Design of the next 700 Proof Assistants

Gérard Huet

Projet Coq

INRIA - Rocquencourt

W’ N R 1A “ [FLoC - Rutgers - July 28th 1996 — 1 |

oooooooooooo

PLAN

General Design Issues
Zippers
Bohm Trees

Mathematics modelling

% INRIA xb

............ = [FLoC - Rutgers - July 28th 1996 — 2]

General Design Issues

e Why vyet another proof assistant?

e Overall architecture

............ = [FLoC

- Rutgers - July 28th 1996 — 3]

A few popular proof assistants

ACL2

LCF-HOL
NuPRL

PVS

IMPS , HIZAR
Isabelle
Cog-Alf-Lego

B

EIf

LP, etc etc

% INRIA

ROCQUENCOURT

=" [FLoC - Rutgers - July 28th 1996 — 4

]

YAPA?

e Who will use it?
e For what concrete purpose?
e What is the competition?

e How could we share the effort?

W/ INRIA E

uuuuuuuuuuuu ’

[FLoC - Rutgers - July 28th 1996 — 5 |

Example 1 : proof trees

Should one keep proof trees around?
Program extraction

Self-certified mobile code

+ + o+

Auditing proofs in natural language
- Size vs Speed

- Decision procedures, rewriting

W’ NRIA H [FLoC - Rutgers - July 28th 1996 — 6]

oooooooooooo

Example 2 : libraries

e What should the library structure be?
e Modularity, Naming

e Search for relevant lemmas

e Phase distinction

e Dependency analysis

e Sharing with other sites

e Version management

e Sharing with other provers (QED!)

Wl N RIA u [FLoC - Rutgers - July 28th 1996 — 7 |

uuuuuuuuuuuu

Overall architecture

e Logical Framework

e Algorithms

e Programmability

e User interface

e User-defined notation?

e Shared data base of proven facts
e User assistance

e Software engineering, tools

e Will it scale up?

Wl NRIA u [FLoC - Rutgers - July 28th 1996 — 8 |

oooooooooooo

I got this in the mail today

The following articles are submitted to the I\/Ilzar Mathemat-
ical Library:

1. Piotr Rudnicki and Andrzej Trybulec submitted an article
entitled: “On the compositions of macro instructions”

2. Yatsuka Nakamura and Andrzej Trybulec submitted arti-
cles entitled: “Some Topological Properties of Cells in R?
and “The First Part of Jordan's Theorem for Special Poly-
gons”

3. Noriko Asamoto , Yatsuka Nakamura , Piotr Rudnicki
and Andrzej Trybulec submitted articles entitled: " On the
compositions of macro instructions, Part II' and "On the
compositions of macro instructions, Part III”

The preprints of the above articles are available at:
http://math.uw.bialystok.pl/ Form.Math/Preprints

Czeslaw Bylinski
Library Committee of the Association of Mizar Users

W’ N RIA % [FLoC - Rutgers - July 28th 1996 - 9 |

uuuuuuuuuuuu

Abstract Syntax

Any implementer of a proof assistant, a programming envi-
ronment, or a formal computation system, is faced early on
with the problem of designing an abstract syntax framework.
Typical concerns are:

e well-formedness wrt arities of operators
e list structures
e binding operators, local definitions
e recursion
Usual solutions are:
o LISP
e free algebras + lists
e pure \-calculus

e A\ —1I1]| Automath | EIf

% INRIA xb

cccccccccccc =" [FLoC - Rutgers - July 28th 1996 — 10]

Managing the state

e Version management

e Dumps, Saves, Updates
e Global context

e Undo

e Pragmas and flags

e Clicking, structure editing
e Notation

e Applicative structures vs Destructive editing

%/ INRIA xb

oooooooooooo = [FLoC - Rutgers - July 28th 1996 — 11]

The zipper data structure

Mentor
Applicative arrays
Emacs

hierarchical local Turing machine

Wl N RIA B [FLoC - Rutgers - July 28th 1996 — 12]

uuuuuuuuuuuu

The zipper type

type tree =
Item of int
| Section of tree list;;

type path =
Top
| Node of path * tree list * tree list;;

type location = Loc of tree * path;;

Node(p,l,r) contains the father path p, its left [and right r
brother trees. Note: a path has brother trees, uncle trees,
great-uncle trees, etc But its father is a path, not a tree like
in Mentor’s tree processor.

B INRIA b

............ = [FLoC - Rutgers - July 28th 1996 — 13]

Updating and Inserting in a zipper

let change (Loc(_,p)) t = Loc(t,p);;

let insert_left (Loc(t,p)) t’ = match p with
Top -> failwith "insert at top"
| Node(up,left,right) -> Loc(t’,Node(up,left,t::right));;

2'1 N R IA % [FLoC - Rutgers - July 28th 1996 — 14]

uuuuuuuuuuuu

Navigating in a zipper

let left (Loc(t,p)) = match p with
Top -> failwith "left of top"
| Node(up,l::left,right) -> Loc(l,Node(up,left,t::right))
| _ ~» Pailwith "left of first";:

let down (Loc(t,p)) = match t with
Item(_) -> failwith "down of item"
| Section(tl::trees) -> Loc(t1l,Node(p,[],trees))
| _ -> failwith "down of empty";;

let up (Loc(t,p)) = match p with
Top -> failwith "up of top"
| Node(up,left,right) ->
Loc(Section(concat (t::right) left),up);;

Wl N R IA % [FLoC - Rutgers - July 28th 1996 — 15]

kkkkkkkkkkkk

Scoping and parameterization

(A-calculus issues)
e naming of variables
e non-locality of B-rule
e definitions
e recursion
e approximations

e proof search

nnnnnnnnnnnn

=" [FLoC - Rutgers - July 28th 1996 — 16]

Binding/Scoping/Naming

A perplexing state of affairs.
e a-conversion
e de Bruijn indexes
e combinators
e Miller patterns
e Pfenning HOAS
e Talcott binding structures
e Pollack’'s meta-theory of LEGO

e EXxplicit substitutions

% INRIA xb

............ ==="[FLoC - Rutgers - July 28th 1996 — 17 |

Explicit substitutions

e Abadi Cardelli Curien Lévy

e Hardin Lévy

e Lescanne; Rios; Kamareddine
e Munoz

e Dowek Hardin Kirchner

e etc

uuuuuuuuuuuu

=" [FLoC - Rutgers - July 28th 1996 — 18]

Sharing

e Dags (UNIX links, TRS, etc)

e J\-calculus
+ Wadsworth
+ Lévy
“+ Lamping
+ Gonthier

e Sharing modulo computing
+ symbolic link
+ URL book.ps.gz
+ BDDs
+ Sharing substitutions

I INRIA Xb

uuuuuuuuuuuu =" [FLoC - Rutgers - July 28th 1996 — 19]

Annotations

Annotations are essential. They represent points of view. It
should be possible to add new annotations without changing
the type of the core structure, and without disturbance for
processes unconcerned by this point of view.

OO solution? Methods for copying, moving, etc. Chet's
OO-engine"er adding judgements to CoqQ’'s engine.

There are a number of features to be added to our theory
in order to meet long term goals. These include:

(1) annotations;

(2) generic tools for structure walking, matchlng and unifi-
cation; and

(3) representation of binding structures in terms of mutable
Structures.

(C. Talcott)

I INRIA xb

uuuuuuuuuuuu =" [FLoC - Rutgers - July 28th 1996 — 20]

Constraints, unification

Constraints are essential for delaying the search for existen-
cials.

e Constrained resolution
e Prolog

e Type reconstruction

e Floating universes

e Linear arithmetic

%/ INRIA b

............ ===""[FLoC - Rutgers - July 28th 1996 — 21]

A-terms vs Bohm trees

Aug A up - ((ug up) A uz - uz)

A ug ug-ug(ug, A uz - uz)

Head normal forms vs unsolvables

A ug un...un - w(Ty, ..., Tp)

Separability: Bohm's theorem.

WI N R IA 5 [FLoC - Rutgers - July 28th 1996 — 22]

nnnnnnnnnnnn

Curry-Howard for Sequent Calculus

Proof checking is usually explained on natural deduction for-
mulations, for which (typed) A-calculus is relevant, by the
Curry-Howard isomorphism. However, proof search usually
corresponds to a sequent calculus structure. This introduces
cumbersome translations between the proof trees associated
to tactics computations, and the proof terms stored as -
terms justifications.

However, it is possible to constrain sequent calculus deriva-
tions as Bohm trees. This is actually implicit from Howard,
and was exactly identified in H. Herbelin’'s M-calculus in his
thesis “Séquents qu'on calcule” (Paris 7, jan. 95). It uses
a ‘“stoup-ed” notion of sequent, like in Girard's LU.

W’ N RIA “ [FLoC - Rutgers - July 28th 1996 — 23]

oooooooooooo

Cut-free LJT

' VA, - B
— right
M+A—B
MMA A+ B
Contr — Head f
MAFB
kA BFC
— left cons
A—- BFC
Axiom | —— nal
AF A

Thus the term (f Mj... My) is coded as (...((f M1) M>)... My)
in A-calculus, and f [Mq; M>;... My] in A-calculus, the type-
free structure underlying LJT. Note that the stoup contains
the head variable.

Intros; Apply f.

ﬁ[N R A E [FLoC - Rutgers - July 28th 1996 — 24]

kkkkkkkkkk

Typing Bohm trees

When we use Bohm trees to represent proofs in some logical
framework, these trees have types corresponding to formulas
(or more generally judgements) of this framework. But we
want not to be forced at construction of the abstract syntax
trees representing partial proof attempts to be obliged to
enforce the possibly complex type maintenance.

On the other side of the spectrum, we may consider a Bohm
tree as just an untyped M-term, i.e. an element of some
domain D verifying some isomorphism D = [D — D]. Con-
sistency in the sense of equational logic is just requiring that
D be non-trivial.

% INRIA k.

............ = [FLoC - Rutgers - July 28th 1996 — 25]

More on typing Bohm trees

Somewhere in between we may type solvable Bohm trees,
of the form:

A ug up...un - w(Ty, ..., Tp)

by their shape (w,n — p), consisting of the pair head (w)
and differential arity (n — p). For a closed tree, w = ug, and
then the head indicates the index of sequentiality k, whereas
the differential arity is a kind of coercion specification. The
shape may be read as a type D™ — D k[p], specifying: this
term is a functional value in D" — D, whenever its main
argument z is coerced to a functional value in DP — D.
Note that this type is invariant by the n rule, and thus makes
sense as a partition of the extensional model D.

% INRIA E .

............ =y [FLoC - Rutgers - July 28th 1996 — 26]

Systems of guarded combinators

Definitions. We assume given two disjoint .denumerable al-
phabets of symbols: X = {X7, X5, ...} is the set of combina-
tor symbols, U = {uq,up,...} is the set of parameter symbols.
Intuitively, combinators name Bohm trees, whereas parame-
ters name bound \-variables.

We call B6hm tree presentation with respect to these two al-

phabets any denumerable system of equations: & = {E1, E», ...

with
E;: X; uq U...Un, = uki(Mla ""Mpi)

where 1 < k; <n;, 0<p;, X; € X, and
for Vj < P; Mj == inj(vl,...,vl.)

12¥}

with 1 < ki,j < Mg and {’Ul, ...,vl;j} C {ul, ’unz} CU.

We assume furthermore the system to be deterministic, in
the sense that every X € X possesses at most one defining
equation in €. We say that it is total when every X € X
possesses exactly one defining equation in £.

W’ NRIA “ [FLoC - Rutgers - July 28th 1996 — 27]

oooooooooooo

Examples

We remark that Bohm tree presentations are general enough
to represent arbitrary families of finitely generated Bohm
trees, which is enough for instance to represent the BOhm
trees of any A-terms. But they permit to do more, in that
we may represent dags and looping structures. For instance,
the A-term in normal form Auq us - (u1 Av- (v v) Aw-w) May
be presented as X in the system

X uy ur = wuy(D,I)
D v = o({I(v))
I w s w

with sharing of combinator I.

Whereas the single equation Z u := u(Z) defines as Z the
infinite tree Auq - w1 (Aus - us(...)).

% INRIA E

oooooooooooo L [FLoC - Rutgers - July 28th 1996 — 28]

Other examples

Another example is the fixpoint combinator Y, with

Y fi= ()

Still another example, also denoting an infinite Bohm tree, is
J presented by the system: J z y := z(J(y)). It is the Bohm
tree of MA-term (Y M\j Az My (z (j y))), for Y any fixpoint
combinator such as Curry’s.

Remark that recursion is natural and more canonical, and
that computation is more local than g-reduction. Also de-
finedness is atomic.

ﬁl N R IA B [FLoC - Rutgers - July 28th 1996 — 29]

oooooooooooo

Regular Bohm trees |

Definition. We call regular any finite Bohm tree presenta-
tion. Such presentations define Bohm trees which are regu-
lar in the sense of admitting only a finite number of distinct
subtrees, up to variable renaming.

Theorem. It is decidable whether £+ M = N for any regular
£ and simple expressions M and N.

(For appropriate notions + and simple).

W’ N R IA 3 [FLoC - Rutgers - July 28th 1996 — 30 |

nnnnnnnnnnnn

Other issues

From M-calculus to Bohm trees to Automath to Coaq...

Constants. Let or A-T pairs or A-T couples. Other judge-
ments. Structure of the context. Sections, Paragraphs,
Modules. Meta-variables. Unification. Constraints.

Control of totality.
Control of unfolding, opacity, abstraction.

Tactics.

I‘ I N R]A “ [FLoC - Rutgers - July 28th 1996 — 31 |

oooooooooooo

Induction

Should induction be primitive (Martin-L6f) or axiomatised
(Isabelle)?

Four properties of inductive types.
e Closed: no junk
e Free: no confusion
e Induction: finitely generated.
e Dependance: elimination by pattern-matching.

Guarded general recursion vs primitive recursion.

I INRIA xb

uuuuuuuuuuuu = [FLoC - Rutgers - July 28th 1996 — 32]

How powerful should the framework be?

In other words, how much mathematical knowledge should
be internalized in the proof assistant? E.g. equality, induc-
tion, substitution, sharing, decision procedures.

The more we add, the less we may share developments.

Extreme view: PRA as the framework.

Reflexion.

Bootstrapping.

I INRIA k.

............ == [FLoC - Rutgers - July 28th 1996 — 33]

Mathematics modelling

Mathematics is rigorous knowledge representation. It com-
bines computation in concrete structures with abstract rea-
soning in logical systems.

There are historically 4 generations of computerized math-
ematics:

1 computers

2 programming languages

3 symbolic computation systems

4 proof-checked formal mathematics

Proof assistants potentially open the way to the 4th gen-
eration of computerized mathematics modelling. BUT they
will not replace well understood more efficient paradigms
of the lower levels: floating point computation, imperative
programming, verification of finite-state systems by BDD
techniques. The smooth integration of the full range of
computerized mathematics tools is the great challenge of
coming vears. .
‘ lNR&E!zé % [FLoC - Rutgers - July 28th 1996 — 34 |

