Constructions: A Higher Order Proof System for
Mechanizing Mathematics

Thierry Coquand
Gérard Fhet

INRIA
Domaine de Voluceau
78150 Rocquencourt

France

ABSTRACT

We present an extensive set of mathematical propositions
and proofs in order to demonstrate the power of expression of
the theory of constructions.

Introduction

The theory of constructions is a higher order calculus inspired from the
work of De Bruijn“"z, Girard®322 and Martin-Lof3®. It is introduced and
motivated in Coquand-Huet!? and its consistency is proved in Coquandlf. A
prototype implementation in ML has been developed at INRIA for experimen-
tation with the power of expression of the calculus.

We present here an annotated transcript of examples developed on this
system. ML is a functional programming language developed originally as the
meta-language of the LCF proof assistant?%. Actually no previous knowledge
of ML is required here, since only a few very specific functions are used in the
examples.

1. An overview of the language of constructions.

1.1. Constructions: contexts and objects

Constructions are well-typed expressions of a typed lambda-calculus,
where the types are lambda-expressions of the same nature. Thus our basic
language is basically Nederpelt's A41:42:18_ There are four rules of formation:

Universe

lz:MIN Abstraction
(M N) Application
z Variable

In the formation rule for abstraction, we prefer the Automath notation
[z:M]N to the more traditional notation Azy-N for two reasons. Firstly, the
type M associated to the bound variable z may be quite complex, and thus
the subscript notation would be too messy, with subscripting at any level.
Secondly, this binding operation is used for representing products vzeM N
as well as functions Az €M N. The name z is of course completely irrelevant,
and belongs only to the concrete syntax of the term. Abstractly, the

162

abstraction operator is binary, and admits two components, M and N.
QOccurrences of variable z in the concrete syntax of term N will be replaced
by its de Bruijn's index, i.e. an integer denoting the reference depth of the
occurrence. Thus the string

[z:4)([y:Bl(= y)=)
represents concretely the abstract term

[AN[B)(2 1)1)

That is, integer n denotes the variable bound at the nth binder upward in the
term. As usual in combinatory logic we write (M N) for the application of term
N toterm M.

Qur term algebra is completed by a constant *#, which plays the role of
the universe of all types. In Automath languages, *is noted 7, prop or type.

We shall not explain further the abstract syntax used in the formal mani-
pulation of the constructions. We shall only describe here the concrete syn-
tax, which reflects a richer structure of abbreviations.

First we establish a strong distinction between expressions of the form
[I13M1][3:2:M2] s [xnIMn] *

which we shall call contexts, from all other expressions, which we shall call
objects. Intuitively, the contexts are declarations used for linguistic
definitions. An object of type the context above is a proposition with free
variables of types My, - - - ,Ma. For instance, the context [zmat]® is the type
of unary predicates over type nat. In order to stress the distinction between
contexts and objects, we shall in the following adopt the alternative syntax
{x | M}N for abstraction over a context type M. For instance, we shall declare
a unary predicate P over mat in an expression N by the construction
{P|[z:A]%IN.

1.2. Types: propositions and proofs

We shall not in this paper enter the technical details of type-checking in
the theory of constructions. The interested reader will find a full technical
account of the theory in Coquand's thesis!®. We assume known the notion of
g-reduction, which corresponds to computation in the calculus of construc-
tions. This relation is confluent (i.e. has the Church-Rosser property), noeth-
erian (i.e. strong normalization holds), and preserves the types of expres-
sions. Its equivalence closure is called conversion. All is needed here con-
cerning type-checking is the understanding that an application (# N) is well
typed only when the expression # has a functional type [:4]8 compatible
with the type A’ of expression N. Compatible means usually that 4 and 4’ are
equivalent modulo conversion. The resulting type of the application is B,
where occurrences of z are replaced by N. This explanation is not quite
sufficient, since we also allow for instance {4]*}¥# to be applied to P of type
[z:mat]*. The rationale of this type coercion is to allow the predicate P to
stand for the proposition Vz € nat-P{z) as well as for a proposition schema
with a subterm z of type nat. This departure from the Automath formalisms
is of course essential for the expressiveness of the calculus, as the examples
below will demonstrate.

We shall call proposition an object of type a context, and proof an object
of type a proposition. We shall not consider further objects, and therefore
restrict abstraction to contexts and propositions. For instance, there are no
functionals mapping proofs into proofs. This restriction of the full calculus

153

presented in Coquand-Huet!? is in agreement with the theory developed and
proved consistent in Coquand’s thesis!8. All examples below belong to this
simpler three-level system.

1.3. Abbreviations

We use in our concrete syntax two abbreviations. First, we allow to abbre-
viate {z | *{N as !'z.N. This abbreviation may be iterated, like in !'z,y,2.N. The
symbol ! must be understood as universally quantifying over all propositions.
The rationale of this notation lies in the subtype discipline explained above:
variable x of type * may be bound by an expression of type an arbitrary con-
text, considered as a quantification prefix. This gives the constant * the role
of a free variable standing for an arbitrary proposition.

The second abbreviation is to allow expression 4-8 in place of [z:4]5,
whenever x does not occur in 5. The expression 4-+5, seen as a type, is the
type of ordinary functions from A to B. A dependent type [z:4](P z) is the
type of generalized functional objects of domain A, mapping value X in 4 to
some value in (P X). Such dependant types appear for instance in Martin-
Laf's intuitionistic theory of types3®. They should not be altogether unfami-
liar to computer scientists, though, if one thinks of an Algol procedure with
an integer parameter n and returning an array of dimensicn n.

If one sees A~»PB as a proposition rather than as a type, the arrow —
may be understood as an (intuitionistic) implication. One can then see the
abbreviations ! and ~—> as pointing out as important subcases of construc-
tions the two type constructors of Girard's second order types®3.22,

A few other less important abbreviation mechanisms have been defined.
For instance, the let construction of ISWIM and ML is allowed. This permits to
simplify complex constructions with nested multiple cccurrences of some
expression X to be abbreviated lef z = Xin M rather than either the
expanded form My, or the hard-to-read redex ([z:4]M: X) which further
requires a redundant type A4 instead of naturally defaulting it to the type of
X.

The usual notation of combinatory logic for multiple applications is used,
allowing (4 B C) instead of ((4 B) C). Also, —> associates to the right; thus
A-B-(C abbreviates [u:4][v:B]C.

Some constructions are hard to decipher, when too much polymorphism
is involved. The polymorphic instanciations needed to get the type right inter-
fere with the real arguments to functional objects. Since very often
polymorphic arguments occur before real arguments, it is allowed to group
them initially, by abbreviating for instance (F A; Az z) into <41,42>F(z).
Note that since the parser does not care about the types of things, this
abbreviation may be used for all arguments, allowing the Automath notation
<N>M in place of the combinatory logic notation {# N).

In the implementation, the concrete syntax of constructions is defined
by a Yacc grammar, whose semantic actions generate ML values under the
form of trees of abstract syntax. In the examples below, an expression
between double quotes "...” is parsed by this specialized parser, and thus
denotes an ML value of type context or object for propositions and proofs.

154

1.4. Constants

The basic language of constructions is enriched by constants, denoted by
identifiers. Every well-typed construction may be named, and later on
referred to by that name. The interaction loop of our system is ML's top level,
in an environment where a parser, a pretty-printer and a type-checker for
constructions are available. Three concrete types are known: contezt, object,
and their sum constr=contezxt+object. A few commands are provided for
declaring constants. Such commands may be grouped together in an ML
module, providing the user with a rudimentary theory system. Here are the
predefined commands:

PROP: string -> object -> void
LET: string -> object -> object -> void
LET_SYNTAX: string -> string list -> void

The command PROP ‘p' obj declares a proposition constant »p
corresponding to object obj. The construction obj is type-checked, and it is
verified that its type is a context. Similarly, LET *foo' proof prop type-checks
proaof , verifies that its type is equal (i.e. A-convertible) to prop, and enters it
in the current theory under name foo. Note that LET means "prove” here, in
the propositions-as-types isomorphism: we have verified that prop had a
proof, namely proof . Our system may thus be seen as a type-checker for con-
structive mathematics expressed by constructions: the PROP command
verifies that a proposition is syntactically meaningful in the current logical
language, and the LET command verifies that a proposition is true, in the
intuitionistic sense of having a proof. Note that we assume no a priori logical
connectives, axioms or inference rules. Our system is thus fundamentally
different in spirit from inference systems such as LCF'’s PPA%5 or Martin-Léf's
intuitionistic theory of types®?, although it bears a close relationship with
Martin-Lof's earlier theory of types3®.

Finally, a command such as LET_SYNTAX ‘cond' ['if';'then';else';' fi']
allows the constant cond to be pretty-printed with a mixfix syntax whenever
it is applied to enough arguments (3 in the cond example).

This completes the description of our prototype implementation. Actu-
ally, we must admit a little cheating on the parser’s part: the parser knows
beforehand about the mixfix syntax of a few constants. This is because we do
not know how to modify dynamically the tables of the parser generated by
Yacc. This is an unimportant technical detail the reader need not be con-
cerned about, since our parser is consistent with all the LET _SYNTAX com-
mands.

2. Logical constructions

Here we start Mathematics from scratch. The purpose of this section is to
define the intuitionistic connectives. Note: from now on our text is a com-
mented transcript of a computer session. All the examples given have been
machine-checked.

2.1. Arrow

Internalizing the -> abbreviation: intuitionistic implication.
let ARROW = "IAB.[x:A]B";;

PROP *->* ARROW;;

LET_SYNTAX "->* ['(";*>>"')'];; We write A>B.

Self:-> is reflexrive,

155

let SELF = "AA->A";;
PROP ‘self' SELF;;

Ildentily, the single element in self.

let ID = MA.JuwAlu";

LET '1d' ID "self”;; Le., Id proves proposition self.
LET_SYNTAX ‘14’ ['<';'>1d'];

M order to note /dy as <4>1d.

Hodus Ponens = "IA,B.(A->B)->A->B'.
let MP = "1A,B.(self (A->B))";;

Apply = "IABf:A->B)z:Al(f =)
LET ‘apply' "AB.<A->B>I1d” MP;;
Application is just functional identity. i proves modus ponens.

Skip.

let SKIP = 1A, B.A->B->A";

LET 'K "AB.[x:A](B->x)" SKIP;;
The K constant combinator.

Schonfinkel’s generalized composition.
let SCHON = "A,B,C.(A->B->C)->(A->B)->A->C";;
LET “SC* "A,B,C.[f:A->B->C][g:A->B][x:A){f x (g x))" SCHON;;

Note that K, SC and apply give combinatory logic, the calculus of proofs of
implicational intuitionistic logic, whose axioms in Hilbert form are SKIP and
SCHON, with MP the sole rule of inference.

The fundamental commutativity of non-dependant hypotheses.
let PERMUTE = "A,B,C.(A->B->C)->(B->A->C)"';;
LET ‘permute’ "AB,C.[1:A->B->C][y:B][x:A]{f x y)" PERMUTE;;

Cut: -> is transitive.
let CUT = "IA,B,C.{(A->B)->(B->C)->A->C'"";;

Cut is proved by functional composition.

let PIPE = "1A,B,C.[f:A->B][g:B->C][x:Al(g (f x))";;

LET *|' PIPE CUT;;

LET_SYNTAX ‘[[*<555 >0]

Note that this is categorical composition, good for following arrows. fs name
and syntazx "flg" are derived from the Unix pipe operation on streams.

2.2. Products

We follow Prawitz in the definition of product®0.
let PROD = "A,B,C.(A->B->C)->C";

This may seem like coding-up, and in a way it is. The thread of thought to fol-
low in these very foundational definitions is to look for the operational mean-
ing of the concept one wants to define. For instance, how does one actually
USE the product A&B? We can use it to prove any proposition C, given a proof
that A and B implies C, i.e. given an element of A->B->C. This is precisely what

156

PROD says. Here product and conjunction are one and the same concept,
whence the & notation below.

PROP ‘&' PROD;;
LET_SYNTAX ‘&' ['(';'&%)]

let and_intro = A B.A->B->A&B";;

Pairing : the proof of and_intro. Note how the standard rules of inference of
natural deduction map into propositions which admit a proof.
let PAIR = A B.[x:Ally:BlIC[zA->B->Clz x y)"s

Writing out the desired fype and_iniro of PAIR gives directly its context
1A, B[z:Ay:Bl/Clz:A->B->C] *'. The body (z = y) may be synthesized easily by
e simple PROLOG-like backirack search. This gives hopes to extend the current
proof-checker into a more ambilious theorem-prover.

LET ‘<>* PAIR and_intro;;

LET_SYNTAX <> [*<5>(000) s

We may of course use all the power of our meta-language ML in order fo
macro-generate abstract syntax trees of constructions independently from
parsing. For instance, using the "apl" function which iterates application on
its list argument, we may define:
let Pair (obj1,0bj2) = apl[ref '<>%A1;A2;0bj1;0bj2] where

A1=Type objl and A2=Type obj2;;

letrec Tuple lobj = Pair (hd lobj, let ob.lobj’ = tl lobj in
if null lobj’ then ob else Tuple (ob.lobj'));;

Now for the projections.
let and_elim_left = "A B.(A&B)->A";;

let FST = "A,B.[x:A&B](x A [y:Al[z:Bly)":;

1st proj.

LET 'fst' FST and__elim_left;;

LET_SYNTAX ‘fst' ['<; 5 >fst()]

let and_elim_right = 1A B.(A&B)->B";;

let SND = A B[x:A&B}{x B [y:Al{z:B]z)";

2nd proj.

LET *snd’ SND and_elim_right;;

LET_SYNTAX 'snd' ['<;'.;'>snd ()]

let DEDUCTION_LEFT = "A B,C.({A&B)->C)->A->B->C";;
Currying.

let CURRY = "1A,B,C.[x:(A&B)->C][y:Al[z:B](x <AB>(y.2))"::
LET ‘curry’ CURRY DEDUCTION_LEFT;;

let DEDUCTION_RIGHT = "!A,B,C.(A->B->C)->(A&B)->C";;

157

Uncurrying.
let UNCURRY = "AB,C.{x:A->B->C][y:A&B}{x <A,B>Ist(y) <A B>snd(y))";
LET ‘uncurry' UNCURRY DEDUCTION_RIGHT;;

Fquivalence as isomorphism.

let EQUIV = A B.(A->B)&(B->A)";
PROP ‘<->* EQUIV;;
LET_SYNTAX ‘<-> [*(";'<->)]

let equiv_intro = "A,B.[f:A->B]{g:B->A]<A->B,B->A>(f,g)":;
LET 'iso' equiv_intro "A,B.(A->B)->(B->A)->(A<->B)";;

It is easy to prove the following isomorphisms:
d-commutative: (A&B)<->(B&A)

&-associative: (A&(B&C))<->((A&B)&C)
<->-commutative: (A<->B)<->(B<->4)
<->-associative: (A<->(B<->C))<->((A<->B)<->C)

The deduction theorem.
let DEDUCTION = "A,B,C.{{A&B)->C)<->(A->B->C)";;

LET *deduction’
"AB.C.(iso ((A&B)->C) (A->B->C) (curry AB C) (uncurry AB C))"
DEDUCTION;;

2.3. Sums

let SUM = "1A,B,C.(A->C)->(B->C)->C";
The sum, or intuitionist disjunction, of A and B, is a way to prove any C from
a proof of C fram A and a proof of C from B.

PROP '+ SUM;;
LET_SYNTAX "+ ['(';+')]

Left injection.

let sum_intro_left ="1A.B.A->(A+B)",;

let INL = "A,B.[x:AC.{y:A->Cl{z:B->Ci{y x)";;
LET 'inl' INL sum__intro_left;;

Right injection.

let sum_intro_right = "A B.B->(A+B)";;

let INR = "A,B.[x:B]!C.[y:A->C][z:B->C}(z x)';;
LET ‘inr' INR sum_intro_right;;

let sum_elim = 1A, B.(A+B)->!C.{A->C)->(B->C)->C";;

Reasoning by cases.
let CASE = "4 B.[x:A+BJIC[uwA->Cl{[v:B->C]l(x Cuv)";
LET ‘case’ CASE sum_elim;;

From the above we get easily:
+-cormnmutative: (A+B)<->(B+A)
+-associative: (A+{B+C))<->((A+B)+C)

158

2.4. Quantifiers as general product and sum

Universal quantificatidn, or genéral product.
let PI = A {PA->*{[x: AP x)";;

PROP "Pi* PL;;

LET_SYNTAX 'Pi’ ['<';">Pi(')']:

Instanciation.

let Pi_elim = ™A {PA->¥[x:A]<A>PI(P)->(P x)";;
let INST = "A.{P|A->*][x:A][p:<A>Pi(P)](p x)";;
LET 'inst' INST Pi_elim;;

Universal Generalization.

let Pi_intro = "IA {PJA->*'B.{[x:A]B->(P x))->B-><A>Pi{P)";;
let GEN = "MA{PJA->*'B.[{:{x:A]B->(P x)][y:BlIx:Al(f x v)';;
LET ‘gen' GEN Pi_intro;;

Existential quantification, or general sum

let SIGMA = A {P|A->*!B.([x:A](P x)->B)->B";;
PROP 'Sig* SIGMA;;

LET_SYNTAX 'Sig' ['<";">Sig(';')']a

Ezistential mtroduction.

let Sig_intro = "A{P|A->*{[x:A](P x)-><A>Sig(P)";;

let EXIST = "A{PIA->*[x:A)[y:(P x)I'B.[£:[x:AJ(P x)->BIf x yv)'';;
LET ‘exist’ EXIST Sig_intro;;

This permits to use a predicate over A as a space cver A.

Projection.

let Sig_elim = "A{PJA->*{<A>Sig(P)->A";;

let WITNESS = "IA.{PIA->*{[p:<A>Sig(P) (p A [x: AP x)->x)";
LET *witness' WITNESS Sig__elim;;

Note that this witness is weaker than an epsilon operator: we can’t access the
proof component justifying that it verifies P. Thus our sum is fundamentally
weaker than the one in Martin-Lof's intuitionist theory of types3®.

3. Classical Logic constructions

We are not obliged to stick to intuitionistic connectives, and may define
the classical connectives as well, using the standard embedding of classical
proofs as intuitionistic refutations.

3.1. Falsity and Negation.

let FALSITY = "A A"
Falsity as meaningless; there is no proof of "14A.A".
PROP '{}* FALSITY;;

Negation.
let NOT = A A->{";;
PROP ‘~* NOT;;

159

LET_SYNTAX ‘"~ ['~%"];

{1 implies every proposition.
let CONTR = "A.{}->A";;
LET ‘contr’ A [u:{}](u A)" CONTR;;

Classical truth : A statement is true iff il is not meaningless.
let TRUTH = "~{}";;
LET “truth’ "<{}>Id" TRUTH;;

[4] is the construction of the classical meaning of proposition A.
let CLOSURE = "A.~{~A)";;

PROP ‘[]J* CLOSURE;;

LET_SYNTAX []' ['["]']s

It is easy to show "A~[A]<->[~4]"

let CLOSE = "?A.A->[A]";;
LET 'close’ ”!A,{x;}\][h:NA}(h x)u CLOSE::

Closed (i.e. classical) propositions.
let CLOSED = "A[A]->A";;
PROP ‘closed® CLOSED;;

{3 is closed.
LET ‘empty_closed’ "[hyp:[{]]](hyp truth)" "(closed {})";;

Negation gives closed propositions,
LET ‘neg_closed" "A.[f:[~A]][x:A)(f (close A x))" "'A.(closed (~A))";;

Hence the closure of a proposition is closed.
LET ‘closure_closed’ "!A.(neg_closed (~A))" "A.(closed [A])";;

And we get easily a proof of "A.[[A]]<->[A]" . Similarly it is easy to prove that
"!1A,B.(closed (~A&~B))", and thus that closed propositions are preserved
under product.

3.2. Classical disjunction.

Unidon as the closure of sum.
iet UNION = "IAB[A+B}";
PROP 'union® UNION;;

A definition easier fo deal with: the truth-table disjunction.
let OR = "AB.~A->[B]";;

PROP 7' OR;;

LET_SYNTAX ‘2 ['(;'?5)]

Showing the isomorphism between the two definitions

LET "union_to_or*
“1A,B.[h:[A+B]]{a":~A][b":~B] let u=[x:A+B](x {{ a’ b") in (h u)”
"tAB.[A+B]->{(A?B)";;

160

LET 'or_to_union’
“AB.[h:A?B]{x:~{A+B)]
let a'=[uw:Al{(x (inl ABu)) in
let b’=[v:Bl{x (inr ABv})in (ha b")"
1A, B.(A?B)->[A+B]";;

Identity on closures proves the low of excluded middle.
let EXCL_MIDDLE = "A.(~A%A)";;
LET 'excl_middle' "'A.<[A]>Id" EXCL_MIDDLE;;

let SUM_TO_OR = "1A,B.(A+B)->(A?B)";;
LET ‘sum_to_or
"1A,B.[u:A+B](union_to_or A B (close (A+B) u))" SUM_TO_OR;;

let OR_INTRO_LEFT = "AB.A->A?B";;
LET *cinl* A B.[x:Al{sum_to_or A B {inl A B x))" OR_INTRO_LEFT;;

let OR_INTRO_RIGHT = "!A,B.B->A?B";;
LET *cinr' "A,B.[x:B](sum_to_or A B (inr A B x))" OR_INTRO_RIGHT;;

3.3. De Morgan'’s laws and Kuratowski's axioms.

LET 'not_or’
"A,B.[h:~(A?B)]!C.[f:~A->~B->C]
let x={uwAl(h {cinl A B u)) in
let y=[v.B](h {(cinrABv))in (f x y)"
A B.~(A?B)->~A&~B";;

LET ‘and_not'
"MAB.[h:~A&~B][f:A?B]
let x=<~A,~B>fst(h) in
let y=<~A,~B>snd(h) in (f x y)"
"A,B.(~A&~B)->~(A?B)";;

LET ‘De_morgan' ""A,B.(iso ~(A?B) ~A&~B (not_or A B) (and_not A B))"
"IAB.~(A?B)<->~A&~B";; ‘
This is an intuitionistic isomorphism, not just a classical equivalence.

LET ‘or_not"
" A B.[f:~A?~B][h:A&B]
let x=<A,B>fst(h) in
let y=<A,B>snd(h) in (f (close A x) (close B y))"
A, B.(~A?~B)->~(A&B)"";;

Beware! The reverse arrow is not intuitionically valid, and so we do not have
the second De Morgan’s law: A, B.~(A&B)<->~A?~B". 1t is also easy to show:
?-commutative: {A?B)<->(B?A)
?-associative: (A?{B?C))<->({A?B)?C)

~A2H<->~A

As expected from the definition of "union’, "A?B' is closed.
LET ‘or_closed®
A B[{A?B]) x:~A)[y:~BI(f [w:A?B]{u x y))"

1681

"1A,B.{closed (A?B))";

We now prove that or commutes with closure.

LET 'or__closure’
A, B.[f:[A]2[B])[x:~A]ly:~Bl(or_not ~A ~B f <~A,~B>(x,y))"
"A,B.([A]?[B])->A?B";;

LET 'closure_or'
1A, B[f:A?2B][x:[~A][y:[~B]](f (neg_closed A x) (neg_closed B y))"
"ABA?B->([A]?[B])"::

Now it is easy to show that A?{}<->[4].

LET 'Kuratowski'
"A,B.(iso [A]?[B] A?B (or_closure A B) (closure_or A B))"
"AB.([A]?[B])<->A?B";;

We now have, with close, empty_closed, closure_closed and Kuratowski,
proofs of analogues to the Kuratowski axioms, stating that [] is a closure
operation, and thus that the propositions form a topological space, in a con-
structive set theory where -> is inclusion, and ? is union. However here union
gives always closed sets, and we do not have an isomorphism (A?{})<->A. This
presentation can also be interpreted as building in classical logic in intui-
tionistic logic, with closure a modality operator. Note the duality between our
closure and the classical necessily operator: [A] is to A what in classical
modal logic B is to []B.

3.4. Classical implication.

let IMPLIES = "1A,B.A->[B]";;
PROP '=>' IMPLIES;;
LET_SYNTAX '=>' ['(';'=>7)];

Note that by definition A?Bis (~A)=>B. We have also (~A?B)->(A=>B) but not
the reverse arrow.

let IMPLY_INTRO = "1A,B.(A->B)->(A=>B)";;
LET imply_intro* "!A,B.[f:A->B][x:A][neg:~B](neg (f x))" IMPLY_INTRO;;

let IMPLY_ELIM = "A,B.(A=>B)->(~B)->~A"};
LET ‘imply_elim' "A,B.[h:A=>B]{neg:~B][x: A](h x neg)" IMPLY_ELIM;;

let NEG_NEG = "A[A]=>A";;
LET 'neg_neg' "excl_middle” NEG_NEG;;
Same proof as excluded middle!

A posttive implicational tautology not provable intuitionistically: Pierce’s law.
let PIERCE = A B.({A=>B)=>A)=>A";
LET 'pierce’
"1AB.[h1:(A=>B)=>A][h2:~A]
let AimpB = [w:A][v:~B](h2 u) in (h1 AimpB h2)"
PIERCE;;
This is the first non-trivial proof.

162

Fquivalence.
PROP ‘<=>'"1A,B.(A=>B)&(B=>A)";;

PROP 'xor' "IA,B.~(A<=>B)";

We could alternatively have defined the notions ? and => from:

let CONTRADICTORY = "A,B.A->~B";;

PROP '# CONTRADICTORY;;

LET_SYNTAX ‘# ['("'#)']

It is easy to prove commutativity: "!A.B.(A$B)<->(B#4)’ from permute. We
may then define A=>5 as A¢§~F and 4?5 as ~4§~F

3.5. Cantor’s theorem.

As a little exercise in classical logic, let us show how to express the proof
of Cantor’s theorem (Epimenide’s liar's paradox).

let CANTOR = "1A {R|A->A->*|~({P|A->*}<A>Sig([x:Al[y:AIR x y)<->(P)))":;

let CANTOR__PROOQOT =
"A{RIA->A->*]
[hyp:{P|A->*<A>Sig([x:A][y:Al(R x y)<->(P y))]
B.(hyp ([x:A](Rx x)->B) B
([x:A][iso:[y:Al(R x y)<->((R y y)->B)]
let f=[y:Al<(R x y)->(R vy y)->B,((Ry y)->B)->(R x y)>fst((iso y)) in
let g=[y:A]<(R x y)->(Ry y)->B,((R y y)->B)->(R x y)>snd((iso y)) in
let diag=[p:(R x x)}(f x p p) in (diag (g x diag))})":
LET ‘Cantor' CANTOR_PROOF CANTOR;;
QED

It i=s interesting to compare this proof with the resolution proof given in
Huet??, It is fairly obvious that higher-order unification will be a key algo-
rithm for the automated synthesis of such proofs.

4. Equality constructions.

We may define equality in Leibniz's fashion. Note that this does not use
classical constructions. In particular, "->" is the intuitionistic implication
underlying its use as an abbreviation.

4.1. Leibniz’'s equality.

let EQUAL = "A[x:A][y:AIP|A->*{(P x)->(P y)":;
PROP '= EQUAL,,

LET_SYNTAX '='['<';">";

EQUAL = "1A[z:A)[y: A] <A>:z: y” Note the infiz notation.

163

4.2. Equality is a congruence relation.

Substitutivity is implicit in the definition of equality. All is left for showing
that = is a congruence is that it is an equivalence.

Reflexivity proved by Identity.

let REFL_EQUAL = A [x:A]<A>x=X";;

let PROOF_REFL_EQUAL = "A.[x:A}{P|A->*}<(P x)>1d";;
LET 'refl_equal' PROOF_REFL_EQUAL REFL_EQUAL;

Transitivity proved by Composition.
let TRANS_EQUAL = "A[x:Allyv: Az AN (<A>x=y)->(<A>y=z)->{<A>x=z)"};
let PROOF_TRANS_EQUAL =
MAxAlly Al zA]p:<A>x=y][q:<A>y=z]{P|A->*
<(P x).(P y).(P z)> (p P){(q P} ";;
LET ‘trans_equal' PROOF_TRANS_EQUAL TRANS_EQUAL;

Symmeitry proved by trick.

let SYM_EQUAL = "A[xA][y:A{<A>x=y)->(<A>y=x)";;

let PROOF_SYM_EQUAL =

MA[x:A)ly:A]{p:<A>x=y]{P|A->*(p [2:Al(P z)->(P x) <(P x)>1d)";;
LET ‘sym_equal’ PROOF_SYM_EQUAL SYM_EQUAL;;

4.3. Generalizing to properties of any binary polymorphic relation.

let REFL = "{R'A A->A->*PA[xA(R A x x)”
and TRANS = "{R]'A. A->A->*IA[x:Al[y:A}[zA]J(RAx y)->(RAy z)->(RA x z)"
and SYM ="{R['A A->A->*NA[xA][y:Al(RAx y)->(RAy x)";

PROP ‘refi' REFL;PROP ‘trans’ TRANS;PROP 'sym' SYM;;
let EQUIV = "{R'A.A->A->*}(refl R)&(trans R)&(sym R)";;

Let K be a polymorphic binary relation. R is equiv iff R is refl and R is trans
and Ris sym. Now that we have defined the elementary notions, more complex
notions can be expressed in ¢ natural manner,

PROP ‘*equiv' EQUIV;;

For instance, = is equiv.
let PROOF_EQUIV_EQUAL =

Tuple[PROOF_REFL_EQUAL;PROOF_TRANS_EQUAL;PROOF_SYM_EQUAL];;
LET 'equiv_equal* PROOF_EQUIV_EQUAL "(equiv =)"";;

4.4. Andrews' lemma

As an exercise on equality theorem-proving, let us the following property
given in Andrews!l. Theorem: If some iterate of a function admits a unique
fixpoint, then the function admits a fixpoint.

Fizpoint.
let FIXPT = "A[[:A->A][x:A]<A>{f x)=x"";;
PROP ‘fixpt' FIXPT;;

164

Commutation.
let COMMUTE = "MA.[f:A->A])[g:A->A)[x:A]<A> (g (f x)) = (f (g x))";;
PROP ‘commute’ COMMUTE;;

Unicity.
let UNIQUE = "A{PJA->*[x:Al[y:A1(P x)->(P y)-><A>x=y";;
PROP "unique' UNIQUE;;

If f and g commute, and if g admils a unique fizpoint, then f admits a
fixpoint.

let LEMMAL = A [f:A->A][g:A->A] (commute A f g) ->

<A>Sig((fixpt A g)) -> (unique A (fixpt A g)) -> <A>Sig((fixpt A))";;

let LEMMA1_PROOF = "A[f:A->A][g:A->A][com:(commute A f g)]

[fix:<A>Sig((fixpt A g))]

[uni:(unique A (fixpt A g))]

'B.[h:[x:A]{fixpt A f x)->B]

(fix B {a:A][h":(fixpt A g a}]

(ha(uni(fa)a
{PIA->*][p:(P (g (f a)))](h’ [w:A](P (f u)) (com a P p)) h')))":

LET ‘11 LEMMA1_PROOF LEMMAL;;

Inductive definition of power.
let POWER = "MA[f:A->A][g:A->A]

{P(A->A)->*}(P £)->([h:A->A}(P h)->(P [x:Al(f (h x))))->(P g)";;
PROP ‘power' POWER;;

Commutation is reflexive.

let COMMUT_REFL = "A.[f:A->A](commute A f {)";;

let COMMUT_REFL_PROQF = "A.[f:A->A][x:A](refi_equal A (f (f x)))";;
LET ‘power(' COMMUT_REFI_PROOF COMMUT_REFL;;

Commutation is preserved by iteration.
let COMMUT_ITER = "A.[f:A->A][g:A-D>A]
{(commute A f g)->(commute A f [x:Al{f (g x)))'";

let COMMUT_ITER_PROOF = "A[f:A->A][g:A->A][com:(commute A f g)]
[x:A]{PIA->*[p:(P (f (g (f x))))]
{com x [uw:A](P (f u)) p)'s;

LET 'powerS' COMMUT_ITER_PROOF COMMUT_ITER;;

If g is an iterate of f, then f and g commaute.
let LEMMAZ = A [f:A->A][g:A->A](power A f g)->(commute A f g)";;

let LEMMAZ_PROOF = "A[f:A->A}[g:A->A][pow:(power A f g)]
{pow [h:A->A](commute A { h)
(powerO A f)
[h:A->Al(powerS Af h))"::
LET ‘12° LEMMA2_PROOF LEMMAZ;;

let ANDREWS = A [f:A->A][g:A->A] (power Af g) >
<A>Sig((fixpt A g)) -> (unique A (fixpt A g)) -> <A>Sig((fixpt A {))";;

165

let ANDREWS_PROOF = "A.[f:A->A][g:A->A][pow:(power A f g}]
[Ax:<A>Sig({fixpt A g)}]
[uni:{(unique A (fixpt A g)}]
(11Afg (12A1gpow) fix uni)"';

LET ‘Andrews’ ANDREWS_PROOF ANDREWS;;
QED

5. Relational constructions.
A few elementary properties of binary relations, following Fregezo.

5.1. Context factorization.

Now me must explain further commands of our theory system. First we
remark that the proof of Andrews’ lemma above was cluttered by irrelevant
polymorphism: the common domain A of all the constructions in the proof
should have been factored once and for all, instead of being repeatedly
abstracted and applied. This is the purpose of the following commands.

DECL: string -> context -> void
AXIOM: string -> object -> void
DISCHARGE: string -> void

The commands DECL and AXIOM permit to factorize a context common to
all constructions in a big proof. Rather than prefixing all those constructions
by this context, which further clutters the proof since all constants must be
applied to the corresponding parameters, we give the user a way to place
itself inside a current context. This is the usual way mathematics is developed
in first-order logic: we assume the existence of a domain of discourse, we
assume a language of predicates and function letters, and we assume axioms,
such as Zermelo-Fraenkel's ones in set theory. The command DECL assumes a
propositional construction, of type the given context, the command AXIOM
assumes the existence of an object verifying the given proposition, the com-
mand DISCHARGE discharges the corresponding notion.

DECL AA; IY‘H‘;;
DECL 'R" "A->A->¥';;
We now are in the theory of a binary relation Eover a domain A.

5.2. General properties of a binary relation R over set A.

Reflexivity.
let REFLEXIVITY = "{R'|A->A->*[x:A](R’ x x);;
PROP ‘Refi' REFLEXIVITY;;

Transitivity.
let TRANSITIVITY = "{R'|A->A->*{[x:A][y:A][z:A)(R' x y)->(R" vy z)->(R x 2)";
PROP ‘Trans’ TRANSITIVITY::

R-hereditary.
let HER = "{P|A->*][x:A][y:A] (P x}->(R x y)->(P y)";;
PROP 'Her' HER;;

Inductive definition of R+,

166

let TRANS_CLOSURE =
“[x:Ally:Al{PlA->*}(Her P)->([wAl(R x u)->(P u))}->(P y)';;
PROP ‘Rplus' TRANS_CLOSURE;;

R+ is R-hereditary.
let HER_RPLUS = "[x:A] (Her (Rplus x))"';;

let HER_RPLUS_PROOF = “[x:A][y:Al[z:A}l[h1:(Rplus x ¥} }[h2:(R y z)]
{Pla->*[h3:(Her P)][h4:[w:A}(R x u)->(P u)]
(h3 yz (h1 P h3 h4) h2)";

LET 'Her_Rplus' HER_RPLUS_PROOF HER_RPLUS;;

R+ is increasing.
let RPLUS_INCREASING = "[x:A][y:A] (R x y)->(Rplus x ¥)"';;

let RPLUS_INCREASING_PROOF = "[x:A][y:A][h1:(R x y)]{P|A->*}
(Her P) -> [h2:[z:A](R x 2)->(P 2)](h2 y h1)";
LET ‘Rplus_increasing’ RPLUS_INCREASING__PROOF RPLUS_INCREASING;;

R+ is transitive.
let TRANS_RPLUS = "(Trans Rplus)";;

let TRANS_RPLUS_PROOF = "[x:A][y:A][z:A][h1:(Rplus x y)][h2:(Rplus y z)]
let H = (Her__Rplus x) in
(h2 (Rplus x) H ([w:A][h3:(R y u)](H y u h1 h3)))":
Note the curious double use of (Her__Fplus x)
LET ‘Trans_Rplus’ TRANS_RPLUS_PROOF TRANS_RPLUS;;

R'

let TRANS_REFL_CLOSURE = "[x:A][y:A] (<A>y=x) + (Rplus x y)""s;
PROP 'Rstar' TRANS_REFL_CLOSURE;;

Note that Prege chose y=xz for simplicity in proof below.

let RSTAR_TO_RPLUS = "[x:A)[y:Al[z:A](Rstar x y}->(R y z)->(Rplus x z)";;

let RSTAR_TO_RPLUS_PROOF = "[x:A][y:A}{z:A][h1:(Rstar x y}][h2:(R y 2)]
(h1 (Rplus x z)
[h3:<A>y=x](Rplus_increasing x z (h3 [u:A](R u z) h2))
[h3:(Rplus x y)](Her_Rplus x y z h3 h2))";
LET ‘Rstar_to_Rplus' RSTAR_TO_RPLUS_PROOF RSTAR_TO_RPLUS;;

R*® is reflexive.
let REFL_RSTAR = "(Refl Rstar)’;;

let REFL_RSTAR_PROOF = "[x:A]'P.[h1:(<A>x=x)->P]
((Rplus x x)->P) -> (h1 (refi_equal A x))";;
LET '‘Refl_Rstar' REFL_RSTAR_PROOF REFL_RSTAR;;

let RPLUS_TO_RSTAR = "[x:A][y:A] (Rplus x y) -> (Rstar x y)"';;
let RPLUS_TO_RSTAR_PROOF = "[x:A]{y:A]l{h1:(Rplus x y)]

1P.((<A>y=x)->P) -> [h3:(Rplus x y)->P](h3 h1)";
LET ‘Rplus_to_Rstar' RPLUS_TO_RSTAR_PROOF RPLUS_TO_RSTAR;;

167

5.3. Tarski's theorem

As an exercise in relational constructions, let us now show Tarski's
theorem : If a function is monotonous over a complete upper-semi-lattice, it
admits a fixpoint®”.

z is an H-upper bound of subset M.
let BOUND = "[x:Al{MIA->*[v:AJM v)->(R y x)"";;
PROP ‘bound’' BOUND;,;

R-increasing function.
let MONOTONOUS = "[f.A->A][xAl[yv:Al(Rx y)->(R (f x) (f y))'"s;
PROP ‘mon* MONOTONQUS;;

J (w)=u with = the symmetric quotient of K.
let FIX = "[EA-DA{wANR u {f ul)&(R {f u) w)";
PROP *fix' FIX;;

let COMPL_SEMI_LATTICE =
"iMIA->*1B.{{u:Al(bound u M)->{[x:A](bound x M}->(R u x)}->B)->B";;
PROPF ‘csl’ COMPL_SEMI_LATTICE;;

let TARSKI = "(Trans R) -> esl -> [f:A->A](mon) -> <A>Sig((fix £))"";;

let TARSKI_PROOF = "[trans:(Trans R)]{ub:csl][f:A->A][mo:(mon)]

B h[wAJ(R u (f u)&(R (f u) u))->B]

{(ub {wA(Ru {fu))) B

([xAllhtfwAlRu (f u))->(Rux)]
[(h2:fuAl([v:AIR v (£ v))->(R v u))->(R x u)]
let p = ([y:A][h:(Ry (f y))}{trans y (f y) (f x) b’ (mo y x (h1 y h'))))

in let xRfx = (h2 ({ x) p) in

(h x <(R x (f x)).,(R (f x) x)>{xRix,(h1 (f x) (mo x (f x) xRExX)INN":;
LET ‘Tarski' TARSKI_PROOF TARSKI;;
QED

6. Frege's lernma

This section is devoted to prove that injectivity implies linearity, follow-
ing the proof of Frege?C.

R1is injective.
let INJECTIVE = "[x:A][y:A][2z:A] (R x ¥) -> (R x 2) -> <A>y=2";};
PROP 'Injective’ INJECTIVE;;

R* is R-hereditary.
let HER_RSTAR = "[x:A] (Her (Rsfar x))"";;

let HER_RSTAR_PROOF = "[x:A]{y:A){zA][h1:(Rstar x y)][h2:(R vy z)]
(Rplus_to_Rstar x z (Rstar_to_Rplus x y z h1 h2))"::
LET ‘Her_Rstar' HER_RSTAR_PROOF HER_RSTAR::

let LINEARITY_LEMMA =
"Injective->[x:A][y:A](R y x)->[z:A](Rplus y z)->(Rstar x 2)";;

168

let LINEARITY_LEMMA_PROOF =
"[inj:Injective[x:Al[y:A}{yRx:(R v x) [z:A][h:(Rplus ¥ z}]
{h (Rstar x} (Her__Rstar x)
([wAllyRu:(R y u)]
(inj y x u yRx yRu (Rstar x) {Refl_Rstar x)}))";;
LET 'linearity_lemma* LINEARITY__LEMMA_PROOF LINEARITY_LEMMA;;

let CASE_RSTAR = "[x:A]l[y:A](Rstar y x)->((Rplus y x)+(Rstar x y))";;
let CASE_RSTAR_PROOF = "[x:Al{y:A]l[h1:(Rstar y x)]
'P.[h2:(Rplus y x)->P][h3:(Rstar x y)->P]
(h1 P ([h4:<A>x=y](h3 (h4 (Rstar x) (Refi_Rstar x))))
([b5:(Rplus y x)](h2 h5)))";;
LET 'Case_Rstar' CASE_RSTAR_PROOF CASE_RSTAR;;

H-connected
let CONNECTED = "[x:Al[v:A] (Rplus y x)+(Rstar x y}";;
PROP ‘Connected CONNECTED;;

We show that (Rinjective & zR+y & xR+z)-> (Connected z y)
let LINEARITY1 =
"Injective->[x:A][y:Al(R y x)->[z:A](Rplus y z)->(Connected z x)";;

let LINEARITY1_PROOF =
"[hi:njective][x:A][y:A][h2:(R y x)}{zA][h3:(Rplus y z}]
{Case_Rstar z x (linearity_lemma hl x y h2 z h3))";
LET ‘linearityl® LINEARITY1_PROOF LINEARITY1;;

let HER_CONNECTED =
"Injective->{x:A][y:A]{z:A}(Connected x y)->(R y z)->(Connected x z)";;

let HER_CGHNNECTED_PROQF =
“[hl:Injective][x:A][y:A][z:A][h2:(Connected x y)][h3:(R y z}]
'P.[h4:(Rplus z x)->P][h5:(Rstar x z)->F]
(h2 P ([h6:(Rplus y x)](linearityl hl zy h3 x h8 P h4 h5))
([h6:(Rstar x y)]
(h5 (Rplus_to_Rstar x z {Rstar_to_Rplus x y z h6 h3)))))";
LET ‘her_linear' HER_CONNECTED__PROOF HER_CONNECTED;;

let LINEARITY =
“Injective -> [x:A][y:A}[z:A}(Rplus x z) -> (Rplus x y) -> (Connected z y)";;

let LINEARITY_PROQF =
"[h1:Injective][x:A][y:A][z:A][h2:(Rplus x 2z)][h3:(Rplus x y)]
(h3 (Connected z) (her_linear h1 z) ({uw:A][h4:(R x u)]
(linearityl h1 u x h4 z h2)))";
LET ‘Linearity’ LINEARITY_PROOF LINEARITY;;
QED

7. Newman's Lemma

This section uses the relational constructions from section 5. We show
here Newman's lemmma: A Noetherian relation is confluent iff it is locally
confluent*3. The method of proof follows Huet?2.

169

We first need to show that z R*y implies 3z z Rz & z R* y. We thus
give a dual definition Rplus’ of the transitive closure of R.

In order to avoid unduly currification, we give a preliminary construction for
3z P(z) & Q(z).

let SIGMAZ = "IC.{P|C->*{Q|C->*iB.([x:CI(P x)->(Q x)->B)->B";;

PROP 'Sig2' SIGMAZ;;

let RPLUS' = "[x:A][y:A](Sig2 A {z:A}(R x z) [z:A](Rstar z y))'";;
PROP ‘Rplus” RPLUS’;

Now we prove intermediate lemmas needed for RPLUS_T0O_RPLUS".
let R_TO_RPLUS’ = "[x:Al{y:A] (R x y)->(Rplus’ x y)";;

let R_TO_RPLUS"_PROOF =
"[x:A){y:A][h1:(R x y)|!B.[h2:{z:A}(R x z)->(Rstar z y)->B]
(h2 y h1 (Refi_Rstar y))'';

LET ‘R_to_Rplus™ R_TO_RPLUS'_PROOF R_TO_RPLUS’;;

let HER_RPLUS' = "[x:A] (Her (Rplus’ x})";;

let HER_RPLUS’_PROOF =
"[x:Ally:Al{z:A][h1:(Rplus’ x y)][h2:(Ry z)]
'B.[h3:[wA](R x u)->(Rstar u z)->B]
(h1 B ([v:A][h4:(R x v)][h5:(Rstar v y)]
(h3 v h4 (Rplus_to_Rstar v z (Rstar_to_Rplus vy z h5 h2)))))";;
LET ‘Her_Rplus'™ HER_RPLUS’'__PROOF HER_RPLUS’;;

let RPLUS_TO_RPLUS’ = "[x:A][{y:A] {Rplus x y)->(Rplus’ x y)';;

let RPLUS_TO_RPLUS'_PROOF =
"[x:A)y:Al[h1:(Rplus x y)]
(h1 (Rplus’ x) (Her_Rplus’ x) (R_to_Rplus’ x))";;
LET 'Rplus_to_Rplus” RPLUS_TO_RPLUS'_PROOF RPLUS_TO_RPLUS";

let RSTAR_CASES = "[x:A][y:A] (Rstar x y)->((<A>x=y)+(Rplus x y))"";:

let RSTAR_CASES_PROCF =

"[x:A]{y:Al[h:(Rstar x y)]

'B.[h1:(<A>x=y)->B][h2:(Rplus x y)->B]

(h B ([eq:(<A>y=x)](h1 (sym_equal Ay x eq))) h2)";;
Remark that we pay here the orientation of = in the definition of Rstar.
LET ‘Rstar_cases' RSTAR_CASES_PROOF RSTAR__CASES:;

R* is transitive.
let TRANS_RSTAR = "(Trans Rstar)";;

let TRANS_RSTAR_PROOF =
"[x:A][y:A][z:A][h1:(Rstar x y)}[h2:(Rstar y z)]
(h1 (Rstar x z) ([h3:(<A>y=x)](h3 [u:A](Rstar u z) h2))
([h3:(Rplus x y)](Rstar_cases y z h2 (Rstar x z)
[h4:(<A>y=z)](Rplus_to_Rstar x z (h4 ([uw:A](Rplus x u)) h3))
[h4:(Rplus y z)](Rplus_to_Rstar x z (Trans_Rplus x y z h3 h4)))))" ;;

170

LET ‘Trans_Rstar' TRANS_RSTAR_PROCGF TRANS_RSTAR;;

let COHERENT = "{x:A][y:A] (Sig2 A {Rstar x) (Rstar y)}";;
PROP ‘Coherent' COHERENT;;

let CONFLUENT = “[x:Ally:A}{z:A] (Rstar x y)->(Rstar x z}->{Coherent y z)";;
PROP ‘Confluent’ CONFLUENT;;

let LOCALLY_CONFLUENT = "[x:A]ly:Al{z:A] (R x y)->{R x z)->(Coherent y z)"";;
PROP ‘Locally_Confluent® LOCALLY_CONFLUENT;;

The diagram.
let DIAGRAM =

"I AJ([uAJ(R x u) -> (Confiuent u)} -> {Locally_Confluent x) ->

[y: 8} z:A}(Rplus’ x y) -> (Rplus’ x 2z} -> (Coherent y 2)";;
Here is the important part of -the proof: filling out the diagram. Hemark how
the existential quantifications allow us to progressively 'draw' the diagram.
let DIAGRAM_PROOF =

"[x:A]

[induction_hyp:[w:A}R x u)->(Confluent u)]

[hyp:(Locally_Confluent x)]

[y:A][z:A]

[arc1:{Rplus' x y)]

[arc2:(Rplus’ x z)]

1B.[eoher:[u:A](Rstar y u)->(Rstar z u)->B]

(arc1 B

([b:A)[arc3:(R x b)][arc4:(Rstar b y)] g

(arc2 B

([c:A)[arcs:(R x c)][arcB:(Rstar ¢ z)}

{hyp b c arc3 arc5 B

([u:Al{arc7:(Rstar b u)]{arc8:(Rstar ¢ u)]
{induction_hyp b arc3 y u arc4 arc7 B
([v:a][arc9:(Rstar y v)l[arc10:(Rstar u v)]
(induction_hyp ¢ arcS v z {Trans_Rstar ¢ u v arc8 arcl0) arc8 B
({w:Allarcii:(Rstar v w)l[arc12:(Rstar z w)]
(coher w (Trans_Rstar y v w arc8 arcll) arc12))))INDNN"

LET "diagram’ DIAGRAM_PROOF DIAGRAM;;

let COROLLARY =
"[x:A){{a:A}R x a)->(Confluent a))->(Locally_Confluent x}->
[y:A)z:A}(Rplus x y)->{(Rplus x 2)->(Coherent y z)";

let COROLLARY, PROOF =
“[x:A][induction_hyp:{a:A](R x a)->(Confluent a)]
[hyp:(Locally_Confiient'x)][y:A}[z:A){arc:(Rplus x y)][arc:{(Rplus x z)]
(diagram x induction_hyp hyp y z
(Rplus_to_Rplus' x'y arc)
(Rplus_to_Rplus’ x z arc’))";;
LET ‘corollary’ COROLLARY "PROOF COROLLARY;;

Newman's lemma assuming proper induction hypotheses.

let NEWMAN_IND =
“[x:AJ{[a:A}(R x a) -> (Confluent a)) -> (Locally_Confluent x) ->
[y:A)[z:A)(Rstar x y) -> (Rstar x z) -> {(Coherent y 2)";;

[a WY 3

171

let NEWMAN_IND_PROOF =
"[x:A]
[induction_hyp:[a:A}(R x a}->(Confluent a)]
[hyp:(Locally_Confluent x)]
[y:Al[z:A]
[arc:{Rstar x y)]
[arc':(Rstar x z)]
(Rstar_cases x y arc (Coherent y 2)
([casel:(<A>x=y)]'B.[coher:[v:A](Rstar y v)->(Rstar z v)->B]
(coher z
{casel ({u:Al{Rstar u z)) arc’)
(Refl_Rstar z)))
{[casel:(Rplus x y)](Rstar_cases x z arc’ (Coherent y z)
([case21:{<A>x=z)]!'B.[coher:[v:A](Rstar y v)->(Rstar z v}->B]
(coher y
{Refl_Rstar y)
{case21 ([u:A](Rstar u y)) arc)))
([case22:(Rplus x z)]
(corollary x induction_hyp hyp y z case2 case22)))))";;
LET ‘Newman_ind' NEWMAN_IND_PROOF NEWMAN__IND;;

The proofs in this section may appear formidable at first sight. Actually,
they follow quite naturally the mathematical reasoning, and one may argue
that the language of constructions is the ideal medium for natural deduction
in higher order predicate calculus. What is most needed at this point is a good
interactive system allowing to "debug” its proof progressively, with machine
assistance for automating the trivial steps.

We now introduce Noetherian induction.
let NOETHERIAN = "{P|A->* ([x:A)([v:Al(R x y)->(P y))->(P x))->[x: AP x)";;
PROP 'Noetherian' NOETHERIAN;;

Noetherian induction is both a proposition stating that relation R is Noeth-
erian (i.e. there are no infinite R-chains), and the type of functional objects
which may be applied to a property P in order to show YzeAd-P(z) by induc-
tion. Once again we stress operational meanings: the proposition "R is Noeth~
erian” is the type of induction principles.

Newman's lemma.
let NEWMAN = "Noetherian -> Locally__Confluent -> Confluent’';;

let NEWMAN_PROOF =
“[h1:Noetherian]{h2:Locally_Confluent]
(h1 ([wA](Confluent u))
(Ix:A][ind:[y:A}{R x y)->(Confluent y)] (Newman_ind x ind (h2 x))))";;
LET ‘Newman' NEWMAN_PROCF NEWMAN;;
QED.
We believe this is the first machine-checked proof of Newman's lemma.

172

8. Categorical constructions

It is instructive to axiomatize the notion of category in the language of
constructions. The most natural definition is to parameterize the notion of
category on a class Obj, a binary relation Hom on Obj, and operations id and o
verifying the usual laws of generalized monoid:

CATEGORY = "10bj.{Homn|[A:Obj][B:0bj]*}[id:[A:Obj](Hom A A)]
[0:[A:0bj][B:0bj][C:0bj](Hom A B)->(Hom B C)->(Hom A C)]
([A:Obj][B:Obj][f:(Hom A B)]<(Hom AB)> (0 AAB (id A) f) =)
& ([A:Obj][B:0bj]{f:(Hom A B)]<(Hom A B)> (o AA B f (id B)) = f)
& ([A:Obj}[B:Obj]{C:0bj}[D:0bj}{f:(Hom A B)][g:(Hom B C)}[h:(Hom C D)]
<(HomAD)>(0ACD{(0cABCfg)h)=(0cABDf(6BCDgh)))

This definition is not quite general enough, since it assumes intensional
equality for morphisms. A more general definition would replace the equality
= by a relation E postulated to be an equivalence relation compatible with
composition. We shall not develop further those categorical constructions
here, but we just remark that there is no intrinsic difference in our view
between Hom and a relation on Obj. This is because we have an intuitionistic
view of models: the interpretation of a relation is not just "true” or "false”,
but the set of meanings which prove such a relation. Note that from this
“realizability” point of view, stating the existence of identity and composition
is just postulating the relation Hom to be reflexive and transitive.

9. Algebraic constructions

The following section needs only the logical constructions from section 2.
We show here how to develop the standard notions from abstract algebra in a
natural way. First we show how to embed the signatures of homogeneous alge-
bras into simple propositions.

9.1. Finite domains

The empty set, already seen as Falsity.
let EMPTY = "1AA'";
PROP '{}* EMPTY:;

The unit set.

let UNIT = "A.A->A";

PROP *unit® UNIT;;

Already seen as ‘self'; contains as unique element Id ="/A[u:Alu"

FBooleans.
let BOOL = A A->A-DA"";,;
PROP ‘bool" BOOL;;

Church’s Booleans : Az, yy and A z,y.z 15
let TRUE = "A.[w:A][v:A]u" and FALSE = "A [w:A]{v:A]v";

LET ‘true' TRUE "bool";;
LET ‘false' FALSE "bool";;

173

Complement.
let COMPL = "[b:bool](b bool false true)";
LET 'not’ COMPL "bool->bool’”;;

Conditional.
let IF = "1A.[b:bool](b A)";;
LET *if* IF "A.bool->A->A->A";;

Note that, for p:A&4, <A A>fst(p)=(p (true A)) and similarly with snd/false

Standard Boolean functions.
let AND = "[b:bool}[{b"bool](b bool b’ false}”;;
LET "And’ AND "bool->bool->bool”;

let OR = "[b:bool][b":bool](b bool true b’)";;
LET *Or' OR "bool->bool->bool’;;

It is easy fto generalize the consiructions above to define the canonical
polymorphic structure with n elements.

8.2. katural numbers

let NAT = "IA.(A->A)-DA-2A";;
PROP ‘nat’ NAT;;

let ZERO = "A (A->A)->(1d A)™;
LET '0' ZERO "mnat’;;

let SUCC = "[ninat] A [s:A->Al[z:Al(s (n As 2))";
LET *S* SUCC "nat->nat':;
LET_SYNTAX 'S' ['S(;)'):;

"Concrete” natural numbers completely expanded out.
let ONE = apply(SUCC,ZERO);;
letrec NATURAL n = if n<0 then fail
if n=0 then ZERO else apply(SUCC,NATURAL (n-1));

"Abstract” natural numbers in ferms of the constants Oand S
let Zero = "0" and Succ = "S"";;

let ONE = "(S 0)";;

LET '1* ONE "nat’;

More generally:

letrec Natural n = if n=0 then Zero else apply(Suce,Natural (n-1));;
let Decl_Nat n = LET (string_of_int n) (Natural n) "nat";;

This permils to declare any nat with its usual representation.

Note that the untyped A-expressions corresponding to proofs of type nat
are exactly Church’s integers!®. However, we need the power of second-order
types to give them a uniform type, that of polymorphic iterators.

Since all our constructions are functional objects, there is no distinction
between data structures and control structures. A data structure is just a
control structure waiting for additional arguments in order to project itself.

174

Thus booleans implement conditionals, integers are for loops, etc...

If one sees nat as denoting the initial algebra in the class of all algebras
with signature <A,s:A->A,z:A>, the role of the initiality morphism is here taken
by application, since the homomorphic image of ninat in the structure
<A.s:A->A,z:A> is simply {n A s z). This should clarify the definition of SUCC
above. We shall develop these algebraic ideas more systematically in the next
section.

9.3. The general case of homogeneous varieties.

In this section we show how to synthesize in ML the constructions of abstract
algebra.

Abstracting k times on the carrier, which we assume is bound at level m
let arity m n = arityrecn
whererec arityrec k = let carrier = rel{n+m-k) in
if k=0 then carrier
else function(carrier,arityrec (k-1)};;

The canonical structure with n elements.
let FINITE n = if n<0 then fail else polymorph(star,arity 1 n);;

The case statement.
let CASE(n,m) = if n<0 or m<1 or m>n then fail else
polymorph{star,caserec n) whererec caserec k =
if k=0 then rel{m) else function(rel{n+1-k},caserec{k-1));;

We have the following identities:

EMPTY=FINITE(0)

UNIT=FINITE(1) ID=CASE{1.1)

BOOL=FINITE(2) FALSE=CASE(2,1) TRUE=CASE(2,2)

More generally, we define a signature as a list of non-negative integers
which determines a functionality as follows.

letrec functionality m sig obj =
if sig=[] then (obj m)
else function(arity m (hd sig),functionality (m+1) (tl sig) obj);;

let free_algebra sig = polymorph(star,functionality 1 sig rel);;

So we could have defined NAT as free_algebra[1;0]. In a similar fashion, we
could synthesize the constructors of such free algebras. Let us now turn to
the non-homogeneous case.

9.4. Heterogeneous algebras

Lists
let LIST = A,B.{A->B->B)->B->B";;
PROP ‘list* LIST;;

175

let NIL = "A,B.(A->B->B)->ld";;
LET *nil* NIL "list";;
Compare with ML, where nil:* list

let CONS = "tA.[x:A]{y:(list A)I'B.JwA->B->B][v:Bl[{u x (y Bu v))";;
LET ‘cons' CONS "AA->(list A)->{list A)";

Assume proposition A given, and let us abbreviate, for @y, - - - ,an of type
A, the construction "B.J[wA->B->B][v.B}{u a1 (u az .. (u an v)..))" as

may operate on any algebra <B,U:A->B->B,V:B> in order to compute the ele-
ment of B(U a; (Uaz .. (Uea, V)..)). This is exactly the role of the ML itlist
primitive, or the APL reduce operator. Similarly, we may define trees as tree
iterators, as follows.

Trees = JA. (A->A->A)->A->A
let BINTREE = "A.(list A A)";;
PROP ‘bintree* BINTREE;;

let NIL_TREE = "A.(nil A A)";;
LET 'nil_tree’ NIL_TREE BINTREE;;

let MKTREE =
"[left:bintree][right:bintree]!'A.[c:A->A->A][n:A](c (left A ¢ n) (right A ¢ n))";
LET ‘mktree’ MKTREE "bintree->bintree->bintree’;;

We may treat in the same way more complex tree structures, strings, and
more generally all the standard data structures which correspond to free
algebras. Note that all the propositions needed here correspond to Girard’s
second order types restricted to degree 2, similarly to the treatment in
Berarducci-Bdhm?*.

9.5. Non-free structures

All the standard free algebras on one carrier are of the form "A.P1->P2-
> ... ->Pn->A" with Pi of the form (A->A->..->A). That is, we are restricting
ourselves to second-order types of degree 2. Let us now consider algebras
defined by types of degree 3.

Binding.
let BIND = "1A.((A->A)->A)->A";;
PROP ‘bind' BIND;;

The algebra bind has only one constructor, which may be thought of as a
quantifier, which introduces locally a new generator. The proofs of bind are
all expressions of the form

Vx| Vzey - YVrp,-x; with l=si<sn

l.e. the algebra bind is isomorphic to the relation = over N. For instance, the
formula V'z1Vzzzy, or isomorphically 221, is represented by the following
proof of type bind.

LET '2>=1" "A.[quant:(A->A)->A}{quant [x1:A](quant [x2:A]x1))" BIND;;

176

Lambda expressions.
let LAMBDA = "A.((A->A)->A)->(A->A->A)->A";;
PROP ‘lambda’ LAMBDA;;

This is the algebra of ordinary lambda expressions. The first operator is A,
the second is apply. For instance, Az-Ay-(x ¥) is represented as the following
proof of type lambda:

LET \\ (R 1)
A [lam:(A->A)->A][ap:A->A->Al(lam [x:A]{lam [y:A](ap x ¥)))" LAMBDA;;

Typing.
let TYPE = "A.(A->(A->A)->A)->A->A";
PROP ‘type' TYPE;

This is the algebra of one typing operator similar to our own abstraction
operator, and one base type, similar to our own star. For instance, the
expression [x:*][y:x]y is represented as the following construction of type

type:

LET [*][111
A [typ:A->(A->A)->A][star:Al(typ star [x:Al(typ x [y:Aly))" TYPE;

Typed h-calculus.
let DELTA = "IA.(A->(A->A)-DA)->(A-DA-D>A)-SA->A";
PROP ‘delta’ DELTA;;

This algebra, obtained by mixing the operators of lambda with those of type,
is in a sense the simplest typed lambda calculus structure. This is exactly
Nederpelt's A, and thus the algebra of our own language. For instance, the
construction "[B:*][x:B][f:{wB]B]J(f x)" is internalized as the following proof of
type delta.

LET ‘[*][1]{[2]3K1 2)
"1A fabs:A->(A->A)->A ap:A->A->A][star:A]
(abs star [B:A]J{abs B [x:A](abs {abs B [w:A]B) [{:Al(ap f x))))"
DELTA;;

We could for instance present the type-checker of constructions as a con-
struction in "delta->delta+unit”, but this is out of the scope of the present

paper.

Note how the constructions above are a natural generalization of the
standard definitions from abstract algebra, where the notion of signature has
been enriched to be not just a list of integer arities, but more generally a list
of signatures of lower level algebras. We have the finite structures at level 1,
the standard term algebras at level 2, the various lambda calculi at leve] 3.
This quick investigation of the simplest of Girard's second order types®?
should give an idea of the richness of expression of the full language. The
next secltion gives an example where we use an inner type quantification.

177

9.8. Ordinals.

Ordinals are defined in a similar way to natural numbers, adding a limit
operation. A sequence over type A is of type (nat->A), and thus a lirnit opera-
tor over A is of type (nat->A)->A.

let ORD = "A ({nat->A)->A}->(A->A)-DA-DA";;
PROP ‘ord* ORD;;

let ORDZERO = A [lim:{nat->A)->Al[s:A->A)[z:Alz";;
LET 'ordzero’ ORDZERO "ord’;;

let ORDSUCC = "[a:ord!A[lim:(nat->A)->A]{s:A->A)[z:A}(s {a A lim s 2))";;
LET 'ordsucc’ ORDSUCC "ord->ord™;

Limit of a sequence of ordinals.

let ORDLIM = "[seqmat->ord]!'A.[lim:(nat->A)->A][s:A->A][z:Al(lim [n:nat](seq n
Alims z))";

LET 'ordlim' ORDLIM "(nat->ord)->ord";;

Finite ordinals are obiained by ccercing nats into ords.
let ORDNAT = "[n:nat](n ord ordsucc ordzero)";;
LET ‘ordnat’ ORDNAT "nat->ord"’;;

w
let OMEGA = "(ordlim ordnat)";;
LET ‘omega* OMEGA "ord";;

10. Programming constructions.

We finally show how we can use the algebraic constructions as basic data
structures and control structures of a very-high level programming language.

10.1. Arithmetic on natural numbers in unary notation.

Addition.

let ADD = "[n:nat]{n nat S);

LET 'add’ ADD "nat->nat->nat";;

LET_SYNTAX 'add’ [*(';'+5)']

Other possible def: "[mmat][nmnat]n nat S m)'. This last one generalizes to
ordinal addition.

Multiplication.

let MULT = "[n:nat][m:nat](n nat {add m) 0)";

LET ‘'mult' MULT "nat->nat->nat’;;

A less abstract one is composition (the B Curry combinator)
"Inmat][mmatVA[f:A->Al(n A (m A f)). Orits dual:
"[nnat]lmmat!A[f:A->Al(m AMm AS))".

Erponentiation.
let EXP = "[n:nat]{m:nat}{m nat (mult n) 1)
LET 'exp’ EXP "'nat->nat->nat’’;;

178

Super- Exponential: n~n~ ... (n~nj..}.
let SUPEXP = “[nmat][kinat](k nat {exp n) n)";
LET ‘supexp’ SUPEXP "nat->nat->nat’;;

10.2. Primitive recursion

We want to implement primitive recursive equations of the form:
g(0)=a , g(n+1)=f(n.g(n))
For this, we build in for loops, that is flowcharts such as :
fterate(f ,an)=z:=a;fori.=0ton-1do z:=f (i,2)
We get such a construct by iterating on a pair: g{(n)=snd(n h <0,a>) with
h<i,g{i)>=<i+1,g(i+1)>=<i+1,f{{.9(1))>

which we generalize as h<i,z> = <i+1,f (1,2)>. More generally, flowcharts
iterate commands, in store->store, for an appropriate value of store (i.e, the
product of the types of the relevant identifiers). These remarks lead directly
to the iter construction:

let ITER = "!A. let store=nat&A in
let mkstore={i:nat}{a:Al<nat,A>(i,a) in
let index=[st:store]<nat,A>fst{st) in
let result=[st:store]<nat,A>snd(st) in
[f:store->Al{a:A]
let com=[st:store](mkstore (S {index st)) (f st)) in
let inist={mkstore 0 a} in
[nnat]{result (n store com inist))";;
LET ‘iter’ ITER "A.((nat&A)->A)->A->nat->A";

Exemple: predecessor, defined as pred(0)=0, pred(n+1)=n
let PRED = "let index=[st:nat&nat]<nat,nat>fst{st} in (iter nat index 0)"";;
LET ‘pred' FRED "nat->nat";;

Factorial: fact(0)=1, fact(n+1)=(n+1)*fact(n)

let FACT =

"let factcom=[stnat&nat]{mult (S <nat,nat>fst(st)) <nat,nat>snd(st)) in
(iter nat facteom 1)";;

LET ‘fact' FACT "nat->nat'’’;;

It is now easy to imagine a compiler which macro generates the call to
iter, with a command part containing identifiers compiled as projection func-
tions in the store. More ambitiously, we may access variables through an
environment, and have more complex commands using continuations. A pro-
gram will be a construction in the algebra of the abstract syntax of some pro-
gramming language, whose semantics is given by constructions in the tradi-
tional style of denotational semantics.

Egquality to zera
let EQZERO = "[n:nat}{(n bool [b:boollfalse true)’;
LET ‘eq0’ EQZERO "nat->bool”;;

A more complicated recursive schema: Fibonacci.

179

fibo (0)=a,fibo {1)=b fibo (n+2)=F(fiba(n).fibo(n+1))

let FIBO = "Alet store=A&A in
let mkstore=[x:A][y:A]<AA>{xy) in
let res=[st:store]<A,A>snd(st) in
[F:store->A]
let com=[st:store]{mkstore (res st) (F st)) in
[a:Al{b:A]
let inist=(mkstore a b) in
[n:nat]{eq0 n A a (res {n store com inist)))";;
LET *fibo® FIBO "A.({A&A)->A)->A->A-D>nat->A";;

Ezemple: the standard Fibonacci function.

let FIB =
"let F={st:nat&nat](add <nat,nat>fst{st) <nat,nat>snd(st)) in
(fibonat F 1 1)";

LET “fib' FIB "nat->nat’’;;

Beyond primitive recursion: Ackerman’s function.

let ACK = "[n:nat](n (nat->nat) {f:nat->nat][n:nat](n nat f n) S)";;
LET ‘ack® ACK "nat->nat->nat";;

This shows the power of iteration on functional types.

10.3. List processing

List concatenation
let APPEND = "A [11:{list A)][12:{tst A)]J(I2 (list A) {cons A) 11)";;
LET ‘append’ APPEND "A.(list A)->(list A)->(list A)";;

Insert at end of list
let POST = "A [a:A]{1:(list A)](1 (list A) {cons A) {cons A a (nil A)))'";
LET 'post’ POST "A.A->(list A)->(list A)'";;

let REVERSE = "A[l:(list A)J(1 (list A) (post A) (nil A))";;
LET ‘reverse’ REVERSE "!A.(list A)->(list A)";;

Ezxample : Hanoti's towers
let HANOL_TYPE = "A.nat->A->A->A->(list (A & A))";;

let HANOI_PROGRAM = "'A [n:nat]
let pair=[x:A][y:Al<A,A>(x,y) in
(n (A->A->A->(list (A & A)))
[H:(A->A->A->(list (A & A))))[a:A](b:A)[c:A)
(append (A & A) (Ha c b) (cons (A & A) (pairac) (Hbac)))
([a:Al[b:Al[c:A}(nil (A & A))))';;
LET '‘prog®' HANOI_PROGRAM HANOIL_TYPE::

10.4. Ordinal programming
Ordinal sum.

let ORDSUM = "[a:ord][b:ord]{b ord ordlim ordsuce a)";
LET ‘ordsum’ ORDSUM "ord->ord->ord";;

180

Note: we have more than ordinals, i.e. ordinals presented with a fundamental
sequence. Thus {ordsum ordone omega) is different from omega.

Ordinal multiplication.
let ORDMULT = "[arord][b:ord}(b ord ordlim (ordsum a) ordzero)’;;
LET ‘ordmult® ORDMULT "ord->ord->ord';

ordene = (ordnat 1)
let ORDONE = "(ordsucc ordzero)’;;
LET ‘ordone® ORDONE "ord";;

Ordinal exponentiation.
let ORDEXP = "[a:ord][b:ord](b ord ordlim {ordmult a) ordone)";;
LET ‘ordexp’ ORDEXP "ord->ord->ord"”;;

€9
let EPSILONO = “(omega ord ordlim (ordexp omega) ordzero)";;
LET 'epsilon0* EPSILONO “ord";;

We now show how to use ordinals to describe functional hierarchies.

Schwichtenberg's hierarchy!®
let FAST = "let natfun=nat->nat in
let natfunzero=Sin
let natfunsucc=[f:natfun][n:nat](n natf n) in
let natfunlim=[seq:nat->natfun]{n:nat]{(seqnn) in
[a:ord](a natfun natfunlim natfunsucc natfunzero)”;;
LET *fast' FAST "ord->nat->nat’’;;
Note: (fast epsilon0) is not provably total in Peano’s arithmetic.

let SLOW = "let natfun=nat->nat in
let natfunzero=3S in
let natfunsucc=[fnatfun][n:nat](S (f n)) in
let natfunlim=[seq:nat->natfun][n:nat](seq n n) in
[a:ord}{a natfun natfunlim natfunsucc natfunzero)";;
LET 'slow' SLOW "ord->nat->nat”;;
Note that only natfunsucc changes from the fast to the slow hierarchy.

Conclusion

Leibniz was the first to seek a universal lanz%uage for mathematical rea-
soning. The graphical proof notation of Frege=" anticipated the works on
natural deduction®! and constructive mathematics®8. The first real attempt
at mechanizing mathematics was the Automath effort11.30:54 Martin-Lof
made a fundamental contribution to the problem in presenting his 1971
theory of types3®. This first attempt was shown inconsistent by J.Y. Girard.
This prompted Martin-1L6f to develop predicative theories®6:37.38.3% various
implementations of intuitionistic type theory are now under develop-
ment®5.56.44.14.15.3 On the other hand, impredicative systems such as
Girard's second-order types®%23 discovered independently by Rey-
nolds®:52.53 have been recently the subject of close investigation1® 3%

A related field is of course that of automated theorem-proving. Powerful
systems able to machine-check significant theorems are scarce. The Boyer-
Moore theorem prover has been able to mechanize successfully a substantial

181

part of recursive arithmetic”8 %10 Several attempts have been made at
mechanizing Church’s type theory? 1.49.48,28,27.26.40 A 15t of research has
been put into mechanically verifying computer programs. The most impres-
sive effort so far is the LCF project®345:47%.46 Another interesting theorem-
proving system is Ketonen’'s EKL. who recently obtained a mechanical proof of

Ramsey's theorem32.33.31,

The current proposal is a tentative to blend together Martin-Lof's 1971
theory of types and Girard’s second order types as a generalization of the
Automath’s formalisms. We have shown that the resulting language was well
suited to expressing in a concise way notions taken from various mathemati-
cal fields.

It is also possible to regard our constructions as a very high level pro-
gramming language, where propositions/specifications/types are used to
d=corate proofs/programs. To each proposition corresponds a canonical
data-structure and its associated control-structure. To valid propositions
corraspond proofs which may be considered as programs obeying the
corresponding specification. Executing the program corresponds to normaliz-
ing the proof to a cut-free direct proof. Such normalization is always possible
for verified programs, and the computation does not involve the specification
part, which may be considered a simple comment meaningless for computa-
tion.

This points out to the two essential problems that need to be solved in
order to apply this work to the development of verifiably reliable software:
firstly to establish programming methodologies implementing correctness
verification as part of program development, with proper programming
environments to support such methodologies in a user-friendly manner.
Secondly, to develop computer architectures adequate for efficient lambda-
calculus computation.

References

1. P.B. Andrews, Kesolution in Type Theory, Journal of Symbolic Logic 38,3
pp. 414-432 (1971).

2. P. B. Andrews, Dale A. Miller, Eve Longini Cohen, and Frank Pfenning,
Automating higher-order logic , Dept of Math. University Carnegie-Mellon
{1983 January).

3. R. Backhouse, Algorithm development in Martin-Léf’s type theory, Univer-
sity of Essex (July 1984).

4. A Berarducci and C. BShm, Toward an Automatic Synthesis of
Polymorphic Typed Lambda Terms, ICALP (1984).

5. E. Bishop, foundations of Constructive Analysis, McGraw-Hill, New-York
(19867).

6. E. Bishop, Mathematics as a numerical language, Intuitionism and Proof
Theory, Edited by J. Myhill, A.Kino and R.E.Vesley, North-Holland, Amster-
dam, pp. 53-71 (1970).

7. K. Boyer and J Moore, 4 Lemma Driven Automatic Theorem Prover for
Recursive Function Theory , 5th International Joint Conference on
Artificial Intelligence, pp. 511-519 (1977).

8. R. Boyer and J. Moore, 4 mechanical proof of the unsolvability of the

halting problem , Report ICSCA-CMP-28, Institute for Computing Science
- University of Texas at Austin (July 1982).

9.

10.

11.

12.

13.

14.

i9.

16.

17.

18.

19.

20.
21,

22.

23.

24.

25,

26.

27.

28.

182

R. Boyer and J. Moore, Proof Checking the RSA Public Key Encryption
Algorithm | Report ICSCA-CMP-33, Institute for Computing Science -
University of Texas at Austin (September 1982).

R. Boyer and J. Moore, Proof checking theorem proving and program
verification , Report ICSA-CMP-35, Institute for Computing Science -
University of Texas at Austin (January 1883).

N.G. de Bruijn, Automath a language for mathematics, Les Presses de
I'Universite de Montréal (1973).

N.G. de Bruijn, 4 survey of the project Automath, Curry Volume, Academic
Press {1980).

A. Church, The Calculi of Lambda-Conversion, Princeton U. Press,
Princeton N.J. (1941).

R.L. Constable and J.L. Bales, Proofs as Programs, Dept. of Computer
Science, Cornell University. (Feb. 1983).

R.L. Constable and J.1. Bates, The Nearly Ultimate Pearl, Dept. of Com-
puter Science, Cornell University. (Dec. 1983).

Th. Coquand, Une thdorie des constructions, Thése de troisiéme cycle,
Université Paris VI {Janvier 85).

Th. Coquand and G. Huet, A Theory of Constructions, Preliminary version,
presented at the International Symposium on Semantics of Data Types,
Sophia-Antipolis (June 84).

D. Van Daalen, The language of Automath, Ph. D. Dissertation, Technologi-
cal Univ. Eindhoven (1980).

S. Fortune, D. Leivant, and 0'Michael Donnell, The Expressiveness of Jim-
ple and Second-Order Type Structures, Journal of the Association for
Computing Machinery, Vol 30, No 1, pp 151-185 (January 1983).

G. Frege, Begriffschrift, in Heijenoort, From Frege to Gédel (1879).

G. Gentzen, The Collected Paper of Gerhard Gentzen, edited by E. Szabo,
North-Holland, Amsterdam, 1969 (1969).

LY. Girard, Une extension de l'interprétation de Gidel a l'analyse, et son
application a lélimination des coupures dans l'analyse el la théorie des
types, Proceedings of the Second Scandinavian Logic Symposium, Ed. J.E.
Fenstad, North Holland, pp. 63-92 {1970).

LY. Girard, lterprétation fonctionnelle et élimination des coupures dans
l'arithmétique d'ordre supérieure, Thése d’'Etat, Université Paris VII
(1972).

M. Gordon, R. Milner, and C. Wadsworth, 4 Metalanguage for mteractive
Proof in LCF, Internal Report CSR-16-77, department of Computer Sci-
ence, University of Edinburgh (Sept. 1977).

M.J. Gordon, A. J. Milner, and C.P. Wadsworth, Edinburgh LCF, Springer-
Verlag LNCS 78 (1979).

G. Huet, Constrained Resolution: a Complete Method for Type Theory,
Ph.D. Thesis, Jennings Computing Center Report 1117, Case Western
Reserve University (1972).

G. Huet, A Mechanization of Type Theory, Proceedings, 3rd 1JCAl, Stanford
(Aug. 1973).

G. Huet, 4 Unification Algorithm for Typed Lambda Calculus, Theoretical
Computer Science, 1.1, pp. 27-57 (1975).

29.

30.

31.

32.

33.

34.
35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

48.

47.

48.

183

G. Huet, Confluent Feduciions: Abstract Properties and Applications to
Term Rewriling Systems, J. Assoc. Comp. Mach. 27,4 pp. 797-821 (Oct.
1980).

L.S. Jutting, 4 translation of Landau'’s "Grundlagen” in AUTOMATH, Ein-
dhoven University of Technology, Dept of Mathematics (October 19786).

J. Ketonen, 4 mechanical proof of Ramsey theorem, Stanford Univ. CA
(October 1983).

J. Ketonen, EKL-A Mathematically Oriented Proof Checker, 7th Interna-
tional Conference on Automated Deduction, Napa, California. LNCS 170,
Springer-Verlag (May 1984).

J. Ketonen and J. S. Weening, The language of an interactive proaf
checker, Stanford University (1984).

D. Leivant, Polymorphic type inference, 10th POPL (1983).

P. Martin-Lof, A theory of types. October 1971.

P. Martin-Lo6f, About models for intuitionistic type theories and the notion
of definitional equality, Paper read at the Orléans Logic Conference
(1972).

P. Martin-Loéf, An intuitionistic Theory of Types, predicative part, Logic
Colloquium 73, pp. 73-118, North-Holland (1974).

P. Martin-Lof, Constructive Mathematics and Computer Programming,
Logic, Methodology and Philosophy of Science VI, pp. 153-175, North-
Holland (1980).

P. Martin-Lof, Intuitionistic Type Theory, Studies in Proof Theory,
Bibliopolis (1984).

D.A. Miller, Proofs in Higher-order Logic, Ph. D. Dissertation, Carnegie-
Mellon University (Aug. 1983).

R.P. Nederpelt, Strong normalization in a typed lambda calculus with
lambda structured types, Ph. D. Thesis, Eindhoven University of Technol-
ogy (1973).

R.P. Nederpelt, An approach to theorem proving on the basis of a typed
lambda-calculus, Lecture Notes in Computer Science 87 : 5th Conference
on Automated Deduction, Les Arcs, France, Springer-Verlag (1980).

M.HA. Newman, On Theories with a Combinatorial Definition of
"Equivalence”, Annals of Math. 43,2 pp.223-243 (1942).

B. Nordstrém, Programming in Constructive Set Theory: Some Examples,
Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, Portmouth, New Hampshire, p . 141-154
(Oct. 1981).

L. Paulson, Recent Developments in LCF : Examples of structural induc-
tion, Technical Report No 34, University of Cambridge, England (Janvier
1983).

L. Paulson, Tactics and Tacticals in Cambridge LCF, Technical Report No
39, Computer Laboratory, University of Cambridge (July 1983).

L. Paulson, Verifying the unification algorithm in LCF, Technical report
No 50, Computer Laboratory, University of Cambridge (March 1984).

T Pietrzykowski and D.C Jensen, A complete mechanization of w-order
type theory, Proceedings of The ACM Annual Conference (1972).

49.

50.
51.

52.

53.

o4.

53.

56.

57.

184

T. Pietrzykowski, 4 Complete Mechanization of Second-Order Pype Theory,
JACM 20, pp. 333-364 (1973).

D. Prawitz, Natural Deduction, Almgist and Wiskell, Stockolm (1965).

J.C. Reynolds, Towards a Theory of Type Structure, Prograrmming Sympo-
sium, Paris. Springer Verlag LNCS 19, pp. 408-425 (Apr. 1974).

J. C. Reynolds, Types, abstraction, and parametric polymorphism, IFIP
Congress'83, Paris (September 1983).

J. C. Reynolds, Polymorphism is not set-theorelic, International Sympo-
sium on Semantics of Data Types, Sophia~Antipolis {June 1984).

D. Scott, Constructive validily, Symposium on Automatic Demonstration,
Lecture Notes in Mathematics, vol. 125 (1970).

J. Smith, Course-of-values recursion on lists in intuitionistic type theory,
Géteborg (September 1981).

J. Smith, The identification of propositions and types in Martin-Lof's type
theory '@ a programming erxample, University of Goteborg Sweden
{November 1982).

A. Tarski, 4 lattice-theoretical fixpoint theorem and its applications,
Pacific J. Math. 12,2/3, pp. 242-248 {1955).

