
Shallow syntax analysis in Sanskrit
guided by semantic nets constraints

Gerard Huet
INRIA

Rocquencourt, France
Gerard.Huet@inria.fr

ABSTRACT
We present the state of the art of a computational platform
for the analysis of classical Sanskrit. The platform comprises
modules for phonology, morphology, segmentation and shal-
low syntax analysis, organized around a structured lexical
database. It relies on the Zen toolkit for finite state au-
tomata and transducers, which provides data structures and
algorithms for the modular construction and execution of fi-
nite state machines, in a functional framework.

Some of the layers proceed in bottom-up synthesis mode -
for instance, noun and verb morphological modules gener-
ate all inflected forms from stems and roots listed in the
lexicon. Morphemes are assembled through internal sandhi,
and the inflected forms are stored with morphological tags in
dictionaries usable for lemmatizing. These dictionaries are
then compiled into transducers, implementing the analysis
of external sandhi, the phonological process which merges
words together by euphony. This provides a tagging seg-
menter, which analyses a sentence presented as a stream of
phonemes and produces a stream of tagged lexical entries,
hyperlinked to the lexicon.

The next layer is a syntax analyser, guided by semantic
nets constraints expressing dependencies between the word
forms. Finite verb forms demand semantic roles, according
to valency patterns depending on the voice (active, passive)
of the form and the governance (transitive, etc) of the root.
Conversely, noun/adjective forms provide actors which may
fill those roles, provided agreement constraints are satisfied.
Tool words are mapped to transducers operating on tagged
streams, allowing the modeling of linguistic phenomena such
as coordination by abstract interpretation of actor streams.
The parser ranks the various interpretations (matching ac-
tors with roles) with penalties, and returns to the user the
minimum penalty analyses, for final validation of ambigu-
ities. The whole platform is organized as a Web service,
allowing the piecewise tagging of a Sanskrit text.

1. INTRODUCTION
This paper explains the application to the Sanskrit lan-
guage and litterature of computational linguistics technol-
ogy. Computational linguistics is the branch of Informatics
dealing with the automated processing by computer software
of natural language. It involves the mathematical modelling
of the structure of linguistic utterances and their precise
representation. In that sense, it is a natural outgrowth of
descriptive linguistics, and is in a strong sense a close cousin
of theoretical linguistics. Thus, the work of the MIT lin-
guist Noam Chomsky in the sixties, in collaboration with
the Parisian algebraist Marcel-Paul Schützenberger, was a
major influence in the shaping up of modern theories of syn-
tax. This led to a major development of non-commutative
algebra, supporting a new discipline “Theory of automata
and formal languages”, at the frontier between mathemati-
cal logic and the emerging field of informatics or theoretical
computer science. The power of descriptive formalisms for
formal languages (sets of strings over a finite alphabet) was
investigated thoroughly and their computational complexity
assessed with the help of mathematical formalisms such as
finite-state automata (regular languages, corresponding to
finitely representable rational series), push-down stack au-
tomata (context-free languages, corresponding to algebraic
series), etc.

The immediate application of this theory to the problem of
parsing and interpreting computer software is well known.
Its application to the treatment of natural language is slower
to unfold, the natural theoretical complexity of natural lan-
guage leading to higher complexity classes (roughly mildly
context-sensitive languages, parsable in polynomial time).
Furthermore, the intrinsic ambiguities of natural speech pre-
clude any simple-minded formal treatment, since the main
artificial intelligence stumbing blocks, such as common sense
understanding, are ultimately lurking in any mechanical en-
deavour to understand natural language.

Despite these difficulties, considerable progress has been done
in the second half of the 20th century to the computa-
tional treatment of natural language in its various syntactic
and semantic aspects. Besides the specific signal process-
ing techniques used for the treatment of speech, the main
tools for this technical development are algebraico-logical
tools on one hand, evolved from the aforementioned theo-
ries, and statistical methods, learning statistical biases from
computerized corpus. The corresponding formal models are
in strong critical interaction with linguistic theories. Con-

crete applications (notably to text processing tools such as
spell and syntax correction, to tools for search in textual
databases such as Web search engines, and in a longer term
perspective to inter-lingual document translation software)
have been strong incentives to develop powerful computer-
ized linguistic platforms, notably for the English language.

Other languages are not so advanced in terms of comput-
erization. On the one hand, elaborate theories of syntax
for English are of little help for the development of parsers
for languages having radically different syntactic structure.
Thus, a language with strong morphology such as Sanskrit
will tend to give light constraints to the sequential order
of words in a sentence, contrarily to languages with rigid
word order such as English, whose syntax enforces a rather
strict subject-verb-object ordering. On the other hand, En-
glish has benefited from its situation as the de facto lingua
franca of the modern business world, with generous funding
of research and development of its linguistic treatment, lead-
ing to early large coverage computerized lexicons, extensive
treebanks of tagged corpus, and a wealth of statistical data
from immense speech and text resources.

Thus until recently there was very little computational sup-
port for Sanskrit. Digitalized texts were entered manually,
there was no mechanical way to tag or search reliably San-
skrit corpus, and consequently no computerized philology
assistance, even for simple statistics computations. This
paper presents an ongoing effort to fill this need.

2. THE VY—AKARAN. A TRADITION
The linguistic tradition of ancient India was developed very
early as a part of valid Vedic knowledge. Among the six rec-
ognized Vedic branches of knowledge (vedas.ad. aṅga), four
are concerned with language: phonetics (śiks. ā), grammar
(vyākaran. a), hermeneutics (nirukta) and prosody (chandas).
In these ancient disciplines, linguistics is not the study of
the vernacular language (bhās. ā), but concerns rather the
refined language (sam. skr. ta) - i.e. Sanskrit. In particu-
lar, the grammatical tradition of Sanskrit is extremely an-
cient. Many Sanskrit scholars must have studied the forma-
tion rules of phonetics and morphology, until an intellectual
giant, Pān. ini, appeared in the 5th century before Chris-
tian era, with a grammar in eight chapters (As.t.ādhyāȳı)
which superseded all previous work and set an unsurpassed
standard of linguistic precision. Further linguists (notably
Kātyāyana and Patañjali) will essentially limit themselves
to commentaries aiming at the proper explanation of the
very terse and formal presentation of the As.t.ādhyāȳı.

Pān. ini’s grammar is an almost exhaustive descriptive pre-
sentation of linguistic facts concerning the refined language
used by intellectuals of his time, which came to be labeled
as Classical Sanskrit. It also describes a number of archaic
forms, in order to accommodate the much earlier language
of the Vedas. It had such authority that it was soon taken
as prescriptive, and consequently Sanskrit was more or less
frozen in its evolution, except that the existence of for-
mal generative rules justified their use at arbitrary levels
of recursion, unknown up to then in spontaneous speech.
Thus the inductive definition of compound substantives was
taken as incentive by poets to form arbitrarily long nominal
phrases, composed of just one compound word.

Pān. ini’s grammar is presented in the form of extremely terse
aphorisms (sūtra), whose proper understanding needs spe-
cific technical training. The most striking characteristic of
this work is its density. The complete listing of its rules
fits easily in 100 pages of a small format book [28]. Most
aphorisms are formal rules, governing rewriting operations
over strings composed of Sanskrit phonemes, complemented
with formal markers used as meta-linguistic tokens. A com-
plex system of exceptions governs the application of one rule
over another in case of ambiguities. The system is to a cer-
tain extent lexicalized, since it has to be understood with
the help of a roots lexicon (dhātupāt.ha) and a nouns lexicon
(gan. apāt.ha) providing morphological information.

It would seem natural to profit of this early tradition in
formal linguistics to attempt to use Pān. ini’s grammar at
the core of a computational linguistics platform for Sanskrit.
This is not what we chose to do, and an explanation is in
order.

The first problem is that Pān. ini’s grammar is generative,
in the sense that it explains how a Sanskrit locutor with a
communicative intention is to proceed in order to construct
a correct sentence with the intended meaning. It thus pro-
ceeds from semantics to syntax to morphology to phonol-
ogy, applying rules until he obtains a terminal stream of
phonemes representing the correct enunciation of a syntac-
tically correct paraphrase of his intended message. At every
step in the process the earlier decisions are available, and
thus for instance morphological derivations of a word may
depend of the precise sense in which it is used in the sen-
tence, phonological rules may depend on the meaning and
morphological features of the word giving rise to the cur-
rent phonological realization, etc. It is thus not possible to
just inverse the rules to get an analysis of a Sanskrit sen-
tence presented as a stream of phonemes (which is basically
the input representation of a devanāgar̄ı text, as a syllabic
representation unambiguously decomposable as a stream of
phonemes, representing faithfully the euphonic combination
of the words composing the enunciation). In other words,
Pān. ini tells how to speak, given the meaning to be con-
veyed, not how to understand a speech, i.e. extract its in-
tended meaning from the phonetic signal. Even if we could
formally present a Pān. inean generator, its inversion would
lead to all the non-determinism intrinsic to the linguistic
ambiguities, which in last resort must use a lot of contex-
tual information for their resolution, including metaphorical
knowledge, proper names recognition, and common sense
reasoning, all very complex phenomena not presently suc-
cessfully modelisable computationally. Not to speak of the
inherent ambiguities of sandhi exploited by poets to convey
parallel meanings.

Another problem is that actually Pān. ini’s grammar has not
been to this day analysed to a degree of precision warrant-
ing its computer implementation. The mutual scope of the
various rules is not explicitly stated in the sūtran. i - only
the beginning of sections distributing the applicability of a
given rule is indicated, the end of the section being implicit.
A long tradition of interpretation has led to more or less
standard explicit indications of scoping, like in the classical
[28], but such conventions have not yet brought a consen-
sus on this issue. Furthermore, the meta-linguistic rewriting

machinery of Pān. ini has not yet been presented with a level
of detail allowing its precise algorithmic properties to be as-
sessed - is there a complete mechanism for arbitration of
conflicting rules, is the system determinate (confluence), is
the rewriting always terminating, what is the computational
power of the underlying formal system, etc. Such issues are
currently a hot topic of research, and progress on these is-
sues ought to follow, but at present there is no serious hope
to build a “computerized Pān. ini” soon, and still less to use
it in reverse as a parsing tool. Furthermore, as remarked
recently on Internet by Michael Witzel from Harvard Uni-
versity, a critical edition of the As.t.ādhyāȳı manuscripts and
of its various commentaries is still badly lacking.

A final consideration is of course that the need of linguis-
tic tools for making sense of real Sanskrit corpus, even re-
stricted to the Classical Sanskrit period, will demand a much
wider coverage than the canonical Pān. inean utterances. Not
only Sanskrit new vocabulary was acquired in the 25 cen-
turies time span since he wrote his work, but a lot of say
Epic corpus contains important variations from his standard
[27]. Specialized dialects exist, such as Buddhist Sanskrit,
as well as regional variants, although admittedly the lin-
guistic evolution phenomenon is much less active for San-
skrit, because of the trimuni tradition, than for vernacular
languages. Even though, a linguistic analysis of Sanskrit
theater plays will demand proper modeling of prākr. ita (ver-
nacular) dialects such as ardhamāgadh̄ı, in order to analyse
the discourse of women and servants.

For all these reasons, Pān. ini’s grammar was not chosen as
the core ingredient in the linguistic modeling of our plat-
form. Nonetheless, Pān. ini’s grammar is ultimately the golden
standard against which the generative tools underlying any
Sanskrit implementation must be measured.

3. LEXICON
It is our thesis that any platform of natural language me-
chanical treatment must put the lexicon at the heart of
the model, since it is the basic repository of all linguistic
facts through which the various layers must communicate.
This is a general trend in computational linguistic research:
algebraico-logical tools must be lexicalized, in the sense of
driving the combinatorial process by rules and parameters
read from the lexical database.

Actually our computer lexicon is obtained mechanically from
a Sanskrit to French dictionary which we started back in
1994, originally as a human-readable Sanskrit lexicon of In-
dian culture. Its reverse engineering as a computer-readable
lexical database was told in [12, 14, 20]. From the source of
the dictionary is mechanically extracted a lexical database
of root words informed with morphological features, which
is itself further processed by morphological generative pro-
cesses to databanks of inflected forms, as we shall see. It
is to be noted that this process is not a one-time transla-
tion: the Sanskrit to French dictionary keeps to be updated
asynchronously with the platform development.

A word about the computational environment is in order.
We use as our platform programming language a version
of the ML functional language developed at INRIA for the
last 20 years, called Objective Caml [25]. The main advan-

tage for this kind of computational linguistics software is
its modular nature. Parameterized modules called functors,
described in separately compilable source files, allow proper
sharing of interfaces of independently developed processes.
Thus, the translation of our dictionary source into lexical
databases is an instance of a generic process which com-
piles our high-level dictionary presentation into a parametric
backend generative process. One such process is the actual
printing of the dictionary as a typographically neat high-
resolution book form (through the devnag-TeX-pdf chain of
treatment), and as a Web site interlinking a hypertext ver-
sion of the dictionary with various linguistic tools (through
XML-HTML-CSS-CGI-Unicode Web standards). The full
production of a new version of the whole platform takes less
than an hour of computer time on my laptop, and thus a
high rate of versioning is easily achieved, with incremental
compiling of the software and linguistic data.

The structure of our Sanskrit database is independent of
French, which concerns only the semantic definition of the
words, and not their combinatorial features. Thus the dic-
tionary is designed as a multilingual dictionary, where se-
mantic components for other natural languages (English,
Hindi, other Indian languages) will be able to replace the
current French interface, either by translation of the cor-
responding entry, or by alignment of existing digitalized
Sanskrit dictionaries such as the Monier-Williams Sanskrit-
English dictionary.

Our current lexical coverage, at the time of writing is the
following. Our dictionay has 15486 entries, of which 544 are
verbal roots, 8512 are substantival generative stems and el-
ementary undeclinables, 3797 are secondary derived stems
and compounds, 223 are composed compounds, 60 are mor-
phological suffixes, 121 are frozen inflected forms, 400 are
idiomatic forms, 1314 are idiomatic expressions, 203 are ci-
tations and 312 are cross-reference links. This vocabulary
coverage is sufficient for the analysis of simple Classical San-
skrit sentences, given that our analysis takes care of preverbs
recognition and compound analysis, as we shall see.

4. PHONOLOGY
The main stumbling block for the mechanical analysis of
Sanskrit is sandhi, i.e. euphonic combination. Sandhi comes
in two varieties, morphological sandhi and sentential/comp-
ound sandhi. The first kind is invoked when a particle is
affixed to a stem, typicallly as a derivational morpheme, or
as a flexional suffix. The second kind is used for glueing
words together for forming compound words and sentences.
In the Western grammatical terminology, the first one is
called internal, the second one external. This terminology is
to a certain extent misleading. External sandhi is more or
less well defined, and consists in local rewriting of phonetic
strings (although special cases make it context dependent,
for instance there are special cases for dual forms and some
pronominal forms). Internal sandhi is more complex, since
it involves long-distance cascading retroflex transformations.
Furthermore, it is not unique as a string merging operation,
there are various forms of internal sandhi according to the
morphological process in which it is used - this is where a
closer Pān. inean modeling would be useful.

We modeled external sandhi as a regular relation over phone-

mic streams, with contextual rewrite rules attached as at-
tributes to the lexicalised forms. We showed that the regu-
lar relation is invertible by an appropriate finite-state trans-
ducer, in a situation where the number of analyses is ac-
tually finite. This modelisation involved the development
of a finite-state library for Ocaml, the ZEN toolkit [15, 16,
18, 19], available as free software at the distribution site
http://sanskrit.inria.fr/ZEN. This toolkit is actually
independent of Sanskrit. The complete explanation of the
segmentation process (sandhi viccheda) is available for com-
putational linguists and theoretical computer scientists as
[21], simplified accounts for natural language specialists have
been presented in [13, 17].

We also wrote an internal sandhi computer, which operates
on phonemic streams not just as a finite state transducer,
but as a computational process involving context-dependent
transformations for instance for retroflex transformation.
This internal sandhi generator is the workhorse of flexional
morphology, as we shall see. In order to avoid parasitic over-
generation of roots and stems ending in phonemes j and h,
we have been led to split the corresponding phonemes into
two tokens, with the addition of so-called “extra phonemes”
j’ and h’. These are indeed remnants from an earlier Indo-
European stratum of language, still implicit from their dis-
tinct sandhi behaviour. Thus j’ combines with t to form
combination s. t. (whereas j obtains d. h). Similarly h’ com-
bines with t to form combination gdh (whereas h obtains
kt). The lexicon indicates that roots bhrāj, mr.j, yaj, rāj,
vraj and sr. j are ended in j’, leading to forms such as par-
ticiple mr.s.t.a. Similarly, roots dah, dih, duh, druh, muh and
snih are ended in h’, leading to forms such as dugdha. These
are typical context dependent internal sandhi rules, local-
ized as uniform transformations with the help of additional
lexicalized markers, fully in the spirit of Pān. ini.

5. MORPHOLOGY
We distinguish traditionally between derivational morphol-
ogy and flexional morphology. We first implemented flex-
ional morphology for nouns, using paradigm tables collected
from various Sanskrit grammars, mostly Western (Whit-
ney, Macdonnel, Gonda, Renou, Kale). A given substan-
tival stem, with a given gender, leads to a paradigm table
listing the permissible suffixes for each valid combination of
number and case. The suffixes are glued to the stem with
internal sandhi, and the tagged corresponding form is en-
tered in the inflected form database of the corresponding
lexical category. Three categories are recognized for such
forms: inflected nouns, bare form as left compound compo-
nent, and inflected forms of root stems, usable only as right
compound components. At the time of writing, the number
of paradigms for nouns/adjectives, pronouns and numbers
is 101.

The morphological generation of verbal forms was more com-
plex, and its unfolding spread over more than two years.
It combines derivational morphology - how to generate the
stems of the various finite forms systems, and flexional mor-
phology, i.e. conjugation of root forms. The complete para-
digms were developed for the present system (present, im-
perfect, optative/potential and imperative) in the three voices
(active-parasmaipade, reflexive-ātmanepade, and passive), the
future (both in finite form and periphrastic form), the redu-

plicating perfect and the seven forms of aorist in both paras-
maipade and ātmanepade. Furthermore, the causative, in-
tensive and desiderative conjugations were derived, for the
roots which were explicitly marked in the lexicon as adopt-
ing such forms. This covers the most usual classical Sanskrit
root verbal forms.

The lexicon indicates explicitly which verbs take which pre-
verb. This is very useful for going back and forth, through
hypertext links, between a root and a verbal form where
preverb affixing may have cascaded. The transitive closure
of preverb affixing generated mechanically the set of 81 most
usual preverb sequences, kept in a specific database of verbal
prefixes. Rather than generating explicitly all verbal forms,
only root forms are stored in the inflected forms database
of the corresponding category, on the assumption that ver-
bal forms would be analysed through external sandhi analy-
sis. This is a simplifying assumption, and currently a cause
of incompleteness, for the preverbs which give rise to spe-
cific sandhi, sometimes involving internal retroflexion, like
in stems pratis. t.hā, paris.vañj, nis. ūd, nirn. ayati, vis. t.ambh, etc.
Such constructions will have to be dealt specifically at some
further stage. It is to be remarked that these irregular for-
mations are not dealt in a generic way by Pān. ini, whose
grammar lists such exceptions in all painful detail.

A special mechanism had to be coined in order to deal
with preverb ā, since because of its brevity – it is the only
mono-phonemic lexical item in classical Sanskrit, whereas
the Vedic language has an exclamative particule u – it may
combine with the previous word in ways which cascade with
its own sandhi with a root form in non-associative ways.
Thus the utterance ihehi (come here) results from the sandhi
of iha with ā, yielding the intermediate ihā (towards here),
which itself combines with imperative ihi (go). Storing the
verbal form ehi (come) would lead to the incorrect *ihaihi.
The analysis of this phenomenon induces the introduction
of two so-called phantom phonemes *e and *o, which permit
the generation of special forms for the roots starting respec-
tively by short or long i and by short or long u in order to
pre-compute special forms such as *ehi in our example, with
specific sandhi rules simulating the left-to-right character of
sandhi. This mechanism is described in [17].

Finally, we generated the participial stems of roots, a spe-
cially generative process, since each participle in its turn
yields substantivally declensed forms in all genders, num-
bers and cases. We identified a present participle, a future
participle and a perfect participle in both parasmaipade and
ātmanepade, a present passive participle, and a future pas-
sive participle with three possible paradigms (-ya, -̄ıya, -
tavya). Undeclinable forms are generated for infinitives, ab-
solutives (in -ya and -tvā), and the rare periphrastic perfect
forms.

6. SEGMENTATION AND LEXICAL ANAL-
YSIS

All these inflected word forms are stored in 9 databases,
corresponding to 9 different lexical categories, identified as
phases or states of the lexical analyser. The lexical analyser
is modeled as a modular transducer in the sense of [23]. The
diagram in Figure 1 shows the superstructure of this finite-
state process.

Figure 1: The 9-phases lexical analyser.

We can read on this figure the finite-state description of a
Sanskrit sentence understood as a list of Words, where a
Word is either a Substantive, a Verb, or an Invariable form.
In turn a Substantive is an inflected Noun, possibly pre-
fixed by an arbitrary list of compound-forming noun stems,
or an inflected noun root form (Ifc), necessarily prefixed by
a non-empty list of compound-forming noun stems. This
last distinction is absolutely necessary in order to avoid bad
over-generation of wrong segmentations, where the prefix-
formations of −pa, −ga, −da and the like would be at-
tempted as prefixes of all kinds of words. Due to their short-
ness, these root forms must be restricted to right-components
of compounds. Next, a Verb is a root form, possibly pre-
fixed by a list of preverbs, or possibly a composite form
of an auxiliary root finite form, with a special periphratic
form of a substantive formed with an -̄ı suffix. We coined
Iiv (in initio verbum) by analogy with Iic standing for in
initio compositi, a common Western categorization. Such
compound forms are rarely described in grammars, whereas
they form common idiomatic expressions such as ghan̄ı bhū
(to harden), dūr̄ı bhū (to go away), dūr̄ı kr. (to send away),
nav̄ı kr. (to renovate), pavitr̄ı kr. (to purify), bhasmı̄ kr. (to re-
duce to cinders), etc. In order for such idiomatic expressions
to be recognized as legal Sanskrit, the lexical analyser must
accommodate these -̄ı forms. Rather than trying to have an
exhaustive list of such idiomatic usage in our lexicon, and an
associated complex sub-automaton, we decided to make this
lexical category generative, and to duplicate the finite root
forms of auxiliaries kr. and bhū. In a similar spirit of sim-
plicity we decided not to limit preverb prefixes for a given
root to the ones explicitly listed in the lexicon, although the
corresponding data structure is indeed explicit in our imple-
mentation. Instead, we collect all preverb prefixes used for
at least one root, and allow to regognize them as prefixes
of any root. The slight overgeneration which this induces
is compensated in our opinion, firstly in the simplified and
thus more compact automaton, and secondly in the gener-
ative capacity with which it recognizes preverb formation.
Our machine will recognize some verb forms as legal even
when the corresponding entry does not exist in our limited
lexicon.

Maybe this list of legal preverb sequences is worth listing ex-
plicitly, since to our knowledge this information is not avail-

able in standard grammars: ati, adhi, adhyava, adhyā, anu,
anuparā, anupra, anuvi, anta, apa, apā, abhi, abhini, abhipra,
abhivi, abhisam, abhyanu, abhyava, abhyā, abhyut, abhyupa,
abhyupā, ava, ā, ut, utpra, udā, upa, upani, upasam, upā,
upādhi, tira, ni, ni, nirava, nirā, parā, pari, parini, parisam,
paryupa, pura, pra, prati, pratini, prativi, pratisam, pratyapa,
pratyava, pratyā, pratyut, prani, pravi, pravyā, prā, vi, vini,
vini, viparā, vipari, vipra, vyati, vyapa, vyabhi, vyava, vyā,
vyut, sa, sam. ni, sam. pra, sam. prati, sam. pravi, sam. vi, sam,
samava, samā, samut, samudā, samudvi, samupa.

Finally, the Invariable words are classed into firstly Unde-
clinable forms, such as adverbs, prepositions, conjunctions
and other tool words and particles listed in the lexicon, to
which are added the root absolutives in -tvā, and secondly
absolutive stems in -ya, necessarily prefixed by a non-empty
preverb sequence. We see here how the distinction between
the two forms of absolutives is dealt with correctly by the
regular grammar formalization.

The state graph shown in Figure 1 is only the super-structure
at the phase level, since each phase lexical analysis uses a
finer-grain state machine compiled from the corresponding
lexical database. The inter-linking of the various machines
is implicit from the operation of the reactive engine imple-
menting the lexical analyser as a modular transducer [23].
We remark that proper sharing is induced by this mecha-
nism. Thus the two phases Pv1 and Pv2 of the diagram
correspond to a unique preverb sequences recognizer.

Most importantly, the lexical analyser is an external sandhi
analyser, which inverts the sandhi rational relation into a
finite stream of segmentation solutions, along the sandhi
viccheda algorithm explained in [21]. That is, a transition
from one phase to the next in the above diagram predicts
possible sandhi segmentation, and reports it as a stream of
segmentation solutions, yielding an explicit sequence of seg-
ments with appropriate sandhi rules. Thus, for instance,
on input tacchrutvā (having heard this), the lexer responds
with one segmentation solution:

Input: tacchrutvaa

may be segmented as:

Solution 1 :

[tat <t|"s -> cch>]

["srutvaa <>]

This means that the segmentation tat śrutvā is recognized,
with sandhi merging the final phoneme t of tat with the ini-
tial phoneme ś of śrutvā into the liaison phoneme string cch.
The answer is thus a very precise certificate proving that the
input string may indeed be derived from the stated words.
Furthermore, since these words are generated from explicit
morphological derivations, we may readily lemmatize each
form by tagging the lexicon stem with its morphological fea-
tures, by simple table look-up. In this lemmatizing mode,
we effectively get a (non-deterministic) tagger. On the above
example, this yields:

Input: tacchrutvaa

may be segmented as:

Solution 1 :

[tat

{ acc. sg. n. | nom. sg. n. }[tad] <t|"s -> cch>]

["srutvaa

{ abs. }["sru] <>]

Furthermore, in the Web interface, the stem tat and śru are
hyperlinks to the corresponding dictionary entries, yielding
an approximate interpretation, at least as much as lexical
semantics allows.

Here is the treament of a more realistic example (the stand-
ing boy answers the master’s questions):

Input: ti.s.thanbaalakasupaadhyaayasyapra"snaa-

naamuttaraa.nikathayati

may be segmented as:

Solution 1 :

[ti.s.than

{ nom. sg. m. | voc. sg. m. }[ti.s.that] <>]

[baalakas

{ nom. sg. m. }[baalaka] <>]

[upaadhyaayasya

{ g. sg. m. }[upaadhyaaya] <>]

[pra"snaanaam

{ g. pl. m. }[pra"sna] <>]

[uttaraa.ni

{ acc. pl. n. | nom. pl. n. }[uttara] <>]

[kathayati

{ pr. ac. sg. 3 }[kath] <>]

Solution 2 :

...

Remark that the stream of input phonemes is continuous,
there is no blank in the representation of a continuous de-
vanāgar̄ı text. Indeed, the user may provide a few blank
spaces here and there, helping the system in guessing the
segments, and this will in general decrease the number of
returned solutions.

This state of affairs was reported at the XIIth World San-
skrit Conference in Helsinki in August 2003, and the broad
lines of the implementation of this Sanskrit tagger were re-
cently presented for an audience of linguists in [22].

Let us give a few figures concerning the automata sizes.
Our lexicon currently generates 167163 full and initial iic
noun forms, 127122 root verbal forms, 16571 ifc final noun
forms, 841 undeclinable forms and 81 preverbs. It also gen-
erates the very large number of 224300 participial forms,
which actually are not used at present in this tagging en-
gine. The most frequent participles actually occur (usually
as adjectives) in the nouns database. Therefore the par-
ticipial forms are actually not used by the current version of
the tagger. They shall be used at a latter stage, as part of
a more robust stemmer which will attempt to analyse non-
lexicalised forms, as part of a process of lexicon acquisition

from the corpus. The actual transducers data-structures
built by compiling the inflected forms databases with sandhi
prediction points, is very compact due to the maximal shar-
ing policy of the Zen toolkit. The state transition structure
for roots fits in only 155Kb, the nouns one in 1M byte, the
iic one in 119Kb, , the iiv one in 67Kb, the ifc one in 22Kb,
the aux one in 23Kb. Overall, the full transducer represen-
tation needs less than 1.4Mb. Furthermore, its execution
time is negligible with respect to the time needed to print
the result, since all database accesses have been precompiled
into the automaton structure.

The correctness, completeness and termination of this algo-
rithm is proved in [21], assuming that all the forms com-
posing the sentence are indeed generated by the morpholog-
ical generator. Presently there are three difficulties. The
first one corresponds to the exocentric or adjectival usage of
compounds (bahuvr̄ıhi), since such compounds may be used
in a gender which the right component does not admit by
itself. Thus b̄ıja (seed), a neuter noun, forms the compound
raktab̄ıja, usable in the masculine gender as naming a mon-
ster “he whose blood is regenerated”. Its nominative form
raktab̄ıjah. is not obtainable as the iic form rakta followed
by an inflected form of stem b̄ıja - unless one generates all
forms in all three genders for every noun, at the risk of im-
portant overgeneration. For the present version, we chose
rather to record in the lexicon such bahuvr̄ıhi usage of com-
pounds, and to add the corresponding missing forms – such
as raktab̄ıjah. .

Actually, a preprocessing phase on the lexicon identifies all
compounds which are irregular, in the sense of not being ob-
tainable by external sandhi of the iic. form of their left com-
ponent with a regular stem of their right component. This
analysis adds 180 ‘autonomous’ compound forms. This list
includes dvandva compounds with double dual forms, such
as mitrāvarun. au, compounds whose left component uses a
feminine form, such as durgāpūjā, or an inflected form, such
as vasum. dhara, irregular external sandhi such as pr.s.odara or
vísvāmitra or even internal sandhi such as rāmāyan. a. Their
inclusion as autonomous ready-made nouns allows the gen-
eration of their forms, since our automaton is not able to
get their analysis (as compounds) from their components.
Besides these exceptional cases, all compounds formed with
stems from the lexicon are analysable, down to any nest-
ing level, without the need to have them explicitly listed as
lexicon entries.

A kind of reverse difficulty occurs for avyaȳıbhāva com-
pounds such as yathāśakti, which ought to be recognized
as an invariable adverb, although its rightmost component
admits inflexion. This is a minor cause of overgeneration.
Finally, we shall have to add verbal forms in the cases where
the affixing of a preverb provokes retroflexion or other sandhi
transformation out of the realm of external sandhi, like prati-
s. t.hā.

7. SHALLOW PARSING
The main problem with the tagger we just described is its
horrendous over-generation. For the simple sentence given
above, we get 60 candidate segmentations, most of which are
completely nonsensical. For a slightly longer sentence, the
number of candidate segmentations may well exceed 10000,

rendering the tool useless without extra analysis. This is
why we set to build a filtering mechanism, based on se-
mantic principles. In Pān. inian terms, this amount to do
its kāraka analysis, in Western terms this means comput-
ing dependency structures consistent with thematic roles of
constituants.

The analysis consists in trying to match the valency or sub-
categorisation pattern of verbal forms - needed thematic
roles for the verb to be meaningful for denoting a situation
or action - with the possible roles assumed by noun phrases
through their case classification. Thus a transitive verb will
demand an Agent and a Patient. If it is in the active voice,
these will be realized respectively by a substantive form in
the nominative case (the Subject) and a substantive form
in the accusative case (the Object). If it is in the passive
case, we shall need an instrumental for the Agent; if the
verb is transitive, we shall need also a nominative for the
Patient. As in the previous case, the nominative must agree
in number and person with the verbal finite form. For pas-
sive intransitive verbs, in the Impersonal aspect, there is no
need of nominative, since there is no grammatical subject,
the logical subject being the instrumental Agent. This leads
to a graph-matching algorithm, for each possible interpreta-
tion of tags in any given candidate segmentation. Extra sub-
stantives in the nominative case will be tentatively merged
with an already chosen one, provided they agree in num-
ber and gender, in order to account for adjectival use and
appositions. Extra substantives in other cases are taken
as semantically neutral adverbs (or unanalysed possessive
noun phrases for genitives). Similarly vocatives are ignored.
When finite verb forms are missing, the copula is postu-
lated, and a substantive in the nominative case is taken as
the predicate. Missing roles, as well as extra nominatives,
are counted as penalities. For each branch fixing a choice
of morphological tag to every segment, an integer penality
is thus computed, and the minimum of all such penalities is
the compound penality of a candidate segmentation. Then
only segmentations with minimal penalty are presented to
the user, in two lists. The first list is the preferred one, it
gives the minimal penalty solutions with minimal number
of segments. The second one gives second-choice potential
solutions, with lowest penalty but non-minimal number of
segments.

This algorithm, crude as it is, is very efficient in practice
to reject most non-sensical solutions, while keeping the in-
tended interpretation within a small list of candidate so-
lutions proposed to the user for perusal. Let us give a
few typical uses on non-trivial sentences. First of all, on
our tis. t.hanbālakasupādhyāyasyapraśnānāmuttarān. ikathayati
example above, our parser returns only one segmentation
among 60 possible ones (it is actually the first solution shown
above), and thus the filtering efficiency is 100% in this ex-
ample. Only one additional candidate is proposed along.

Let us now consider a sentence which exhibits interesting
levels of ambiguity: śvetodhāvati. The lexical analyser finds
15 candidate segmentations. The parser filters out all of
them but the first one, proposed as best interpretation:

Input: "svetodhaavati

may be segmented as:

Figure 2: Semantic analyses of solution 1

Solution 1 :

["svetas

{ nom. sg. m. }["sveta] <as|dh -> odh>]

[dhaavati

{ pr. ac. sg. 3 }[dhaav#1]

| { pr. ac. sg. 3 }[dhaav#2] <>]

In this solution, there is an ambiguity between dhāvati as
a form of root dhāv1 (he runs) and as a homophonic form
of root dhāv2 (he cleans). The subject of the verb is the
nominative form śvetah. - the white one (typically a white
horse may be available from the context). But the cleaning
interpretation demands an object to be cleaned, which is
not available in the sentence, whence a penalty of 1. Our
parser Web interface gives this information on demand, for
every potential solution. The user may thus peruse the var-
ious interpretations, in order to finalize the morphological
tags choice, and focus on one completely disambiguated in-
terpretation. Figure 2 shows a screen image of the choices
available to him if he chooses this solution.

Each semantic analysis is marked with a green heart sym-
bol, which may be activated by the user in his final choice.
If he clicks on the first one, with penalty 0, he will get the fi-
nal unambiguous tagging corresponding to “the white (one)
runs”. He may then store this solution as an XML structure,
and enter the next sentence of his text. Our machinery may
thus be used as a little Sanskrit Tagging Web service.

Now it so happens that this sentence is actually ambiguous.
It may also be parsed as “The dog runs here”. This actually
corresponds to solution 13, also with penalty 0, but relegated
to the subsidiary list of candidate solutions, since it involves
3 segments instead of 2:

Figure 3: Semantic analyses of solution 13

Solution 13 :

["svaa

{ nom. sg. m. }["svan#1] <aa|i -> e>]

[itas

{ adv. }[itas] <as|dh -> odh>]

[dhaavati

{ pr. ac. sg. 3 }[dhaav#1]

| { pr. ac. sg. 3 }[dhaav#2] <>]

If the user selects this solution, he will get the analysis in
Figure 3.

Again, the two homophonic roots dhāv give rise to an ambi-
guity, but for the same reason as above the only acceptable
one is “to run”, leading to the second possible interpretation
of this sentence.

We stress that our treatment of kārakas/thematic roles is
minimal. We have so far only used the crudest subcategori-
sation patterns of verbs, namely whether they may be used
as transitive or intransitive verbs. We could of course re-
fine this analysis, demanding a dative argument for verbs
of gift, etc. But the additional complexity of dealing with
complex subcategorization patterns, with an added level of
non-determinism, does not seem worth the trouble for the
simple task of filtering out non-sensical interpretations.

We end this section with an example in the Impersonal voice.
If we input the sentence mayāsupyate (I sleep), our parser
returns correctly only one solution mayā supyate (out of 14
possible segmentations), with correct identification of the
Agent (I) and process (sleeping), and with no penalty in-
duced from the absence of a grammatical subject.

8. TOWARDS A MORE SOPHISTICATED
SYNTACTIC ANALYSIS

The semantic analysis sketched in the preceding section is
of course extremely naive. It amounts to deny any role to
syntax as an autonomous structure, and assumes implicitly
that the order of words in a Sanskrit sentence is irrelevant
to its meaning. This is tenable only for very simple sen-
tences, without subordinate verbal phrases (except absolu-
tives, which may be modeled adequately to a certain extent,
by accommodating the ellipsed Agent through appropriate
subcategorization patterns for the absolutive forms). Also,
common phenomena such as coordination are not accom-
modated properly in this simplistic commutative world. A
more sophisticated treatment demands a proper considera-
tion for a syntactic structural level, where the left-to-right
precedence ordering between successive words is still avail-
able.

One problem in this quest is the scarcity of available mate-
rial on descriptive Sanskrit syntax, in order to have rigor-
ous arguments to choose one formal model of syntax or the
other before even considering its mechanization. Besides
Speijer’s book on Sanskrit syntax [34] and Apte’s “Guide to
Sanskrit Composition as a treatise on Sanskrit syntax” [1],
both 19th century compositions, there is very little littera-
ture on the topic. Pān. ini is quite exhaustive on morphology,
but discusses syntax very cursorily - it is not even clear if
he explicitly authorizes a sentence with several finite verbal
forms. He basically limits his analysis to the kāraka theory
which we strive to emulate with the constraint machinery
sketched above. Bhartr.hari, an Indian grammarian from
the Seventh century, has produced an important treaty on
semantics, the Vākyapad̄ıya, which has not been at this date
analysed by modern theoretical linguists in ways which could
lead to a proper treatment of Sanskrit syntax. His work is
actually a semiotics theory, comparable to the Western tra-
dition of philosophy of language, but with the distinctive
character that in the Indian tradition grammar is prior to
logic, and thus the notions of semantics arise from natural
language constructions, instead of relying on logical consid-
erations built on mathematical principles - our proof theory
of mathematical logic.

Of course there exist numerous case studies on aspects of
Sanskrit Syntax [30, 36, 11], but few general theories. In
[35], Staal discusses the crucial problem of word order in
Sanskrit, proposing a “Calder mobile” model of dependency
structures, which is a first approximation to a model of San-
skrit syntax, in which crossings by long-distance dependen-
cies is ruled out. Generalizing the model to more dislocated
sentences, a common phenomenon in Sanskrit litterature, in-
volves an analysis of the constraints governing such disloca-
tions, without degenerating into the fully free commutative
model. Recent papers by B. Gillon [9, 8, 7] investigate such
questions, by giving appropriate syntactic analysis to char-
acteristic constructions taken from the examples in Apte’s
book. We intend to profit of these analyses in the design of
our Sanskrit syntax analyser.

We decided to make experiments in the processing of a San-
skrit sentence by mediating the interface between our lexi-
cal analyser and the semantic constraint satisfaction module
through a syntactic layer seen as the interpreter for linguis-

tic processes triggered by the particles and other tool words
from Sanskrit. The relevant context is that of a linguistic
tool modeled as a transducer over morphologically tagged
word streams. A linguistic tool is triggered by a tool word
in the stream of input words. What it does is to take con-
trol over the stream of the preceding words, to apply some
transduction over it, and to return this as the input stream
to the next item. This methodology is consistent with the
postfix nature of most Sanskrit particles, typically iti, which
closes a level of direct language as some sort of quotation
ending, whose beginning is implicit - i.e. must be decided
by the iti tool in light of the preceding context. In its case,
the tool applies not just to the preceding stream of lexical
items of the current sentence, but to the whole preceeding
context.

We implemented as an experiment two such tools. The first
one is the saha (with) tool, which just checks that its prede-
cessor is a substantive in the instrumental case, and absorbs
it so that it does not contribute to further dependencies.
Here the resulting tag is no more a mere morphological tag,
but rather a Saha clause having the instrumental item as
an argument constituant. That is, our tool transducers are
really operators on syntax tree streams.

The second tool concerns coordination, it is the ca (and)
tool. This tool looks in its immediate left neighborhood,
possibly grouping words in noun phrases in the case of agree-
ment (typically an adjective qualifying a noun, and agreeing
with it is number gender and case). It then applies addition
of two or more such morphological chunks in order to re-
turn a compound chunk, making explicit the coordination
structure. Here addition is an operation computing indepen-
dently in the three dimensions of a noun morphological tag.
Over their number, it is a non-standard commutative ad-
dition, where one plus one equals two, two plus one equals
many, and many plus anything equals many. Over their
gender, it is a max operation, where Masculine is higher
than Feminine, itself higher than Neuter. Over their case,
it must check that they agree. Finally, when the case is
Nominative, it computes the addition of their person as a
max operation, where the first person is higher than the sec-
ond which is higher than the third (thus you and I makes
us, and he and you makes the whole of you). Actually, the
combinatorics of the ca particle is a little bit more com-
plex, but I am simplifying in this exposition. With the
help of the ca tool, our parser is able to find the right
solution (among 120 possible segmentations) to the sen-
tence dvit̄ıyakaks.yāyām. dvebāliketrayobālakāścapat.hante (in
the second class two girls and three boys are studying).

9. CONCLUSION
We have described in this paper a methodology for a computer-
aided analysis of Sanskrit sentences, with three tiers. The
first tier is a complete sandhi segmenter. The second tier is a
dynamic shuffling of the morphologically tagged lexemes by
stream combinators governed by the tool particles. It is very
sketchy at this point. The third tier is the thematic roles
constraint processing machinery, which we did not describe
in detail, but which strives to be consistent with Pān. ini’s
view of syntax, as exposed for instance in Kiparsky’s pa-
per on the architecture of Pān. ini’s grammar [24]. However,
Pān. ini’s kāraka assignment procedure does not give a ex-

plicit role to the polarities which underly our model, in the
spirit of linear logic or categorial grammars - thematic roles
in the verb subcategorization patterns are of negative po-
larity, and match the positive polarity of the actors, repre-
sented by substantive phrases of a given case. Furthermore,
his treatment of Nominative as a default case is remote from
our own treatment where the Subject is a prominent notion,
except in the Impersonal voice. This may reflect an incorrect
linguistic bias, and the role constraint management may re-
quire some adjustements to correct this discrepancy, which
calls for further investigation.

We believe our notion of linguistic tool is a valuable abstrac-
tion. We have validated the general idea on two specific
constructions, but many more tools need to be defined, and
their mutual interaction will raise important problems in the
elaboration of a proper semantical treatment. Furthermore,
our current implementation is too naive to be viable in a
long-term real-scale usage. Syntactic constructions are not
shared during the non-deterministic search, leading to ulti-
mate exponential behaviour. We believe a serious treatment
of syntactic constraints must use the modern implementa-
tions of constraint programming to search for their satis-
faction. Furthermore, appropriate notions of underspecified
partial structures, in the spirit of Tree Adjoint Grammars
or more recently of Interaction Grammars must be put to
use to reify the dependency structure.

A proper notion of syntax will have of course to analyse
compounds along their various modes of formation. The
bahuvrīhi construction, or exocentric compound, promotes
a substantive to an adjective (like in English long-nosed as
the adjective qualifying a person with a long nose) itself of-
ten substantivized as a typical member of its class. These
two coercions must be marked for their semantic interpre-
tation, although they have no phonetic realisation. It seems
unavoidable to depart from the tradition of pure dependency
graphs, where only phonetically realised items support the
structure.

Our Sanskrit engine, comprising the dictionary, parser and
associated support tools, is accessible from Internet as a
Web service, at URL http://sanskrit.inria.fr. It is eas-
ily available on any station running an HTTP server as a
stand-alone offline application, and thus on any Linux box
with Apache, or on Macintosh stations. Mirror sites of the
Sanskrit engine have been installed at the University of Hy-
derabad and at the Rashtriya Sanskrit Vidyapeetha in Tiru-
pati. Our morphological databases, as tagged XML docu-
ments, are available as free linguistic resources downloadable
from the above URL. The Zen finite-state toolkit is available
as free software from http://sanskrit.inria.fr/ZEN/.

Work is under way to adapt this machinery to the construc-
tion of a treebank of parsed sentences, issued from charac-
teristic examples from Apte’s Sanskrit Syntax manual. This
work is in cooperation with Pr Brendan Gillon from McGill
University. It is expected that this treebank will be used
to learn statisticallly the parameters of the parser in order
to increase its precision. Other modules will attempt statis-
tical tagging, needed for bootstrapping this prototype into
a more robust analyser, usable for lexicon acquisition from
the corpus.

10. REFERENCES
[1] V. S. Apte. The Student’s Guide to Sanskrit

Composition. A Treatise on Sanskrit Syntax for Use of
Schools and Colleges. Lokasamgraha Press, Poona,
India, 1885.

[2] A. Bergaigne. Manuel pour étudier la langue sanscrite.
F. Vieweg, Paris, 1884.

[3] R. S. Bucknell. Sanskrit Manual. Motilal Banarsidass,
Delhi, 1994.

[4] M. Coulson. Sanskrit - An Introduction to the
Classical Language. Hodder & Stoughton, 2nd ed.,
1992.

[5] M. M. Deshpande. A Sanskrit Primer. University of
Michigan, Ann Arbor, 2001.

[6] P.-S. Filliozat. Grammaire sanskrite Pâninéenne.
Picard, Paris, 1988.

[7] B. S. Gillon. The autonomy of word formation:
evidence form classical Sanskrit. Private
communication, 1993.

[8] B. S. Gillon. Bartr.hari’s solution to the problem of

asamartha compounds. Études Asiatiques/Asiatiche
Studien, 47,1:117–133, 1993.

[9] B. S. Gillon. Word order in classical Sanskrit. Indian
Linguistics, 57,1:1–35, 1996.

[10] J. Gonda. A Concise Elementary Grammar of the
Sanskrit Language (Tr. Gordon B. Ford Jr). E. J.
Brill, Leiden, 1966.

[11] H. H. Hock, editor. Studies in Sanskrit Syntax. Motilal
Banarsidass, Delhi, 1991.

[12] G. Huet. Structure of a Sanskrit dictionary. Technical
report, INRIA, 2000. http:
//pauillac.inria.fr/~huet/PUBLIC/Dicostruct.ps

[13] G. Huet. Computational tools for Sanskrit. XXIth
South Asian Languages Analysis Roundatable,
University of Constanz, 2001.

[14] G. Huet. From an informal textual lexicon to a
well-structured lexical database: An experiment in
data reverse engineering. In Working Conference on
Reverse Engineering (WCRE’2001), pages 127–135.
IEEE, 2001.

[15] G. Huet. The Zen computational linguistics toolkit.
Technical report, ESSLLI Course Notes, 2002.
http://pauillac.inria.fr/~huet/ZEN/esslli.pdf

[16] G. Huet. The Zen computational linguistics toolkit:
Lexicon structures and morphology computations
using a modular functional programming language. In
Tutorial, Language Engineering Conference LEC’2002,
2002.

[17] G. Huet. Towards computational processing of
Sanskrit. In International Conference on Natural
Language Processing (ICON), 2003.

[18] G. Huet. Zen and the art of symbolic computing:
Light and fast applicative algorithms for
computational linguistics. In Practical Aspects of
Declarative Languages (PADL) symposium, 2003.
http://pauillac.inria.fr/~huet/PUBLIC/padl.pdf

[19] G. Huet. Automata mista. In N. Dershowitz, editor,
Verification: Theory and Practice: Essays Dedicated
to Zohar Manna on the Occasion of His 64th
Birthday, pages 359–372. Springer-Verlag LNCS vol.
2772, 2004. http:

//pauillac.inria.fr/~huet/PUBLIC/zohar.pdf

[20] G. Huet. Design of a lexical database for Sanskrit. In
Workshop on Enhancing and Using Electronic
Dictionaries, COLING 2004. International Conference
on Computational Linguistics, 2004. http:
//pauillac.inria.fr/~huet/PUBLIC/coling.pdf

[21] G. Huet. A functional toolkit for morphological and
phonological processing, application to a Sanskrit
tagger. J. Functional Programming, 15,4:573–614,
2005. http:
//pauillac.inria.fr/~huet/PUBLIC/tagger.pdf.

[22] G. Huet. Themes and Tasks in Old and Middle
Indo-Aryan Linguistics, Eds. Bertil Tikkanen and
Heinrich Hettrich, chapter Lexicon-directed
Segmentation and Tagging of Sanskrit, pages 307–325.
Motilal Banarsidass, Delhi, 2006.

[23] G. Huet and B. Razet. The reactive engine for
modular transducers. In J.-P. J. Kokichi Futatsugi
and J. Meseguer, editors, Algebra, Meaning and
Computation, Essays Dedicated to Joseph A. Goguen
on the Occasion of His 65th Birthday, pages 355–374.
Springer-Verlag LNCS vol. 4060, 2006. http:
//pauillac.inria.fr/~huet/PUBLIC/engine.pdf

[24] P. Kiparsky. On the architecture of Pān. ini’s grammar.
In International Conference on the Architecture of
Grammar, 2002.

[25] X. Leroy, D. Rémy, J. Vouillon, and D. Doligez. The
Objective Caml system, documentation and user’s
manual – release 3.00. INRIA, 2000.

[26] M. Müller. A Sanskrit Grammar for Beginners.
Munshiram Manoharlal, Delhi, repr. 2000.

[27] T. Oberlies. A Grammar of Epic Sanskrit. De
Gruyter, Berlin, 2003.

[28] Pān. ini. As.t.ādhyāȳı. Chaukhamba Surbharati
Prakashan, Vārān. as̄ı, 2004.

[29] E. D. Perry. A Sanskrit Primer. Columbia University
Press, New York, 1936.

[30] L. Renou. La valeur du parfait dans les hymnes
védiques. Edouard Champion, Paris, 1925.

[31] L. Renou. Terminologie grammaticale du sanskrit.
Edouard Champion, Paris, 1942.

[32] L. Renou. Grammaire sanscrite. Adrien Maisonneuve,
Paris, 1984.

[33] P. Scharf. Rāmopākhyāna - the Story of Rāma in the
Mahābhārata. An independent-study Reader in
Sanskrit. Routledge & Curzon, London, 2003.

[34] J. S. Speijer. Sanskrit Syntax. E. J. Brill, Leyden,
1886.

[35] J. F. Staal. Word Order in Sanskrit and Universal
Grammar. Reidel, Dordrecht, 1967.

[36] B. Tikkanen. The Sanskrit Gerund: a Synchronic,
Diachronic and typological analysis. Finnish Oriental
Society, Helsinki, 1987.

[37] W. D. Whitney. Sanskrit Grammar. Leipzig, 1924. 5th
edition.

[38] W. D. Whitney. Roots, Verb-forms and Primary
Derivatives of the Sanskrit Language. Motilal
Banarsidass, Delhi, 1997. (1st edition 1885).

[39] M. Williams. A Practical Grammar of the Sanskrit
Language. Munshiram Manoharlal, Delhi, repr. 2000.

