
How much do System T recursors lift to dependent types?
Hugo Herbelin

IRIF, CNRS, Université de Paris, Inria, France
hugo.herbelin@inria.fr

Consider Peano numbers (on the left) and their canonical realisability predicate (on the right):

Γ ⊢ zero : N

Γ ⊢ t : N

Γ ⊢ succ t : N Γ ⊢ iszero : isN zero

Γ ⊢ p : isN t

Γ ⊢ issucc t p : isN (succ t)

Consider the standard recursor in N:

Γ,m : N ⊢ A : U Γ ⊢ u : A[m := zero]
Γ ⊢ t : N Γ, n : N, a : A[m := n] ⊢ v : A[n := succn]

Γ ⊢ (match t with [zero → u | succn →a v]) : A[m := t]

and the standard recursor in isN:

Γ, n : N, y : isNn ⊢ A : U Γ ⊢ u : A[n := zero][y := iszero]
Γ ⊢ p : isN t Γ, n : N, x : isNn, a : A[n := n][y := x] ⊢ v : A[n := succn][y := issuccnx]

Γ ⊢ (match p with [iszero → u | issuccnx →a v]) : A[n := t][y := p]

Consider the following (trivial) program:

m : N ⊢ (match m with [zero → m | succn →a m]) : N

It happens that the canonically derived equivalent program in isN is ill-typed:

m : N, y : isNm ̸⊢ (match y with [iszero → y | issuccnx →a y]) : isNm

Indeed, in the case of N, the branches do not have dependencies, so the term being matched, m, can be
reused. But in isN, branches have dependent types, so the term being matched, y, cannot be reused.

We describe in the next sections two standard solutions to recove typing but each of them has
drawbacks. Then, we argue that an alternative approach is to introduce a notion of as-patterns in
recursors, leading to a generalisation of the typing rule for induction where not only the type but also
the body can depend on the term being matched.

1 Solution 1: expanding the dependent instances

The first solution is to expand the term being matched, the way it would be evaluated in each branch:

m : N, p : isNm ⊢ (match p with [iszero → iszero | issuccnx →a issuccnx]) : isNm

It has the expected semantics, that is, if p ≡ issucc t q, for ≡ denoting convertibility, then, treating the
ill-typed term as untyped, we correctly have:

match p with [iszero → iszero | issuccnx →a issuccnx] ≡ match p with [iszero → p | issuccnx →a p]

But the behaviour is different in terms of sharing the representation of the underlying constructors in
the reduction: if the 3 occurrences of p have their representation shared (as in call-by-value), then the
sharing in memory is lost. In particular, in guard-based typing systems such as Coq, the information
that y in the branches of our running example is of the same size as y being matched is lost.

2 Solution 2: generalising the term being matched
Another solution is to generalise the term being matched to change its type:

m : N, y : isNm ⊢ (match y with [iszero → λyisN zero.y | issuccnx →a λyisN (succn).y]) y : isNm

which has also the expected semantics, that is, if p ≡ issucc t q, then, treating the ill-typed term as
untyped:

match p with [iszero → λy.y | issuccnx →λy.y issuccnx] p ≡ match p with [iszero → p | issuccnx →a p]

This time, if all occurrences of p are shared in memory (as in call-by-value), they remain shared before
and after reduction in the encoding. Also, for a guard-based typing system, if sizes are propagated along
generalisations obtained by β-expanding across a case analys

However, the generalisation technically requires a stronger system than intended. For instance, if the
program is primitive recursive, its encoding requires to go out of primitive recursion.

3 Solution 3: adding as-variables to recursors
In pattern-matching compilation (e.g. OCaml, Haskell, Coq, ...), it is common to use as-variables. In
Coq, these as-variables were thought for long as syntactic sugar and emulated with one or the other
encoding above. We argue that giving a foundational status to as-variables solves our problem. We
propose the following typing rules which differ from ordinary induction only in that not only the type
but also the body of branches can depend on the term being matched:

Γ,m : N ⊢ A : U Γ,m : N ⊢ u : A[m := zero]
Γ ⊢ t : N Γ, n : N, a : A[m := n],m : N ⊢ v : A[m := succn]

Γ ⊢ (match t asm with

[
zero → u
succn →a v

]
) : A[m := t]

Γ, n : N, y : isNn ⊢ A : U Γ, y : isN zero ⊢ u : A[n := zero][y := iszero]
Γ ⊢ p : isN t Γ, n : N, x : isNn, a : A[y := x], y : isN (succn) ⊢ v : A[n := succn][y := issuccnx]

Γ ⊢ (match t as y with

[
iszero → u
issuccnx →a v

]
) : A[n := t][y := p]

with reduction rules:

match zero asm with

[
zero → u
succn →a v

]
→ u[m := zero]

match (succ t) asm with

[
zero → u
succn →a v

]
→ v[n := t][m := succ t][a := match t asm with

[
zero → u
succn →a v

]
]

match iszero as y with

[
iszero → u
issuccn →a v

]
→ u[y := iszero][]

match (issucc t p) as y with

[
iszero → u
issuccnx →a v

]
→ v[n := t][x := p][y := issucc t p][a := match p as y with

[
iszero → u
issuccnx →a v

]
]

As an application, we are able using these constructions to canonically derive the realisability inter-
pretation of terms in a way which is compatible with a guard-based typing system, as it is in Coq. We
rewrite the original term into:

m : N ⊢ (match m asm′ with

[
zero → m′

succn →a m′

]
) : N

and canonically derive from it the following now well-typed term:

m : N, y : isNm ⊢ (match y as y′ with

[
iszero → y′

issuccnx →a y′

]
) : isNm

Assuming a guard condition that recognises an as-pattern as being of the same size as the term being
matched, the guardedness of the derived term derives from the guardedness of the original term.

	Solution 1: expanding the dependent instances
	Solution 2: generalising the term being matched
	Solution 3: adding as-variables to recursors

