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Abstract
We show that a variant of Parigot’s λµ-calculus, originally due
to de Groote and proved to satisfy Böhm’s theorem by Saurin,
is canonically interpretable as a call-by-name calculus of delim-
ited control. This observation is expressed using Ariola et al’s
call-by-value calculus of delimited control, an extension of λµ-
calculus with delimited control known to be equationally equiva-
lent to Danvy and Filinski’s calculus with shift and reset. Our main
result then is that de Groote and Saurin’s variant of λµ-calculus is
equivalent to a canonical call-by-name variant of Ariola et al’s cal-
culus. The rest of the paper is devoted to a comparative study of the
call-by-name and call-by-value variants of Ariola et al’s calculus,
covering in particular the questions of simple typing, operational
semantics, and continuation-passing-style semantics. Finally, we
discuss the relevance of Ariola et al’s calculus as a uniform frame-
work for representing different calculi of delimited continuations,
including “lazy” variants such as Sabry’s shift and lazy reset calcu-
lus.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Control primitives; F.4.1 [Mathematical Logic]:
Lambda calculus and related systems

Keywords Delimited control, Observational completeness, Böhm
separability, Classical logic.

1. Introduction
Control calculi emerged as an attempt to abstractly characterise
the semantics of operators like Scheme’s call/cc that capture
the current continuation of a computation. One first such calcu-
lus is the λC-calculus of Felleisen et al. (1986). Control opera-
tor are connected to classical logic, as first investigated by Grif-
fin (1990). Hence, it is not a surprise that the “cleanest” such λ-
calculus of control, namely λµ-calculus of Parigot (1992) comes
from a computational analysis of classical natural deduction: as
shown by Ariola and Herbelin (2007), λµ-calculus extended with
a single “toplevel” continuation constant tp provides a fine-grained
calculus able, among other things, to faithfully express the opera-
tional semantics of call/cc, C, etc, including its own operational
semantics, a property that λC-calculus achieves only at observa-
tional level. The reason for this success is that λµ-calculus treats
evaluation contexts as stand-alone first-class objects while λC man-
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ages evaluation contexts through their reification as regular func-
tions.

Delimited control and completeness properties
If we concentrate on call-by-value control calculi, the introduction
of delimiters can be traced back to Johnson (1987), Johnson and
Duggan (1988), Felleisen (1988), and Danvy and Filinski (1989). It
has then been shown in different contexts that adding such delim-
iters increases the expressiveness of control calculi. For instance,
Sitaram and Felleisen (1990) showed how to recover a full abstrac-
tion result for call-by-value PCF with control by adding a control
delimiter. As another striking example, Filinski (1994) showed that
delimited control is complete for representing concrete monads,
hence to simulate side-effects such as states, exceptions, etc.

Historically, delimited control came with ad hoc operators for
composing continuations: Felleisen had a calculus that included a
delimiter prompt and a control operator control (also respectively
written # and F ); Danvy and Filinski had an operator shift to com-
pose continuations and an operator reset to delimit them (these
were also written S and 〈 〉). From Filinski (1994), it is known
that shift and reset are equivalent to the combination of Scheme’s
call/cc, Felleisen’s abort and reset, and hence equivalent to C
and reset. From Shan (2004), it is known that control and prompt
are also equivalent to shift and reset, in spite that control is se-
mantically more complex to study than C or shift. The simplicity of
the semantics of shift together with its relevance for some program-
ming applications contributed to set shift as a reference in delimited
control. And this is so in spite (it seems that) it has never been stud-
ied until now as part of a dedicated λ-calculus of delimited control.

As shown by Ariola et al. (2007), a fine-grained calculus of
delimited control of the strength of shift and reset is obtained if
one starts from λµ-calculus and extends it first by a notation tp
for the “toplevel” continuation, then by a toplevel delimiter. A
possible interpretation for this toplevel delimiter is as a dynamic
binder of tp, what justifies to interpret the resulting call-by-value
calculus, called λµ btp, as an extension of call-by-value λµ-calculus
with a single dynamically bound continuation variable btp, where
the hat on tp emphasises the dynamic treatment of the variable.
A typical analogy for the dynamic continuation variable here is
exception handling: each call to btp is dynamically bound to the
closest surrounding btp binder, in exactly the same way as a raised
exception is dynamically bound to the closest surrounding handler.

On the call-by-name side, we know no explicit mention of de-
limited continuations, but two results related to Böhm’s theorem (a
form of observational completeness stated as a separability prop-
erty) raised interesting questions: David and Py (2001) showed
that Parigot’s λµ-calculus does not satisfy Böhm’s theorem while
Saurin (2005) showed that an apparently inoffensive variant of λµ-
calculus due to de Groote (1994) does satisfy Böhm’s theorem.

Until Saurin’s result, de Groote’s variant of Parigot’s λµ-
calculus was merely considered in typed settings, and more particu-
larly in settings where the continuation calls had type⊥ (de Groote
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β : (λx.M) N → M [N/x]
µapp : (µα.c) N → µβ.c[[β](� N)/α] β fresh
µvar : [β]µα.c → c[β/α]

Figure 1. Reduction rules of λµ-calculus

1994; Ong 1996; Ong and Stewart 1997; Selinger 2001, non ex-
austive list). But in such a typed setting, de Groote’s calculus is
equivalent1 to Parigot’s λµ-calculus extended with a single con-
tinuation constant of type ⊥. Hence, Saurin’s result is the first
result revealing that de Groote’s calculus is strictly stronger than
Parigot’s one in the untyped setting. In our opinion, this justifies
to refer to this calculus as de-Groote–Saurin’s calculus. Our main
result then is that de-Groote–Saurin’s calculus can be interpreted
as a canonical call-by-name variant of call-by-value λµ btp.

Capitalising on the equational correspondence between call-by-
value λµ btp and an axiomatic of Danvy and Filinski’s shift and reset
given by (Kameyama and Hasegawa 2003), we can then assert that
the calculus with shift and reset and de-Groote–Saurin’s calculus
are two facets of the very same notion of delimited control.

Outline of the paper
Section 2 is a brief survey of Parigot’s λµ and de Groote’s variant
of λµ, including the separability properties studied by David and
Py, and by Saurin. Section 3 presents call-by-value λµ btp and its
relation with shift and reset. It reviews the results by Ariola et al.
(2007) and completes them by a formal presentation of the opera-
tional semantics of call-by-value λµ btp. In Section 4 we introduce
a call-by-name λµ btp and show that it is equivalent to de-Groote–
Saurin’s calculus. Especially, it directly inherits separability from
it. We study call-by-name λµ btp in comparison with the call-by-
value λµ btp: we propose a system of simple types for which sub-
ject reduction holds and we study the operational and continuation-
passing-style semantics. A further analysis of λµ btp leads to a clas-
sification of four calculi of delimited continuations which is dis-
cussed in Section 5. Concluding remarks are given in Section 6.

2. Parigot’s λµ-Calculus and Saurin’s
Λµ-Calculus

Failure of separability in λµ-calculus The λµ-calculus (Parigot
1992), for short λµ, is an untyped calculus designed to computa-
tionally interpret proofs of classical natural deduction. Its syntax is
defined by the following grammar:

Parigot’s λµ-calculus

M ::= x || λx.M || M M || µα.c (terms)
c ::= [α]M (commands)

where x, y, z and their notational derivatives range over an infinite
set of term variables and α, β, γ, δ and their notational derivatives
range over an infinite set of continuation variables (also called
evaluation context variables). Expressions contain terms (called
unnamed terms in Parigot) and commands (called named terms
in Parigot). The operators λ and µ are binders. Free and bound
variables are defined as usual and we reason modulo renaming of
bound variables. A term or command is closed if it contains no free
variables.

The calculus is equipped with the call-by-name reduction rules
shown in Figure 1. The notations M [N/x] and c[β/α] denote usual
capture-free substitutions, whereas the expression c[[β](� N)/α],

1 If we call tp⊥ the continuation constant of type ⊥, then µα.t and [α]t in
de Groote’s calculus are respectively equivalent to µα.[tp⊥]t and µδ.[α]t
(δ fresh) in Parigot’s calculus.

β : (λx.M) N = M [N/x]
µn : [β](En[µα.c]) = c[[β]En/α]
ηµ : µα.[α]M = M if α not free in M
η : λx.(M x) = M if x not free in M

Figure 2. Equational theory of λµ-calculus

called structural substitution, denotes the capture-free substitu-
tion of every subterm of the form [α]M in c by [β](M N).
For instance, we have ([α](x λy.µβ.[α]y))[[γ](� N)/α] ≡
[γ](x λy.µβ′.[γ](y N) N) where the binder β has been renamed
to avoid the capture of possible free occurrences of β in N . Note
that the substitution c[q/α] coincides with the structural substitu-
tion c[[q]�/α]. A term that contains no redex is called normal. We
know from Baba et al. (2001) that call-by-name reduction system
is confluent.

The syntax of call-by-name evaluation contexts is defined by
En ::= � | En[� M ] where � denotes the hole of the con-
text. We write E[M ] for the term obtained by substituting M in
the hole of E and structural substitution extends straightforwardly
into a substitution of the form c[[β]E/α]. We equip λµ with the
equational theory given in Figure 2. Up to the use of (ηµ), the rule
(µn) is equivalent to the combination of (µvar ) and (µapp) so that
the equational theory is correctly an extension with η-rules of the
reflexive-symmetric-transitive closure of →.

David and Py investigated Böhm’s separability for the equa-
tional theory of λµ and showed that it does not satisfy Böhm’s
separability2.

PROPOSITION 1 (David and Py 2001). There are two closed nor-
mal terms W0 and W1 that are not equated by the equational theory
in Figure 2 and of which the observational behaviour is not separa-
ble, i.e., for distinct fresh variables x and y, there is no applicative
context En, such that En[W0] = x and En[W1] = y.

Separability in Λµ-calculus Saurin (2005) showed that com-
pleteness can be recovered by relaxing the syntax of λµ so that the
category of commands (i.e. named terms) becomes a subcategory
of the one of terms. The syntax used by Saurin was already consid-
ered by de Groote (1994), Ong (1996), Selinger (2001). This syntax
was considered as an alternative to Parigot’s original λµ. Saurin’s
result sheds new light on the relation between the two calculi. Fol-
lowing Saurin, we call Λµ the calculus based on de Groote’s syntax
equipped with the same reduction rules and equational theory as in
λµ. The syntax is3:

Λµ-calculus

M ::= x || λx.M || M M || µα.M || [α]M

In Λµ, there are more evaluation contexts. They are defined by:
Dn ::= � |Dn[[α]En].

THEOREM 2 (Saurin 2005). If the closed normal terms M and N
in Λµ are not equated by the equational theory in Figure 2, then
they are separable, i.e., for any two variables x and y, there exists
a context Dn, such that Dn[M ] = x and Dn[N ] = y.

2 David and Py actually had (µvar ) and (µapp) instead of (µn) and
their rules were oriented as rewrite rules. They also considered the rule
ν : µα.c → λx.µα.c[[α](� x)/α] but this rule is redundant for

equational reasoning as it derives from (µn) and (η). The initial motiva-
tion for (ν) was to turn their system of reduction rules (β), (η), (µapp),
(µvar ) and (ηµ) into a confluent system of reduction. In fact, (ν) hides an
η-expansion and it is enough to formulate (η) in the expansion way to get
a confluent system, without any need for (ν).
3 Saurin’s syntax is a bit different as he writes M α for what we write [α]M
but that is really here a matter of notation.
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This may look strange as the only change is a change in the
syntax of the terms. In fact, the difference lies in the rule (µvar )
which in the case of λµ can only occur in a configuration of the
form:

M(µγ.[β]µα.c) → M(µγ.c[β/α])

while in the case of Λµ, it can also occur in a configuration of the
form:

M ([β]µα.c) → M (c[β/α])

so that the computational effect of any µα.c can be cancelled if
we succeed in putting it in a context of the form [β]�. This last
property is the main reason why Saurin’s completeness theorem
works.

3. A Review of Call-by-Value λµt̂p-Calculus
The λCbtp-calculus has been introduced by Ariola et al. (2007). It is
an extension of the call-by-value variant of λµ obtained by adding
a single dynamically bound continuation variable btp. Ariola et al’s
λCbtp is a fine-grained calculus of delimited continuations in which,
as an example, the semantics of Danvy and Filinski’s shift and reset
operators can be simulated. In the original formulation of λCbtp, the
control operator of the language was called C in spite that λCbtp is
based on Parigot’s structural substitution, as in λµ, rather than on
substitution of continuations reified as ordinary functions, as it is
the case in Felleisen λC-calculus. Here we redefine λCbtp using the
µ notation instead of a C notation. The so-reformulated calculus is
called the call-by-value λµ btp.

3.1 Syntax and reduction rules

M, N ::= V | M M | µq.c (terms)
V ::= x | λx. M (values)
c ::= [q] M (commands)
q ::= α | btp (ev. context variables)

Figure 3. Syntax of λµ btp
The syntax of λµ btp is given in Figure 3. We also define call-by-

value evaluation contexts by

Ev ::= � | Ev[� M ] | Ev[V �] (eval. contexts)
Dv ::= � | Dv[[q]Ev[µ btp.�]] (nested eval. context)

and the notations Ev[M ] and Dv[c] stand for the terms and com-
mands obtained by plugging M into Ev and c into Dv seen as
expressions with one place-holder.

βv : (λx. M) V → M [V/x]
µapp : (µα. c) M → µβ.c[[β](� M)/α] β fresh
µ′app : V (µα. c) → µβ.c[[β](V �)/α] β fresh
µvar : [q]µα.c → c[q/α]
ηbtp : µ btp.[ btp] V → V even if btp occurs in V

Figure 4. Reductions of call-by-value λµ btp
The reduction semantics of call-by-value λµ btp is given in Fig-

ure 4. The notation c[[q]E/α] stands for structural substitution
of evaluation contexts as in λµ (see Section 2). The substitutions
are capture-free for term and continuation variables but btp gets
captured (e.g. the substitution of x by h (µδ.[ btp]y) (µδ.[β]z) in
[α](f µβ.(g µ btp.[β](g µγ.[ btp]x))) gives as result the expression
[α](f µβ′.(g µ btp.[β′](g µγ.[ btp](h (µδ.[ btp]y) (µδ.[β]z)))))).

A simple analysis of the syntax and rules shows that the unique
context lemma (see Felleisen and Friedman 1986) holds: any closed

command which is not of the form [ btp]λx.M has a unique decom-
position as Dv[[ btp]Ev[M ]] where either M or [ btp]Ev[M ] is a re-
dex. Hence the reduction system is complete for the evaluation of
closed programs. A term that contains no redex at all is said to be
normal.

3.2 Equational theory

βv : (λx. M) V = M [V/x]
µv : [q](Ev[µα. c]) = c[[q]Ev/α]
ηbtp : µ btp.[ btp] V = V
µbtp : [ btp] (µ btp.c) = c
µletbtp : µ btp.[q]((λx.M) (µ btp.c)) = (λx.µ btp.[q]M) (µ btp.c)
µlet : µα.[q]((λx.N) M) = (λx.µα.[q]N) M 1

ηµ : µα.[α] M = M 1

ηv : λx.(V x) = V 2

βΩ : (λx.Ev[x]) M = Ev[M ] 3

1 α not free in M 2 x not free in V 3 x not free in Ev

Figure 5. CPS-complete theory of call-by-value λµ btp
The equational theory of λµ btp is given in Figure 5. Note that

the equation (µv) generalises the effect of the rules (µapp), (µ′app)
and (µvar ) (up to the use of (ηµ)).

3.3 Simple typing

X ∈ TypeConstants
A, B, T, U ::= X | AT → BU

Γ ::= · | Γ, x : A
∆ ::= · | ∆, α : AT

Γ, x : A ` x :AT ; ∆; btp :T
Ax

Γ, x : A ` M :BU ; ∆; btp :T

Γ ` λx.M : (AT → BU )T ′ ; ∆; btp :T ′
→i

Γ `M : (AT1→BU2)U1 ; ∆; btp :T2 Γ `N :AT1 ; ∆; btp :U1

Γ ` MN :BU2 ; ∆; btp :T2

→e

Γ ` c :⊥⊥; ∆, α : AU ; btp :T

Γ ` µα.c :AU ; ∆; btp :T

Γ ` c :⊥⊥; ∆; btp :A

Γ ` µ btp.c :AT ; ∆; btp :T

Γ ` M :AU ; ∆, α : AU ; btp :T

Γ ` [α]M :⊥⊥; ∆, α : AU ; btp :T

Γ ` M :UU ; ∆; btp :T

Γ ` [ btp]M :⊥⊥; ∆; btp :T

Figure 6. Simple typing of call-by-value λµ btp-calculus

The calculus λµ btp is basically an untyped calculus. Still, it is
possible to constrain it with a type system. Ariola et al’s adaptation
of Danvy and Filinski’s system of simple types (Danvy and Filinski
1989) is given in Figure 6. As in Parigot, the typing context of
continuation variables is on the right of the sequent. We use the
symbol ⊥⊥ in the typing judgements of commands to emphasise
that they have no type.

A continuation of type AT is a continuation whose own con-
tinuation is a call to a toplevel continuation btp expected of type
T , i.e. whose own continuation is expected to be called in a con-
text where the surrounding µ btp has type T . A judgement Γ ` M :
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AT ; ∆; btp : U says that M is a term which expects a continuation
of type AT : the possible capture by M of its evaluation context will
be dispatched in contexts where the dynamically closest surround-
ing µ btp is of type T . In the judgement, U is the type of the actual
closest surrounding toplevel µ btp. To propagate the type informa-
tion of the dynamically bound btp, arrows have effects: a term of
type AT → BU is a term that expects a value of type A and returns
a code of type B which:

• may capture its surrounding context and move it in a place
where the toplevel has type U ,

• eventually itself calls the toplevel continuation with a value of
type T .

3.4 Continuation-passing-style semantics

x+ , x

(λx. M)+ , λk.λν.λx. [[M ]] k ν

[[V ]] k ν , k ν V +

[[M N ]] k ν , [[M ]] (λν′.λf. [[N ]] (f k) ν′) ν

[[µα.c]] k ν , ([[c]] ν)[k/α]

[[µ btp c]] k ν , [[c]] (k ν)

[[[ btp] M ]] ν , [[M ]] (λk. k) ν

[[[α]M ]] ν , [[M ]] α ν

Figure 7. Call-by-value CPS translation of λµ btp
We give in Figure 7 a continuation-passing-style (CPS) seman-

tics in Fischer style (see Fischer 1972) for call-by-value λµ btp. Ari-
ola et al. (2007)) showed that this CPS translation can be factorised
(up to currying and η-conversion) as the composition first of a state-
passing-style transformation to call-by-value λµ with subtraction,
then of a standard call-by-value CPS translation to λ-calculus with
pairs.

3.5 Equational correspondence with Kameyama and
Hasegawa’s axiomatisation of a calculus with shift and
reset

Danvy and Filinski originally defined the operators shift and reset
by their continuation-passing-style semantics. We show in this sec-
tion that call-by-value λµ btp contains shift and reset in the sense that
they contain operators of which the CPS semantics is the defining
semantics of shift and reset.

In a second step, we show that call-by-value λµ btp contains no
more than call-by-value λ-calculus extended with shift and reset.
This is shown by exhibiting an equational correspondence with
Kameyama and Hasegawa’s theory of call-by-value λ-calculus
with shift and reset, a theory known to exactly capture the CPS
semantics of λ-calculus with shift and reset (Kameyama and
Hasegawa 2003).

The operators shift and reset are defined as follows:

S M , µα.[ btp](M λx.µ btp.[α]x)

〈M〉 , µ btp.[ btp]M

The justification that these encodings define shift and reset is
given by the following proposition taken from Ariola et al. (2007):

PROPOSITION 3 (Simulation of shift and reset in λµ btp). The CPS
semantics of S M and 〈M〉 are:

[[S (λq. M)]] k ν = [[M ]] [λk′.λν. k (k′ ν)/q] (λk.k) ν
[[〈M〉]] k ν = [[M ]] (λk.k) (k ν)

which coincide with the defining CPS semantics of shift and reset
in Danvy and Filinski (1989).

Let now (λS , =KH) be λ-calculus equipped with shift and reset
and with the axiomatics of Kameyama and Hasegawa (2003). Let
(λµ btp, =) be call-by-value λµ btp equipped with the axioms given
in Figure 5. Let λµ btp0 be the subset of expressions of λµ btp that
do not contain free continuation variables. We define (λµ btp0

, =)

as the restriction of (λµ btp, =) to the expressions of λµ btp0.
The interpretation of λµ btp in Kameyama and Hasegawa’s cal-

culus works as follows: each continuation variable α is injectively
mapped to a fresh ordinary variable kα, µ btp.[ btp]t is interpreted
as 〈M〉, µ btp.[α]t as 〈kα M〉, µα.[β]M as S(λkα.kβ M) and
µα.[ btp]M as S(λkα.M). The next theorem expresses the equa-
tional correspondence (in the sense of Sabry and Felleisen 1993)
between call-by-value λµ btp0 and Kameyama and Hasegawa’s cal-
culus:

THEOREM 4 (Ariola et al. 2007). The theories (λS , =KH) and
(λµ btp0

, =) are isomorphic.

COROLLARY 5 (Ariola et al. 2007). The theory (λµ btp, =) is com-
plete with respect to β and η through the CPS semantics of call-by-
value λµ btp.

The addition of a continuation delimiter was used in Sitaram
and Felleisen (1990) to recover some completeness property that
was lost in the move from λ-calculus to λC-calculus. Our analysis
of Saurin’s separability result for call-by-name λµ in Section 4.3
shows that Böhm’s theorem, which amounts to observational com-
pleteness for normal terms, is also recovered by the addition of a
continuation delimiter. This suggests the following conjecture:

CONJECTURE 6. The theory (λµ btp, =) satisfies Böhm’s theorem,
i.e., for any equationally distinct closed normal forms M and N ,
there is a context Dv[[q]Ev] such that µ btp.Dv[[q](Ev[M ])] = x
and µ btp.Dv[[q](Ev[N ])] = y.

3.6 Operational semantics
The operational semantics in “natural” style is characterised by
a deterministic application of the reduction rules at the head of
a computation (so-called weak-head reduction). It is common to
formulate the operational semantics on terms but we rather do it
on commands what allows for a more uniform characterisation of
normal forms. Typically, when formulated on terms, a term like
µα.[α]V can be reduced further to V only if α does not occur
in V but it cannot be reduced further if α does occur. To the
contrary, if the same term is reduced as part of a command, as
in [β]µα.[α]V , then the resulting command uniformly reduces to
[β](V [β/α]) independently of whether α occurs or not in V . The
operational semantics, that we do not only define on closed terms
as it is common but also on terms with free variables, is given by
the equations:

β : Dv[[q]Ev[(λx.M) V ]] 7→ Dv[[q]Ev[M [V/x]]]
µv : Dv[[q]Ev[µβ.c]] 7→ Dv[c[[q]Ev/β]]
ηbtp : Dv[[q]Ev[µ btp.[ btp]V ]] 7→ Dv[[q]Ev[V ]]

Obviously 7→ is included in →→ of which it constitutes on com-
mands a convenient level of abstraction. We say that c is a weak-
head normal command if for no c′, c 7→ c′. Weak-head normal
commands are either of the form [ btp]V , or of the form Dv[[α]V ],
or of the form Dv[[q]Ev[x V ]].

Operational semantics can be also described by using an ab-
stract machine. Evaluation in an abstract machine is closely re-
lated to cut-elimination in Gentzen’s sequent calculus (see e.g. Her-
belin 1995, 1997; Danos et al. 1996) while, contrastingly, oper-
ational semantics in “natural” style is related to Gentzen’s natu-
ral deduction. Sequent calculus proofs can be represented in λµeµ-
calculus (Curien and Herbelin 2000; Herbelin 2005) extended with
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K ::= q[e] || M [e] ·K || µ̃�.〈W ‖ � ·K〉 (evaluation contexts)
[S] ::= [ ] || [ btp = K; S] (dynamic environment)
W ::= V [e] (closure of value)
[e] ::= [ ] || [x = W ; e] || [α = K; e] (environments)
s ::= 〈W ||K〉cont [S] || 〈M [e] ||K〉eval [S] || 〈V [e] ||W ·K〉logic [S] (states)

Figure 8. Specific components of the abstract machine for call-by-value λµ btp-calculus

Control owned by the evaluation context

〈W || N [e] ·K 〉cont [S] → 〈N [e] || µ̃�.〈W ‖ � ·K〉 〉eval [S]
〈W || µ̃�.〈V [e] ‖ � ·K〉 〉cont [S] → 〈V [e] ||W ·K 〉logic [S]

〈W || btp[e] 〉cont [ btp = K; S] → 〈W ||K 〉cont [S]
〈W || α[e] 〉cont [S] → 〈W ||K 〉cont [S] if e(α) = K
〈W || btp[e] 〉cont [ ] → stop on [ btp]W †

〈W || α[e] 〉cont [S] → stop on S†[[α]W †] if α not bound in e

Control owned by the term

〈V [e] ||K 〉eval [S] → 〈V [e] ||K 〉cont [S]
〈M N [e] ||K 〉eval [S] → 〈M [e] || N [e] ·K 〉eval [S]
〈µα.[q]M [e] ||K 〉eval [S] → 〈M [α = K; e] || q[α = K; e] 〉eval [S]
〈µ btp.[q]M [e] ||K 〉eval [S] → 〈M [e] || q[e] 〉eval [ btp = K; S]

Control owned by the value

〈λx.M [e] ||W ·K 〉logic [S] → 〈M [x = W ; e] ||K 〉eval [S]
〈x [e] ||W ·K 〉logic [S] → 〈V [e′] ||W ·K 〉logic [S] if e(x) = V [e′]

〈x [e] ||W ·K 〉logic [S] → stop on S†[K†[x W †]] if x not bound in e

To evaluate M , the machine starts with the following initial state:

〈M [ ] || btp[ ]〉eval [ ]

Figure 9. Abstract machine for call-by-value λµ btp
a calculus of explicit substitutions (see e.g. Herbelin 2001) to repre-
sent closures and environments, in the spirit of Hardin et al. (1996).
The language of the abstract machine for call-by-value λµ btp is
shown in Figure 8 and the reduction steps are given in Figure 9. The
syntax for evaluation contexts and states is reminiscent of λµeµ-
calculus. Stacks are identified with evaluation contexts. The con-
struction q[e] refers to the continuation bound to q in the environ-
ment e. The construction M [e] ·K denotes the continuation which
first applies M [e] before continuing with continuation K. The con-
struction µ̃�.〈V [e] ‖ � · K〉 denotes the continuation that binds
to � the current result, say W , so that computation continues with
code V in environment e and continuation W ·K. The construction
〈M ‖ K〉 denotes the interaction of a term M in context K. This
construction comes in three flavours. In 〈M [e] || K〉eval [S], the
term M in environment e has the control on what is going next.
At some point of the evaluation process, the term gets evaluated
and the control is transfered to the evaluation context. This cor-
responds to a state 〈W || K〉cont [S]. At some point, both the
term and the evaluation context are in “evaluated” form and a “log-
ical” interaction happens. This corresponds to states of the form
〈V [e] || W · K〉logic [S]. Specific evaluation rules correspond to
each of these different states. We write e(α) for the binding of α
in e and similarly for e(x). The dynamically bound variables are
bound in an environment S that remains global (it is not stored in

closures). Note that when the dynamic continuation variable btp is
referred to, not only the continuation bound to btp is restored but the
binding is removed so that the next call to btp will refer to the next
binding of the global environment.

Observe that the abstract machine is designed to return the
weak-head normal form not only of closed programs but also of
terms with free variables (see the “stop” transitions). Final result
reconstruction in terminal states turns explicit substitutions into ef-
fective substitutions. Result reconstruction turns closures of values
into ordinary values. It also uses the operation S† that builds con-
texts for command of the form Dv and the operation K† that builds
contexts of the form [q]Ev . These operations are defined by the fol-
lowing clauses:

[α[e]]† , K† if e(α) = K

[α[e]]† , [α](�) otherwise
[ btp[e]]† , [ btp](�)

(M [e] ·K)† , K†[� M [e]†]

(µ̃�.〈W ‖ � ·K〉)† , K†[W † �]

[ ]† , �
[ btp = K; S]† , S†[K†[µ btp.�]]

M [x = W ; e]† , M [W †/x][e]†

M [α = K; e]† , M [K†/α][e]†
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PROPOSITION 7. If c is a weak-head normal form, then, [ btp]M 7→→c
iff the evaluation starting from 〈M [ ] || btp[ ]〉eval [ ] stops with
result c.

To make a comparison with the operational semantics of shift
and reset given in Biernacka et al. (2003), we show how (the
encoding of) shift and reset in λµ btp operationally reduce on closed
terms. Using the abbreviation Cv ::= Dv[[ btp]Ev], we get:

Cv[〈Ev[S(λk.M)]〉] 7→→ Cv[〈M [λx.〈Ev[x]〉/k]〉]
Cv[〈V 〉]] 7→ Cv[V ]

which coincide with the rules (Sλ) and (val) in Biernacka et al.
(2003, Section 4.4) through the identification of C2# with Dv and
of C1 with, [ btp]Ev if in position of context, or λx.〈Ev[x]〉 if in
position of term. As for the rules (βλ) and (βctx ) in Biernacka
et al. (2003) they both are instances of (β).

3.7 Expressiveness
Call-by-value λµ btp is fine-grained enough to directly simulate the
operational semantics of most standard control operators. Let C
and A be Felleisen’s C and abort operators4. Let call/cc be the
implementation of call-cc in Scheme. Let M handle patterns
and raise M be the constructions of the exception mechanism in
SML (i.e. of try M with patterns and raise M in O’Caml).
Let Val be a special exception with one argument. In addition
to the definition of S M and 〈M〉 above, we have the following
encodings:

AM , µ .[ btp]M

C (λk.M) , µαk.[ btp](M λx.µ .[αk]x)

call/cc (λk.M) , µαk.[αk](M λx.µ .[αk]x)

raise M , µ .[ btp]M

M handle patterns , case µ btp.[ btp](Val M) of
| Val x ⇒ x
| patterns
| x ⇒ µ .[ btp]x

Let us show for instance how the operational semantics of
Scheme’s call/cc is faithfully simulated5. Thanks to structural
substitution, we have:

Ev[call/cc λk.M ] 7→ Ev[M [λx.A Ev[x]/k]]

while any other encoding from C (e.g. call/cc (λk.M) ,
C(λk.k M)) or from S (e.g. call/cc (λk.M) , S(λk.k M ′)
with M ′ , M [λx.A (k x)/k]) would give the following wrong
semantics:

Ev[call/cc λk.M ] 7→ (λx.A Ev[x]) M [λx.A Ev[x]/k] .

Structural substitution also brings new behaviours. Here are a
few examples:

(i) : µα.[α](. . . µ .[α]M . . . µ .[α]M ′ . . .)
(ii) : µα.[ btp](. . . µ btp.[α]M . . . µ btp.[α]M ′ . . .)
(iii) : µα.[ btp](. . . µ btp.[α]M . . . µ .[α]M ′ . . .)
(iv) : µα.[ btp](. . . µβ.[α](. . . [β]M . . . [α]M ′ . . .) . . .)

4 As usual, A can be used itself to simulate break or return in imperative
language, assuming that a 〈 〉 marker has been inserted around the related
block.
5 Note that the SML variant of call/cc is not directly simulatable as it
reifies the whole undelimited continuation including the exception handlers,
which would mean that λµ btp semantics would have to support the capture
of the µ btp markers, what it does not. Hence, only the Scheme’s variant of
call/cc, which does not interfere with exception handling, is simulatable.

Example (i) is an “optimised” variant of call/cc that does not
need to wait that the argument of the continuation is evaluated be-
fore to reinstall the continuation (compare (λx.µ .[α]x) M with
µ .[α]M ). Example (ii) is a similarly “optimised” variant of shift.
Example (iii) is an hybrid operator which is compositional on the
left call to α (like shift) and abortive on the right call to α (like
C). Finally, example (iv) shows how a call to continuation α in
the body of a call to another control operator can be contracted
(compare µβ.[ btp]((λx.µ [α]x) M), as in, e.g., the interpretation
of S(λkβ .kα M), with µβ.[α]M ). More generally, see Ariola and
Herbelin (2007) for an analysis of the advantages of structural sub-
stitution of evaluation contexts over substitution of continuations
as regular functions.

Thanks to Filinski’s result on the ability of shift and reset to en-
code monads (Filinski 1994), one can also simulate, as an example,
reading and writing to a memory cell:

read , λ().µα.[ btp]λs.((µ btp.[α]s) s)

write , λs.µα.[ btp]λ .((µ btp.[α]()) s)

so that the code (µ btp.[ btp]M) v0 which may refer to read and
write behaves as a program M reading and writing to a global
memory cell initialised to value v0.

4. Call-by-Name λµt̂p-Calculus
In this section we introduce a call-by-name variant of λµ btp. We
formalise a reduction semantics, an equational theory, a system of
simple types, a continuation-passing-style semantics and an oper-
ational semantics. Call-by-name λµ btp is an extension of λµ that
we show to be isomorphic to Λµ. From the programming point
of view, call-by-name λµ btp, is a bizarre calculus. In an attempt to
clarify how it behaves, we end the section by an example.

4.1 Syntax and reduction rules
The syntax of λµ btp was given in Figure 3. The reduction rules of
the call-by-name variant of λµ btp are in Figure 10. They extend the
reduction rules of λµ in Figure 1 by one rule, called (ηbtp), that is
similar to the equation (ηµ) but without any constraints on whetherbtp occurs or not in M .

β : (λx. M) N → M [N/x]
µapp : (µα. c) M → µβ.c[[β](� M)/α] β fresh
µn

var : [β]µα.c → c[β/α]
ηnbtp : µ btp.[ btp] M → M even if btp occurs in M

Figure 10. Reductions of call-by-name λµ btp
We say that a term or a command is normal if it contains no

redex. Call-by-name evaluation contexts are defined as follows:

En ::= � | En[� M ] (linear eval. contexts)
Dn ::= � | Dn[[α]En[µ btp.�]] (nested linear eval. context)

Call-by-name evaluation contexts are called linear because they do
not erase nor duplicate the term they expect in their hole.

An analysis of the syntax and rules shows that a form of unique
context lemma holds: any command with α as only free variable is
either of the form Dn[[α]λx.M ], or of the form [ btp]M , or, of the
form Dn[[α](En[M ])] with either M or [α](En[M ]) a redex. This
is in fact a curious result: btp blocks the reduction and there is not
much hope to compute something interesting without at least one
free continuation variable at hand.

4.2 Equational theory
The equational theory of call-by-name λµ btp extends the equational
theory of λµ with (µbtp) (an analog of the rule (µvar ) for the special
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continuation btp) and with (ηbtp) seen as equation. It is given in
Figure 11.

β : (λx.M) N = M [N/x]
µn : [β](En[µα.c]) = c[[β]En/α]
ηµ : µα.[α]M = M if α not free in M
η : λx.(M x) = M if x not free in M
µbtp : [ btp]µ btp.c = c
ηbtp : µ btp.[ btp]M = M

Figure 11. Equational theory of call-by-name λµ btp-calculus

4.3 Equational correspondence with Λµ

The calculus Λµ is derived from λµ by relaxing the syntax and
keeping the same theory. We now show how Λµ can be contrast-
ingly restated as a strict extension of λµ. This extension is precisely
our call-by-name variant of λµ btp.

Embedding of Λµ into call-by-name λµ btp A naive way to inter-
pret Λµ in λµ, actually in its extension λµ btp, is to interpret any
Λµ-term µα.M as the λµ-term µα.[ btp]M and to interpret any Λµ-
term [α]M as the λµ-term µ btp.[α]M . Formally, this corresponds
to the following embedding Π of Λµ into λµ btp:

Π(x) , x

Π(λx.M) , λx.Π(M)

Π(M N) , Π(M)Π(N)

Π(µα.M) , µα.[ btp]Π(M)

Π([α]M) , µ btp.[α]Π(M)

This translation is not defined on continuation variables, since
they are not part of the formal syntax. Nevertheless we can derive
the following property:

LEMMA 8.
Π(M [β/α]) = Π(M)[β/α]

We then check that all rules of Λµ can be simulated in λµ, all
but the (µvar ) rule. Indeed,

Π([β]µα.M) ≡ µ btp.[β]µα.[ btp]Π(M)
→µvar µ btp.[ btp]Π(M)[β/α]
≡ µ btp.[ btp]Π(M [β/α])

but µ btp.[ btp].Π(M [β/α]) has no reason to be equal to Π(M [β/α])
in λµ. This is actually expected since Λµ is observationally com-
plete for normal terms but λµ is not. However, in the extended cal-
culus λµ btp, this equality holds. Indeed, we now have:

PROPOSITION 9. If M = N in Λµ then Π(M) = Π(N) in λµ btp.

Embedding of call-by-name λµ btp into Λµ We now want to
show that our call-by-name λµ btp, i.e. λµ extended with rules (µbtp)
and (ηbtp), is indeed equivalent to Λµ. Let us define the following
converse translation:

Σ(x) , x

Σ(λx.M) , λx.Σ(M)

Σ(M N) , Σ(M)Σ(N)

Σ(µα.[β]M) , µα.([β]Σ(M))

Σ(µα.[ btp]M) , µα.(Σ(M))

Σ(µ btp.[α]M) , [α]Σ(M)

Σ(µ btp.[ btp]M) , Σ(M)

PROPOSITION 10. If M =N in call-by-name λµ btp, then Σ(M) =
Σ(N) in Λµ.

X ∈ TypeConstants
A, B ::= X | AΣ → B

Γ ::= ∅ | Γ, x : AΣ

∆ ::= ∅ | ∆, α : A
Σ, Ξ ::= ⊥ | A · Σ

Γ, x : AΣ `Σ x :A; ∆
Ax

Γ, x : AΣ `Ξ M :B; ∆

Γ `Ξ λx.M : (AΣ → B);∆
→i

Γ `Ξ M : (AΣ → B);∆ Γ `Σ N :A; ∆

Γ `Ξ M N :B; ∆
→e

Γ `Σ c :⊥⊥; ∆, α :A

Γ `Σ µα.c :A; ∆

Γ `A·Σ c :⊥⊥; ∆

Γ `Σ µ btp.c :A; ∆

Γ `Σ M :A; ∆, α : A

Γ `Σ [α]M :⊥⊥; ∆, α : A

Γ `Σ M :A; ∆

Γ `A·Σ [ btp]M :⊥⊥; ∆

Figure 12. Simple typing of call-by-name λµ btp-calculus

Since moreover, Σ(Π(M)) ≡ M and Π(Σ(M)) = M (using
(µbtp)), we get:

THEOREM 11 (Equational correspondence). Λµ equipped with
the equations of Figure 2 and call-by-name λµ btp equipped with
the equations of Figure 11 equationally correspond.

REMARK: Call-by-name λµ btp and Λµ form more than an equa-
tional correspondence: their reduction systems are also bisimilar:
M→→N iff Π(M)→→Π(N) and Σ(M)→→Σ(N) iff M→→N . In par-
ticular, normal forms match.

Observational completeness of normal forms in λµ btp As a con-
sequence of the isomorphism, we have:

COROLLARY 12. Call-by-name λµ btp is observationally complete
for closed normal forms, i.e. for any closed normal forms M
and N not equal in call-by-name λµ btp, there exists an evalua-
tion context Dn, such that, in λµ btp, µ btp.Dn[[ btp]M ] = x and
µ btp.Dn[[ btp[N ]] = y for x and y arbitrary fresh variables.

Interestingly, this shows that if Böhm’s theorem in Λµ (Theo-
rem 2) was apparently obtained by allowing more contexts (namely
contexts of the form � [α]M ) which were not allowed in Parigot’s
syntax, it is alternatively obtained by adding not only more contexts
but by adding new rules that were hidden by the fact that λµ and
Λµ apparently share the same rules.

One may wonder whether the equational theory of call-by-
name λµ btp is complete with respect to its CPS semantics. This is
answered positively in Section 4.5.

4.4 Simple typing
We propose a system of simple types for call-by-name λµ btp. Like
for typing λµ, we have two kinds of sequents, one for each category
of expressions:

Γ `Σ M :A; ∆ (for terms)
Γ `Σ c :⊥⊥; ∆ (for commands)

Like for λµ, we have a context of hypotheses Γ that assigns types
to term variables and a context of conclusions ∆ that assigns types
to continuation variables. But we have also to take care of the µ btp
dynamic binder.

7 2007/11/8



Like for Ariola et al’s adaptation to call-by-value λµ btp of Danvy
and Filinski’s typing system in Section 3.3, we have an extra data
to type the dynamic effects. Each use of µ btp pushes the current
continuation on a stack of dynamically bound continuations. Each
call to btp pops the top continuation from this stack.

To the contrary of Ariola et al’s typing system, the extra infor-
mation needed to type the dynamic binding is not a single formula
but the ordered list Σ of the types of the continuations present in
the stack.

Like for Ariola et al’s typing system, functions can encapsulate
occurrences of btp that may be called in a different typing context
than the one that was active at the time µ btp was typed. For type
consistency, arrows have to remember the types of the dynamic
continuation stack that the calls to btp expect to see. We write
AΣ → B for an arrow annotated with the list Σ of effect types.

To the contrary of Ariola et al’s typing system, calls to btp are
associated to terms and hence effects are assigned to the types
of Γ rather than to the types of ∆. The typing system is given in
Figure 12.

A very similar system of simple types has been given by Saurin
(2007) on top of Λµ. In Λµ, judgements Γ `Σ c :⊥⊥; ∆ are
absent since there are no commands in the calculus. Judgements
Γ `Σ M : A; ∆ are written Γ, ∆ ` M : A ⇒ Σ. Moreover,
A1 · . . . · An is written A1 ⇒ . . . ⇒ An ⇒ o and AΣ → B
is written (A ⇒ Σ) → B. Intuitively, A ⇒ B denotes a term
that returns an object of type B when applied to a linear evaluation
context of type A (a stream in Saurin’s terminology). Logically, the
type A ⇒ B is equivalent to ¬A → B, where the use of a negation
emphasises that ¬A is the type of an evaluation context expecting
an argument of type A. Hence, A ⇒ B is logically equivalent to a
disjunction. Note that because ⇒ is a connective in Saurin’s typing
system, a conversion rule from ((A ⇒ Σ) → B) ⇒ Ξ to (A ⇒
Σ) → (B ⇒ Ξ) is needed to type abstraction and application. This
latter conversion rule has no computational content.

In order to prove subject reduction of the type system in Fig-
ure 12 we state two auxiliary lemmas (Generation and Substitution
Lemma).

LEMMA 13 (Generation Lemma). 1. Γ, x : AΣ `Ξ x : B; ∆
implies Ξ ≡ Σ and B ≡ A.

2. Γ `Ξ λx.M : C; ∆ implies C ≡ AΣ → B and Γ, x : AΣ `Ξ

M :B; ∆.
3. Γ `Ξ MN : B; ∆ implies Γ `Ξ M : AΣ → B; ∆ and

Γ `Σ N :A; ∆ for some A and Σ.
4. Γ `Σ µα.c :A; ∆ implies Γ `Σ c :⊥⊥; ∆, α : A.
5. Γ `Σ [α]M :A; ∆ implies ∆ ≡ ∆′, α : A and Γ `Σ M :⊥⊥; ∆.
6. Γ `Σ µ btp.c :A; ∆ implies Γ `A·Σ c :⊥⊥; ∆.
7. Γ `Ξ [ btp]c :⊥⊥; ∆ implies Ξ ≡ A · Σ and Γ `Σ M :A; ∆.

LEMMA 14 (Substitution lemma). 1. Let Γ, x : AΣ `Ξ M :
B; ∆ and Γ `Σ N :A; ∆. Then Γ `Ξ M [N/x] :B; ∆.

2. Let Γ `Ξ c :⊥⊥; ∆, α : AΣ → B and Γ `Σ N :A; ∆ and let β
be a fresh variable. Then Γ `Ξ c[β(� N)/α] :⊥⊥; ∆, β : B.

3. Let Γ `Σ c :⊥⊥; ∆, α : A, β : A. Then Γ `Σ c[β/α] :⊥⊥; ∆, β :
A.

Subject reduction follows directly.

PROPOSITION 15 (Subject reduction).

(i) If Γ `Σ M :A; ∆ and M → N , then Γ `Σ N :A; ∆.
(ii) If Γ `Σ c :⊥⊥; ∆ and c → c′, then Γ `Σ c′ :⊥⊥; ∆.

4.5 Continuation-passing-style semantics
De Groote (1994) defined a CPS transformation to λ-calculus for
Λµ. We give here an alternative CPS transformation that is based

on a call-by-name CPS translation to λ-calculus with pairs (Lafont,
Reus, and Streicher 1993). The λ-calculus with pairs is defined by
the syntax

M ::= x | λx.M | M M | (M, M) | let (y, x) = M in M

and we use λ(x, y).t as an abbreviation for λz.let (x, y) = z in t
for z fresh. In addition to (β) and (η), the calculus comes with the
following reduction rules:

∧ : let (x, y) = (M, N) in M ′ → M ′ [N/y; M/x]
∧lift :F [let (x, y) = M in N ] → let (x, y) = M in F [N ]
η∧ : let (x, y) = M in (x, y) → M

for F ::= � N | let (x, y) = � in M .
We assume to have an injection kα from continuation variables

to term variables. The CPS transformation is shown in Figure 13.
To the exception of some uses of η-conversion, it differs from
de Groote’s transformation on Λµ only in the application and
abstraction cases.

x∗ , x

(λx.M)∗ , λ(x, k).M∗ k

(M N)∗ , λk.M∗ (N∗, k)

(µα.c)∗ , λkα.c∗

([α]M)∗ , M∗ kα

(µ btp.c)
∗ , c∗

([ btp]M)
∗ , M∗

Figure 13. Call-by-name CPS translation of λµ btp
The CPS transformation is compatible with the type system.

Indeed, if we define the following transformation on types:

X− , ¬X

(AΣ → B)− , AΣ
+ ∧B−

AΣ
+ , A− → Σ+

⊥+ , ⊥
(A · Σ)+ , A− → Σ+

(∅)+ , ∅
(Γ, x : AΣ)+ , Γ+, x : AΣ

+

(∅)− , ∅
(∆, α : A)− , ∆−, α : A−

(Γ `Σ M :A; ∆)+ , Γ+, ∆− ` M∗ : A− → Σ+

(Γ `Σ c :⊥⊥; ∆)+ , Γ+, ∆− ` c∗ : Σ+

then, we get the following compatibility result:

PROPOSITION 16.

(i) If Γ `Σ M :A; ∆ then (Γ `Σ M :A; ∆)+.
(ii) If Γ `Σ c :⊥⊥; ∆ then (Γ `Σ c :⊥⊥; ∆)+.

Unfortunately, the CPS above does not simulate the reduction.
As it is common, we would have needed a CPS that takes care of
administrative redex to get a simulation result. Still, the CPS above
is compatible with equality in the λ-calculus with pairs:

PROPOSITION 17. If M → N then M∗ = N∗.

We can also state a completeness result (this is an adaptation of
standard proofs, see e.g. de Groote 1994; Fujita 2003):

PROPOSITION 18. If M∗ =βη∧∧liftη∧ N∗ then M = N .
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REMARK: In the very same way as for call-by-value λµ btp, the
call-by-name CPS translation can be factorised as the composition
first of a state-passing-style transformation to call-by-name λµ
extended with an asymmetric disjunction (because the type effects
in call-by-name λµ btp “naturally” take the form of an asymmetric
disjunction; for asymmetric disjunction, see Pym and Ritter 2001),
then of a call-by-name CPS translation to the λ-calculus with pairs.

4.6 Operational semantics
We first give the operational semantics of call-by-name λµ btp as a
set of reduction rules applicable to the term as a whole. This kind
of operational semantics in “natural” style is defined on commands
by the following rules:

β : Dn[[α]En[(λx.M) N ]] 7→ Dn[[α]En[M [N/x]]]
µn : Dn[[α]En[µβ.c]] 7→ Dn[c[[α]En/β]]
ηnbtp : Dn[[α]En[µ btp.[ btp]M ]] 7→ Dn[[α]En[M ]]

As in the call-by-value case, 7→ is included in →→ of which it
constitutes on commands a level of abstraction. We say that c is
a weak-head normal command if for no c′, c 7→ c′. Weak-head
normal commands are either of the form [ btp]M , or of the form
Dn[[α]En[x]] or of the form Dn[[α]λx.M ].

We then present the operational semantics by means of a call-
by-name abstract machine. The language of the abstract machine
for call-by-name is shown in Figure 14 and the reduction steps are
given in Figure 15. As for the call-by-value machine in Section 3,
the language of the machine is an extension with explicit environ-
ments of the language of λµ btp. To initiate the computation, we
need an extra constant of evaluation context that we write ε.

As in the call-by-value machine, the evaluation rules are split
into three categories. However, the control is first owned by the
evaluation context, so that the “logical” steps are controlled not by
the value but by the linear evaluation context. Final result recon-
struction in terminal states uses almost the same operations as for
the call-by-value machine.

[α[e]]† , L† if e(α) = L

[α[e]]† , [α](�) otherwise
(M [e] · L)† , L†[� M [e]†]

[ ]† , �
[ btp = L; S]† , S†[L†[µ btp.�]]

M [x = N [e′]; e]† , M [N [e′]†/x][e]†

M [α = L; e]† , M [L†/α][e]†

PROPOSITION 19. If c is a weak-head normal form, then, [ε]M 7→→c
iff the evaluation starting from 〈M [ ] || ε[ ]〉eval [ ] stops with re-
sult c.

4.7 An example
How does call-by-name λµ btp behave on standard examples that
uses delimited control? We consider the example of list traversal
that Biernacki and Danvy (2005) used to emphasise the differences
between operator F (Felleisen 1988) and shift. We extend λµ btp
with a fixpoint operator, list constructors and a list destructor:

M, N ::= . . . | νx.M | [] | M ::N
| if M is x::y then M else M

and we extend call-by-name reduction with the rules

νx.M → M [νx.M/x]
if [] is x::y then M2 else M1 → M1

if M ::N is x::y then M2 else M1 → M2[M/x][N/y]
if µα.c is x::y then M2 else M1 →

µα.c[[α] (if � is x::y then M2 else M1)/α]

In informal ML syntax, the example is the following

let traverse l =
let rec visit l = match l with
| [] -> []
| a::l’ -> visit (shift (fun k -> a :: k l’))
in reset (visit l)

in traverse [1;2;3]

Translated into Λµ, it gives

v (n1::n2::n3::[])

where v is νf .(λl.if l is a::l′ then f (µα.a::[α]l′) else []).
Translated into λµ btp, v is

νf .(λl.if l is a::l′ then f (µα.[ btp]a::µ btp.[α]l′) else []) .

Let ε be an arbitrary continuation distinct from btp. We write li for
ni:: . . . ::n3::[]. We list the steps of the reduction of [ε](v l1):

[ε]v l1
→ [ε](λl.if l is a::l′ then v (µα.a::[α]l′) else []) l1
→ [ε]if l1 is a::l′ then v (µα.a::[α]l′) else [])
→ [ε]v (µα.n1::[α]l2)
→→ if (µα.n1::[α]l2) is a::l′ then v (µα.a::[α]l′) else []
→ [ε]µα.n1::[α](if l2 is a::l′ then v (µα.a::[α]l′) else [])
→ n1::[ε](if l2 is a::l′ then v (µα.a::[α]l′) else [])
→ n1::[ε](v (µα.n2::[α]l3))
→→ n1::[ε](µα.n2::[α](v l3))
→→ n1::n2::[ε](v l3)
→→ n1::n2::[ε](µα.n3::[α](v []))
→→ n1::n2::n3::[ε](v [])
→→ n1::n2::n3::[ε][]

Otherwise said, the list traversal program copies its argument
and shifts its continuation to the tail of the list.

5. Discussion on a General Framework for
Calculi of Delimited Continuations

We review below two variants of the original calculus with shift and
reset. Together with Λµ, we then obtain four calculi of delimited
continuations. We show how these four calculi are related.

Lazy reset A variant of call-by-value λµ btp can be obtained by
considering that terms of the form µ btp.c are values. In this case, one
obtains a calculus equivalent to the λ-calculus with shift and lazy
reset, a calculus for which Sabry gave an axiomatisation complete
with respect to its CPS semantics (Sabry 1996).

Call-by-name shift/reset with “lazy” toplevel continuation The
first author once asked Olivier Danvy: What would be a “canonical”
call-by-name variant of the shift/reset calculus? O. Danvy answered
by an abstract machine that modifies the pure λ-calculus part of the
machine for shift/reset in Biernacka et al. (2003) so that it behaves
in call-by-name discipline. Expressed in the language of λµ btp, the
resulting calculus differs from the call-by-name variant of λµ btp
studied in the paper in that the rules (µvar ) and (ηbtp) are now those
of call-by-value λµ btp:

µvar : [q]µα.c → c[q/α]
ηbtp : µ btp.[ btp] V → V

Otherwise said, in this “lazy” call-by-name variant of λµ btp, the
toplevel continuation behaves as a regular linear evaluation context
and it is captured by µα.c as the regular pieces of linear evaluation
contexts � M , V � and [β] � are.
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K ::= btp[e] || L (evaluation contexts)
L ::= α[e] || M [e] · L (linear evaluation contexts)
[S] ::= [ ] || [ btp = L; S] (dynamic environment)
[e] ::= [ ] || [x = M [e]; e] || [α = L; e] (environments)
s ::= 〈M [e] ||K〉cont [S] || 〈M [e] || L〉eval [S] || 〈λx.M [e] || L〉logic [S] (states)

Figure 14. Specific components of the abstract machine for call-by-name λµ btp-calculus

Control owned by the evaluation context

〈M [e] || L 〉cont [S] → 〈M [e] || L 〉eval [S]
〈M [e] || btp[e′] 〉cont [ btp = L; S] → 〈M [e] || L 〉eval [S]
〈M [e] || btp[e′] 〉cont [ ] → stop on [ btp]M [e]†

Control owned by the term

〈x [e] || L 〉eval [S] → 〈M [e′] || L 〉eval [S] if e(x) = M [e′]
〈λx.M [e] || L 〉eval [S] → 〈λx.M [e] || L 〉logic [S]
〈M N [e] || L 〉eval [S] → 〈M [e] || N [e] · L 〉eval [S]
〈µα.[q]M [e] || L 〉eval [S] → 〈M [α = L; e] || q[α = L; e] 〉cont [S]
〈µ btp.[q]M [e] || L 〉eval [S] → 〈M [e] || q[e] 〉cont [ btp = L; S]
〈x [e] || L 〉eval [S] → stop on S†[L†[x]] if x not bound in e

Control owned by the linear evaluation context

〈λx.M [e] ||M ′[e′] · L 〉logic [S] → 〈M [x = M ′[e′]; e] || L 〉eval [S]
〈λx.M [e] || α[e′] 〉logic [S] → 〈λx.M [e] || L 〉logic [S] if e′(α) = L

〈λx.M [e] || α[e′] 〉logic [S] → stop on S†[[α](λx.M [e]†)] if α not bound in e′

To evaluate M , we need a linear toplevel free variables distinct from btp (which is not linear). Let ε be this variable. Then, the machine starts
with the following initial state:

〈M [ ] || ε[ ]〉eval [ ]

Figure 15. Abstract machine for call-by-name λµ btp-calculus

Fundamental critical pair of computation
(λx.t) (µα.c)

↙ (CBV)
(βv) + (µapp) + (µ′app) + (µvar ) + (ηbtp)

subsidiary choice
(λx.t) (µ btp.c)

(µ btp value) ↙ ↘ (µ btp not value)
shift/lazy reset shift/reset

(Sabry) (Danvy-Filinski)
CPS completion (Sabry) CPS completion (Kameyama-Hasegawa)

typed “domain”-completion (Sitaram-Felleisen)

(CBN) ↘
(β) + (µapp) + (µn

var ) + (ηbtp)
subsidiary choice

[ btp]µα.c
(µn

var moved to µvar ) ↙ ↘ (ηbtp moved to ηnbtp)
CBN shift/reset Λµ

(Danvy) (de-Groote–Saurin)
Böhm-completion (Saurin)

Figure 16. Calculi of delimited continuations - a classification

The four calculi of delimited continuations The four calculi of
delimited continuations are classified in Figure 16.

Choosing between call-by-name and call-by-value amounts to
decide the fundamental dilemma of computation (as emphasised,
e.g., in Curien and Herbelin 2000). Choosing call-by-value requires
to restrict β-reduction into βv-reduction and to add a rule (µ′app)
for incremental substitution of the new kind of context (λx.M) �.

In each variant, a subsidiary choice has to be made to decide if
µ btp is a value or not and if btp behaves like a linear continuation
variable or not.

In call-by-value, the extra critical pair is (λx.t) (µ btp.c). If µ btp.c
is considered as non evaluated, the call-by-value discipline expects
that priority is given to it and one obtains the original shift and reset
calculus from Danvy and Filinski. If otherwise µ btp.c is considered
as evaluated, it yields its priority to its evaluation context, i.e. to the
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function, and β is applicable. One then obtains the calculus with
lazy reset that was studied in Sabry (1996).

In call-by-name, the extra critical pair is [ btp]µα.c. If priority
is given to the evaluation context, i.e. btp, one has first to know
to what it is bound before to continue the computation. One then
obtains the semantics of Λµ. If otherwise btp is considered as a
linear continuation variable, it yields the priority to its argument
and its capture is made possible. One then obtains Danvy’s call-by-
name variant of the shift and reset calculus.

6. Conclusions
Summary
We showed that de Groote variant of λµ-calculus, here called
Λµ after Saurin, while apparently similar to Parigot’s λµ, can
be interpreted as an extension of λµ with call-by-name delimited
control. Especially, we showed the following points:

• Λµ can be interpreted as a call-by-name variant of Ariola et al’s
extension of call-by-value λµ with delimited control, namely
call-by-value λµ btp.

• The abstract machine for Λµ relies on a global stack for the
dynamic continuation as the abstract machine for call-by-value
λµ btp does.

• There is a system of simple types with effects for Λµ for which
subject reduction holds.

The Λµ is a surprising calculus. On one side, its syntax and
CPS semantics are very simple, and in particular simpler than the
syntax and CPS semantics of call-by-value calculi of delimited
continuations. On the other side, its “canonical” system of types
and its operational semantics keep the complexity of a calculus of
delimited control. The absence of an explicit control delimiter in
Λµ is at first glance surprising, but if we admit that the definition
of 〈M〉 is µ btp.[ btp]M as it is in call-by-value λµ btp, then it is normal
that no explicit 〈M〉 is needed in Λµ since it collapses in call-by-
name λµ btp to an identity operator. Another lesson is that the µ
operator of Λµ is indeed a shift operator6.

One could ask whether the syntax of Λµ can be used for call-by-
value delimited control. The answer is yes if one adds an explicit
〈M〉. Indeed, in Λµ extended with 〈M〉, the four combinations
µα.[β]M , µα.[ btp]M , µ btp.[α]M and µ btp.[ btp]M are equivalently
expressible in Λµ by µα.[β]M , µα.M , [α]M and 〈M〉 respec-
tively.

Section 5 showed that Λµ is not the only call-by-name delimited
control. Further investigations into the four different calculi need
to be done to better understand the relative strengths of each of the
calculi.

The separability property in classical logic
The λµeµ-calculus is the calculus of choice to study the kind of
duality given in Figure 16. Uniformly investigating the complete-
ness properties of the four calculi and completing the picture in
the framework of λµeµ-calculus would be interesting. Up to our
knowledge, there are no results on Böhm’s separability property
in other proof calculi for classical logic. We believe that the sepa-
rability property for call-by-name λµ btp would directly transfer to
call-by-name untyped λµeµ-calculus but Böhm’s separability prop-
erty in the untyped call-by-value and in the typed versions of λµeµ-
calculus are open problems. The question of separability in the
Dual Calculus Wadler (2003) is a topic for future research, as well.

6 In passing, this suggests that de Groote’s use of Λµ for representing quan-
tifier scope in linguistic is not so far from the shift/reset-based approach of
quantifier scope by Barker and Shan.

An other question is also the investigation of Böhm’s theorem
in the simply typed fragments of the four calculi (see e.g. Böhm’s
theorem in the simply typed λ-calculus by Došen and Petrić (2001),
Statman (1982), Simpson (1995), Joly (2000)).

Finally, how far the study of Böhm’s theorem in call-by-value
calculus with control can help for investigating separation in
Moggi’s extension of Plotkin’s λv (see Paolini 2001).
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