministic) automaton over alphabet 3, and for every a € ¥
let NV, be a D-machine over some generator set ¥,. We may now turn A into a D-machine over
generator set 3 by taking A as its control component, and extending it by a data component having
as semantics the function mapping a € X to ||Ng]|.

We may thus construct large machines from smaller ones computing on the same data domain. A
typical example of application for computational linguistics is to do morphological treatment (such
as segmentation and tagging of some corpus) in a lexicon-directed way. The alphabet ¥ defines the
lexical categories or parts of speech, each machine A, implements access to the lexicon of category a,
the automaton A defines the morphological geometry, and the composite machine M implements a
lexicon-directed parts-of-speech tagger. By appropriate extension of the lexicon machines NV, morpho-
phonemic treatment at the junction of the words may be effected, such as complete sandhi analysis
for Sanskrit [11, 12].

Computing with Relational Machines

3.2. Interfaces

What we described so far is the Eilenberg machine kernel, consisting of its control and data elements.
We may complete this description by an interface, composed of an input domain D_, an output domain
Dy, an input relation ¢_ and an output relation ¢,. A machine M completed by this interface I
defines a relation ¢(M,I) : D_ — D, by composition:

(M, I) = ¢ o|[M][o ¢y

4. Finite machines

We shall now present an important special case of machines which exhibit a finite behaviour.

The relation p : D — D’ is said to be Iocally finite if for every d € D the set p(d) is finite. The
machine M is said locally finite if every relation p(a) is locally finite [9]. The machine M is said
ncetherian if all its computations are finite in length.

We remark that a machine is ncetherian when its data domain D is a well-founded ordering for
the order relation > generated by:

d>d <« JaeX d € pla)d)

Indeed, if there existed an infinite computation, there would exist an infinite sub-sequence going
through the same state. But the converse is not true, since a machine may terminate for a reason
depending of its control.

Finally, we say that a machine is finite if it is locally finite and noetherian.

We say that a machine is sequential [8] iff for each cell value (s,d) occurring in a computation
there exists at most one computation transition issued from it, i.e. if d(s) is a set of pairs
{(p1,51), (p2,82), ...(Pn, Sn)} such that for at most one 1 < k < n the set pi(d) is non empty, and if
such k exists then pg(d) is a singleton. This condition demands that on one hand the transition relation
of the underlying automaton is a partial function, that is the automaton must be deterministic, and
on the other hand that the relations leading out of a state s be partial functions over the subset of D
which is reachable by computation leading to s. We remark that a sequential machine may nevertheless
generate several solutions, since a terminal cell is not necessarily blocking further computation.

4.1. Examples
4.1.1. Non deterministic finite automata

Let us consider a non-deterministic automaton A with parameters (S,1,7,6). We construct an
Eilenberg machine M solving the word problem for the rational language |A| recognized by the
automaton. M has ¥ for generating set, and it takes A for its control component. For the data
component, we take D = ¥*, and the semantics is p(a) = Ly =4c¢ {(a-w,w) | w € ¥*}, as explained
above.

We may check that p(w) = 1iff w € | A]. It is easy to check that M is finite, since data decreases in

length, and semantics is a partial function. When A is a deterministic automaton, M is a sequential
machine.

Another machine with the same control component may be defined to enumerate all the words in
set |A|. In general it will neither be finite, nor sequential.

Huet & Razet

4.1.2. Rational transducers

Let ¥ and T be two finite alphabets. A transducer A : ¥ = T is similar to a (non-deterministic)
automaton, whose transitions are labeled with pairs of words in D = X* x I'*. Let 2 be the (finite) set
of labels occurring as labels of the transitions of A. The transition graph of A may thus be considered
as an ordinary non-deterministic automaton over generator alphabet), and constitutes the control
component of the machines we shall define to solve various transductions tasks.

We recall that a transducer “reads its input” on an input tape representing a word in ¥* and “prints
its output” on an output tape representing a word in I'*. On transition (w,w’) it reads off w on the
input tape, and if successful appends w’ to its output tape. If by a succession of transitions starting
from an initial state with input ¢ and empty output it reaches an accepting state with empty input
and output o, we say that (i, 0) belongs to the rational relation in ¥ = I" recognized by the transducer
A, which we shall write |A|. We shall now solve various decision problems on |.A4| using machines
which use A for control and D for data, but replace the tapes by various semantic functions:

1. Recognition. Given (w,w’) € D, decide whether (w,w’) € |A|.
2. Synthesis. Given w € ¥*, compute its image |A|(w) C T'*.

3. Analysis. Given w € I'*, compute the inverse image |A™!|(w) C X*.

Recognition. The semantics p is defined by p(o,v) = L;! x L;l. Like for ordinary automata we
obtain a finite machine, provided the transducer has no transition labeled (e,€), since at least one
of the two lengths decreases. We choose as interface D_ = ¥* x I'*, ¢_ = Ids+xr+, Dy = 0,1,
dr(w,w)=1ifw=w =e.

Synthesis. The semantics p is defined by p(o,v) = L, x R, with R, =gcf {(w,w-v) | w € T*}.
We choose as interface D_ = ¥*, ¢_ = {(w, (w,€)) |w € ¥*}, Dy =T, ¢4 = {(e,w'),w') | w' € T*}.
We get |A] = ¢_ o || M]| o ¢4. Such a machine is locally finite, since relations L;! and R, are partial
functions. However, it may not be ncetherian, since there may exist transitions labeled with actions
(e,w). Actually the machine is noetherian iff cycles of such transitions do not occur, iff the set |.A|(w)
is finite for every w € ¥* [16].

Analysis. Symmetric to synthesis, replacing L' by R, and R, by L".

4.1.3. Oracle machines

Let D be an arbitrary set, and P an arbitarry predicate over D. We consider the relation p over D
defined as the restriction of identity to the data elements verifying P: p(d) = {d} if P(d), p(d) =0
otherwise. We define in a canonical way the machine whose control component is the automaton 4
with two states S = {0,1}, I = {0} and T = {1}, and transition function ¢ defined by 6(0) = {(p, 1)}
and §(1) = 0. This machine is a sequential finite machine, that decides in one computational step
whether its input verifies P. Our restriction of Eilenberg machines to computable relations limits such
oracles to recursive predicates, but of arbitrary complexity. More generally, our machines recursively
enumerate arbitrary recursively enumerable sets, and are therefore Turing complete.

5. Reactive engine

We may simulate the computations of a finite Eilenberg machine by adapting the notion de reactive
engine of the Zen library [10, 11, 12, 16].

Computing with Relational Machines

5.1. The depth-first search reactive engine

module Engine (Machine: EMK) = struct
open Machine;

type choice = list (generator X state);

(¥ We stack backtrack choice points in a resumption *)
type backtrack =

[React of data and state

| Choose of data and choice and delay data and state

]

and resumption = list backtrack;
(¥ The 3 internal loops of the reactive engine *)

(¥ react: data — state — resumption — stream data *)

value rec react d q res =

let ch = transition q in

(* we need to compute [choose d ch res] but first
we deliver data [d] to the stream of solutions when [q] is accepting *)

if accept q
then Stream d (fun () — choose d ch res) (* Solution d found *)
else choose d ch res

(¥ choose: data — choice — resumption — stream data *)
and choose d ch res =

match ch with

[[1 — resume res

| [(g, q’) :: rest] — match semantics g d with
[Void — choose d rest res
| Stream d’ del — react d’ q’ [Choose d rest del q’ :: res]
]

(¥ The scheduler which backtracks in depth-first emxploration *)
(¥ resume: resumption — stream data *)

and resume res =

match res with

[[1 — Void

[React d :: rest] — react d q rest
| q q
| [Choose d ch del g’ :: rest 1 —

match del () with (¥ we unfreeze the delayed stream of solutions *)
[Void — choose d ch rest (* finally we look for next pending choice *)
| Stream 4’ del’ — react d’ q’ [Choose d ch del’ g’ :: rest]
]
]

’

(¥ Note that these are just loops, since the recursive calls are terminal *)

Huet & Razet

(¥ Simulating the characteristic relation: relation data *)
value simulation d =
let rec init_res 1 acc =
match 1 with
[[0 — acc
| [q :: rest] — init_res rest [React d q :: acc]
] in
resume (init_res initial [])

;
end; (* module Engine *)
5.2. Correctness, completeness, certification

Benoit Razet showed in [17] a formal proof of correctness and completeness of the simulation of a
finite machine by the above reactive engine. Furthermore, it is possible to extract mechanically from
this proof ML algorithms identical to the ones we showed above.

5.3. A General reactive engine, driven by a strategy

When a machine is not finite, and in particular when there are infinite computation paths, the bottom-
up engine above may loop, and the simulation is not complete. In order to remedy this, we shall change
the fixed last-in first-out policy of resumption management, and replace it by a more general strategy
given as a parameter of the machine.

open Eilenberg;

module Engine (Machine: EMK) = struct
open Machine;

type choice = list (generator X state);

(*¥ We separate the control choices and the data relation choices *)
type backtrack =

[React of data and state

| Choose of data and choice

| Relate of stream data and state

]

’

Now resumption is an abstract data type, given in a module Resumption, passed as argument to
the Strategy functor, generalizing a backtrack stack.

module Strategy (* resumption management *)
(Resumption : sig
type resumption;
value empty: resumption;
value pop: resumption — option (backtrack X resumption);
value push: backtrack — resumption — resumption;
end) =

struct

open Resumption;

10

Computing with Relational Machines

Now we define a more parametric reactive engine, using an exploration strategy as parameter.

(¥ react: data — state — resumption — stream data *)
value rec react d q res =
let ch = transition q in
if accept q (* Solution d found? *)
then Stream d (fun () — resume (push (Choose d ch) res))

else resume (push (Choose d ch) res)

(¥ choose: data — choice — resumption — stream data *)
and choose d ch res =
match ch with
[[1 — resume res
| [(g, q’) :: rest 1 —
let res’ = push (Choose d rest) res in
relate (semantics g d) q’ res’

]

(¥ relate: stream data — state — resumption — stream data *)
and relate str q res =
match str with
[Void — resume res
| Stream d del — let str = del () in
resume (push (React d q) (push (Relate str q) res))

]

(¥ resume: resumption — stream data *)
and resume res =
match pop res with
[None — Void
| Some (b, rest) —
match b with
[React d q — react d q rest
| Choose d ch — choose d ch rest
| Relate str q — relate str q rest
]
]

’

(* characteristic_relation: relation data *)
value simulation d =
let rec init_res 1 acc =
match 1 with
[[T — acc
| [q :: rest] — init_res rest (push (React d q) acc)
] in
resume (init_res initial empty)

’

end; (* module Strategy *)

11

Huet & Razet

5.4. A few typical strategies

We now give a few variations on search strategies. First of all, we show how the original depth-first
reactive engine may be obtained by a DepthFirst strategy module, adequate for Finite Eilenberg

Machines.

module DepthFirst = struct
type resumption = list backtrack;
value empty = [];
value push b res = [b :: res];
value pop res =
match res with
[[— None
| [b :: rest] — Some (b,rest)
1;
end; (* module DepthFirst *)

Next we examine the special case of sequential machines, where computations are deterministic.
The following simple Seq tactic is adapted to this case.

module Seq = struct
type resumption = list backtrack;
value empty = [];

value push b res =
match b with

[React _ _ — [b :: res]

| Choose _ _ — [b1 (# cut : the list contains only one element *)
| Relate _ _ — res (* no other delay *)

1;

value pop res =

match res with

[1 — Nomne

| [b :: rest] — Some (b,rest)

1
end; (* module Seq *)

Finally, we show how to simulate in a fair way a general machine with a Complete tactic, which
scans the state space in a top-down boustrophedon manner.

module Complete = struct
type resumption = (list backtrack x list backtrack);
value empty = ([],[1);
value push b res =
let (left,right) = res in
(left, [b :: right 1)
value pop res =
let (left,right) = res in
match left with
[[1 — match right with
[[1 — None
| [r :: rrest] — Some (r, (rrest,[]))
]

| [1:: lrest] — Some (1, (lrest,right))

12

Computing with Relational Machines

]

end; (* module Complete *)

Now we may build the various modules encapsulating the various strategies.

module FEM = Strategy DepthFirst; (* The bottom-up engine *)
module Sequential_Engine = Strategy Seq; (* The sequential engine *)
module Complete_Engine = Strategy Complete; (* The fair engine *)

end; (* module Engine *)

6. From regular expressions to automata

Our motivation here is the design of a language for describing the control part of Eilenberg machines.
The control part of Eilenberg machines is a finite automaton. It leads us naturally to regular
expressions and their translations into finite automata.

There have been more than 50 years of research on the problem of compilation (or translation)
of regular expressions into automata. It started with Kleene who stated the equivalence between
the class of languages recognized by finite automata and the class of languages defined by regular
expressions. This topic is particularly fruitful because it has applications to string search algorithms,
circuits, synchronous languages, computational linguistics, etc. This wide range of applications leads
to several automata and regular expressions variants.

Usually, an algorithm compiling regular expressions into automata is described in an imperative
programming style for managing states and edges: states are allocated, merged or removed and so
on concerning the edges. Surprisingly it seems that there is an applicative manner for describing
each of the well-known algorithms. This methodology leads to a formal definition of the algorithm
exhibiting important invariants. Of course we are careful to maintain the theoretical complexity of
the algorithms.

We focus on fast translations, whose time complexity is linear or quadratic with respect to the
size of the regular expression. First we present Thompson’s algorithm [18] and then we review other
algorithms that are concerned by our methodology.

Let us mention Brzozowski’s algorithm [5] which translates a regular expression (even with boolean
operators) into a deterministic automaton. Unfortunately, the complexity is theoretically exponential.
Nevertheless, it introduced the notion of regular expression derivative which is a fundamental idea
pervading other algorithms.

6.1. Thompson’s algorithm

Thompson presented his algorithm in 1968 and it is one of the most famous translations. It computes
a finite non-deterministic automaton with e-moves in linear time.

Let us first define regular expressions as the following datatype:

type regexp ’a =
[One
| Symb of ’a
| Union of regexp ’a and regexp ’a
| Conc of regexp ’a and regexp ’a
| Star of regexp ’a

1;

13

Huet & Razet

The constructor One of arity 0 is for the 1 element of the corresponding action algebra. The
following constructor Symb of arity 1 is the node for a generator. The type for the generator is
abstract as expressed by the type parameter ’a in the definition. The two following constructors are
Union and Conc of arity 2 and describe union and concatenation operations. The last constructor
Star is for the iteration or Kleene’s star operator.

Now we have given the datatype for the input of our algorithm, let us present the datatype for the
output (automata). We choose to implement states of the automaton with integers:

type state = int;

Automata obtained by Thompson’s algorithm are non-deterministic and furthermore with e-moves.
We shall implement the control graph of such non-deterministic automata as a list of fanout pairs
associating a list of labeled transitions to a state. This amounts to encoding a set of edges s — s’ or
triples (s, a, s’) as an association list.

type fanout ’a = (state * list (label ’a * state))
and label ’a = option ’a
and transitions ’a = list (fanout ’a)

type automaton ’a = (state * transitions ’a * state);

A label is of type option ’a because it may be either an e-move of value None or a generator a of
value Some a. Note that even if they are non-deterministic, the automata we consider have only one
initial and one accepting state.

We shall instanciate the transition function of the control component of our machines by
composing the transitions list component of the constructed automaton with the primitive
List.assoc, as we shall show later in section 7.

Thompson’s algorithm can be summarized very shortly in a graphical way:

OO 020
&

-
“Xg 3

®. ()«

The algorithm performs a recursive traversal of the expression and each case corresponds to a drawing.
It is presented in the order of the datatype definition: 1, generator, union, concatenation and Kleene’s
star.

(¥ thompson: regexp ’a — automaton ’a *)
value thompson e =
let rec aux e t n =
(¥ e is current regexp, t accumulates the state space,
n 1s last created location *)

14

Computing with Relational Machines

match e with
[One — let ni=n+1 and n2=n+2 in
(n1, [(n1, [(None, n2) 1) :: t 1, n2)
| Symb s — let nl=n+1 and n2=n+2 in
(n1, [(n1, [(Some s, n2) 1) :: t 1, n2)

| Union el e2 —

let (i1,t1,f1) aux el t n in

let (i2,t2,f2) = aux e2 t1 f1 in

let n1=f2+1 and n2=f2+2 in

(n1, [(n1, [(None, il); (None, i2) 1)

[(£f1, [(None, n2) 1)
[(£2, [(None, n2) 1) :: t2 11 1, n2)

| Conc el e2 —

let (i1,t1,f1) aux el t n in

let (i2,t2,f2) = aux e2 t1 f1 in

(i1, [(f1, [(Nome, i2) 1) :: t2 1, £2)
| Star el —

let (i1,t1,f1) = aux el t n in

let n1=fi1+1 and n2=f1+2 in

let t1> = [(f1, [(None, i1); (None, n2)]) :: t1] in

(n1, [(n1, [(None, il1l); (None, n2) 1) :: t1’], n2)
] in

aux e [] O

The algorithm constructs the automaton from the regular expression with a single recursive
traversal of the expression. States are created at each node encountered in the expression: each
constructor creates 2 states except the concatenation Conc that does not create any state. Remark the
invariant of the recursion: each regular subexpression builds an automaton (i, fan, f) with 0 <i < f
and dom(fan) = [k..f — 1]. States are allocated so that disjoint subexpressions construct disjoint
segments [i..f]. This invariant of the thompson function implies that we have to add finally a last
(empty) fanout for the final state.

(¥ thompson_alg: regexzp ’a — automaton ’a *)
value thompson_alg e =

let (i,t,f) = thompson e in

(i, [C£,00) :: 1, £)

2

The function thompson_alg implements Thompson’s algorithm in linear time and space because
it performs a unique traversal of the expression.

6.2. Other algorithms

We have seen that Thompson’s algorithm is linear and can be implemented in an applicative manner.
Let us mention also Berry-Sethi’s algorithm [3] that computes a non-deterministic automaton (without
e-move), more precisely a Glushkov automaton. This construction is quadratic and we provided an
implementation of it in ML [12]. In 2003, Ilie and Yu [13] introduced the Follow automata which are
also non-deterministic automata. Champarnaud, Nicart and Ziadi showed in 2004 [6] that the Follow
automaton is a quotient of the one produced by the Berry-Sethi algorithm (i.e. some states are merged
together). They also provide an algorithm implementing the Follow construction in quadratic time.
The applicative implementation of the Berry-Sethi algorithm may be extended to yield the Follow

15

Huet & Razet

automaton. Also, in 1996 Antimirov proposed an algorithm [2] that compiles even smaller automata
than the ones obtained by the Follow construction, provided the input regular expression is presented
in star normal form (as described in [4]). The algorithm presented originally was polynomial in O(n?)
but Champarnaud and Ziadi [7] proposed yet another implementation in quadratic time.

It is possible to validate these various compiling algorithms using some of the algebraic laws
of action algebras we presented in Section2. In particular, use of idempotency to collapse states
will indicate that the corresponding construction does not preserve the notion of multiplicity of
solutions. Furthermore, such a notion of multiplicity, as well as weighted automata modeling statistical
properties, generalise to the treatment of valuation semi-rings, for which Allauzen and Mohri [1]
propose extensions of the various algorithms.

7. Working out an example

We briefly discussed above how to implement as a machine a finite automaton recognizing a regular
language. We may use for instance Thompson’s algorithm to compile the automaton from a regular
expression defining the language. This example will show that recognizing the language and generating
the language are two instances of machines which share the same control component, and vary only
on the data domain and its associated semantics. Furthermore, we show in the recognition part that
we may compute the multiplicities of the analysed string. However, note that this is possible because
Thompson’s construction preserves this notion of multiplicity.

Let us work out completely this method with the regular language defined by the regular expression
(a*b+ aa(b*))*.

(¥ An exzample: recognition and generation of a regular language L *)

(¥ L = (a*b |aa(b)*)* *)
value exp =
let a = Symb ’a’ in
let b = Symb ’b’ in
let astarb = Conc (Star a) b in
let aabstar = Conc a (Conc a (Star b)) in
Star (Union astarb aabstar)
value (i,fan,t) = thompson_alg exp
value graph n = List.assoc n fan

value delay_eos

fun () — Void
>
value unit_stream x = Stream x delay_eos

2

module AutoRecog = struct

type data = list char;

type state = int;

type generator = option char;

value transition = graph;

value initial = [i 1;

value accept s = (s = t);

value semantics c tape = match c with

16

Computing with Relational Machines

[None — unit_stream tape
| Some ¢ — match tape with
[1 — Void
| [¢’ :: rest] — if ¢ = ¢’ then unit_stream rest else Void
]
1;
end (* AutoRecog *)
module LanguageDeriv = Engine AutoRecog
(¥ The Recog module controls the output of the sub-machine
LanguageDeriv, insuring that its input is ezhausted *)
module Recog = struct
type data = list char;
type state = [S1 [S2 [S3];
type generator = int;
value transition = fun
[s1 — [(1,52)]
| s2 — [(2,83) 1
| 83 — [1
1;
value initial = [S1];
value accept s = (s = $3);
value semantics g tape = match g with
[1 — LanguageDeriv.Complete_Engine.simulation tape
| 2 — if tape = [] then unit_stream tape else Void
| _ — assert False
1;
end (* Recog *)
module WordRecog = Engine Recog
module AutoGen = struct
type data = list char;
type state = int;
type generator = option char;
value transition = graph;
value initial = [i 1;
value accept s = (s = t);
value semantics c tape =
match ¢ with
[None — unit_stream tape
| Some ¢ — unit_stream [¢ :: tape]
1;
end (* AutoGen *)
module AutoGenBound = struct
type data = (list char * int); (* string with credit bound *)
type state = int;
type generator = option char;
value transition = graph;

17

Huet & Razet

value initial = [i 1;
value accept s = (s = t);
value semantics c (tape, n) =
if n < 0 then Void
else match c with
[None — unit_stream (tape, n)
| Some ¢ — unit_stream ([¢ :: tape], n-1)
1;
end (* AutoGenBound *)
module WordGen = Engine AutoGen;
module WordGenBound = Engine AutoGenBound;

(¥ Service functions on character streams for testing *)
(¥ print char list *)

value print_cl 1 =
let rec aux 1 = match 1 with

00— 0
| [c:: rest] — let () = print_char ¢ in aux rest
] in

do { aux 1; print_string "\n" }
5

value iter_stream f str =

let rec aux str = match str with

[Void — O
| Stream v del — let () = £ v in aux (del ())
] in

aux str

value print_cl2 (tape,_) = print_cl tape
value cut str n =
let rec aux i str =
if i > n then Void
else match str with
[Void — Void
| Stream v del — Stream v (fun () — aux (i+1) (del ()))
] in
aux 0 str
value count s =
let rec aux s n =
match s with
[Void — n
| Stream _ del — aux (del ()) (n+1)
1 in
aux s O
(¥ Now we show typical invocations: *)
print_string "Recognition of word,‘aaaa’ with multiplicity:,";

18

Computing with Relational Machines

print_int (count (WordRecog.FEM.simulation [’a’ ; ’a’ ; ’a’ ; ’a’ 1));
print_newline ();

print_string "Recognition,of word,‘aab’ with multiplicity:. ";
print_int (count (WordRecog.FEM.simulation [’a’ ; ’a’ ; ’b’ 1));
print_newline ();

(*¥ Remark that we generate mirror images of words in L *)
print_string "First_10,words,in, L in a ,complete enumeration:\n";
iter_stream print_cl (cut (WordGen.Complete_Engine.simulation []1) 10);
print_string "All words,in "L, of_ length bounded by 3:\n";

iter_stream print_cl2 (WordGenBound.FEM.simulation ([],3));

The output of executing the above code is shown below:

Recognition of word ‘aaaa’ with multiplicity: 1
Recognition of word ‘aab’ with multiplicity: 3
First 10 words in "L in a complete enumeration:
b

ba

aa

baa

baa

baaa

bbaa

bb

baaaa

A1l words in "L of length bounded by 3:

baa

bba

ba

bab

bbb

bb

aab

b

baa

baa

aa

Conclusion

We presented a general model of non-deterministic computation based on a computable version of
Eilenberg machines. Such relational machines complement a non-deterministic finite state automaton
over an alphabet of relation generators with a semantics function interpreting each relation functionally
as a map from data elements to streams of data elements. The relations thus computed form an
action algebra in the sense of Pratt. We survey some algorithms which permit to compile the control
component of our machines from regular expressions. The data component is implemented as an ML
module consistent with an EMK interface. We show how to simulate our non-deterministic machines
with a reactive engine, parameterized by a strategy. Under appropriate fairness assumptions of the
strategy the simulation is complete. An important special case is that of finite machines, for which
the bottom-up strategy is complete, while being efficiently implemented as a flowchart algorithm.

19

Huet & Razet

Bibliographie

[1] C. Allauzen and M. Mohri. A unified construction of the Glushkov, Follow, and Antimirov
automata. Springer-Verlag LNCS, 4162:110-121, 2006.

[2] V. Antimirov. Partial derivatives of regular expressions and finite automaton constructions.
Theor. Comput. Sci., 155(2):291-319, 1996.

[3] G.Berry and R. Sethi. From regular expressions to deterministic automata. Theoretical Computer
Science, 48(1):117-126, 1986.

[4] A. Briggemann-Klein. Regular expressions into finite automata. Theor. Comput. Sci.,
120(2):197-213, 1993.

[5] J. A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comp. Mach., 11(4):481-494,
October 1964.

[6] J.-M. Champarnaud, F. Nicart, and D. Ziadi. Computing the follow automaton of an expression.
In CIAA, pages 90-101, 2004.

[7] J.-M. Champarnaud and D. Ziadi. Computing the equation automaton of a regular expression
in o(s?) space and time. In CPM, pages 157-168, 2001.

[8] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, 1974.

[9] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
J. ACM, 27,4:797-821, 1980.

[10] G. Huet. The Zen computational linguistics toolkit: Lexicon structures and morphology
computations using a modular functional programming language. In Tutorial, Language
Engineering Conference LEC’2002, 2002.

[11] G. Huet. A functional toolkit for morphological and phonological processing, application to a
Sanskrit tagger. J. Functional Programming, 15,4:573-614, 2005.

[12] G. Huet and B. Razet. The reactive engine for modular transducers. In K. Futatsugi, J.-P.
Jouannaud, and J. Meseguer, editors, Algebra, Meaning and Computation, Essays Dedicated to
Joseph A. Goguen on the Occasion of His 65th Birthday, pages 355-374. Springer-Verlag LNCS
vol. 4060, 2006.

[13] L. Ilie and S. Yu. Follow automata. Inf. Comput., 186(1):140-162, 2003.

[14] D. Kozen. On action algebras. In J. van Eijck and A. Visser, editors, Logic and Information
Flow, pages 78-88. MIT Press, 1994.

[15] V. Pratt. Action logic and pure induction. In Workshop on Logics in Artificial Intelligence.
Springer-Verlag LNCS vol. 478, 1991.

[16] B. Razet. Finite Eilenberg machines. In O. Ibarra and B. Ravikumar, editors, Proceedings of
CIIA 2008, pages 242-251. Springer-Verlag LNCS vol. 5148, 2008. http://gallium.inria.fr/
“razet/fem.pdf

[17] B. Razet. Simulating finite Eilenberg machines with a reactive engine. In Proceedings of
MSFP 2008. Electric Notes in Theoretical Computer Science, 2008. http://gallium.inria.
fr/"razet/PDF/razet_msfp08.pdf

[18] K. Thompson. Programming techniques: Regular expression search algorithm. Commun. ACM,
11(6):419-422, 1968.

20

