
How much do System T recursors lift to dependent types?

Hugo Herbelin

TYPES 2024

10 June 2024

1



The “traditional” recursor of System T

Assuming natural numbers:

Γ $ N : U Γ $ zero : N
Γ $ t : N

Γ $ succ t : N

the typing of the recursor of System T is:

Γ $ A : U Γ $ u : A

Γ $ t : N Γ, n : N, a : A $ v : A

Γ $ pmatch t with rzero Ñ u | succn Ña vsq : A

and its dependently-typed variant is:

Γ,m : N $ A : U Γ $ u : Arm :“ zeros

Γ $ t : N Γ, n : N, a : Arm :“ ns $ v : Arn :“ succns

Γ $ pmatch t with rzero Ñ u | succn Ña vsq : Arm :“ ts

2



Its usual extension to inductive families, taking parametricity on N as an example

Γ $ t : N
Γ $ isN t : U Γ $ iszero : isN zero

Γ $ p : isN t

Γ $ issucc t p : isN psucc tq

Γ, n : N, y : isNn $ A : U Γ $ u : Arn :“ zerosry :“ iszeros

Γ $ p : isN t Γ, n : N, x : isNn, a : Arn :“ nsry :“ xs $ v : Arn :“ succnsry :“ issuccnxs

Γ $ pmatch p with riszero Ñ u | issuccnx Ña vsq : Arn :“ tsry :“ ps

3



We advocate for a refinement of this recursor with an as clause

Γ, n : N, y : isNn $ A :U Γ, y : isN zero $ u : Arn :“ zerosry :“ iszeros

Γ $ p : isN t Γ, n : N, x : isNn, a : Ary :“ xs, y : isN psuccnq $ v : Arn :“ succnsry :“ issuccnxs

Γ $ pmatch t as y with

„

iszero Ñ u

issuccnx Ña v

ȷ

q : Arn :“ tsry :“ ps

with reduction rules:

match iszero as y with

„

iszero Ñ u

issuccn Ña v

ȷ

Ñ ury :“ iszeros

match pissucc t pq as y with

„

iszero Ñ u
issuccnx Ña v

ȷ

Ñ vrn :“ tsrx :“ psry :“ issucc t psra :“ match p as y with

„

iszero Ñ u
issuccnx Ña v

ȷ

s

4



We retrospectively advocate this refinement also in the absence of indices

Γ,m : N $ A : U Γ,m : N $ u : Arm :“ zeros

Γ $ t : N Γ, n : N, a : Arm :“ ns,m : N $ v : Arm :“ succns

Γ $ pmatch t asm with

„

zero Ñ u

succn Ña v

ȷ

q : Arm :“ ts

with reduction rules:

match zero asm with

„

zero Ñ u

succn Ña v

ȷ

Ñ urm :“ zeros

match psucc tq asm with

„

zero Ñ u

succn Ña v

ȷ

Ñ vrn :“ tsrm :“ succ tsra :“ match t asm with

„

zero Ñ u

succn Ña v

ȷ

s

5



Motivations

- as-patterns (written @ in Haskell or Agda) are common in pattern-matching problems: are there
just syntactic sugar or have a deeper role?

- as-patterns cause typing problems with inductive families (*):

1. should they refer to the scrutinee and be typed with the type of the scrutinee?

2. or should they refer to the constructor being matched and be typed with the type of the
constructor?

- some translations, e.g. parametricity, turn data types into inductive families

(*) Agda’s dependent pattern-matching solves this for indices that are variables by propagating
definitional equalities on indices in the branches.

6



The issue with parametricity

Consider the following (trivial) program:

m : N $ pmatch m with rzero Ñ m | succn Ña msq : N

It happens that the canonically derived equivalent program in isN is ill-typed:

m : N, y : isNm & pmatch y with riszero Ñ y | issuccnx Ña ysq : isNm

Assuming we would have written:

m : N $ pmatch m asm1 with
“

zero Ñ m1 | succn Ña m
1
‰

q : N

The canonically derived term would now be well-typed:

m : N, y : isNm $ pmatch y as y1 with
“

iszero Ñ y1 | issuccnx Ña y
1
‰

q : isNm

7



Comparison with emulation 1: expanding the dependent instances

The first emulation expands the occurrences of the term being matched to change its type:

m : N, p : isNm $ pmatch p with riszero Ñ iszero | issuccnx Ña issuccnxsq : isNm

It has the expected semantics (same equational theory) but the behaviour is different in terms
of sharing the representation of the underlying constructors: if the 3 occurrences of p had their
representation shared (as in call-by-value), then the sharing in memory is lost.

8



Comparison with emulation 2: generalising the term being matched

The second emulation generalises the term being matched to change its type:

m : N, y : isNm $ pmatch y with riszero Ñ λyisN zero.y | issuccnx Ña λy
isN psuccnq.ysq y : isNm

which has also the expected semantics (same equational theory), respects sharing in call-by-value
reduction, but it (superficially though unexpectedly) goes out of the syntax of (0-order) primitive
recursion.

9



Summary

Ill-typed:

m : N, y : isNm & pmatch y with riszero Ñ y | issuccnx Ña ysq : isNm

Typed with an expansion:

m : N, p : isNm $ pmatch p with riszero Ñ iszero | issuccnx Ña issuccnxsq : isNm

Typed with a generalisation:

m : N, y : isNm $ pmatch y with riszero Ñ λyisN zero.y | issuccnx Ña λy
isN psuccnq.ysq y : isNm

Typed with an as-pattern:

m : N, y : isNm $ pmatch y as y1 with
“

iszero Ñ y1 | issuccnx Ña y
1
‰

q : isNm

10


