
The functional calculus

and its applications to algorithms, proofs, and

linguistics

Gérard Huet

INRIA

IIT Delhi, February 21st 2011

- 1 -

Mathematical notation

• the function in x with value sin(2x)

• x 7→ sin(2x)

•
∫

sin(2x)dx ⋆
∫
(x 7→ sin(2x))

• ⋆(x 7→ sin(2x)) ◦ (x 7→ x2)

• ⋆x 7→ (y 7→ sin(x + y))

• ∀ ∂
∑

• {x | P (x)}

• Bourbaki’s “assemblages”

- 2 -

λ-notation

We take seriously mathematical notation, with precise management

of environnements in which we specify axioms, hypotheses,

definitions, etc. The central notation is the λ-notation due to Alonzo

Church (1936).

This notation, and the λ-calculus based on it, were first used for the

definition of computable functions.

It is a very simple algebra with 3 constructors:

• x

• (M N)

• λx · E

In order to explain how λ is a binding operator, it is essential to

abstract variable names from the notation.

- 3 -

Functional terms

We abstract variables by replacing them with a relative notation

within fonctional terms, which are oriented trees with two sorts of

branching, of respective arity 1 and 2. The leaves of the trees are

natural numbers in N = {0, 1, 2, ...}.

We call abstractions unary branchings and applications the binary

ones. Integres are relative variables (aka de Bruijn indices). Each

variable is relative to its binding abstraction, since it denotes its

depth in the abstraction layers.

Functional terms are built in an environnement of depth n, as follows.

- 4 -

Functional terms (2)

n + 1 ⊢ n

n + 1 ⊢M ⇒ n ⊢ ΛM

n ⊢M ∧ n ⊢ N ⇒ n ⊢ (MN)

Closed terms (combinators are built at depth 0. For instance,

I = Λ0, and thus (I I) = (Λ0 Λ0), ∆ = Λ(0 0), Ω = (∆ ∆), etc. In a

closed term, all variables denote. Open terms have free variables.

Terms (open and closed) constitute the free functional algebra

generated by N.

- 5 -

Perlis’ law

Perlis’ law Someone’s free variable is someone else’s bound variable.

In other words, the free variables of a term are the variables bound it

its defining context. Without this precaution, we would get an

ambiguous notation.

- 6 -

Successor

We define term Succk E, for E a term and k ≥ 0, as :

Succk E = Succk
0 E, with Succk

n defined as:

Succk
n (M N) = (Succk

n M Succk
n N)

Succk
n ΛM = Λ(Succk

n+1 M)

Succk
n i = i (i < n)

Succk
n i = i + k (i ≥ n)

- 7 -

Substitution

Let T be a term, we define term Subst T E = SubstT0 E as:

SubstTn (M N) = (SubstTn M SubstTn N)

SubstTn ΛM = Λ(SubstTn+1 M)

SubstTn i = i (i < n)

SubstTn i = Succn T (i = n)

SubstTn i = i− 1 (i > n)

- 8 -

The Substitution theorem

Theorem.

M [x← N][y ← P] = M [y ← P][x← N [y ← P]]

or, more precisely:

SubstPn (Subst N M) = Subst (SubstPn N)(SubstPn+1 M)

This theorem is the central tool in the confluence of the functional

calculus.

Details are available in:

Constructive Computation Theory. Course notes on λ-calculus.

See http://yquem.inria.fr/∼huet/PUBLIC/CCT.pdf. This course

is executable in Ocaml. The program sources may be downloaded at

URL: http://yquem.inria.fr/∼huet/PUBLIC/LAMBDA.tar.gz.

- 9 -

Functional calculus

We associate to the functional algebra a computation relation called

β-reduction. It is defined as the congruence generated by:

(ΛM N)→β Subst N M

Theorem (Church and Rosser). β-reduction is confluent.

Corollary. The normal form of a term (irreducible form obtained by

iterating reduction) is unique, when it exists.

Corollary. The functional calculus, although non deterministic, is

determinate.

- 10 -

Functional calculus applied to mathematical notation

We may now get uniform mathematical notations as functional

expressions:

∀x · P (x) =def (All P)∫
f(x)dx =def (Int f)

∂f/∂x =def (Der f)

x ∈ y =def (y x)

{x | E(x)} =def ΛE

- 11 -

Combinatorial completeness

• λx · (x x)

• (λx · (x x) λx · (x x))

• {x | ¬x ∈ x} Paradox!

• partial recursive functions and functionals

• stratification by types

• type theory, foundations

• Church’s simple theory of types - more later

- 12 -

Programming foundations

NB. We use ML as meta-notation.

Notation : [x]M = λx ·M , [x,y]M = λx ·λy ·M , (M N P) = ((M N) P)

(* Bool *)

value _True = <<[x,y]x>>

and _False = <<[x,y]y>>

and _Cond = <<[p,x,y](p x y)>>;

(* Pairs *)

value _Pair = <<[x,y,p](p x y)>>

and _Fst = <<[pa](pa ^True)>>

and _Snd = <<[pa](pa ^False)>>;

(* Turing’s fixpoint combinator *)

value _Fix = <<([x,f](f (x x f)) [x,f](f (x x f)))>>;

- 13 -

Church’s arithmetics

(* Nat : Church’s natural numbers *)

value _Zero = <<[s,z]z>> (* same as _False *)

and _Succ = <<[n][s,z](s (n s z))>>;

(* Church *)

value church n = iter s n _Zero

where s _C = nf<<(^Succ ^C)>>;

value _Add = <<[m,n][s,z](m s (n s z))>>;

value _Mult = <<[m,n,x](m (n x))>>;

value _Exp = <<[m,n](n m)>>;

- 14 -

Lisp en λ-calcul

value _Nil = <<[c,n]n>> (* same as _Zero *)

and _Cons = <<[x,l][c,n](c x (l c n))>>;

(* list : int list -> term *)

value rec list = fun

[[x::l] -> let _Cx = church x and _Ll = list l

in <<[c,n](c ^Cx (^Ll c n))>>

| [] -> _Nil

];

(* Append *)

value _Append = <<[l,l’][c,n](l c (l’ c n))>>;

- 15 -

Quicksort in λ-calculus

value _Quicksort =

<<(^Fix [q]let sort = [a,l]

let p = (^Partition (^Geq a) l) in

(^Append (q (^Fst p)) (^Cons a (q (^Snd p))))

in [l](l sort ^Nil))>>;

let _L=list[3;2;5;1] in normal_list<<(^Quicksort ^L)>>;

= [1; 2; 3; 5] (27s)

let _L=list[3;2;5;1] in applicative_list<<(^Quicksort ^L)>>;

= [1; 2; 3; 5] (2s)

- 16 -

Quicksort λ-term [assembly language]

_Quicksort;

- : Term.term =

([x0,x1](x1 (x0 x0 x1)) [x0,x1](x1 (x0 x0 x1)) [x0]([x1,x2]

(x2 x1 [x3,x4]x4) [x1,x2]([x3]([x4,x5,x6,x7] (x4 x6 (x5 x6 x7))

(x0 ([x4] (x4 [x5,x6]x5) x3)) ([x4,x5,x6,x7](x6 x4 (x5 x6 x7))

x1 (x0 ([x4](x4 [x5,x6]x6) x3)))) ([x3,x4]([x5](x4 x5 ([x6,x7,x8]

(x8 x6 x7) [x6,x7]x7 [x6,x7]x7)) [x5,x6]([x7]([x8](x3 x5

([x9,x10,x11](x11 x9 x10) ([x9,x10,x11,x12](x11 x9 (x10 x11 x12))

x5 x7) x8) ([x9,x10,x11](x11 x9 x10) x7 ([x9,x10,x11,x12](x11 x9

(x10 x11 x12)) x5 x8))) ([x8](x8 [x9,x10]x10) x6)) ([x7](x7

[x8,x9]x8) x6))) ([x3,x4](x3 ([x5,x6]([x7](x7 [x8,x9]x9) (x6 x5

([x7,x8,x9](x9 x7 x8) [x7,x8]x8 [x7,x8]x8))) [x5]([x6]([x7,x8,x9]

(x9 x7 x8) ([x7,x8,x9](x8 (x7 x8 x9)) x6) x6) ([x6](x6 [x7,x8]x7)

x5))) x4 ([x5,x6]x5 [x5,x6]x6) [x5,x6]x5) x1) x2))))

- 17 -

Quicksort λ-term [machine langage]

Its bare term, without syntactic sugar:

_Quicksort;

- : Term.term =

(^^(0 (1 1 0)) ^^(0 (1 1 0)) ^(^^(0 1 ^^0) ^^(^(^^^^(3 1 (2 1 0))

(3 (^(0 ^^1) 0)) (^^^^(1 3 (2 1 0)) 2 (3 (^(0 ^^0) 0)))) (^^(^(1

0 (^^^(0 2 1) ^^0 ^^0)) ^^(^(^(5 3 (^^^(0 2 1) (^^^^(1 3 (2 1 0))

3 1) 0) (^^^(0 2 1) 1 (^^^^(1 3 (2 1 0)) 3 0))) (^(0 ^^0) 1)) (^(0

^^1) 0))) (^^(1 (^^(^(0 ^^0) (0 1 (^^^(0 2 1) ^^0 ^^0))) ^(^(^^^(0

2 1) (^^^(1 (2 1 0)) 0) 0) (^(0 ^^1) 0))) 0 (^^1 ^^0) ^^1) 1) 0))))

Question: What is the machine?

- 18 -

λ-calculus a a programming langage

λ-calculus is a very high level programming langage.

λ-calculus is the ultimate object-oriented language.

λ-calculus is a very low level programming langage.

λ-calculus may be used to define the formal semantics of an arbitrary

programming language.

λ-calculus is a good support to teach the theory of recursive

functions - within a non-extensional rigorous constructive framework

- superior to classical set theory. Please visit

http://yquem.inria.fr/∼huet/CCT/

- 19 -

Impact on real programming languages

Peter Landin, who knew well λ-calculus, had a significant influence

within the Algol 60 commitee that designed the language 50 years

ago.

John McCarthy was inspired by λ-calculus in the design of LISP -

although LISP’s dynamic binding de LISP was not consistent with

λ-calculus where variables are statically bound. Scheme, LISP’s

successor, is more in its spirit.

Real programming languages possess datatypes whose operations

correspond to the physical processors of digital computers, such as

integers and floating point numbers, as well as pointers using directly

the memory addressing mechanisms. λ-calcul is not appropriate to

this transparency of the material architecture of computers, but it

may simulate arbirarily complex imperative mechanisms - this is the

essence of denotational semantics.

- 20 -

Impact on real languages - more

The ISWIM-ML-Haskell family is directly inspired from λ-calculus.

But the recursion operation is not encoded in λ-calculus, but a

primitive operation.

This is in contrast with the CPL-BCPL-C family, that emphasizes

pointer computation for fast vector addressing.

More recently, parametric module mechanisms have been inspired

more or less directly by λ-calculus.

- 21 -

Let us stratify with types

We avoid paradoxical combinators such as (x x) by the stratification

of terms with types that express the functionality of their denotation.

Thus, Church’s simple theory of types uses types constructed from

atom types (int, bool) with the → functor.

For instance, assuming the declaration context:

[n : i][s : i→ i][plus : i→ (i→ i)], the term λx · (plus x (s n)) is

well-formed with type i→ i. This typing system uses the inference

rules:

Γ ⊢ x : τ ([x : τ] ∈ Γ)

Γ ⊢M : σ → τ Γ ⊢ N : σ

Γ ⊢ (M N) : τ

Γ[x : σ] ⊢M : τ

Γ ⊢ λx ·M : σ → τ

- 22 -

More on type stratification

Strong normalisation.

• Typing Church’s way versus typing Curry’s way

• Principal typing (Hindley)

• Let polymorphism - ML (Milner)

• polymorphic λ-calculus - F (Girard)

• NAT = ∀A · (A→ A)→ (A→ A)

Natural numbers are seen as iterators. Their type may be directly

read as Curryfication of a Peano-algebra presentation:

Peano = {N ; S : N → N ; Z : N}

NAT is thus directly seen as the initial Peano algebra. This was

generalized to algebraic datatypes by Böhm and Berarducci.

- 23 -

Logical foundation of mathematics

We may now use typed λ-calculus as a higher-order predicate

calculus, manipulating arbitrary functions and functionals. This is

the program set by Church in his Simple Type Theory, simplifying

the more complex approach to foundation of Russell and Whitehead

in Principia Mathematica.

∀x · P (x) ≡ Π(λx · (P x))

In arithmetics, the induction principle is now directly expressed as an

axiom (as opposed to an infinitary axiom schema like in first order

arithmetics).

We may even define equality along with Leibniz:

= ≡ λx · λy · ∀P · (P x)⇒ (P y)

- 24 -

Towards a mechanization of mathematics

This treatment of mathematics is well founded since we may make

explicit all the notions by reducing them to their normal form

(although this may be arbitrarily costly).

We may even to a certain extent give an automatic treatment to

mathematical deduction in this logic – see Constrained Resolution

(1972).

- 25 -

Another viewpoint: r � R

Γ ⊢ x : τ ([x : τ] ∈ Γ)

Γ ⊢M : σ ⇒ τ Γ ⊢ N : σ

Γ ⊢ (M N) : τ

Γ[x : σ] ⊢M : τ

Γ ⊢ λx ·M : σ ⇒ τ

Types are now seen as logical propositions, variables name axioms,

and λ-terms denote now proofs. We get the standard presentation of

the implicational fragment of propositional calculus in Gentzen’s

natural deduction.

This is so simple that it took 40 years to notice this isomorphism.

Howard, who showed the extension of this correspondance to

predicate calculus, which extends to higher-order logic, was just

ignored. Similarly with Nicolaas de Bruijn.

- 26 -

We mix all those ideas

We obtain the Calculus of Constructions by superposing the calculus

of propositions and the calculus of proofs, obtaining thus a uniform

language for describing mathematics (Coquand, 1985).

Adding inductive types to describe datastructures, we get the

Calculus of Inductive Constructions (Mohring, 1990). Adding

co-inductive types, we may describe communicating systems

(Gimenez, 1995). This programme is being developed with the Coq

proof environment.

A typical industrial application: certification of the SUN JavaCard

run-time environnment (Trusted Logic, 2003). A typical application

to formal mathematics is the proof by Gonthier of the 4-color

theorem (2004).

- 27 -

We dualize the arrow of functionality

A\B types functions taking their argument (b : B) to their left

A/B types functions taking their argument (b : B) to their right.

John loves Mary.

loves : (NP\S)/NP

John : NP

Mary : NP

loves Mary : NP\S

John loves Mary : S

The terms of this symetrized λ-calculus may be used as phrase

structure syntax operators, and types are syntactic categories. Such

λ-terms are constrained with a linearity condition. We thus get

categorial grammars (Lambek 1954).

- 28 -

After syntax, semantics of natural language

Montague’s grammars express a notion of semantics of natural

languages, where the logical contents of a sentence is expressed in

Church’s type theory.

The syntax-semantics interface is thus covered in an elegant fashion

by two varieties of λ-calculus. This leads to important recent

developments in computational linguistics research.

- 29 -

Conclusion

λ-calculus and its derivatives provide uniform foundations to

Informatics, Logic and Linguistics.

- 30 -

Prehistory

Once upon a time, the early logicians:

• Shönfinkel 1930

• Gentzen 1935

• Church 1940

• Curry 1950

In the 60’s, the precursors:

• Böhm 67 Böhm trees (separability)

• de Bruijn 68 de Bruijn’s indices (abstract syntax)

• Landin 67 The next 700 programming languages

- 31 -

In the 70’s, the ignored visionaries:

• Girard 71 System F (polymorphism)

• Reynolds 74 polymorphic λ-calculus

• de Bruijn 75 Automath

• Howard (Correspondance)

- 32 -

Semanticists:

• Scott 1971 D∞

• Plotkin 1975 T ω

• Wadsworth 1972 (continuity)

• Lévy 1978 (optimality)

• Barendregt 1978 (synthesis)

• Milner (LCF, ML)

• Kahn, Berry, Curien (sequentiality)

- 33 -

In the 80’s, type theory:

• Martin-Löf (constructive type theory)

• Constable (Extracting programs from proofs, νPRL)

• Huet 1984 (Constructive Engine)

• Coquand 1985 (Calculus of Constructions)

• Paulin 1992 (Coq)

• Coq V8.3 2010 (http://coq.inria.fr/)

- 34 -

