
Programming Methodology and Type Theory
How 40 years of uncompromising research

made concrete the Chalmers futuristic vision
into the Software Engineering paradigm of

Programs correct by construction

Gérard Huet

Inria Paris Laboratory

Bengt Nordström Fest,
Chalmers University

April 28th 2016



Futuristic

When Chet Murthy left the Coq project to join IBM, he said:
Formal Methods are the way of the future ...

and they always will be.



Futuristic

When Chet Murthy left the Coq project to join IBM, he said:
Formal Methods are the way of the future ...
and they always will be.



Irrelevance for commercial software development

Most ‘practitioners’ consider that software correctness is
secondary and even harmful when time to market is the main
issue. They consider formal methods are an un-necessary
hindrance to fast code production, and reserved for archane
debates by pompous academics.

We must admit, our tools are not robust enough, and their wide
dissemination is still too far away, to competitively design or
even refactor a large software endeavor such as Word.
But bugs have an enormous cost. Thus hardware design,
safety-critical systems and security have progressively used
formal methods in production software development.
Note that our tools are now able to prove the correctness of the
first program in Knuth’s Art of Computer Programming, and
that’s not small achievement.



Irrelevance for commercial software development

Most ‘practitioners’ consider that software correctness is
secondary and even harmful when time to market is the main
issue. They consider formal methods are an un-necessary
hindrance to fast code production, and reserved for archane
debates by pompous academics.
We must admit, our tools are not robust enough, and their wide
dissemination is still too far away, to competitively design or
even refactor a large software endeavor such as Word.

But bugs have an enormous cost. Thus hardware design,
safety-critical systems and security have progressively used
formal methods in production software development.
Note that our tools are now able to prove the correctness of the
first program in Knuth’s Art of Computer Programming, and
that’s not small achievement.



Irrelevance for commercial software development

Most ‘practitioners’ consider that software correctness is
secondary and even harmful when time to market is the main
issue. They consider formal methods are an un-necessary
hindrance to fast code production, and reserved for archane
debates by pompous academics.
We must admit, our tools are not robust enough, and their wide
dissemination is still too far away, to competitively design or
even refactor a large software endeavor such as Word.
But bugs have an enormous cost.

Thus hardware design,
safety-critical systems and security have progressively used
formal methods in production software development.
Note that our tools are now able to prove the correctness of the
first program in Knuth’s Art of Computer Programming, and
that’s not small achievement.



Irrelevance for commercial software development

Most ‘practitioners’ consider that software correctness is
secondary and even harmful when time to market is the main
issue. They consider formal methods are an un-necessary
hindrance to fast code production, and reserved for archane
debates by pompous academics.
We must admit, our tools are not robust enough, and their wide
dissemination is still too far away, to competitively design or
even refactor a large software endeavor such as Word.
But bugs have an enormous cost. Thus hardware design,
safety-critical systems and security have progressively used
formal methods in production software development.

Note that our tools are now able to prove the correctness of the
first program in Knuth’s Art of Computer Programming, and
that’s not small achievement.



Irrelevance for commercial software development

Most ‘practitioners’ consider that software correctness is
secondary and even harmful when time to market is the main
issue. They consider formal methods are an un-necessary
hindrance to fast code production, and reserved for archane
debates by pompous academics.
We must admit, our tools are not robust enough, and their wide
dissemination is still too far away, to competitively design or
even refactor a large software endeavor such as Word.
But bugs have an enormous cost. Thus hardware design,
safety-critical systems and security have progressively used
formal methods in production software development.
Note that our tools are now able to prove the correctness of the
first program in Knuth’s Art of Computer Programming, and
that’s not small achievement.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



Relevance to serious programming

We used to think of λ-calculus as a theoretical formalism for
computable partial functions. But:

• Lisp

• Iswim

• ML

• G-machine, LML

• Haskell

Nowadays, the banking business is taking seriously functional
programming.



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



The software engineering scene in the 80’s

• Programming methods

• Software Science

• Structured Programming

• Floyd, Hoare, Dijkstra, Abrial, etc.

• Artificial Intelligence

• Abstract Datatypes and Algebraic Specifications

• Object-oriented programming

• Denotational semantics



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Visionary efforts

• Automath

• LCF

• Nuprl

• Curry-Howard-de Bruijn isomorphism

• Type theory

• Correctness by construction



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



Programming Methodology at Chalmers

• It started in Midsummer 1979

• Martin-Löf’s lectures in Padua June 1980

• Edited as “Intuitionistic Type Theory” studies in Proof
Theory 1984

• There was this intriguing series of summer workshops in
wonderful places such as Marstrand and B̊astad

• It attracted researchers curious about this new trend

• The types meeting organized by Gilles Kahn in 1984 in
Sophia-Antipolis

• Programming in Martin-Löf’s Type Theory 1990

• ESPRIT Basic Research Actions Logical Frameworks, then
Types

• BRA consistency with the uncompromizing attitude

• Long term goals are solved by “doing things right”, a
commitment to quality



40 years of uncompromising research

Persistency vs obstinacy vs stubbornness
Swedish qualities ?
Indulging in stereotypes and flirting with political incorrectness,
again
Blacklisted for 20 years, and still number one on the hit list



40 years of uncompromising research

Persistency vs obstinacy vs stubbornness

Swedish qualities ?
Indulging in stereotypes and flirting with political incorrectness,
again
Blacklisted for 20 years, and still number one on the hit list



40 years of uncompromising research

Persistency vs obstinacy vs stubbornness
Swedish qualities ?

Indulging in stereotypes and flirting with political incorrectness,
again
Blacklisted for 20 years, and still number one on the hit list



40 years of uncompromising research

Persistency vs obstinacy vs stubbornness
Swedish qualities ?
Indulging in stereotypes and flirting with political incorrectness,
again

Blacklisted for 20 years, and still number one on the hit list



40 years of uncompromising research

Persistency vs obstinacy vs stubbornness
Swedish qualities ?
Indulging in stereotypes and flirting with political incorrectness,
again
Blacklisted for 20 years, and still number one on the hit list



Swedish bashing

hard-working
methodic
honest

Where once the Indian to the death
Chased pioneer and scout,

The Swede, with alcoholic breath,
Sets rows of cabbage out.



Swedish bashing

hard-working

methodic
honest

Where once the Indian to the death
Chased pioneer and scout,

The Swede, with alcoholic breath,
Sets rows of cabbage out.



Swedish bashing

hard-working
methodic

honest

Where once the Indian to the death
Chased pioneer and scout,

The Swede, with alcoholic breath,
Sets rows of cabbage out.



Swedish bashing

hard-working
methodic
honest

Where once the Indian to the death
Chased pioneer and scout,

The Swede, with alcoholic breath,
Sets rows of cabbage out.



Swedish bashing

hard-working
methodic
honest

Where once the Indian to the death
Chased pioneer and scout,

The Swede, with alcoholic breath,
Sets rows of cabbage out.



The art of the research team leader

Administration is not Science
Thus sane researchers avoid administration duties
But research needs resources, and money is controled by Law
Thus the research team leader must deal with legalities
The research team leader is a facilitator and he makes
administration transparent
For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The art of the research team leader

Administration is not Science

Thus sane researchers avoid administration duties
But research needs resources, and money is controled by Law
Thus the research team leader must deal with legalities
The research team leader is a facilitator and he makes
administration transparent
For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The art of the research team leader

Administration is not Science
Thus sane researchers avoid administration duties

But research needs resources, and money is controled by Law
Thus the research team leader must deal with legalities
The research team leader is a facilitator and he makes
administration transparent
For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The art of the research team leader

Administration is not Science
Thus sane researchers avoid administration duties
But research needs resources, and money is controled by Law

Thus the research team leader must deal with legalities
The research team leader is a facilitator and he makes
administration transparent
For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The art of the research team leader

Administration is not Science
Thus sane researchers avoid administration duties
But research needs resources, and money is controled by Law
Thus the research team leader must deal with legalities

The research team leader is a facilitator and he makes
administration transparent
For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The art of the research team leader

Administration is not Science
Thus sane researchers avoid administration duties
But research needs resources, and money is controled by Law
Thus the research team leader must deal with legalities
The research team leader is a facilitator and he makes
administration transparent

For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The art of the research team leader

Administration is not Science
Thus sane researchers avoid administration duties
But research needs resources, and money is controled by Law
Thus the research team leader must deal with legalities
The research team leader is a facilitator and he makes
administration transparent
For efficiency, he must learn the rules, and apply his scientific
skills to remove obstacles in a legal way



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them

Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests

Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology

Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side

Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments

Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed

Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal

The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws

Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules

This is a dangerous path, sometimes it is better to keep your
mouth shut



The science of creative bureaucracy

Learn the rules, and remove the opaque veil that the
bureaucrats carefully maintain between you and them
Know the rules better than the bureaucrat in charge of
regulating your requests
Defeat the opponent using game theory, logic, and psychology
Winning by putting the opponent on your side
Frighten the bureaucrat using your natural endowments
Use logic to prove that obstacles may be bypassed
Law is to forbid illegal acts, and anything not forbidden is legal
The problem with Catch 22: inconsistent laws
Instill a feeling of guilt into bureaucrats by pointing out the
inconsistency of rules
This is a dangerous path, sometimes it is better to keep your
mouth shut



The craft of creative bureaucracy

Do not fill non-mandatory fields in questionnaires
How Turing won the game of firearm training without
enlistment
Use epistemic logic to profit of your opponent ignorance
Don’t lie, but sometimes keep silent with a poker face
But be persistent, and get your ways by hook or by crook



The craft of creative bureaucracy

Do not fill non-mandatory fields in questionnaires

How Turing won the game of firearm training without
enlistment
Use epistemic logic to profit of your opponent ignorance
Don’t lie, but sometimes keep silent with a poker face
But be persistent, and get your ways by hook or by crook



The craft of creative bureaucracy

Do not fill non-mandatory fields in questionnaires
How Turing won the game of firearm training without
enlistment

Use epistemic logic to profit of your opponent ignorance
Don’t lie, but sometimes keep silent with a poker face
But be persistent, and get your ways by hook or by crook



The craft of creative bureaucracy

Do not fill non-mandatory fields in questionnaires
How Turing won the game of firearm training without
enlistment
Use epistemic logic to profit of your opponent ignorance

Don’t lie, but sometimes keep silent with a poker face
But be persistent, and get your ways by hook or by crook



The craft of creative bureaucracy

Do not fill non-mandatory fields in questionnaires
How Turing won the game of firearm training without
enlistment
Use epistemic logic to profit of your opponent ignorance
Don’t lie, but sometimes keep silent with a poker face

But be persistent, and get your ways by hook or by crook



The craft of creative bureaucracy

Do not fill non-mandatory fields in questionnaires
How Turing won the game of firearm training without
enlistment
Use epistemic logic to profit of your opponent ignorance
Don’t lie, but sometimes keep silent with a poker face
But be persistent, and get your ways by hook or by crook



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles

Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc. Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal
Then have him or her repeat the argument, step by step
Nod approval at every step
At QED jump and exclaim “you got it”
Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles
Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc.

Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal
Then have him or her repeat the argument, step by step
Nod approval at every step
At QED jump and exclaim “you got it”
Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles
Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc. Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal

Then have him or her repeat the argument, step by step
Nod approval at every step
At QED jump and exclaim “you got it”
Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles
Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc. Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal
Then have him or her repeat the argument, step by step

Nod approval at every step
At QED jump and exclaim “you got it”
Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles
Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc. Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal
Then have him or her repeat the argument, step by step
Nod approval at every step

At QED jump and exclaim “you got it”
Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles
Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc. Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal
Then have him or her repeat the argument, step by step
Nod approval at every step
At QED jump and exclaim “you got it”

Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



The game of creative bureaucracy

The art of detecting loopholes and using them to bypass
obstacles
Similar to finding a lemma that interpolates between your
capabilities and your requirements. Its proof is a legal course of
action, but may be complex with use of exceptions and
exceptions of exceptions, etc. Explain your manoeuvers to the
bureaucrat in charge by a proof that every step in them is
locally legal
Then have him or her repeat the argument, step by step
Nod approval at every step
At QED jump and exclaim “you got it”
Now act as if the bureaucrat had the idea in the first place,
compliment him/her for it, and state your obedience to the
process: Yes, we can!



Mandatory readings

• Joseph Heller. Catch 22

• Robert Pirsig. Zen and the Art of Motorcycle Maintenance

• Eugen Herrigel. Zen and the Art of Archery

• Jerry Rubin. Do it!

• Edward Conze. The Memoirs of a Modern Gnostic


