Lexicon-directed Segmentation and Tagging of
Sanskrit

Gérard Huet

XIIth World Sanskrit Conference

Abstract

We propose an algorithm for segmenting a continuous Sanskrit text
by reverse analysis of sandhi. It consists in constructing a finite-state
transducer whose state graph is obtained from the lexicon trie of
flexed forms of words by decoration with choice points labeled with
junction rewrite rules of the form [z]ulv — w. Such a rule means that
in the (left) context x, a suffix u of a word merges with a prefix v of
the succeeding word to form the phoneme stream w. These rules are
compiled from external sandhi tables.

It is shown that the method is sound and complete, in that it
produces all correct sandhi analyses as a finite set of segmentation
solutions. Since the method is lexicon directed, and the
morphological structure is invertible, this gives automatically for each
segmentation a sequence of root words tagged with their grammatical
features. Such taggings are thus a first approximation of the shallow

9.

syntax of the sentence. It is expected that a further analysis of the
subcategorization patterns of finite verbal forms, as well as concord
constraints, will trim this set of candidate parses to a manageably
small forest of acceptable interpretations. Further training with
manually tagged corpuses is expected to yield a useful tool for
assisting scholars in establishing critical editions, to compute
concordance indexes, and to compile statistical profiles. A robust
mode will facilitate lexicon acquisition from the corpus in order to
bootstrap from an initial small lexicon (12000 stems yielding 200000

flexed forms) to a more complete lexicographic coverage.

The talk will describe how the method deals with compounds and
how preverbs are precompiled in the flexed forms in order to avoid
overgeneration, while preserving the left-to-right application of

external sandhi.

Solving an English charade

module Short = struct
value lexicon = Lexicon.make lex
”:m.U”:m: w :m.HH._.: w __N.BHN..U”_:Q: w :mm.—u: m :“—.‘._.mH.: w :H: w :.ﬁo__ w __.ﬁomm.ﬁw_.mun.:”_ w

end;
module Charade = Unglue(Short);

Charade.unglue_all (Word.encode "amiabletogether");
Solution 1 amiable together
Solution 2 : amiable to get her
Solution 3 : am i able together

4

Solution am 1 able to get her

_ 4 -

Juncture euphony and its discretization

When successive words are uttered, the minimization of the energy
necessary to reconfigurate the vocal organs at the juncture of the
words provoques a euphony transformation, discretized at the level of

phonemes by a contextual rewrite rule of the form:

[z]ulv — w

This juncture euphony, or external sandhi, is actually recorded in
sanskrit in the written rendering of the sentence. The first linguistic
processing is therefore segmentation, which generalises unglueing into
sandhi analysis.

A

Auto

type lexicon = trie

and rule = (word * word * word);

The rule triple (rev u, v, w) represents the string rewrite ulv — w.

Now for the transducer state space:

[State of (bool * deter * choices) |

and deter = list (letter * auto)

type auto

and choices = list rule;

module Auto = Share (struct type domain=auto;

value size=hash_max; end);

Compiling the lexicon to a minimal transducer

(* build _auto : word -> lexicon -> (auto * stack * int) *)

value rec build_auto occ = fun
[Trie(b,arcs) ->

in

in

in

in
in

in

let local_stack = if b then get_sandhi occ else []
let f (deter,stack,span) (n,t) =
let current = [n::occ] (* current occurrence *)
in let (auto,st,k) = build_auto current t

in ([(n,auto)::deter] ,merge st stack,hashl n k span)
let (deter,stack,span) = fold_left f ([J],[],hash0) arcs
let (h,1) = match stack with

(01 -> (1,0) | [h::1] -> (h,1)]

let key = hash b span h
let s = Auto.share (State(b,deter,h)) key
(s,merge local_stack 1,key) 1;

_ 9.

Running the Segmenting Transducer

value rec react input output back occ = fun
[State(b,det,choices) ->
(* we try the deterministic space first *)
let deter cont = match input with
[[J -> backtrack cont
| [letter :: rest] ->
try let next_state = List.assoc letter det
in react rest output cont [letter::occ] next_state
with [Not_found -> backtrack cont]
] in
let nondets = if choices=[] then back
else [Next(input,output,occ,choices) : :back]

in if b then
let out = [(occ,Id)::output] (* opt final sandhi *)

_ 10 -

in if input=[] then (out,nondets) (* solution *)
else let alterns = [Init(input,out) :: nondets]

(x we first try the longest matching word *)
in deter alterns
else deter nondets

]
and choose input output back occ = fun
[[—> backtrack back
| [((u,v,w) as rule)::others] —>
let alterns = [Next(input,output,occ,others) :: back]
in if prefix w input then
let tape = advance (length w) input
and out = [(u @ occ,Euphony(rule)): :output]
in if v=[] (* final sandhi *) then

if tape=[] then (out,alterns)
else backtrack alterns

- 11 -

else let next_state = access v
in react tape out alterns v next_state
else backtrack alterns
]
and backtrack = fun

[[1] -> raise Finished
| [resume::back] -> match resume with

[Next (input,output,occ,choices) ->

choose input output back occ choices
| Init(input,output) ->

react input output back [] automaton

_ 192 -

Example of Sanskrit Segmentation

process "tacchrutvaa';

Chunk: tacchrutvaa

may be segmented as:
Solution 1

[tad with sandhi d|"s -> cch]

["srutvaa with no sandhi]

~ 13 -

More examples

process "o.mnama.h\"sivaaya";

Solution 1
[om with sandhi m|n -> .mn]
[namas with sandhi s|"s -> .h"s]

["sivaaya with no sandhi]
process "sugandhi.mpu.s.tivardhanam";

Solution 1
[sugandhim with sandhi m|p -> .mp]
[pu.s.ti with no sandhi]

[vardhanam with no sandhi]

_ 14 -

Sanskrit Tagging

process "sugandhi.mpu.s.tivardhanam";

Solution 1

[sugandhim

< { acc. sg. m. }[sugandhi] > with sandhi ml|p -> .mp]
[pu.s.ti

< { iic. }[pu.s.ti] > with no sandhi]

[vardhanam

< { acc. sg. m. | acc. sg. n. | nom. sg. n.

| voc. sg. n. }[vardhanal > with no sandhi]

- 15 -

The general case

process '"me.saanajaa\"m\"sca";

Solution 1

[me.saan

< { acc. pl. m. }[me.sal] > with no sandhi]

[ajaan

< { acc. pl. m. }[aja#l] | { acc. pl. m. }[aja#2] >
with sandhi nlc -> "m"sc]

[ca

< { und. }[cal] > with no sandhi]

Solution 2
[maa
< { und. }[maa#2] | { acc. sg. * }[aham] >

_ 16 -

with sandhi aali -> e]

[i.saan

< { acc. pl. m. }[i.sa] > with no sandhi]

[ajaan

< { acc. pl. m. }[aja#l] | { acc. pl. m. }[aja#2] >
with sandhi nlc -> "m"sc]

[ca

< { und. }[cal] > with no sandhi]

_17 -

Statistics

The complete automaton construction from the flexed forms lexicon
takes only 9s on a 864MHz PC. We get a very compact automaton,
with only 7337 states, 1438 of which accepting states, fitting in

746KB of memory. Without the sharing, we would have generated
about 200000 states for a size of 6MB!

The total number of sandhi rules is 2802, of which 2411 are
contextual. While 4150 states have no choice points, the remaining
3187 have a non-deterministic component, with a fan-out reaching
164 in the worst situation. However in practice there are never more

than 2 choices for a given input, and segmentation is extremely fast.

_ 18 -

Soundness and Completeness of the Algorithms

Theorem. If the lexical system (L, R) is strict and weakly
non-overlapping s is an (L,R)-sentence iff the algorithm
(segment_all s) returns a solution; conversely, the (finite) set of all
such solutions exhibits all the proofs for s to be an (L,R)-sentence.

Fact. In classical Sanskrit, external sandhi is strongly

non-overlapping in noun phrases.

Cf. http://pauillac.inria.fr/~huet/PUBLIC/tagger.pdf

~ 19 -

Difficulties (noun phrases)
Overgeneration with short particles at, am, upa
Removal of meta-notations (lin-ga)
clash of aya with genitives
Overgeneration with -ga, -da, -pa, -ya, etc
Bahuvrihi compounds

sa, duals

~ 920 -

Overgeneration is unavoidable
BG 24[2]17

Chunk: naasatovidyatebhaava.h

may be segmented as:

Solution Shankara

[na][asatas][vidyate][bhaavas]

Solution Madhva

[na][asatas][vidyate][abhaavas]

[Madhav Deshpande| Each commentator has his own logic to defend
their own peculiar way segmenting the line, and it is clear that

manuscripts alone do not help.

- 921 -

Difficulties (verb phrases)

How should preverb prefixing be modeled?

The natural idea would be to affix preverbs to conjugated verb forms,
starting at roots, and to store the corresponding flexed forms along
with the declined nouns. But this is not the right model for Sanskrit
verbal morphology, because preverbs associate to root forms with
external and not internal sandhi. And putting preverbs in parallel
with root forms and noun forms will not work either, because the
non-overlapping condition mentioned above fails for preverb a. And
this overlapping actually makes external sandhi non associative. For
instance, noting sandhi with the vertical bar, we get: (iha | &) | ihi =
iha | ihi = ihehi (come here). Whereas: iha | (a | ihi) = iha | ehi =
*ihaihi, incorrect. This definitely dooms the idea of storing
conjugated forms such as ehi.

_ 99

Phantom phonemes

The solution to this problem is to prepare a-prefixed root forms in
the case where the root forms starts with i or 7 or u or 1 - the cases
where a non-associative behaviour of external sandhi obtains. But
instead of applying the standard sandhi rule a | i = e (and similarly
for 1) we use a | i = *e where *e is a phantom phoneme which obeys
special sandhi rules such as: a | *e = e and a | *e = e. Through the
use of this phantom phoneme, overlapping sandhis with a are dealt
with correctly. Similarly we introduce another phantom phoneme *o,

obeying e.g. a | u = *o (and similarly for @) and a | o = a | *o = o.

_ 923 -

Preverb sequences

We propose to model the recognition of verbal phrases built from a
sequence of noun phrases, a sequence of preverbs, and a conjugated
root form by a cascade of segmenting automata, with an automaton
for nouns (the one demonstrated above), an automaton for sequences
of preverbs, and an automaton for conjugated root forms augmented
with phony forms (i.e. a prefixes using phantom phoneme sandhi).
The sandhi prediction structure which controls the automaton is
decomposed into three phases, Nouns, Preverbs and Roots. When we
are in phase Nouns, we proceed either to more Nouns, or to Preverbs,
or to Roots, except if the predicted prefix is phony, in which case we
proceed to phase Root. When we are in phase Preverbs, we proceed
to Verbs, except if the predicted prefix is phony, in which case we
backtrack (since preverb a is accounted for in Preverbs). Finally, if

we are in phase Roots we backtrack.

_ 924 -

Dispatch

This procedure is very explicitly stated in the ML function dispatch
which is the heart of the segmenting transducer control loop:

value dispatch phase input output back v =
match phase with
[Nouns -> if phantom v then
[Advance(Roots,input,output,v) :: back]
else [Advance(Nouns,input,output,v)
[Advance(Preverbs,input,output,v)
[Advance(Roots,input,output,v) :: back]]]
| Preverbs -> if phantom v then back
else [Advance(Roots,input,output,v) :: back]
| Roots -> back
13

_ 95 -

Preverbs

It remains to explain what forms to enter in the Preverbs automaton.
We could of course just enter individual distinct preverbs, and allow
looping in the Preverbs phase. But this would be grossly
over-generating. At the other extreme, we could record in the lexicon
the preverb sequences used with a given root. But then instead of
one roots forms automaton, we would have to use many different
automata (at least one for every equivalence class of the relation
“admits the same preverb sequences”). We propose a middle way,
where we have one preverbs automaton storing all the preverb
sequences used for at least one root. Namely: ati, adhi, adhyava, anu,
anupara, anupra, anuvi, antah, apa, apa, api, abhi, abhini, abhipra,
abhivi, abhisam, abhya, abhyud, abhyupa, ava, a, ud, uda, upa,
upani, upasam, upa, upadhi, ni, nis, nirava, para, pari, parini,

parisam, paryupa, pi, pra, prati, pratini, prativi, pratisam, pratya,

_ 926 -

pratyud, prani, pravi, pravya, pra, vi, vini, vinih, vipara, vipari,
vipra, vyati, vyapa, vyava, vya, vyud, sa, sa.mni, sa.mpra, sa.mprati,
sa.mpravi, sa.mvi, sam, samava, sama, samud, samuda, samudvi,

samupa.

We remark that preverb a only occurs last in a sequence of preverbs,
i.e. it can occur only next to the root. This justifies not having to
augment the Preverbs sequences with phantom phonemes.

_ 927 -

Demonstration: “come here”

Chunk: ihehi

may be segmented as:

Solution 1

[iha

< { und. }[iha] > with sandhi alaali -> e]
[aalihi

< { imp. sg. 2 }[aa-i#1] > with no sandhi]

Solution 2

[iha

< { und. }[ihal] > with sandhi ali -> e]
[ihi

< { imp. sg. 2 }[i#1] > with no sandhil]

_ 928 -

Remarks

This exceptional treatment of the a preverb corresponds to a special
case in Panini as well, which indicates that our approach is

legitimate.

We remark that the a preverb always occurs last in the preverbs
sequence, an observation which to our knowledge is not made by
Panini.

Regard the * in phantom phonemes *e and *o as saying

=7

“jumping over &”. We print them a| i and a| u respectively.

Phantom phonemes restore associativity of external sandhi.

_ 929 -

State of the art of sanskrit tagging

Chunk: maarjaarodugdha.mpibati

may be segmented as:

Solution 1
[maarjaaras

< { nom. sg. m. }[maarjaaral > with sandhi as|d -> od]

[dugdham
< { acc. sg. m. | acc. sg. n. | nom. sg. n. | voc. sg. n. }
[dugdha] > with sandhi mlp -> .mp]
[pibati

< { pr. sg. 3 }[paa#l] > with no sandhil

- 30 -

What next

_ 31 -

To know more
Sanskrit site: http://pauillac.inria.fr/“huet/SKT/

Sandhi Analysis paper:
http://pauillac.inria.fr/"huet/PUBLIC/tagger.pdf

Course notes:
http://pauillac.inria.fr/“huet/ZEN/esslli.ps

http://pauillac.inria.fr/“huet/ZEN/Trento.ps

http://pauillac.inria.fr/“huet/ZEN/Hyderabad.ps
ZEN library: http://pauillac.inria.fr/“huet/ZEN/zen.tar

http://caml.inria.fr/ocaml/

_ 39 .

