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Outline

- Bar induction as an extensional principle

- A systematic study of bar induction and dependent choice principles as dual principles

- A common generalisation to the Ultrafilter Theorem and Dependent Choice
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Bar Induction as an extensional principle
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Notations

Let B be a domain and u ranges over the set B∗ of finite sequences of elements of B.
We write 〈〉 for the empty sequence, u ? b for the extension with one element, |u| for the
length of u, nth p u for the p-th element of u counting from 0 when |u| > p and u@u′

for the concatenation.

A predicate T over B∗ is a tree if it is closed by restriction (i.e. if u ? b ∈ T implies
u ∈ T ).

A predicate U over B∗ is monotone if it is closed by extension (i.e. if u ∈ U implies
u ? b ∈ U).

We may alternatively use the notation T (u) for u ∈ T .
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Bar Induction

This is a well-founded tree

(characterised by: T well-founded , ∀α ∃n¬T (α|n))
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Bar Induction

This is also a well-founded tree
but characterised as some wftree “realising” T where wftree smallest set generated
from

leaf : wftree
node : (B → wftree)→ wftree
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From wftree to a well-founded tree-as-predicate

From a wftree t, a predicate Ttree(t) representing t as a predicate can be defined by
induction on t:

Ttree(t) , λu.T ′tree(t, u)

where
T ′tree(leaf, u) , ⊥
T ′tree(node(f ), 〈〉) , >
T ′tree(node(f ), b@u

′) , T ′tree(f (b), u
′)

The proof that it is well-founded is:

wf (t) : ∀α ∃n¬T ′tree(t, α|n)
wf (t) , λα.wf ′(t, α)

where
wf ′(leaf, α) , (0, λa.a)

wf ′(node(f ), α) , let (n, p) = wf ′(f (α(0)), λn.α(n + 1)) in (n + 1, p)
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Bar Induction seen as a converse of the translation from wftree to a
well-founded tree-as-predicate

Bar Induction can be seen as stating the existence of a converse translation:

T well-founded → ∃t∀v (T (v)→ T ′tree(t, v))

It can be realised by a recursive loop, namely bar recursion:

For H : ∀α ∃n¬T (α|n) and b0 ∈ B and istree : ∀vw (T (v@w)→ T (v)), we set:

barrec ′(H, u) : ∃t∀v (T (u@ v)→ T ′tree(t, u@ v))

barrec ′(H, u) , if π1(H û) = |u| then (leaf, H1) else (node (λb.barrec
′(H, u ? b)), H2)

barrec(H) : ∃t∀v (T (v)→ T ′tree(t, v))

barrec(H) , barrec ′(H, 〈〉)

where û , λp.if p < |u| then nth p u else b0 and H1 and H2 are well-chosen proofs.
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Bar Induction seen as a well-foundedness theorem

Let T be the inductive downwards closure of the complement of T . We can define it
as the least fixed point T , µX.λu.(u /∈ T ∨ ∀b (u ? b ∈ X)), or, equivalently, using
inference rules:

u /∈ T
u ∈ T

∀b ∈ B u ? b ∈ T
u ∈ T

We say that T is inductively well-founded if 〈〉 ∈ T .

Statement of Bar Induction seen as an extensionality property of well-foundedness:

BI wfBT , T well-founded→ T inductively well-founded
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Bar Induction (original version)

Original bar induction is the statement about the complement of a tree.

Let U be now the inductive downwards closure of some U thought as the complement of
a tree:

u ∈ U
u ∈ U

∀b ∈ B u ? b ∈ U
u ∈ U

We say that U is inductively barred if 〈〉 ∈ U .

We say that U is barred if ∀α ∃nU(α|n)

Statement of Bar Induction:

BI BU , U barred→ U inductively barred

10



A systematic study of bar induction and dependent choice principles as
dual principles
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Fan Theorem: a standard consequence of Bar Induction

Fan Theorem can be proved to be a specialisation of Bar Induction to the finitely-branching
case. The standard way to state Fan Theorem is however as:

FTBU : U barred → U uniformly barred (B finite)

where, uniformly barred is defined by:

∃n∀u (|u| = n→ ∃v (v ≤ u ∧ v ∈ U))

The equivalence between U uniformly barred and U inductively barred is easy to prove
intuitionistically (for B finite).

Note: There are different formulations of Fan Theorem. For instance, another formulation allows B to be a different finite domain at each step.

Also, the different ways to intuitionistically define “finite” lead to statements of different strengths (see Veldman).
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Weak Fan Theorem: another standard consequence of Bar Induction

Weak Fan Theorem is the specialisation of Fan Theorem to the Boolean case:

WFTU = FTBoolU : U barred → U uniformly barred
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Weak Fan Theorem: another standard consequence of Bar Induction

Note that there are three possible representation of an infinite function from N to Bool
which leads to three formulations of WFT of different strengths:

• It can be represented as a function, i.e. as a functional object of type N → Bool,
leading to WFT fun.

• It can be represented as a functional relation, i.e. as a relation R over N×Bool such
that ∀n∃!aR(n, a), leading to WFT fun−rel.

• It can be represented as predicate P over N with intended meaning 0 when P (n) holds
and 1 when ¬P (n) holds (and unknown meaning otherwise), leading to WFT pred.

We have:

WFT fun ⇒ WFT fun−rel ⇒ WFT pred

(but converse needs AC!) (but converse needs LEM)

In particular, WFT pred is provable in intuitionistic second-order arithmetic.
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Dually: ill-foundedness

Dually, ill-foundedness of a tree T can be defined in different ways. Let us concentrate
on Weak König’s Lemma which is the dual of the Weak Fan Theorem for T a tree:

Intensional view

T is staged infinite , ∀n∃u (|u| = n ∧ u ∈ T )

which is the dual of uniformly barred

Extensional view
T has an infinite branch , ∃α ∀nT (α|n)

which is the dual of barred

Weak König’s Lemma connects the two views (when B is Bool):

WKLT , T is staged infinite→ T has an infinite branch

As for WFT , one can define three variants WKLfun, WKLfun−rel and WKLpred. The
latter is provable in intuitionistic second-order arithmetic for decidable T !
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Other definitions for the “intensional” versions of “well-founded” and
“ill-founded”

In Berger (2009), we find the following variant of WKL, called CWKL, which can also
be thought as a form of dependent choices on Bool, thus motivating Ishihara, Berger,
Schuster (2005, 2012) to call it DC∨:

CWKL/DC∨: T is a spread → T has an infinite branch

where
T is a spread , 〈〉 ∈ T ∧ ∀u (u ∈ T → ∃a u ? a ∈ T )

We can then show that the dual of inductively barred for a predicate is equivalent to the
existence of a spread subset of the dual predicate.

In passing, we can also show that uniformly barred and having arbitrary long branches are
respectively intuitionistically and cointuitionistically equivalent to inductively barred and
its dual for finitely-branching trees.
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Giving a name to these definitions

Equivalent concepts on dual predicates
T is a tree U is monotone

∀u∀a (u ? a ∈ T → u ∈ T ) ∀u∀a (u ∈ U → u ? a ∈ U)
T is progressing U is hereditary

∀u (u ∈ T → ∃a u ? a ∈ T ) ∀u ((∀a u ? a ∈ U)→ u ∈ U)

used in König’s Lemma

used in CWKL

Dual concepts on dual predicates
infinite-branch-style (ill-foundedness) well-foundedness-style

Intensional concepts (finite-branching only)
T has arbitrary long branches U is uniformly barred

∀n∃u (|u| = n ∧ ∀v (v ≤ u→ v ∈ T )) ∃n∀u (|u| = n→ ∃v (v ≤ u ∧ v ∈ U))
T is staged infinite1 U is staged barred1

∀n ∃u (|u| = n ∧ u ∈ T ) ∃n∀u (|u| = n→ u ∈ U)
Intensional concepts (arbitrary branching)

T is a spread U is resisting1

〈〉 ∈ T ∧ T progressing U hereditary→ 〈〉 ∈ U
T is coinductively choosable U is inductively barred

〈〉 ∈ νX.λu.(u ∈ T ∧ ∃b u ? b ∈ X) 〈〉 ∈ µX.λu.(u ∈ U ∨ ∀b u ? b ∈ X)

Extensional concepts
T has an infinite branch U is barred

∃α ∀u (u initial segment of α→ u ∈ T ) ∀α ∃u (u initial segment of α ∧ u ∈ U)

used in Fan Theorem

used in Bar Induction

1Not being aware of an established terminology for this concept, we use here our own terminology.
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From now on, giving the central rôle to inductively barred and its dual

We focus on the definition of the dual of inductively barred. Let T be the coinductively-
defined pruning (or interior) of T :

u ∈ T ∃b ∈ B u ? b ∈ T
u ∈ T

Then, T is coinductively choosable , 〈〉 ∈ T .

18



Giving the central rôle to inductively barred and its dual

Bar induction (BI BU)

U barred → U inductively barred

Tree-Based Dependent Choice (TDCBT )

T coinductively choosable → T has an infinite branch
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Recovering standard principles

WKLT ⇐⇒ TDC BoolT up to classical (actually co-intuitionistic) reasoning

WFTU ⇐⇒ BI BoolU up to intuitionistic reasoning

DCBRb0 ⇐⇒ TDCBR∗(b0)

where

u ∈ R∗(b0) , case u of

 〈〉 7→ >
b 7→ R(b0, b)
u′ ? b ? b′ 7→ R(b, b′)


DCBRb0 , ∀b∃b′R(b, b′)→ ∃α (α(0) = b0 ∧ ∀n R(α(n), α(n + 1)))
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A common generalisation to the Ultrafilter Theorem and Dependent
Choice
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Standard results about the axiom of choice
(classical set theory)

Axiom of Choice (ACABR)

∀aA ∃bB R(a, b)→ ∃αA→B ∀aAR(a, α(a))

↙ ↘

Ultrafilter Theorem (UFBF )
=

Gödel’s completeness
(on arbitrary large languages)

Axiom of Dependent Choices (DCBR)
↓

Axiom of Countable Choice (ACNBR)

↘ ↙

Weak König’s Lemma (WKLT )

∀nN∃uBool∗ (|u| = n ∧ u ∈ T )→ ∃αN→Bool ∀nN T (α|n)
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A revisiting of the standard results

Generalised Axiom of Choice (GACABT )
(some extensionality theorem wrt ill-foundedness)

↙ ↘

Ultrafilter Theorem Axiom of Dependent Choices
(UFAT ≈ GACABoolT ) (DCBR ≈ GACNBR+)

↘ ↙

Weak König’s Lemma
(WKLT =LEM GACNBoolT )

together with a dual picture with a Generalised Bar Induction
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Towards the Ultrafilter theorem: Relaxing the sequentiality

Let A and B be domains. Let u now range over the set (A×B)∗ of finite sequences of
pairs of elements in A and B.

We write dom(u) ∈ A∗ for the sequence made of the left components of the pair u.

We say (a, b) ∈ u if (a, b) is one of the components of u.

We write u ≤ v is u is included in v when seen as sets.

If α : A→ B, we write u ≺ α and say that u is a finite approximation of α if α(a) = b
for all (a, b) ∈ u.

Let T be a predicate on (A × B)∗. We write ↓T and ↑T to mean the following inner
and outer closures with respect to ≤:

u ∈↓T , ∀v ≤ u v ∈ T
u ∈↑T , ∃v ≤ u v ∈ T
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Relaxing the sequentiality (well-founded case)

Intensional view

We say that T is inductively A-B-barred if it is inductively A-B-barred from 〈〉 where
the latter is defined by:

u ∈↑T
T inductively A-B-barred from u

∃a ∈ A (a /∈ dom(u) ∧ ∀b ∈ B (T inductively A-B-barred from (u ? (a, b))))

T inductively A-B-barred from u

Extensional view

T is A-B-barred if ∀α : A→ B ∃u ≺ α u ∈ T
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Relaxing the sequentiality (ill-founded case)

Intensional view

Dually, we say that T is coinductively A-B-choosable if it is coinductively A-B-choosable
from 〈〉 where the latter is coinductively defined by:

u ∈↓T ∀a ∈ A (a /∈ dom(u)→ ∃b ∈ B (T coind. A-B-choosable from (u ? (a, b))))

T coind. A-B-choosable from u

Extensional view

T is A-B-choosable if ∃α : A→ B ∀u ≺ α u ∈ T
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This leads to the following generalisation

Generalised bar induction (GBI ABT )

T A-B-barred → T A-B-inductively barred

Generalised Tree-Based Dependent Choice (GTDCABT )

T coinductively A-B-choosable → T A-B-choosable
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Justification of the generalisation

The generalisation is justified by the following results:

GBI NBT ⇐⇒ BI BT

GTDCNBT ⇐⇒ TDCBT

28



Ultrafilter Theorem

The specialisation to Bool of the generalisation also captures the Ultrafilter Theorem.

Let (B,∨,∧,⊥,>,¬,`) be a Boolean algebra and F a filter on B. We extend F on
(B × Bool)∗ by setting u ∈ F+ if (

∧
(b,0)∈u¬b) ∨ (

∨
(b,1)∈u b) ∈ F . We have:

GTDC BBool¬(F+) ⇐⇒ UFB,F
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Bad news suspected

Conjecture: GTDC (BoolN)NT is inconsistent!

Rationale: Trying to prove its equivalence with AC requires an A-intersection of non-
empty subsets of Bool to be non-empty, which has no reason to hold in general. Moreover,
standard algebraic statements equivalent to the axiom of choice such as Zorn’s Lemma
only asserts the existence of maximal (not necessarily “complete”) ideals.
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A suspected consistent generalisation

We define:

• B⊥ , B + {⊥}
• α not T -extensible at a , ∀b ∈ B ∃u ≺ α (u ∈ T ∧ ¬(u ? (a, b) ∈ T )).
• T maximally A-B-choosable ,

∃α ∈ A→ B⊥

(
∀a ∈ A (α(a) = ⊥ → α not T -extensible at a)
∧∀u (u ≺ α→ u ∈ T )

)

Generalised Axiom of Choice (GACABT )

T coinductively A-B-choosable → T maximally A-B-choosable
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Computational contents

We know how to compute intuitionistically with DC using strong sums.

We know how to compute with BI using bar recursion.

We know how to compute with DC in the presence of classical reasoning using bar
recursion and control operators.

We know how to compute with UF using ideas from the computational contents of
completeness theorem.

Can bar recursion be extended to the generalised form? Presumably, the critical compo-
nent is to deal with the non-decidability of equality on A.
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Perspectives

Other variants of choice can probably be added to the picture.

Studying the principles together with their principle allow to see where non-linear reasoning
is used. For instance, that WKL is essentially classical means that WFT is essentially
intuitionistic in its formulation (on the contrary of BI or DC ).

Understand to which versions of choice Diaconescu applies.

Explore other forms of choice and bar induction:

↪→ hybrid forms such as J. Berger’s CFan, i.e. to

T coinductively choosable ∧ U barred→ ∃u (u ∈ T ∧ u ∈ U)
T choosable ∧ U inductively barred→ ∃u (u ∈ T ∧ u ∈ U)

↪→ well-ordering forms such as Zermelo’s well-ordering theorem, open induction, U. Berger’s
update induction
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