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Abstract—Martin-Löf’s type theory has strong existential elim-
ination (dependent sum type) that allows to prove the full axiom
of choice. However the theory is intuitionistic. We give a condition
on strong existential elimination that makes it computationally
compatible with classical logic. With this restriction, we lose the
full axiom of choice but, thanks to a lazily-evaluated coinductive
representation of quantification, we are still able to constructively
prove the axiom of countable choice, the axiom of dependent
choice, and a form of bar induction in ways that make each of
them computationally compatible with classical logic.
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I. Introduction

a) Scaling Martin-Löf’s proof of the axiom of choice to
classical logic: In Martin-Löf’s intuitionistic type theory [26],
the functional form of the axiom of choice has a simple proof:

ACA , λH.(λx.wit (H x), λx.prf (H x))
: ∀xA∃yB P(x, y)→ ∃ f A→B ∀xA P(x, f (x))

where wit and prf are the first and second projections of a
strong existential quantifier1.

The proof is constructive: it is a program which we can
compute with in the sense that any closed proof of some
Σ0

1-statement ∃z g(z) = 0 that uses the axiom of choice will
eventually provide with a witness t such that g(t) = 0.

On the other side, classical logic is “constructive” too [17],
[31] and by interpreting Peirce’s law by means of the callcc
and throw control operators2, we can also compute witnesses
from closed proofs of Σ0

1-statements.
Combining the two is however delicate. Reminding that

callccαp has type A and binds the continuation variable α of
input type A when p has type A while throwαp has arbitrary
type B for p of type A and α of input type A, we cannot
accept the following instance of the standard reduction rule
for callcc in natural deduction:

prf (callccα(t1, φ(throwα(t2, p))))
. callccαprf (t1, φ(throwαprf (t2, p)))

since if the continuation α had input type ∃n P(n) in the left-
hand side then it would have to have both input types P(t1)

1Also known as Σ-type, dependent sum, or strong sum.
2We use the SML names of these operators that exist also with other names

in various other programming languages.

and P(t2) in the right-hand side, leading to an unexpected de-
generacy of the domain of discourse3 [19]. This first problem
is solved by using higher-level reduction rules such as

E[prf (callccα(t1, φ(throwα(t2, p))))]
. callccαE[prf (t1, φ(throwαE[prf (t2, p)]))]

E[wit (callccα(t1, φ(throwα(t2, p))))]
. callccαE[wit (t1, φ(throwαE[wit (t2, p)]))]

where the reduction is allowed only when E is an
evaluation context whose return type does not depend
on its hole. However, this does not help much be-
cause if E contained other occurrences of the expression
prf (callccα(t1, φ(throwα(t2, p)))) derived from the same
initial proof (and this is precisely what would happen in
Martin-Löf’s proof of ACA if the two copies of H x were
classical proofs of the form callccα(t1, φ(throwα(t2, p)))), the
synchronisation between the two proofs would be lost.

b) Realising the axioms of countable choice and depen-
dent choice in the presence of classical logic: The axiom of
countable choice

ACN : ∀xN∃yA P(x, y)→ ∃ fN→A ∀xN P(x, f (x))

and the slightly stronger axiom of dependent choice

DC : ∀xA∃yA P(x, y)→
∀x0 ∃ f A→A ( f (0) = x0 ∧ ∀n P( f (n), f (S (n))))

are two weak instances of the full axiom of choice and realis-
ability contributed to understand their computational content
in the presence of classical logic. Three approaches were
followed.

A breakthrough was made in 1961 in the context of Gödel’s
functional interpretation (Dialectica) with the definition by
Spector [35] of a notion of bar recursion so as to realise the
principle of double negation shift from which the functional
interpretation of the axiom of dependent choice follows.

Much later, in 1997, a direct realiser, in a sense close to
the one of Kleene [22], was proposed in the context of the
arithmetic in finite types by Berardi, Bezem and Coquand [6]
for the negative translation of the axiom of dependent choice.

In both cases, the key ingredient is a recursive loop param-
eterised by a finite portion of the function being built, each

3Failure of subject reduction when combining strong existential quantifi-
cation and computational classical logic was also observed by P. Blain Levy
(private communication).



recursive call carrying one more piece of information than the
preceding one, the whole process being terminating because,
for the simply-typed λ-calculus based language of realisers
they consider, closed programs over functions only uses a finite
amount of information of their argument. Later on, Berger and
Oliva [8] reformulated Berardi, Bezem and Coquand’s realiser
in terms of some notion of modified bar recursion. Then, in
2004, Berger [7] reduced the termination of these realisers to
some variant of open induction called update induction:

UIP : ∀ f (∀n( f (n) = ⊥ → ∀a P( f [n← a]))→ P( f ))
→ ∀ f P( f )

for f ranging over N → A⊥ for A arbitrary and A⊥ the
extension of A with one extra element ⊥, for a ranging
in A and f [n ← a] denoting the function g defined by
g(n) = a and g(p) = f (p) for p , n, for P( f ) open predicate
of the form ∀n Q( f|n) → ∃n R( f|n) assuming that f|n is the
sequence ( f (0), ..., f (n − 1)). Otherwise said, Berger reduced
the computational content of the axiom of dependent choice
to a well-foundedness axiom whose computational content
is a simple fixpoint. In practice, this means that we can
prove the axioms of countable choice and dependent choice
in a logic satisfying cut-elimination by just setting an axiom
UIP whose computational content is a well-founded recursor:
UIP p f . p f (λnλqλa.UIP p f [n← a]).

In 2003, Krivine proposed realisers for the axioms of
countable choice and dependent choice [23] in the context
of classical realisability for second-order arithmetic. Classical
realisability, as developed by Krivine [24], can be seen as the
composition of Kleene’s realisability [22] with double negation
translation and Friedman-Dragalin’s A-translation4 [13], [16].
Alternatively, it can be seen as a form of realisability allowing
the use of control operators in realisers. Using our notations,
the variant of countable choice realised by Krivine is

AC?
N : ∀xN∃YN→? P(x,Y)→ ∃FN→N→? ∀xN P(x, F(x))

where N → ? and N → N → ? respectively denote the
type of predicates and relations over N. Krivine’s realiser for
AC?
N does not use a fixpoint but instead a “quote” function

which, informally, maps those Yx such that P(x,Yx) into natural
numbers that can then be compared so that the Yx with least
“quote” is used to define F on x. The realiser also crucially
uses control operators: if some Yx is found that has lesser
quoted value than the Yx currently used to build F, the
evaluation context at the time F(x) was requested is restored
and a new computation of F on x with new Yx is started. In
particular, Krivine’s realisers are rather different in style from
the ones of Berardi, Bezem and Coquand, and a fortiori from
bar recursion. They do not seem either to generalise to choice
functions with arbitrary, non relational, codomain A.

4See e.g. Berger and Oliva [8] for a notion of realisability obtained by
combination of Kleene’s realisability and Friedman-Dragalin A-translation and
in which ⊥ is realisable. That Krivine’s classical realisability contains A-
translation comes from the fact that ⊥ is not empty but realised by a fixed
set of realisers.

c) Call-by-name, call-by-value and call-by-need:
Church’s λ-calculus [9], [5] comes naturally as a “call-by-
name” calculus and it is its use in computer programming
languages that motivated the theoretical study of its more
intricate5 call-by-value counterpart, thanks successively to
Plotkin [32], Moggi [27], Sabry and Felleisen [33], Sabry
and Wadler [34], etc. Similarly, call-by-need λ-calculus, which
is at the heart of programming languages like Haskell [15],
progressively tends to be studied at the same foundational level
its call-by-name and call-by-value variants are, see [2], [25],
or, in the presence of control, [29], [4], [3]. Call-by-value and
call-by-need are appropriate for sharing values and will turn
to be useful for dealing with theories that might reflect proofs
inside terms.

d) Internalising the construction of an approximation of
the choice function at the level of proofs: In order to preserve
the synchronisation between different instances of proofs, that
are classical and hence liable to duplicate their evaluation con-
text, call-by-value evaluation is indeed appropriate. However,
in the proof of the axiom of choice above, the two occurrences
of H x are in the scope of different binders of x what forbids
the possibility to share them.

Let us assume that the domain of quantification A is the
domain of natural numbers. Let us also assume for a while
that we could define the choice function and its property by
infinite terms. Then we could prove the axiom of countable
choice with the following infinite proof:

ACN , λH. (λn.if n = 0 then wit (H 0) else
if n = 1 then wit (H 1) else ...,

λn.if n = 0 then prf (H 0) else
if n = 1 then prf (H 1) else ...)

Now, we have an infinite number of calls to H but each of these
calls is parameter-free and hence shareable. Using the let
operator of call-by-value, we can then make sharing explicit:

ACN , λH. let H0 = H 0 in
let H1 = H 1 in
...
(λn.if n = 0 then witH0 else
if n = 1 then witH1 else ...,

λn.if n = 0 then prfH0 else
if n = 1 then prfH1 else ...)

Now we have to capture the infinity by finitary means and this
is possible by turning the infinite sequence of let into a single
stream definition (H 0,H 1, ...). This leads to the following
proof of the countable axiom of choice:

ACN , λH. let s = cofix0
f n(H n, f n) in

(λn.wit (nth n s), λn.prf (nth n s))

where cofix0
f n(H n, f n) is a corecursive definition of the

stream iterating on f with parameter n and started at 0

5Though, when looking at λ-calculus from the point of view of sequent
calculus instead of from the point of view of natural deduction [12], [18],
call-by-value λ-calculus gets no more complicated than call-by-name, both
having the same - intermediate - level of intrinsic technical complexity.



while nth n s is a recursive definition of the access to the
nth component of the stream s.

At the level of formulae, the stream is an inhabitant of a
coinductively defined infinite conjunction ν0

Xn(∃y P(0, y)∧X(n+

1)). At the level of computation, since a stream is infinite, we
cannot afford evaluating each of its component in advance, so
we have to use a lazy call-by-value mechanism.

e) Outline: To make a sound formal system of this
analysis, it remains to characterise the restriction required on
strong existential elimination so that it becomes compatible
with classical logic. In Section II, we study this restriction
in the classical arithmetic in finite types, showing in passing
how to define coinductive formulae in this context. By lazy
evaluating the coinductive proofs, termination can reasonably
be claimed, from which conservativity of classical logic over
intuitionistic logic for Σ0

1 formulae in the presence of strong
existential elimination entails. In Section III, we show how
to exploit the coinductive connectives to give a proof of the
axioms of countable choice, axiom of dependent choice, and
bar induction. Open issues will be discussed in Section IV
together with a comparison with some other works.

II. dPAω: Classical Arithmetic in Finite Types with Strong
Existential

We now focus on the arithmetic in finite types and extend
dPL with quantification over functions of higher-order types
and recursion. In this logic, that we call dPAω, the axioms of
countable choice and dependent choice can be proved as will
be shown in the next section.

Even though coinductive formulae can be defined in dPAω,
thanks to the quantification over functions, we will consider a
primitive notion of coinductive formulae, considered positive,
and that will be precisely convenient for proving the axioms
of countable choice and dependent choice.

A. Proofs and Terms

Strong existential elimination forces formulae to be depen-
dent of proofs. In dPAω, terms t, u, ... can depend on proofs
p, q, ..., and vice versa so that both are defined mutually:

t, u ::= x | 0 | S (t) | rec t of [t | (x, y).t]
| λx.t | t t | wit p

p, q ::= a | ιi(p) | (p1, p2) | (t, p) | λa.p | λx.p
| case p of [a1.p1 | a2.p2]
| split p as (x, a) in q
| dest p as (x, a) in q | prf p
| p q | p t | exfalso p
| refl | subst p q
| ind t of [p | (x, a).q]
| cofixt

bx p
| catchαp | throwαp
| let a = p in q

where f ranges over function symbols, ~t denotes in f (~t) a
sequence of terms of length the arity of f , the names x,
y, . . . range over a set of term variables, a, b, . . . over a
set of proof variables, α, β, . . . over a set of continuation

variables. The constructions λa.p, case p of [a1.p1 | a2.p2],
split p as (a1, a2) in q, dest p as (x, a) in q and
ind t of [p | (x, a).q] bind a, a1 and a2. The constructions
λx.p, dest p as (x, a) in q, dest p as (x, a) in t, λx.t,
ind t of [p | (x, a).q] and rec t of [t | (x, y).t] bind x and y. The
construction catchαp binds α. The binders are considered up
to the actual name used to represent the binder (α-conversion)
and the set of free variables FV(p) of a proof p is, as usual,
the set of variables of p that are not bound inside p itself.

Most constructions speak by themselves with the peculiarity
that terms can be built by case analysis (case) or destruction
of proofs (split and dest). The operator rec t of [t | (x, y).t]
is for recursion in finite types while ind t of [p | (x, a).q]
is for induction. The construction cofixt

bx p is for building
coinductive formulae.

Let us say also that the operators catch and throw im-
plement classical reasoning. They are similar to the operators
of same name in Nakano [28] or Crolard [11]. In terms of
Parigot’s λ-calculus [30], catchαp is basically equivalent to
µα.[α]p and throwαp to µδ.[α]p for δ not occurring in p.

The abbreviations π1(p) , split p as (a1, a2) in a1 and
π2(p) , split p as (a1, a2) in a2 might occasionally be
useful.

To emphasise that a term variable ranges over functions, we
might use symbols derived from the letters f or g instead of
x or y. We might also use n or m for a variable ranging over
natural numbers.

B. Operational Semantics
We equip dPAω with a call-by-value evaluation semantics

and for that, a subclass of proofs will play a particular role in
extracting the intuitionistic content of positive formulae. These
are the values defined by:

V ::= a | ιi(V) | (V,V) | (t,V) | λa.p | λx.p | () | refl

To define the operational semantics of dPAω, we also need
to define the class of elementary call-by-value evaluation
contexts. Because of corecursion, we have potentially infinite
values and we do not want to fully reduce proofs using a call-
by-value semantics. Therefore, we use an incremental reduc-
tion semantics which is lazy on the evaluation of corecursive
values. Lazy evaluation requires to introduce specific contexts,
written D, which accumulate pending delayed computation
of cofixpoints. Altogether, evaluation contexts are defined as
follows:

F[ ] ::= ιi([ ]) | ([ ], p) | (V, [ ]) | (t, [ ])
| case [ ] of [a1.p1 | a2.p2]
| split [ ] as (a1, a2) in q
| dest [ ] as (x, a) in p | prf [ ]
| [ ] q | [ ] t | let a = [ ] in q
| subst [ ] p

D[ ] ::= [ ] | D[F[ ]] | let a = cofixt
bx p in D[ ]

For F[ ] an elementary call-by-value evaluation context and
p a proof, we write F[p] for the proof obtained by plugging
p into the hole of F[ ] and similarly for D[ ].



let a = ιi(p) in q . let b = p in q[ιi(b)/a]
let a = (p1, p2) in q . let a1 = p1 in let a2 = p2 in q[(a1, a2)/a]
let a = (t, p) in q . let b = p in q[(t, b)/a]
let a = λb.p in q . q[λb.p/a]
let a = λx.p in q . q[λx.p/a]
let a = () in q . q[()/a]
let a = b in q . q[b/a]
case ιi(p) of [a1.p1 | a2.p2] . let ai = p in pi

split (p1, p2) as (a1, a2) in q . let a1 = p1 in let a2 = p2 in q
dest (t, p) as (x, a) in q . let a = p in q[t/x]
prf (t, p) . p
(λa.q) p . let a = p in q
(λx.p) t . p[t/x]
subst refl p . p
ind 0 of [p | (x, a).q] . p
ind S (t) of [p | (x, a).q] . q[t/x][ind t of [p | (x, a).q]/a]
case cofixt

bx p of [a1.p1 | a2.p2] . let c = cofixt
bx p in case c of [a1.p1 | a2.p2]

split cofixt
bx p as (a1, a2) in q . let c = cofixt

bx p in split c as (a1, a2) in q
dest cofixt

bx p as (x, a) in q . let c = cofixt
bx p in dest c as (x, a) in q

let a = cofixt
bx p in exfalso q . exfalso let a = cofixt

bx p in q
let a = cofixt

bx p in throwαq . throwαlet a = cofixt
bx p in q

let a = cofixt
bx p in catchαq . catchαlet a = cofixt

bx p in q
let a = cofixt

bx p in D[case a of [a1.p1 | a2.p2]] . let a = p[λy.cofixy
bx p/b][t/x] in D[case a of [a1.p1 | a2.p2]]

let a = cofixt
bx p in D[split a as (a1, a2) in q] . let a = p[λy.cofixy

bx p/b][t/x] in D[split a as (a1, a2) in q]
let a = cofixt

bx p in D[dest a as (x, a′) in q] . let a = p[λy.cofixy
bx p/b][t/x] in D[dest a as (x, a′) in q]

F[let a = cofixt
bx p in q] . let a = cofixt

bx p in F[q]
F[exfalso p] . exfalso p
F[throwαp] . throwαp
F[catchαp] . catchαF[p[F/α]]
exfalso exfalso p . exfalso p
exfalso throwβp . throwβp
exfalso catchβp . exfalso p[exfalso [ ]/α]
throwβexfalso p . exfalso p
throwβthrowαp . throwαp
throwβcatchαp . throwβp[β/α]
catchαthrowαp . catchαp
catchβcatchαp . catchβp[β/α]

wit (t, p) . t
(λx.t) u . t[u/x]
rec 0 of [t0 | (x, y).tS ] . t0
rec S (t) of [t0 | (x, y).tS ] . tS [t/x][rec t of [t0 | (x, y).tS ]/y]

Fig. 1. Reduction rules on terms and proofs of dPAω

The reduction rules are shown in Figure 1 where the
substitutions p[V/a], p[u/x], t[V/a], t[u/x] and p[β/α] are
capture-free with respect to the three kinds of variables (x,
a and α) and where the substitution p[F/α] means replacing
subterms of the form throwα q in p by throwα F[q] (including
the recursive replacements in q)6.

We write .. for the reflexive-transitive closure of .. We write
≡ for the reflexive-symmetric-transitive closure of ..

6Strictly speaking, the definition of p[β/α] and p[F/α] requires also to
consider their variants t[β/α] and t[F/α] on terms

C. Types, Formulae and Inference Rules

Terms are simply typed, with the natural numbers as base
type. Finite types are thus defined by:

T,U ::= N | T → U

In dPAω, we consider implication to be possibly dependent
in its antecedent and use the notation [a : A] → B to express
this dependency, underlining the fact that a can occur in
some term in B. An advantage of allowing this dependency
is the ability to express statements such as [a : ∃x P(x)] →



(a : A) ∈ Γ

Γ ` a : A
axiom

Γ ` p : A A ≡ B

Γ ` p : B
conv

Γ ` p : Ai

Γ ` ιi(p) : A1 ∨ A2
∨i

I

Γ ` p : A1 ∨ A2 Γ, a1 : A1 ` p1 : B Γ, a2 : A2 ` p2 : B

Γ ` case p of [a1.p1 | a2.p2] : B
∨E

Γ ` p1 : A1 Γ ` p2 : A2

Γ ` (p1, p2) : A1 ∧ A2
∧I

Γ ` p : A1 ∧ A2 Γ, a1 : A1, a2 : A2 ` q : B

Γ ` split p as (a1, a2) in q : B
∧E

Γ ` p : A[t/x] Γ ` t : T

Γ ` (t, p) : ∃xT A
∃I

Γ ` p : ∃xT A Γ, x : T, a : A ` q : B

Γ ` dest p as (x, a) in q : B
∃E

Γ ` p : ∃xT A p is N-elimination-free

Γ ` prf p : A[wit p/x]
∃prfE

Γ, a : A ` p : B

Γ ` λa.p : [a : A]→ B
→I

Γ ` p : [a : A]→ B Γ ` q : A a < FV(B) if q not N-elimination-free

Γ ` p q : B[q/a]
→E

Γ, x : T ` p : A

Γ ` λx.p : ∀xT A
∀I

Γ ` p : ∀xT A Γ ` t : T

Γ ` p t : A[t/x]
∀E

Γ ` () : >
>I

Γ ` p : ⊥

Γ ` exfalso p : C
⊥E

Γ ` t : N

Γ ` refl : t = t
refl

Γ ` p : t = u Γ ` q : A[t/x] x < Dom(Γ)

Γ ` subst p q : A[u/x]
subst

Γ ` t : N Γ ` p : A[0/x] Γ, x : T, a : A ` q : A[S (x)/x]

Γ ` ind t of [p | (x, a).q] : A[t/x]
ind

Γ ` p : A Γ, a : A ` q : B a < FV(B) if p not N-elimination-free

Γ ` let a = p in q : B[p/a]
cut

Γ ` t : T Γ, f : T → N, x : T, b : ∀y f (y) = 0 ` p : A f positive in A

Γ ` cofixt
bx p : νt

f xA
νI

Γ, α : A⊥⊥ ` p : A

Γ ` catchα p : A
catch

Γ ` p : A (α : A⊥⊥) ∈ Γ

Γ ` throwα p : C
throw

(x : T ) ∈ Γ

Γ ` x : T

Γ, x : U ` t : T

Γ ` λx.t : U → T

Γ ` t : U → T Γ ` u : U

Γ ` t u : T Γ ` 0 : N

Γ ` t : N

Γ ` S (t) : N

Γ ` t : N Γ ` t0 : U Γ, x : N, y : U ` tS : U

Γ ` rec t of [t0 | (x, y).tS ] : U

Γ ` p : ∃xT A p is N-elimination-free

Γ ` wit p : T
∃witE

Fig. 2. dPAω: Classical arithmetic in finite types with strong existential



P(wit a))7. In addition to the usual connectives and quantifiers,
we have coinductive formulae:

A, B ::= t = u | [a : A]→ B | A ∨ B | A ∧ B | ⊥ | >
| ∀xT A | ∃xT A | νt

f xA

In atoms, P ranges over predicate symbols and ~t is a sequence
of terms whose length is the arity of P. Negation ¬A is defined
as A→ ⊥. The construction νt

f xA stands for the instance on t
of the coinductive predicate built from the monotone functor
λ f .λx.A where A is made of atoms and positive connectives
only (including ν-formulae themselves). In ∀x A and ∃x A, x is
bound and freely subject to renaming (α-conversion). In νt

f xA,
x and f are bound term variables. The formulae ∀x A and
[a : A] → B are called negative. All other kinds of formulae
are called positive.

Formulae are considered modulo the equational theory on
terms, as it is common in Martin-Löf’s intensional type theory.
The equational theory is the one induced by reduction on terms
and proofs plus the following reduction rules for equality8 and
coinductive formulae unfolding:

0 = 0 . >

0 = S (u) . ⊥

S (t) = 0 . ⊥

S (t) = S (u) . t = u
νt

f xA . A[t/x][νy
f xA/ f (y) = 0]

We write ≡ for the resulting9 reflexive-symmetric-transitive
closure of . on formulae.

When obvious from the context, or not relevant, we may
occasionally drop the type of the variable in the quantifiers.

Since there are terms in all finite types in dPAω, it is
convenient to indicate the types of variables in typing contexts.
Hence, contexts are defined by:

Γ ::= ∅ | Γ, x : T | Γ, a : A | Γ, α : A⊥⊥

where a : A stands for an assumption of A and α : A⊥⊥ for
an assumption of the refutation10 of A (with the objective of
obtaining a proof by contradiction). On its side, x : T stands
for the declaration of a variable of type T . It is assumed that
assumptions have distinct variable names and we write Dom(Γ)
for the set of names a and α thus declared in Γ.

Inference rules are given in Figure 2 with the typing rules
in the bottom. The main difference with ordinary logic is the
strong elimination rule of existential quantification and the
appropriate support for formulae depending on proofs.

7We do not get extra logical strength from this design choice. It can be
proved in the case of predicate logic that the logic with dependent implication
is conservative over ordinary predicate logic and we conjecture that dPAω
with dependent implication is conservative over its version without dependent
implication.

8See e.g. Allali [1] for such a presentation of arithmetic.
9Unfolding of coinductive formulae makes the reduction system non

terminating. One might wonder if it would make ≡ undecidable: no, because
unfolding can just be used lazily.

10Not to be confused with the notation AB sometimes used for powerset.

In the rule νI , the function f is said to be positive in A if A
is built from atoms11 f (t) = 0 using disjunction, conjunction,
existential quantification, equality or another coinductive type.
That the typing rule νI and the reduction rule for coinductive
formulae do not extend by themselves the logical strength of
HAω and PAω comes from the equations given in Figure 3
where out a implements the reduction rule for νt

f xA. However,
the derived computational content is not the one we want
because of the use of non positive connectives in the second-
order encoding, what justifies taking νI and its associated
reduction rule as primitive. Indeed, with a primitive notion
of coinductive formula, it becomes syntactically direct to see
ν as a constructor of positive formulae. In particular, and this
is important later on to prove the axioms of countable choice
and dependent choice, strong existential elimination is allowed
to descend through coinductive formulae.

Dependent proofs have to be N-elimination-free (negative-
elimination-free). N-elimination-freeness is defined by the
following rules:
• a, (), λx.p and λa.p are N-elimination-free
• if p, q, p1 and p2 are N-elimination-free then
ιi(p), (p1, p2), (t, p), case a of [a1.p1 | a2.p2],
split q as (a1, a2) in p, dest q as (x, a) in p,
prf p, refl, subst p q, ind t of [p1 | (x, a).p2] and
let a = p in q are N-elimination-free.

Otherwise said, in N-elimination-free proofs, expressions of
the form p q, p t, exfalso p, catchαp or throwαp can only
occur in the body of a λx or of a λa.

The N-elimination-free condition is what ensures in partic-
ular that wit will never be applied to a classical proof, i.e. to
a proof starting with catchαp or throwαp.

The resulting theory is then essentially Troelstra’s arithmetic
in all finite types HAω (with equality on N) extended with
classical logic and strong existential elimination. We write
dHAω for the version of dPAω with rules catch and throw
removed. Since dPAω has classical reasoning, quantification
over functional symbols and, as will be shown in Section III,
dependent choice, it can simulate quantification over the
predicates talking about N (since from the classical state-
ment ∀n∃b (b = 0 ∧ φ(n)) ∨ (b = 1 ∧ ¬φ(n)), we get a
characteristic function f for φ, i.e. a function that satisfies
∀n ( f (n) = 0 ∧ φ(n)) ∨ ( f (n) = 1 ∧ ¬φ(n))). However, to get
quantification over predicates talking about larger domains
than N, one would also typically need the axiom of unique
choice12 on arbitrary large domains

∀xT∃!n P(x, n)→ ∃ f ∀xT P(x, f (x))

and there is no reason to think that this holds.
We are now ready to state the operational and logical

properties of dPAω.
Theorem 1 (Subject reduction): If Γ ` p : A and p . q then

Γ ` q : A.

11Since we have symbols for functions and not for predicates, we use
expressions of the form f (t) = 0 to represent arbitrary atoms.

12I.e. reification of functional relations into functions.



νt
f xA , ∃ f ( f (t) = 0 ∧ ∀x ( f (x) = 0→ A))
cofixt

bx p , (λx.0, (refl, λx.λb.p))
out a , dest a as ( f , b) in split b as (c, d) in monA[ f / f ][t/x]

f ,d (d t c)

where, for d : ∀x f (x) = 0→ A, and a : B, monB
f ,d a is defined inductively:

monB
f ,da : B[νy

f xA/ f (y) = 0]
mon f (t)=0

f ,d a , ( f , (a, d))
monB1∧B2

f ,d a , split a as (a1, a2) in (monB1
f ,d a1, mon

B2
f ,d a2)

monB1∨B2
f ,d a , case a of [a1.mon

B1
f ,d a1 | a2.mon

B2
f ,d a2]

mon∃x B
f ,d a , dest a as (x, a) in (x, monB

f ,d a)

mon
νu

gyC
f ,d a , dest a as (g, b) in split b as (c′, d′) in (g, (c′, λx.λa.monC

f ,d (d′ x a)))

Fig. 3. Derivability of introduction and reduction of coinductive formula

Proof: Most reduction rules are standard in a call-by-
value setting with control and a simple analysis shows that
they preserve the correctness of derivations. The difficulty
comes from strong existential elimination. The N-elimination-
freeness of p in prf p then ensures that the cases where F
is prf [ ] in those reduction rules that explicitly mention F
cannot happen. In particular, the only rule involving prf is
prf (t, p) . p which preserves the correctness of derivations.
Note also that N-elimination-freeness is stable by substitution
of values.

We claim normalisation by giving a sketch of proof.
Claim 1 (Normalisation): If Γ ` p : A then p is normalis-

able.
Proof: (sketch) We follow the ideas of [10] and interpret

proofs in infinitary logic. Normal proofs expand into well-
founded infinitary trees up to the presence of infinite branches
coming from the expansion of cofixpoints and such that,
beyond some given depth, only introduction rules of positive
connectives occur. Otherwise said, along all branches, in-
finitely many nested introduction rules of positive connectives
can occur but only finitely many nested elimination rules can
be found. Let us consider a minimal proof having an infinite
reduction sequence. Such an infinite reduction sequence can be
seen as an infinite interaction between the immediate normal
subproofs of the given proof. Laziness of cofixpoint unfolding
now ensures that any time an infinite branch is explored in
its part made only of introduction rules, nested elimination
rules of another branch are explored simultaneously. If nested
elimination rules of arbitrary depths are explored, then, by
dependent choice, there is an infinite sequence of nested
elimination rules. This is not the case, hence, only a finite
portion of the infinite branches can be explored. Therefore,
the infinite reduction sequence can be turned into an infinite
interaction between modified proofs obtained by artificially
cutting at some large enough occurrences the infinite branches
of the original interacting normal subproofs. Such modified
proofs are well-founded. But using the result of [10], inter-
action between well-founded normal proofs in infinitary logic
necessarily terminates, a contradiction.

Theorem 2 (Conservativity, first version): If A is a closed
∀-→-ν-wit-free formula then ` p : A in dPAω implies that
there is some V such that ` V : A in HAω.

Proof: Our choice of rules makes that any closed proof of
A eventually produces, by normalisation, either an expression
D[V] or an expression catchαD[V] where D is made only
of nested let a = cofixt

bxq in [ ] (the case exfalso D[V]
cannot happen because there is no value of type ⊥, the cases
D[cofixt

bxq] and catchαD[cofixt
bxq] cannot happen because

A is ν-free, all other possible configurations are reducible
since p is closed). Now, because A is ∀-→-ν-wit-free, V does
not contain any subexpression of the form λa.q or λx.q. In
particular, in the catchαD[V] case, it does not contain any
occurrences of α. Similarly, no variable that is bound to some
cofixt

bxq in D can occur in V since otherwise V would have
ν in its type. Hence V is closed and is a proof of A. Since
V does not contain any catch, nor throw, nor prf, it is in
HAω.

In arithmetic, any Σ0
1-formula is equivalent to a ∀-→-ν-wit-

free formula. Hence we have:
Theorem 3 (Conservativity, second version): If A is Σ0

1
then ` p : A in dPAω implies ` p : A in HAω.

This of course implies consistency:
Theorem 4 (Consistency): 0 p : ⊥ in dPAω.

III. The Axioms of Countable Choice and Dependent Choice
Our main result is that dPAω proves the axiom of countable

choice, the axiom of dependent choice, and thus equivalent
axioms such as bar induction, open induction and update
induction. The main trick is to turn a proof of ∀xT A(x)
where possibly the proof of A(t) is classical into a coinductive
conjunction A(g(0))∧A(g(1))∧A(g(2)) . . . for a suitable law g
of type N→ A, so that the coinductive stream can be reduced
using a (lazy) call-by-value discipline and the resulting (non-
classical) values be shared by calls to the strong existential
elimination.

A. The Axiom of Countable Choice
Here, A(x) is ∃y P(x, y) and the appropriate stream we want

to build is the stream A(0) ∧ A(1) ∧ A(2) . . ., so we consider



the coinductive conjunction RC(n) , νn
f x(A(x) ∧ f (S (x)) = 0).

The proof is now direct:

ACN , λa.let b = cofix0
bn(a n, b (S (n))) in

(λn.wit (nthC n b), λn.prf (nthC n b))
: ∀n∃y P(n, y)→ ∃ f ∀n P(n, f (n))

where
nthC n : RC(0)→ A(n)
nthC n , λb.π1(ind n of [b | (m, c).π2(c)])

Note that the proof does not use classical logic and holds
also in dHAω.

B. The Axiom of Dependent Choice

Here again, A(x) is ∃y P(x, y) and the appropriate stream
we want to build is the stream A(x0)∧ A(g(x0))∧ A(g2(x0)) . . .
where g is the choice function implicit in some proof of
∀x∃y P(x, y). So we consider the coinductive formula RD(z) ,
νz

f x∃y (P(x, y) ∧ f (y) = 0). The proof is now direct:

DC , λa.λx0.let b = s a x0 in
(λn.wit (nthD n (x0, b)),
(refl, λn.π1(prf (prf (nthD n (x0, b))))))

: ∀x∃y P(x, y)→
∀x0 ∃ f ( f (0) = x0 ∧ ∀n P( f (n), f (S (n))))

where
nthD n : ∃x RD(x)→ ∃x RD(x)
nthD n , λb.ind n of

[b | (m, c).(wit (prf c), π2(prf (prf c)))]
s a x : RD(x)
s a x , cofixx

bn(dest a n as (y, c) in (y, (c, by)))

Note that this proof too does not use classical logic and
holds in dHAω.

C. Bar Induction

To express bar induction, we extend dPAω with a type
constructor for finite sequences:

T ::= . . . | T ∗

t, l ::= . . . | 〈〉 | l ? t | rec l of [t | (x, y, z).t]
p ::= . . . | ind l of [p | (x, y, a).p]

The corresponding reduction, inference and typing rules are
canonical and we skip them.

To state bar induction, we also need to define the initial
segment of length n of a function f from N to T :

f|n , rec n of [〈〉 | (m, l). l ? f (m)]

We now have all the ingredients to state the standard formu-
lation of bar induction in intuitionistic logic:

BI :∀ f ∃n B( f|n)→ ∀P
(
∀l (B(l)→ P(l))∧
∀l (∀x P(l?x)→ P(l))

)
→P(〈〉)

Let us consider a contrapositive variant of BI

BIc : ν〈〉gl(¬B(l) ∧ ∃x g(l ? x) = 0)→ ∃ f∀n¬B( f|n)

where we have recognised the negation of the conclusion as
a coinductive positive formula. By classical reasoning and the
axiom of unique choice, BI and BIC are equivalent.

Let us write RBI(l) for the coinductive formula occurring in
the statement of BIC . The same way as we proved the axiom
of dependent choice, we have:

BI+
C , λa.(λn.wit (π2 (prf (nthBI n (〈〉, a)))),

λn.(wit (nthBI n (〈〉, a)),
(π1(prf (nthBI n (〈〉, a))), e a n)))

: RBI(〈〉)→ ∃ f∀n∃l (¬B(l) ∧ l = f|n)
where
nthBI n : ∃l RBI(l)→ ∃l RBI(l)
nthBI n , λb.ind n of

[b | (m, c).(wit c ? wit (π2 (prf c)),
prf (π2 (prf c)))]

e a n : wit (nthBI n (〈〉, a)) =

(λn.wit (π2 (prf (nthBI n (〈〉, a)))))|n
e a n , ind n of [refl | (m, c).subst c refl]

from which BIc directly follows. Then, from BIc and Markov’s
principle, we get the following weaker form of BI:

∀ f ∃n B( f|n)→

∀g
[(
∀l (B(l)→ g(l) = 0)∧
∀l (∀x g(l?x) = 0→ g(l) = 0)

)
→g(〈〉) = 0

]
Finally, in the special case when x ranges over N, the

characteristic function g of any predicate P over N∗ can be
built classically using the axiom of countable choice. Hence
a (classical) proof of BI is obtainable in this case.

IV. Discussion and Relation to OtherWorks

f) A constructive intuitionistic logic which proves
Markov’s principle, the double negation shift and the axiom
of dependent choice: It has been shown that adding delimited
classical logic to intuitionistic logic allows to derive weakly
classical schemes such as Markov’s principle and the double
negation shift while still preserving the disjunction and exis-
tence properties that are specific to intuitionistic logic [20],
[21]. Adding strong existential elimination to intuitionistic
logic with delimited classical logic should provide with a
constructive intuitionistic logic that proves Markov’s principle,
the double negation shift and the axiom of dependent choice,
and that is therefore adequate for intuitionistic analysis.

g) Relation with Berardi, Bezem and Coquand’s realiser
of the axiom of countable choice: The computational content
of our proof of the countable axiom of choice is slightly
different from the one of the realiser given in the paper by
Berardi, Bezem and Coquand [6]. First, in our proof, there
is no construction of a function with dummy values: when
the value of a function is needed (typically because some
computation with the value ends into a natural number that
serves in an induction step), it is directly the (first) value
given by the proof of ∀n∃y P(n, y) which is used. Secondly,
in our proof, the order in which the proofs of ∀n∃y P(n, y)
are evaluated is the natural order, while in the case of [6],
these proofs are evaluated on demand depending on which n’s



the context that interacts with the realiser of ∃ f∀n P(n, f (n))
needs a certification that P(n, f (n)) holds. In this sense, our
proof seems suboptimal. For instance, if only the content of
the proof of ∃y P(1001, y) is needed, it will evaluate all the
proofs of ∃y P(n, y) for n < 1001 first. Of course, one could
be more lazy than we did in our evaluation algorithm and in
particular be lazy on the evaluation of each ∃y P(n, y) that is
not explicitly required. Still, the stream built will be a stream
of length 1001 while in [6], the stream has the same size as
the number of n’s for which a proof of ∃y P(n, y) is needed.

h) Dependent choice in a logic with quantification over
second-order predicates: Our approach is uniform over the
type of the codomain of the choice function, so it directly
scales to quantification over second-order predicate. Let us
call dPA2 and dHA2 the classical and intuitionistic systems
obtained by replacing the quantification over functions in finite
types with quantification over second order predicates, i.e.
the systems obtained from dPAω and dHAω by replacing the
definition of types with:

T,U ::= N | ? | N→ T

where ? denotes the type of propositions. Then, the axiom of
countable choice is provable in dPA2 and dHA2, what typically
covers the instance

AC?
N : ∀nN∃YN→? P(n,Y)→ ∃FN→N→? ∀nN P(n, F n)

that we discuss in the next paragraph.
i) Comparison with Krivine’s realiser of the axiom of

countable choice: Krivine [23] realises the axiom of countable
choice13 in the context of classical second-order arithmetic us-
ing a notion of classical realisability that interprets quantifiers
by intersection types and that consequently keeps no trace of
the quantifiers in the realiser. A detailed comparison can be
found in [20].

j) Functional interpretation and products of selection
functions: Products of selection functions have been developed
by Escardó and Oliva in the context of functional interpretation
to interpret bar recursion [14]. This seems to correspond at the
level of realisability to what we are doing at the level of proofs.

V. Conclusion

We showed how to slightly restrict strong existential elimi-
nation (Martin-Löf’s dependent sum type) so that it becomes
compatible with classical reasoning in a computationally
sound way. In this restricted framework, we lose the full
axiom of choice but keep the axioms of countable choice and
dependent choice thanks to a detour via coinductively defined
connectives. Because the choice functions we are able to build
are paths in coinductive trees, we suspect our framework to
exactly capture the strength of the axiom of dependent choice.
The idea here is to reason by induction on the structure of the

13In practise, Krivine realises the axiom

CAC : ∃ZN→N→?∀nN(P(n,Z n)→ ∀YN→? P(n,Y))

which is classically equivalent to ACN over the codomain N→ ?.

argument of strong existential elimination, but we leave this
for future work.
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