Computational Linguistics

From Zen to Aum

Gérard Huet

The Zen toolkit - Generic technology

A few specific applicative techniques:

e Local processing of focused data

e Sharing

e Lexical trees

e Differential words

e Finite transducers as lexicon morphisms

e Search by resumption coroutines

e Multiset ordering convergence

Automata Mista - AuM

We represent finite-state automata by a mixed structure - a
deterministic skeleton decorated by non-deterministic transitions.

The first component is a forest of lexical trees, used as covering trees
of the state transitions graph. The rest of the transitions is
represented as annotations stating that on a certain input (a word
possibly empty, allowing e-transitions), the automaton goes to a state
designated by a virtual address. There are two kinds of addresses,
local and global. A global address is given by an integer (indexing
into the forest array) and a word. A local address has the same
structure, but now acts as a differential word. Its first component
indexes into an array representing the access path in the current tree
(necessary because of sharing).

Differential words
type delta = (int * word);

A differential word is a notation permitting to retrieve a word w from
another word w’ sharing a common prefix. It denotes the minimal
path connecting the words in a tree, as a sequence of ups and downs:
if d = (n,u) we go up n times and then down along word wu.

We compute the difference between w and w’ as a differential word
dif f ww = (|lwl],w2) where w = p.wl and w’ = p.w2, with

maximal common prefix p.

The converse of diff : word -> word -> delta is

patch : delta -> word -> word: w’ may be retrieved from w and
d=dif f ww as w' = patch d w.

type input

type delta
and address

type auto
and deter =

and choices

The automaton structure

word;

(int * word)
= [Global of delta | Local of delta J;

[State of (bool * deter * choices)]

list

(letter * auto)

= list (input * address);

type automaton =

type backtrack =

and resumption =

(array auto * delta);

(input * delta * choices)

list backtrack; (* coroutine resumptions *)

Completeness

Every non-deterministic automaton (possibly with e trasitions) may
be represented as a flat aum (with empty deterministic structure).

Every deterministic automaton may be represented as an aum whose
choice annotations State(b, []1, [([],address)]) do not give rise to
backtrack.

Every aum has a minimal representation, obtained by maximal
sharing. N.B. Sharing the local virtual adresses does not necessarily

correspond by equivalence by bisimulation.

type input

type delta
and addres

type trans
and deter

and choice

The transducer structure

= word and output = word;

(int * word)
s = [Global of delta | Local of delta];

= [State of (bool * deter * choices) |
= list (letter * trans)

s = list (input * output * address);

type transducer = (array trans * delta);

type backtrack = (input * output * delta * choices)

and resumption = list backtrack; (* coroutine resumptions *)

AuM

pile

dag courant

_ 9.

foret

dag

mot

Memorisation of the current access

The access stack [s,;sn_1;...S0] 1S necessary, to interpret local virtual
addresses. It may be convenient to store as well the current access
word word = |ay; ...a1], stacked and unstacked along the local
accesses. We may thus distinguish two output constructors:
Absolute of word et Relative of delta. In the last case, output
is computed by patch applied to word.

Applications:

e Inflected forms dictionary used as lemmatizer (regular plural:
(0 =(1,['s]))

e Unglue (6 = (0,[]))

e Segment (0 = (0,u))

_ 10 -

Modular aums
An aum is given by a pair in (array auto * delta).

We make them modular by making the global addresses relocatable,
and possibly interpreting success states by continuations.
Continuations are implemented as e-transitions, i.e. extra choices,

with empty input.
Now it is easy to compile regular expressions into aums, as follows:
e The base case is any aum, its size the size of its array

o if A= (arraya,deltay) is of size a and B = (arrayg, deltap) is
of size b, A - B is obtained by relocating B by a, continuing A by
a + deltap, starting at delta 4, of size a + b.

o if A= (arraya,deltay) is of size a and B = (arrayp, deltap) is
of size b, A + B is obtained by relocating B by a, starting at
a+ b+ 1, where we put

_ 11 -

State(False, ||, [(|], deltas); (]], a + deltap)]), of size a + b+ 1.

o if A= (arraya,deltay) is of size a, then Ax is obtained by
continuing A by delta 4, making its starting node accepting, of

size a.

These transformations ought to be effected before sharing.

_ 12 -

Conclusion

Automata mista offer an elegant applicative solution to many
finite-state processing problems, typically the treatment of lexicon
representation, phonology, morphology and segmentation in
computational linguistics. The deterministic spanning tree of their
state space is then naturally the dictionary of inflected forms of
words, which is thus placed at the center of the computer treatment

of language.

~ 13 -

