A Constructive Proof of Dependent Choice, Compatible with Classical Logic
—————————————————————————————————————————————————————————————————————————
(ERRATA)
Section III.C:
The weaker form of BI that can be obtained intuitionistically from
BI_c is
∀f ∃n B(f|n)
→ ∀g [∀l (B(l) → g(l)=0) ∧ ∀l (g(l)≠0 → ∃x g(l⋆x)≠0)] → g(〈〉)=0
To get
∀f ∃n B(f|n)
→ ∀g [∀l (B(l) → g(l)=0) ∧ ∀l (∀x g(l⋆x)=0 → g(l)=0)] → g(〈〉)=0
as indicated, Markov's principle is needed.