
Mathematics, Linguistics and Types

Gérard Huet

Théories modernes des types

IHPST, Paris, Mars 2006

1



Prelude

Thanks for IHPST (“Institut d’Histoire et de Philosophie des
Sciences et des Techniques”) for inviting us to a debate on “Théories
modernes des types” – “Contemporary Type Theory”.

I was invited to present “Calcul des Constructions” – “Calculus of
Constructions” but I declined. Not that “Calcul des Constructions”
is uninteresting, but first of all it is a rather technical topic, its
precise description and statement of its main properties would take
more than one hour, and this would be a rather futile repetition of
stuff which is already 20 years old. Moreover its design methodology
is more interesting, as a formal framework for expressing
Mathematics, and more generally rigorous argumentation.

2



Frameworks

Such a framework may be implemented on computers, and thus
hopefully lead to useful rigorous reasoning tools. This is basically the
Automath program, now more than 30 years old, but still the leading
paradigm in this endeavour. The Calculus of Constructions is one
point in a space of type theories, one corner in Barendregt’s cube, a
bit stronger than usual Automath languages, maybe unnecessary
stronger, and actually not expressive enough to express two
fundamendal constructions, namely inductive types and co-inductive
types. From the Calculus of Constructions evolved a Calculus of
inductive and co-inductive constructions, which is the core formalism
manipulated by a reasoning tool called Coq. Coq is a proof assistant,
which helps a mathematician formally verify, and to a certain extent
discover proofs of mathematical facts, such as the 4 colour theorem.

3



Social necessity

The interesting philosophical discussion concerns the soundness of
this program, regarding its epistemic value, and notably its
usefulness in establishing rigorous standards of reasoning. We first
remark that reasoning tools are absolutely essential social requisites,
at a time when most industrial, commercial, financial, legal,
transportation, health, food, information, etc processes use
sophisticated information systems, whose correct and safe operation
can only be established through appropriately formal verifications.

4



Mathematics as winner in the Knowledge Economy

Verifying formally mathematical statements such as the 4-colour
theorem appears as a luxury compared to these vital economic
concerns. But the main lesson that we learned over many years of
development of informatics is that not only arbitrarily deep
mathematics are needed in order to do proofs of computer system
correctness, but furthermore that mathematical proofs are the very
fabric of these virtual artefacts that are computer processes. The
endeavour of formal mathematics is a booming business. I am
personally in the process of opening a Joint Research Laboratory
between INRIA and Microsoft, of which one of the foremost projects
concerns Automation of Mathematics. Companies like “Trusted
Logic” pay proof engineers to craft mathematical developments
insuring the safe operation of smartcard transactions - bank consortia
are paying dear money for the production of formal mathematics.

5



Mathematics and Linguistics

I chose as title of my talk “Mathematics, Linguistics and Types”
since I would like to suggest that Type Theory is a better linguistic
medium for developing Mathematics than the usual mixture of
natural language and formulas that is traditionally used for
communicating mathematical results. This point about a proper
“mathematical vernacular”, clearly articulated by Pr de Bruijn a
long time ago, is not well taken by most professional mathematicians,
who undervalue linguistic aspects underlying their activity. They see
language as a benign facility, and fail to appreciate the importance of
notation, seen as a secondary issue. We were taught that
mathematics is “l’art de raisonner juste avec des figures fausses”.
Linguistics is taken as granted, like prose for Mr Jourdain. Who will
dare comparing as intellectual disciplines Mathematics and
Linguistics, a kind of semi-scientific branch of Humanities ?

6



Questioning the rigour of Mathematics

I am actually painfully conscious of this social handicap, since I
attempt to teach Computational Linguistics to snotty students of
Ecole Normale Supérieure majoring in Maths. The various course
instructors attempt to get their attention by presenting the contents
of their material in a heavy mathematical fashion. I chose in the
contrary to get their attention by questioning the rigour of
Mathematics by pointing out linguistic problems.

7



A few paradoxes

It is very easy to run into paradoxes. For instance, let us prove that
1 = 2. 1 is the numerator of 1/2. Similarly, 2 is the numerator of 2/4.
But we know that 1/2 = 2/4, by easy simplification. Substituting
equal for equal, we get 1 = 2. If you carry out this piece of reasoning
in front of a mathematician, he will usually get angry and shout some
‘obvious’ objection. However, such objections vary a lot according to
the person, leading to doubts as to whether similar problematic
implicit quotienting, or confusions of ‘signifiant’ and ‘signifié’, or
mixture of extensional notions with intentional ones, could crop up in
a real mathematical text. For instance, it is easy to prove
categoricity of arithmetic using induction over the characteristic
predicate of the standard part of an arbitrary model. This proof is
illegitimate since this predicate is not first-order definable, but you
need to be a professional logician to have in mind such subtelties.

8



Even simpler linguistic paradoxes

Such paradoxes are not deep foundational problems. They arise from
a mixture of natural language and informal mathematical notation.
Naming, scoping, and quantifiying mathematical notions is a delicate
matter. Even a seemingly innocuous piece of reasoning such as
P ⇒ P may lead to catastrophy when P is instanciated. Consider
English, when P is taken as ‘any number is odd’. We get ‘if any
number is odd, then any number is odd’, and then from the fact that
1 is odd we may deduce that any number, such as 2, is odd.

9



More notational paradoxes

We know that we should not write 1/0. But when one does algebraic
reasoning, we shall write down formulas such as a/b, where a and b

may be complex expressions depending on some parameters. How do
we know whether b may be null for certain values of these parameters
? How do we keep track of such side conditions ? In linguistic terms,
the fact that b 6= 0 is a presupposition of the sentence where a/b

occurs. Thus the logical argumentation underlying the verification of
a piece of mathematics ought to take care of présupposé as well as
posé, and there is no systematic convention to take care of the former
– such contextual conditions are somehow implicit from the use of
certain notations. A notation like

√
e will have the additional

problem of being ambiguous whenever it is not meaningless, hiding a
logical disjunction.

10



Worse notational paradoxes

Actually, set notation itself suffers from complex conditions of usage -
what is the precise condition under which one may write an
expression such as {x | P (x)} ? Do we need to understand the precise
comprehension axioms of the underlying set theory in order to
understand whether such notation makes sense, and if so, which
precise object it yields ?

What is the meaning of ℵ1 in view of the independence of the
continuum hypothesis ?

11



Logic comes in

In Mathematics, Linguistics and Types, we miss two important
topics: Logic and Informatics. Somehow Type Theory stands for an
intimate mixture of the two. Logic has a long history - from
Philosophy, to Mathematics, to Informatics. Of course there remains
a current of philosophical logic, and an active field of Mathematical
Logic, but somehow the logic mainstream, specially Proof Theory,
cannot be dissociated from Informatics. Logical tools such as
lambda-calculus and linear logic are the main objects of design and
study of Informatics, together with a host of algebraico-logical
notions which percolated from the study of computer processes, such
as finite automata and transducers, streams, continuations, processes,
games, etc.

12



From Language to Logic and back

Such tools are now finding appropriate use in the modelling of
linguistics, at all levels – morphology, syntax, semantics, pragmatics.
This interplay between disciplines is indeed very important, and it
goes both way – logic and language use the same cognitive apparatus
and are co-referential as ways of creation and communication of valid
knowledge.

13



Prehistorical digression

In the old days, when computers appeared, a new discipline arose,
called “Computer Science” in the USA. There was a tension between
Mathematics and Electrical Engineering on who would teach the new
notions, and the new discipline organized itself in more or less ad hoc
ways. Mathematicians chose to isolate themselves from what they
saw as technological contamination, and consequently there was a
deficit in proper mathematical training. Students going through the
curriculum of undergraduate computer science studies were hopelessly
poor in basic reasoning skills like quantification manipulation or
induction. Even if they had a reasonable training in Calculus, they
lacked proper acquaintance with Algebra and Combinatorics.

14



My first encounter with Logic

My own experience. I was trained as an aeronautics engineer, and
thus was taught a fair amount of complex analysis and linear algebra.
In parallel I followed the first Master curriculum established in
Informatics at the Faculté des Sciences of the University of Paris
when it still existed, back in 1967. The mathematical apparatus was
completely different, and incredibly ill-adapted to what it pertained
to bring, namely rigour in reasoning. There was a course in
mathematical logic, let me be mercyful and not say anything about it.

15



My first encounter with Recursion

There was also a course in recursion theory, thanks to Bernard Jaulin,
which had the merit of being rigorous, and had at least some vague
plausibility as foundations for recursive computations over integers.

16



Algebra wins

Then there was Schützenberger’s fascinating course on advanced
combinatorics (Ramsey numbers, monoid equations).

Tale of an embarrassing mismatch between Algebra and Logic.

Also Schutz’s association with Roger Lyndon gave me the hint to
look up the “Notes on Logic” by this author, which opened my eyes
about logic by providing a very clear algebraic presentation of the
important material in 90 pages - in my opinion an unsurpassed
introduction to logic to this date.

17



Weird logical tautologies

In a standard mathematical logic textbook, first order models are
taken as non empty sets. This important convention is told “en
passant”, much like excluded middle is wired in at the start of
propositional calculus. This is a convenience for the standard
inference rules of first order quantification. I like to tease
mathematician friends with the remark that ∀x P (x) ⇒ ∃x P (x). If
they give a moment’s thought to this remark, they immediately come
with the empty set as a counter example. When I insist that this is a
valid statement in the standard predicate calculus, they usually get
annoyed and nasty.

18



Mathematicians despise Logic

Actually, most mathematicians don’t care about logic. Mathematical
logic grew out of consistency analysis, following Hilbert’s program,
and other meta-mathematical considerations. Gödel’s incompleteness
results were a blow to the whole mathematical edifice, but this crisis
was overcome like the previous ones, such as irrationality and
transcendance. Mathematical logic became a highly specialised
subfield of mathematics, far from being as prestigious as algebraic
geometry or number theory. It even got ridiculed by Paul Cohen,
who considered the independence of the continuum hypothesis as a
rather simple exercise - obtaining forcing as a kind of reverse
engineering construction.

19



Drinking problems

Gilles Kahn made a point of debunking standard logic in Coq’s
tutorial with the “Drinker’s theorem”. Statement. In any bar, there
is a person who, if he drinks, every one in the bar drinks. Proof. If
everyone drinks, take any one. If someone does not drink, he is a
witness to the truth of the statement. However, we have 2 difficulties.
First, how do we know there are no other situations ? Answer: by
excluded middle. Second, what happens when the bar closes and is
therefore empty ? So there are many hidden hypotheses which are
implicit in the linguistic formulation of the problem and its solution.

20



From bars to rings

This “theorem” is a pearl, since it mixes in a minimal way three
difficulties in the standard apparatus - models are non empty,
excluded middle is wired in, and material implication is used instead
of entailment. So you get a formal proof which is easily defeated by
common sense. With an ironical phrasing in terms of lowly concepts
such as drinking in a bar, whereas mathematics allows itself the use
of concrete terminology like rings, fields and matrices, but always
with noble connotations !

But perhaps one might question the use of real-world terminology at
all. What helps intuition is also a danger of introducing implicit
assumptions. See the work by Lakatos for an interesting discussion.

21



Type Theory commits less than Set theory

Here we see a very clear instance of the superiority of type theory as
a linguistic medium for reasoning over the standard abstraction of
first-order logic. The bar has to be postulated non-empty, since
otherwise there is no way to get the witness. Similarly if you do not
postulate excluded middle you will not get anywhere. Type theory is
not fundamentally different from predicate calculus, it is just less
commital in terms of basic means of knowledge.

22



Type Theory commits more than Linear Logic

Type Theory is however not minimal in its use of basic principles,
since it allows non-linearity, both for contraction (axioms are not
consumed, they are reusable) and for thinning (irrelevant
assumptions are discharged). This is because it uses lambda-calculus,
and not linear logic as its foundation.

The epistemic justification for this choice lies in two basic postulates
about knowledge: it can be memorized and reused, while irrelevant
knowledge may be ignored. Further properties such as insensibility to
temporal ordering of independent pieces of knowledge are derived
metaproperties (combinators).

23



Lambda calculus

There is no good understanding of type theory if you do not know
lambda-calculus. Type theory constructions are typed lambda-terms,
the types being some logical formulas themselves formulated in
lambda-calculus. Lambda-typed lambda terms, that was from the
start the motto of Automath. The rest is details about formation
rules for those types. But the main outcome of this endeavour is to
get a full language for mathematics, including abstraction, axioms,
definitions and proofs. Furthermore those proofs are not only
concrete objets, but executable algorithms as well, paving the way to
sophisticated mixtures of computation and deduction, and ultimately
powerful uses of reflexion principles.

24



Lambda calculus was slow in percolating

When one looks back into the work of Gentzen in the 30’s, one can
find lambda-calculus in properly presented natural deduction, of
course, and sequent calculus may be seen as the search space for such
proofs. But this story took a long time to unravel through the work
of Kleene, Curry, Howard, de Bruijn, Martin-Löf, Girard, etc. Even
though Church’s notation was well-known by professional logicians,
Prawitz’ book on natural deduction does not even allude to lambda
calculus. As late as 1980, lambda calculus specialists were a sect of
less than 20 members worldwide. Even today, I would bet there are
not 50 people who are able to state Böhm’s separation theorem
correctly, let alone prove it.

25



Denotational semantics of programming languages

Lambda-calculus actually came to informatics through the
development, in the 80’s, of denotational semantics by Dana Scott
and his followers. This fueled a lot of not-so-relevant research in
continuous lattices, and ended up cluttering constructive reasoning
with an unsavoury dose of abstract nonsense - category theory
imposed by intimidation rather than necessity for proper abstraction.

26



Hyper specialization hinders progress

Actually, the influence of lambda-calculus grew in at least two areas:
design of programming languages (Peter Landin for Algol 60, then
ISWIM, the precursor of ML), and semantics of natural language
(Richard Montague, who applied Church’s simple theory of types to
the propositional semantics of language). But it took a long time to
recognize that the categorial grammatical framework of Lambek was
a non-commutative precursor of linear logic. This is a clear case of
hyper-specialization of disciplines, missing important common
conceptual apparatus.

27



In search of a language for formal maths

The search for a perfect reasoning language by Leibniz got only
grotesque modern avatars by Frege’s graphical notation and Russell
and Whitehead absurdly opaque notation for Principia Mathematica.
De Bruijn’s Automath notation, in the 60’s, was both too early and
too late. Too early to be properly understood before Type Theory
became popular in proof assistants research circles. Too late to serve
as language for Bourbaki’s endeavour. Bourbaki knew about
lambda-notation, and even contemplated using it as mathematical
notation, but they failed to capture the lambda abstraction with
two-dimensional diagrams and gave up, indulging in a set-theoretic
semi-rigorous dialect.

28



Type Theory is better than Axiomatic Logic

We are not so much interested in axiomatisation as we are in actual
definition of concepts (constructions of sorts). In Goldblatt’s words,
in his preface to his book on Topoi: “[We are interested in]
understanding the house that we mentally build for ourselves to live
in”.

A most important mathematical concern is the art of writing
definitions in the right way, as well as the craft of knowing when to
allude to a definition - we are not interested in cut-free proofs,
heaven, this is a logician device for consistency proofs, not a
mathematically sensible operation.

We do not want cut free, we want clutter free.

29



Methods rather than facts

The less we assume, the more opportunities we get of discovering
interesting methods. A case in point is the Continuum Hypothesis.
What is interesting is not so much that it can be taken or discarded,
but it is the forcing method in itself, a very powerful construction.

Actually, as Paul Cohen says “A point of view that the author feels
may eventually come to be accepted is that the CH is obviously
false.” This sounds like an interesting research program: find the
right induction principle to refute CH.

30



Free variables, arbitrary choices of points, quantification

Perlis’ law. Someone’s free variable is someone else’s bound variable.

Logical interpretation of this law : These are concerns of lambda
calculus, which deals correctly with binding, abstraction, functional
notation, and hypothesis management. Furthermore, lambda
reduction gives a general solution to solving definitional equality
replacement by higher-order substitution.

Of course lambda reduction is only one kind of definitional equality.
What is equally important is recursion, which comes with inductive
types.

31



The equality quagmire

What on earth does x = y mean ? The number of interpretations
boggles the mind. Leibniz equality like in Church’s simple theory of
types, with substitutivity for free by lambda reduction, extensional
equality for sets, abstract equality over a structure, leading to
setoids, etc.

If one uses the right constructions, category theory can be
accommodated conservatively, as Amokrane Saibi showed.

Category theory tried to treat concepts modulo isomorphism. Then
you wind up with statements like: “it is not just equal, it is equal on
the nose”. Why should the nose of a category theorist matter for
mathematical truth?

32



Right concerns about modularity

We do not want vague overloading, we want mathematical modules,
which compose in well understood ways, in the lambda-calculus
tradition.

Wouldn’t it be nice if we could define what mathematicians mean by
Algebra, Geometry, Arithmetic, Topology, Measure theory, Analysis,
Probability theory. What is Combinatorics the natural composition
of ? What part of Analysis is needed to extend Arithmetic into
Number theory ? Is Category theory is some sense at the root of
mainstream mathematics, or is it Set theory or some well-understood
combination of both ?

This would put Logic in its right corner, as some contemplation of
Galois connections between syntactic combinatorial structures and
set theoretic models.

33



Logic is too simplistic

Logic is to mathematics what logical semantics is to linguistics, a
poor approximation of meaning. Furthermore we want words to be
associated not just with meanings, but with references, and this is
where definitions matter.

If you use notation like {x|P (x)} or even a/b or
√

e, you do not want
to express just the stated fact, but the presupposed assumption as
well. We need an Automath context to take care correctly of side
conditions.

34



Modern Type Theory as a vehicle for serious Maths

The recent completion of the Four Colour Theorem as a formally
verified piece of Type Theory sets the state of the art in formal
mathematics. It uses a slick axiomatisation of hypermaps and
represents a significant improvement over the proof by Robertson et
al., itself an improvement over a messy mixture of maths and
assembly programming by Appel and Haken.

As Georges Gonthier states : “We believe that our success was largely
due to the fact that we approached the Four Colour Theorem mainly
as a programming problem, rather than as a formalization problem”.

35



From programs-for-proofs to programs-as-proofs

36



Towards a true Mathematician assistant

Mixing the why and the how. A high-level tactic language.

Note on Proof assistants versus Logical frameworks.

37



Putting it all together

Now we know how to model correctly the semantics of natural
language through continuations, a notion imported from denotational
semantics of programming language, and which generalizes Richard
Montague’s seminal semantic work in linguistics. Since continuations
are basically typed lambda terms, one may dream of formal
mathematical developments actually developed through a natural
language discourse, using the naturally developed cognitive
apparatus of the human mathematician.

Then we shall get a true mathematical consistent discourse and the
proper tools to search for interesting mathematical stories.

38


