
The Journal of Symbolic Logic
Volume 00, Number 0, XXX 0000

AN ANALYSIS OF THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF
OF GÖDEL’S COMPLETENESS THEOREM

HUGO HERBELIN AND DANKO ILIK

Abstract. Gödel’s completeness theorem for classical first-order logic is one of the most basic theorems
of logic. Central to any foundational course in logic, it connects the notion of valid formula to the notion of
provable formula.

We survey a few standard formulations and proofs of the completeness theorem before focusing on the formal
description of a slight modification of Henkin’s proof within intuitionistic second-order arithmetic.

It is standard in the context of the completeness of intuitionistic logic with respect to various semantics
such as Kripke or Beth semantics to follow the Curry-Howard correspondence and to interpret the proofs of
completeness as programs which turn proofs of validity for these semantics into proofs of derivability.

We apply this approach to Henkin’s proof to phrase it as a program which transforms any proof of validity
with respect to Tarski semantics into a proof of derivability.

By doing so, we hope to shed an “effective” light on the relation between Tarski semantics and syntax: proofs
of validity are syntactic objects that we can manipulate and compute with, like ordinary syntax.

Contents

1. Preliminaries 3
1.1. The completeness theorem 3
1.2. Weak and strong completeness 4
1.3. The standard existing proofs of completeness 4
1.4. Models and truth 5
1.5. Regarding the metalanguage as a formal system 7
1.6. Former results about the computational content of completeness proofs

for intuitionistic logic 8
1.7. The intuitionistic provability of the different statements of completeness 11
1.8. Chronology and recent related works 13
2. The computational content of Henkin’s proof of Gödel’s completeness 14
2.1. Henkin’s proof of statement S2, slightly simplified 14
2.2. From Henkin’s proof of statement S2 to a proof of statement S1’ 16
2.3. The computational content of the proof of completeness 17
2.4. The computational content on examples 23
2.5. Extension to conjunction 25
2.6. Extension to disjunction 25

© 0000, Association for Symbolic Logic
0022-4812/00/0000-0000/$00.00

1

2 HUGO HERBELIN AND DANKO ILIK

2.7. Extension to existential quantification 28

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 3

§1. Preliminaries.
1.1. The completeness theorem. The completeness theorem for classical first-order

logic is one of the most basic and traditional theorems of logic. Proved by Gödel in
1929 [34] as an answer to a question raised by Hilbert and Ackermann in 1928 [45],
it states that any of the standard equivalent formal systems for defining provability in
first-order logic is complete enough to include a derivation of every valid formula. A
formula A is valid when it is true under all interpretations of its primitive symbols over
any domain of quantification.

Let L be a signature for first-order logic, i.e. the data of a set1 Fun of function sym-
bols, each of them coming with an arity, as well as of a set Pred of predicate symbols,
each of them also coming with an arity. We call constants the function symbols of arity 0
and propositional atoms the predicate symbols of arity 0. When studying the computa-
tional content of Gödel’s completeness in Section 2, we shall restrict the language to a
countable one but the rest of this section does not require restrictions on the cardinal of
the language.

We let f range over Fun and P range over Pred. For f ∈ Fun and P ∈ Pred, we
respectively write their arity a f and aP. Let x range over a countable set X of variables
and let t range over the setTerm of terms overL as described by the following grammar:

t ::= x | f (t1, ..., ta f)

Let A range over the set Form of formulae over L as described by the following gram-
mar:

A ::= P(t1, ..., tP f) | ⊥̇ | A ⇒̇ A | ∀̇x A
Note that in classical first-order logic, the language of negative connectives and quan-
tifiers made of ⇒̇ , ∀̇ and ⊥̇ is enough to express all other connectives and quantifiers.
The dot over the notations is to distinguish the connectives and quantifier of the logic
we are talking about (object logic) from the connectives and quantifiers of the ambient
logic in which the completeness theorem is formulated (meta-logic, see below). We take
⊥̇ as a primitive connective and this allows to express consistency of the object logic as
the non-provability of ⊥̇. Negation can then be defined as ¬̇A ≜ A ⇒̇ ⊥̇. Also, in ∀̇x A,
we say that x is a binding variable which binds all occurrences of x in A (if any). If the
occurrence of a variable is not in the scope of a ∀̇ with same name, it is called free. If a
formula has no free variables, we say it is closed.

Let us write Γ for finite contexts of hypotheses, as defined by the following grammar:

Γ ::= ϵ | Γ, A

In particular, ϵ denotes the empty context, which we might also not write at all, as e.g.
in ⊢ A standing for ϵ ⊢ A.

We assume having chosen a formal system for provability in classical first-order
logic, e.g. one of the axiomatic systems given in Frege [29] or in Hilbert and Ack-
ermann [45], or one of the systems such as Gentzen-Jaśkowski’s natural deduction [53,
33] or Gentzen’s sequent calculus [33], etc., and we write Γ ⊢ A for the statement
that A is provable under the finite context of hypotheses Γ. If M is a model for clas-
sical logic and σ an interpretation of the variables from X in the model, we write
M ⊨σ A for the statement expressing that A is true in the model M (to be defined

1We use here “set” in an informal way, not necessarily assuming the metalanguage to be specifically set
theory.

4 HUGO HERBELIN AND DANKO ILIK

in Section 1.4). Validity of A under assumptions Γ, written Γ ⊨ A is defined to be
∀M ∀σ (M ⊨σ Γ ⇒ M ⊨σ A) where M ⊨σ Γ is the conjunction of all M ⊨σ B for
every B in Γ, i.e.

∧
B∈ΓM ⊨σ B. Note that⇒, ∀, ∧ and, later on, below, ∨, ∃, ⊥, as well

as derived ¬, represent the connectives and quantifiers of the metalanguage.
We say that Γ is inconsistent if Γ ⊢ ⊥̇ and consistent if Γ ⊬ ⊥̇, i.e. if (Γ ⊢ ⊥̇) ⇒ ⊥,

i.e., if a contradiction in the object language is reflected as a contradiction in the meta-
logic. We say that Γ has a model if there exist M and σ such that M ⊨σ Γ. The
completeness theorem, actually a weak form of the completeness theorem as discussed
in the next section, is commonly stated under one of the following classically but not
intuitionistically equivalent forms:

C1. ⊨ A ⇒ ⊢ A
C2. Γ is consistent ⇒ Γ has a model
C3. Γ,¬A has a model ∨ Γ ⊢ A

1.2. Weak and strong completeness. In a strong form, referred to as strong com-
pleteness2, completeness states that any formula valid under some possibly infinite the-
ory is provable under a finite subset of this theory. This is the most standard formulation
of completeness in textbooks, and, as such, it is a key component of the compactness
theorem. Also proved by Gödel [35], the compactness theorem states that it is enough
for a theory to have a model that any finite subset of the theory has a model. In con-
trast, completeness with respect to finite theories as stated above is referred to as weak
completeness. Let T be a set of formulae and let T ⊢ A mean the existence of a finite
sequence Γ of formulae in T such that Γ ⊢ A. Let M ⊨σ T be ∀B ∈ T M ⊨σ B
and let the definitions of T is consistent and of T has model be extended accordingly.
The strong formulations of the three views at weak completeness above are now the
following:

S 1. T ⊨ A ⇒ T ⊢ A
S 2. T is consistent ⇒ T has a model
S 3. T ∪ {¬A} has a model ∨ T ⊢ A

We shall consider the formalisation and computational content of strong complete-
ness. Weak completeness will then come as a special case.

1.3. The standard existing proofs of completeness. Let us list a few traditional
proofs from the classic literature3.

2We follow here a terminology dubbed by Henkin in his 1947 dissertation, according to [40]. However, in
the context of intuitionistic logic, some authors use the weak and strong adjectives with different meanings.
For instance, in Kreisel [59, 60], the statement (⊨ A)⇒ (⊢ A) is called strong completeness while weak com-
pleteness is the statement (⊨ A) ⇒ ¬¬(⊢ A). In the context of semantic cut-elimination, e.g. in Okada [70],
(⊨ A)⇒ (⊢ A) is only a weak form of completeness whose strong form is the statement (⊨ A)⇒ (⊢cut−free A),
for a notion of cut-free proof similar to the notion of cut-free proof in Gentzen’s sequent calculus or to normal
proofs in Prawitz’ analysis of normalisation for natural deduction.

3We cite the most common proofs in the classic pre-1960 literature. Recent developments include e.g.
Joyal’s categorical presentation of a completeness theorem. We can also cite Berger’s [74, Sec. 1.4.3] or
Krivtsov [66] construction in intuitionistic logic of a classical model from a Beth model for classical prov-
ability. These two latter proofs are variants of the Beth-Hintikka-Kanger-Schütte style of proofs, the first one
relying on the axiom of dependent choice and the second on the (weaker) Fan theorem.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 5

• Gödel’s original proof [34] considers formulae in prenex form and works by in-
duction on the number of quantifiers for reducing the completeness of first-order
predicate logic completeness to the completeness of propositional logic.

• Henkin’s proof [39] is related to statement S2: from the assumption that T is
consistent, a syntactic model over the terms is built as a maximal consistent ex-
tension of T obtained by ordering the set of formulae and extending T with those
formulae that preserve consistency, following the ordering.

• In the 1950’s, a new kind of proof independently credited to Beth [11], Hin-
tikka [47, 48], Kanger [56] and Schütte [75] was given. The underlying idea
is to build an infinite normal derivation, typically in sequent calculus. Rules are
applied in a fair way, such that all possible combinations of rules are considered.
If the derivation happens to be finite, a proof is obtained. Otherwise, by weak
Kőnig’s lemma, there is an infinite branch and this infinite branch gives rise to
a countermodel. The intuition underlying this proof is then best represented by
statement S3.

• In the 1950’s also, Rasiowa and Sikorski [72] gave a variant of Henkin’s proof
relying on the existence of an ultrafilter for the Lindenbaum algebra of classes
of logically equivalent formulae, identifying validity with having value 1 in all
interpretations of a formula within the two-value Boolean algebra {0, 1}. This
is close to Henkin’s proof in the sense that Henkin’s proof implicitly builds an
ultrafilter of the Lindenbaum algebra of formulae.

Our main contribution in this paper is the analysis in Section 2 of the computational
content of Henkin’s proof.

1.4. Models and truth. The interpretation of terms in a model M is given by a
domain D and by an interpretation F of the symbols in Fun such that F (f) ∈ Da f →

D, where Da f → D denotes the set of functions of arity a f over D. Then, given
an assignment σ ∈ X → D of the variables to arbitrary values of the domain, the
interpretation of terms inD is given by:

[[x]]σ
M

≜ σ(x)
[[f (t1, . . . , ta f)]]

σ
M
≜ F (f)([[t1]]σ

M
, . . . , [[ta f]]

σ
M

)

To interpret formulae, two common approaches are used in the literature.

• Tarski semantics (predicates as predicates). This is the approach followed e.g.
in the Handbook of Mathematical Logic [6], the Handbook of Proof Theory [14]
or in the original proof of Gödel [34]. This approach interprets formulae of the
object language propositionally, i.e. as formulae of the metalanguage. In this
case, the interpretation depends on whether the metalanguage is classical or not.
For instance, in a classical metalanguage, the theory

Classic ≜ {¬̇¬̇A ⇒̇ A | A ∈ Form}

would be true in all models. On the other hand, in an intuitionistic metalanguage,
a formula such as, say, ¬̇¬̇X ⇒̇ X could not be proved true in all models4. In a

4For instance, if cohML is the formula expressing the consistency of the metalanguage represented as an
object language in the metalanguage itself, then a model M binding atom X to the metalanguage formula
cohML ∨ ¬cohML would intuitionistically satisfyM ⊨ ¬¬X but notM ⊨ X.

6 HUGO HERBELIN AND DANKO ILIK

strongly anti-classical intuitionistic metalanguage refuting double-negation elim-
ination, it could even be proved that there are models5 which refute ¬̇¬̇X ⇒̇ X.

The possible presence of models provably anti-classical is not a problem per se
for proving completeness as completeness is only about exhibiting one particu-
lar model and it is possible to ensure that ¬̇¬̇X ⇒̇ X holds in this particular model.
However, whether the metalanguage is classical or not has an impact on the sound-
ness property, i.e. on the statement that the provability of A implies the validity
of A. Indeed, there is little hope to prove the soundness of double-negation elimi-
nation if the quantification over models include non-classical models. Therefore,
for the definition of validity to be both sound and complete for classical provabil-
ity with respect to Tarski semantics, independently of whether the metalanguage
is intuitionistic or classical, we would need to define classical validity using an
explicit restriction to classical models:

T ⊨ A ≜ ∀M ∀σ (M ⊨σ Classic⇒M ⊨σ T ⇒M ⊨σ A)

• Bivalent semantics (predicates as binary functions). Another approach is to as-
sign to formulae a truth value in the two-valued set {0, 1} and to defineM ⊨σ A
as truthM(A, σ) = 1 for the corresponding truth function. This is the approach
followed e.g. in Rasiowa-Sikorski’s proof, or also e.g. in [15, 76], among others6.
In particular, relying on a two-valued truth makes the theory Classic automatically
true.

Depending on the metalanguage, a function from Form to {0, 1} can itself be
represented either as a functional relation, i.e. as a relation istrue on Form× {0, 1}
such that for all A, there is a unique b such that istrue(A, b) holds (this is the
representation used e.g. for the completeness proof in [76]), or, primitively as
a function if ever the metalanguage provides such primitive notion of function
(as is typically the case in intuitionistic logics, e.g. Heyting Arithmetic in finite
types [80], or Martin-Löf’s type theory [68, 21]).

Reverse mathematics of the subsystems of classical second-order arithmetic
have shown that building a model from a proof of consistency requires the full
strength of Σ0

1-separability, or equivalently, of Weak Kőnig’s Lemma [76]. This
implies that the corresponding truth function is in general not recursive [58]. Ex-
pecting truth to be definable primitively as a computable function in an intuitionis-
tic logic is thus hopeless. As for representing truth by a functional relation istrue,
the expected property istrue(A, 0)∨ istrue(A, 1) could only be proven by requiring
some amount of classical reasoning.

It is known how to compute with classical logic in second-order arithmetic [37,
71, 64] and we could study the computational content of a formalisation of the
completeness proof which uses this definition of truth. The extra need for classical
reasoning in this approach looks however like a useless complication, so we shall
concentrate on the predicates-as-predicates approach.

5For instance, in second-order intuitionistic arithmetic extended with Church Thesis (CT), excluded-
middle on undecidable formulae is provably contradictory and the same model interpreting X as cohML ∨

¬cohML invalidates ¬̇¬̇X ⇒̇ X.
6For instance, the definition of validity used in Henkin [39], though not fully formal, also intends a two-

valued semantics.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 7

So, to summarise, we will not expect truth to be two-valued and will require explicitly
as a counterpart that models are classical, leading to the following refined definitions7

of validity and existence of a model:

T ⊨ A ≜ ∀M∀σ (M ⊨σ Classic⇒M ⊨σ T ⇒M ⊨σ A)
T has a model ≜ ∃M∃σ (M ⊨σ Classic ∧M ⊨σ T)

Two auxiliary choices of presentation of Tarski semantics can be made8.
• Recursively-defined truth. The approach followed e.g. in the Handbook of Math-

ematical Logic [6] or the Handbook of Proof Theory [14] is to have the model
interpret only the predicate symbols and to have the truth of formulae defined
recursively. This is obtained by giving an interpretation P where any symbol
P ∈ Pred is mapped to a set P(P) ⊂ DaP . Then, the truth of a formula with respect
to some assignment σ of the free variables is given recursively by:

M ⊨σ P(t1, . . . , ta f) ≜ ([[t1]]σ
M
, . . . , [[taP]]σ

M
) ∈ P(P)

M ⊨σ ⊥̇ ≜ ⊥

M ⊨σ A ⇒̇ B ≜ M ⊨σ A⇒M ⊨σ B
M ⊨σ ∀̇x A ≜ ∀v ∈ DM ⊨σ∪[x←v] A

• Axiomatically-defined truth. A common alternative approach is to define truth as a
subset S of closed formulae in the language of terms extended with the constants
of D, such that: ⊥̇ is not in S; A ⇒̇ B is in S iff B is whenever A is; ∀̇x A is in S
iff A[x ← v] is for all values v ∈ D; A[x ← f (v1, ..., vn)] is in S iff A[x ← v] is in
S whenever F (f)(v1, ..., vn) = v for some value v ∈ S. This approach is adopted
e.g. in Krivine [65].

We will retain the first approach which conveniently exempts us from defining the set
of formulae enriched with constants from D. So, shortly, a model M will be a triple
(D,F ,P) where F maps any symbol f ∈ Fun to a function F (f) ∈ Da f → D and P
maps any symbol P ∈ Pred to a set P(P) ⊂ DaP .

1.5. Regarding the metalanguage as a formal system. Let M be the metalanguage
in which completeness is stated and O be the object language used to represent prov-
ability in first-order logic. In M, a proof of the validity of a formula A is essentially
a proof of the universal closure of A, seen as a formula of M, with the closure made
over the domain of quantification of quantifiers, over the free predicate symbols, over
the free function symbols and over the free variables of A. Otherwise said, adopting a
constructive view at proofs of the metalanguage, we can think of the weak completeness
theorem in form C1 as a process to transform a proof of the universal closure of A ex-
pressed in M into a proof of A expressed in the proof object language O (and conversely,

7For the record, note that, in the presence of only negative connectives, an equivalent way to define ⊨ A so
that it means the same in an intuitionistic and classical setting is to replace the definition ofM ⊨σ P(t1, ..., taP)
by

M ⊨σ P(t1, ..., taP) ≜ ¬¬([[t1]]σ
M
, . . . , [[taP]]σ

M
) ∈ M(P)

or even, saving a negation as in Krivine [62], by

M ⊨σ P(t1, ..., taP) ≜ ¬([[t1]]σ
M
, . . . , [[taP]]σ

M
) ∈ M(P)

Indeed, in these cases, the definition of truth becomes a purely negative formula for which intuitionistic and
classical provability coincide.

8These auxiliary choices would have been relevant as well if we had chosen to represent truth as a map to
{0, 1}.

8 HUGO HERBELIN AND DANKO ILIK

the soundness theorem can be seen as stating an embedding of O into M). Similarly, a
proof of the validity of a formula A with respect to an infinite theory T is a proof in M
of the universal closure of (∀B ∈ T [[B]]) ⇒ [[A]] where [[C]] is the replication of C as
a formula of M and, computationally speaking, statement S1 is a process to turn such
a proof in M (which has to use only a finite subset of T in M, since M, seen itself as a
formal system, supports only finite proofs) into a proof in O.

The key point is however that this transformation of a proof in M into a proof in O is
done in M itself, and, within M itself, the only way to extract information out of a proof
of validity is by instantiating the free symbols of the interpretation of A in M by actual
function and predicate symbols of M, i.e. by producing what at the end is a model, i.e.
a domain, functions and predicates actually definable in M.

1.6. Former results about the computational content of completeness proofs for
intuitionistic logic. It is known that composing the soundness and completeness the-
orems for propositional or predicate logic gives a cut-elimination theorem, as soon as
completeness is formulated in such a way that it produces a normal proof9. Now, if the
proofs of soundness and completeness are formalised in a metalanguage equipped with
a normalisation procedure, e.g. in a λ-calculus-based proofs-as-programs presentation
of second-order arithmetic [61, 63, Ch. 9], one gets an effective cut-elimination the-
orem, namely an effective procedure which turns any non-necessarily-normal proof of
Γ ⊢ A into a normal proof of Γ ⊢ A.

In the context of intuitionistic provability, this has been explored abundantly under
the name of semantic normalisation, or normalisation by evaluation. Initially based on
ideas from Berger and Schwichtenberg [10] in the context of simply-typed λ-calculus,
it was studied for the realisability semantics of second-order implicative propositional
logic10 by Altenkirch, Hofmann and Streicher [3], for the realisability semantics of im-
plicative propositional logic in Hilbert style11 by Coquand and Dybjer [20], for the
Kripke semantics of implicative propositional logic in natural deduction style12 by
C. Coquand [19], for Heyting algebras by Hermant and Lipton [43, 44], etc. It has
also been applied to phase semantics of linear logic by Okada [70]. It also connects to a
normalisation technique in computer science called Typed-Directed Partial Evaluation
(TDPE) [23].

Let us recall how this approach works in the case of minimal implicative propositional
logic (Figure 1) using soundness and completeness with respect to Kripke models [19].
Let K range over Kripke models (W,≤,⊩X) where ≤ is a preorder on W and ⊩X a
monotonic predicate overW for each propositional atom X. Let w range overW, i.e.
worlds in the corresponding Kripke models. Let us write w ⊩K A (resp. w ⊩K Γ) for
truth of A (resp. for the conjunction of the truth of all formulae in Γ) at world w in
the Kripke model K . In particular, w ⊩K A is extended from atoms to all formulae by
defining w ⊩K A ⇒̇ B ≜ ∀w′(w′ ≥ w ⇒ w′ ⊩K A ⇒ w′ ⊩K B). Let us write Γ ⊨I A
for the validity of A relative to Γ at all worlds of all Kripke models, i.e. for the formula
∀K∀w (w ⊩K Γ⇒ w ⊩K A).

The metalanguage being here a λ-calculus, we shall write its proofs as mathematical
functions. We write x 7→ t for the proof of an implication as well as for the proof of a

9Using e.g. Beth-Hintikka-Kanger-Schütte’s proof.
10I.e., Girard-Reynolds System F.
11I.e., equivalently, simply-typed combinatory logic.
12I.e., equivalently, simply-typed λ-calculus.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 9

universal quantification, possibly also writing (x : A) 7→ t to make explicit that x is the
name of a proof of A. We shall represent modus ponens and instantiation of universal
quantification by function application, written t u. We shall use the notation () for the
canonical proof of a nullary conjunction and the notation (t, u) for the proof of a binary
conjunction, seen as a product type and obtained by taking the pair of the proofs of the
components of the conjunction. To give a name f to the proof of a statement of the form
∀x1, ..., xn (A ⇒ B) we shall use the notation f x1,...,xn (a : A) : B followed by clauses of
the form f x1,...,xn (a) ≜ t (for readability, we may also write some of the xi as subscripts
rather than superscripts of f).

For instance, the proof that Kripke forcing is monotone, i.e. that ∀ww′ (w′ ≥ w∧w ⊩
A ⇒ w′ ⊩ A), can be written as the following function ⇑A, recursive in the structure of
A, taking as arguments two worlds w and w′:

⇑
w,w′
A : w′ ≥ w ∧ w ⊩ A ⇒ w′ ⊩ A
⇑

w,w′
X (h , m) ≜ pX(h,m)
⇑

w,w′

A ⇒̇ B (h , m) ≜ w′′ 7→ (h′ : w′′ ≥ w′) 7→ m w′′ (trans(h, h′))

where pX is the proof of monotonicity of ⊩X and trans is the proof of transitivity of ≥,
both coming with the definition of Kripke models, while, in the definition, h is a proof
of w′ ≥ w and m a proof of w ⊩ A.

Similarly, the extension of ⇑ to a proof that forcing of contexts is monotone can be
written as follows, where we reuse the notation ⇑, now with a context as index, to denote
a proof of ∀ww′ (w′ ≥ w ∧ w ⊩ Γ⇒ w′ ⊩ Γ):

⇑
w,w′

Γ
: w′ ≥ w ∧ w ⊩ Γ ⇒ w′ ⊩ Γ

⇑
w,w′
ϵ (h , ()) ≜ ()
⇑

w,w′

Γ,A (h , (σ,m)) ≜ (⇑w,w′

Γ
(h, σ), ⇑w,w′

A (h,m))

Let us write Γ ⊢I A for intuitionistic provability. Let us consider the canonical proof
soundnessΓA of (Γ ⊢I A)⇒ (Γ ⊩I A) proved by induction on the derivation of Γ ⊢I A. We
write the proof as a recursive function, recursively on the structure of formulae:

soundnessΓA : Γ ⊢I A ⇒ Γ ⊨I A
soundnessΓA ȧxi ≜ K 7→ w 7→ σ 7→ σ(i)
soundnessΓA⇒B

˙abs(p) ≜ K 7→ w 7→ σ 7→ w′ 7→ (h : w ≤ w′) 7→ m 7→
soundnessΓ,AB pK w′ (⇑w,w′

Γ
(h, σ),m)

soundnessΓB ˙app(p, q) ≜ K 7→ w 7→ σ 7→

(soundnessΓA⇒B pK wσ) w refl (soundnessΓA qK wσ)

where u is a proof of Γ ⊢I A in the last line, ˙app, ˙abs, ȧxi are the name of inference
rules defining object-level implicational propositional logic in a natural deduction style
(see Figure 1); σ(i) is the (i+ 1)th component of σ starting from the right, and refl is the
proof of reflexivity of ≥ coming with the definition of Kripke models.

Let us also consider the following somehow canonical proof of cut-free completeness,
completeness : (Γ ⊨I A) ⇒ (Γ ⊢cf

I A). It is based on the universal model of context K0

defined by taking for W the set of contexts Γ ordered by inclusion and Γ ⊢cf
I X for

the forcing ⊩X of atom X at world Γ. Now, the proof proceeds by showing the two
directions of Γ ⊩K0 A ⇔ Γ ⊢cf

I A by mutual induction on A. It is common to write ↓
for the left-to-right direction (called reify, or quote) and ↑ for the right-to-left direction

10 HUGO HERBELIN AND DANKO ILIK

Primitive rules

|Γ′| = i

Γ, A,Γ′ ⊢I A
ȧxi

Γ ⊢I A ⇒̇ B Γ ⊢I A

Γ ⊢I B
˙app

Γ, A ⊢I B

Γ ⊢I A ⇒̇ B
˙abs

Admissible rule

Γ ⊂ Γ′ Γ ⊢I A

Γ′ ⊢I A
˙weak

Figure 1. Inference rules characterising minimal implicational logic

(called reflect, or eval):

↓ΓA : Γ ⊩K0 A ⇒ Γ ⊢
cf
I A

↓ΓP m ≜ m
↓ΓA ⇒̇ B m ≜ ˙abs (↓Γ,AB (m (Γ, A) injA

Γ (↑Γ,AA ȧx0)))

↑ΓA : Γ ⊢
cf
I A ⇒ Γ ⊩K0 A

↑ΓP p ≜ p
↑ΓA ⇒̇ B p ≜ Γ′ 7→ f 7→ m 7→↑Γ

′

B (˙app(˙weak(f , p), ↓Γ
′

A m))

initΓΓ′ : Γ ⊩K0 Γ
′

initΓϵ ≜ ()
initΓΓ′,A ≜ (initΓΓ′ , ↑

Γ
A (ȧx|Γ|−|Γ′,A|))

completenessΓA : Γ ⊨I A ⇒ Γ ⊢
cf
I A

completenessΓA m ≜ ↓ΓA (m K0 Γ initΓΓ)

where |Γ| is the length of Γ, ˙weak is the admissible rule of weakening in object-level
implicational propositional logic and injA

Γ is a proof of Γ ⊂ Γ, A.
In particular, by placing ourselves in a metametalanguage, such that the metalanguage

is seen as a proofs-as-programs-style natural deduction object language, i.e. as a typed
λ-calculus, one would be able to show that
• for every given proof of Γ ⊢I A, soundness produces, by normalisation of the

metalanguage13, a proof of Γ ⊨I A whose structure follows the one of the proof of
Γ ⊢I A;

• for every proof of validity taken in canonical form (i.e. as a closed β-normal η-long
λ-term of type Γ ⊨ A in the metalanguage), the resulting proof of Γ ⊢cf

I A obtained
by completeness is, by normalisation in the metalanguage, the same λ-term with
the abstractions and applications over K , w and proofs of w ≤ w′ removed.

On the other side, if our proofs-as-programs-based metalanguage is able to state prop-
erties of its proofs (as is the case for instance of Martin-Löf’s style type theories [68]),

13Typically proved by embedding in another language assumed to be consistent.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 11

it can be shown within the metalanguage itself that the composition of completeness
and soundness produces normal forms. This is what C. Coquand did by showing that
the above proofs of soundness and completeness, seen as typed programs, satisfy the
following properties:

∀p : (Γ ⊢I A) p ∼ soundnessΓA pK0 Γ initΓ
Γ

∀p : (Γ ⊢I A)∀m : (Γ ⊨I A) (p ∼ mK0 Γ initΓ
Γ
⇒ p =βη completenessΓA m)

where ∼ is an appropriate “Tait computability” relation between object proofs and se-
mantic proofs expressing that soundness p reflects p.

Then, since completeness returns normal forms, we get that the composite function
completeness (soundness p) evaluates to a normal form q such that q =β p.

Let us conclude this section by saying that the extension of this proof to univer-
sal quantification and falsity, using so-called exploding nodes, has been studied e.g.
in [42]. The extension to first-order classical logic has been studied e.g. in [52]. The
case of disjunction and existential quantification is typically addressed using variants
of Kripke semantics [51], Beth models, topological models [22], or various alternative
semantics (e.g. [1, 2, 70, 73]).

One of the purposes of this paper is precisely to start a comparative exploration of the
computational contents of proofs of Gödel’s completeness theorem and of the question
of whether they provide a normalisation procedure. In the case of Henkin’s proof, the
answer is negative: even if the resulting object-level proof that will be constructively
obtained in Section 2 is related to the proof of validity in the meta-logic, it is neither
cut-free nor isomorphic to it. In particular, it drops information from the validity proof
by sharing subparts that prove the same subformula as will be emphasised in Section 2.2.

1.7. The intuitionistic provability of the different statements of completeness.
Statements C1, C2 and C3, as well as statements S1, S2, S3 are classically equivalent
but not intuitionistically equivalent. In particular, only C2 and S2 are intuitionistically
provable.

More precisely, since our object language has only negative connectives, the formula
M ⊨σ T is in turn composed of only negative connectives in the metalanguage. Hence,
the only positive connective in the statements C2 and S2 is the existential quantifier
asserting the existence of a model.

This existential quantifier is intuitionistically provable as our formulation of Henkin’s
proof of S2 given in the next section shows: given a proof of consistency of a theory, we
can produce a syntactic model in the form of a specific predicate. It shall however be
noted that this predicate is not itself recursive in general, since constructing this model
is in general equivalent to producing an infinite path in any arbitrary infinite binary tree
(such an infinite path is a priori not recursive, see Kleene [58], Simpson [76]).

Otherwise, from an intuitionistic point of view, statements C1 and S1 are particularly
interesting, as they promise to produce (object) proofs in the object language out of
proofs of validity in the metalanguage. However, Kreisel [59] showed, using a result by
Gödel [36], that C1 is equivalent to Markov’s principle over intuitionistic second-order
arithmetic. This has been studied in depth by McCarty [69] ant it turns out that S1 is
actually equivalent to Markov’s principle if the theory is recursively enumerable.

However, for arbitrary theories, reasoning by contradiction on formulae of arbitrarily
large logical complexity is in general needed as the following adaptation of McCarty’s
proof shows: Let A be an arbitrary formula of the metalanguage and consider e.g. the

12 HUGO HERBELIN AND DANKO ILIK

theory defined by B ∈ T ≜ (B = ⊥̇) ∧A ∨ (B = X) ∧ ¬A for X a distinct propositional
atom of the object language. We intuitionistically have that T ⊨ X because this is a
negative formulation of a classically provable statement14. By completeness, we get
T ⊢ X, and, by case analysis on the normal form of the so-obtained proof, we infer that
eitherA or ¬A.

The need for Markov’s principle is connected to how ⊥̇ is interpreted in the model.
Krivine [65] showed that for a language without ⊥̇15, C1 is provable intuitionistically.
As analysed by Berardi [7] and Berardi and Valentini [8], Markov’s principle is not
needed anymore if we additionally accept the degenerate model where all formulae
including ⊥̇ are interpreted as true16. Let us formalise this precisely.

We define a possibly-exploding model M to be a model (D,F ,P,A⊥̇) such that
(D,F ,P) is a model in the previous sense andA⊥̇ a fixed formula intended to interpret
⊥̇ . The definition of truth is then modified as follows:

M ⊨eσ ⊥̇ ≜ A⊥̇

with the rest of clauses unchanged17

Note that because ⊥̇ ⇒̇ A is a consequence of ¬̇¬̇A ⇒̇ A, the following holds for all A
and all σ in any classical possibly-exploding model:

A⊥̇ ⇒ M ⊨eσ A ,

so we do not need to further enforce it18. Let us rephrase C1 and S1 using classical
possibly-exploding models:

14Let M and σ such that M ⊨σ T . We first show ¬A. Indeed, if A holds, then ⊥̇ ∈ T and we get by
M ⊨σ T that the model is contradictory. But if ¬A, then X ∈ T , henceM ⊨σ X.

15So-called minimal classical logic in [4], which is however not functionally complete since no formula
can represent the always-false function.

16This is similar to the approach followed by Friedman [31] and Veldman [82] to intuitionistically prove the
completeness of intuitionistic logic with respect to a relaxing of Beth models with so-called fallible models,
and to a relaxing of Kripke models with so-called exploding nodes, respectively.

17In [8], a classical possibly-exploding model is called a minimal model, in reference to minimal logic [55].
The difference between non-exploding models and possibly-exploding models can actually be interpreted
from the point of view of linear logic not as a difference of definition of models but as a difference of interpre-
tations of the false connective. An non-exploding model is a model where the false connective is interpreted
as the connective 0 of linear logic (a positive connective, neutral for the standard disjunction and with no
introduction rule). A possibly-exploding model is a model where the false connective is interpreted as the
connective ⊥ of linear logic (a negative connective informally standing for an empty sequent). See e.g.
Okada [70] or Sambin [73] for examples of differences of interpretation of 0 and ⊥ in completeness proofs
for linear logic.

18As a matter of purity, since it is standard that the classical scheme ¬̇¬̇A ⇒̇ A is equivalent to the conjunc-
tion of a purely classical part, namely Peirce’s law representing the scheme ((A ⇒̇ B) ⇒̇ A) ⇒̇ B and of a purely
intuitionistic part, namely ex falso quodlibet representing the scheme ⊥̇ ⇒̇ A, we could have decomposed
Classic into the union of Peirce ≜ {((A ⇒̇ B) ⇒̇ A) ⇒̇ A | A ∈ Form} and of Exfalso ≜ {⊥̇ ⇒̇ A | A ∈ Form}.

As already said in Section 1.4, the conditionM ⊨σ Classic, and in particular the conditionsM ⊨σ Peirce
andM ⊨σ Exfalso are needed to show soundness with respect to classical models in a minimal setting. In an
intuitionistic setting,M ⊨σ Exfalso holds by default and does not have to be explicitly enforced. In a classical
setting,M ⊨σ Peirce does not have to be explicitly enforced. So, requiring these conditions is to ensure that
the definition of validity is the one we want independently of the specific properties of the metalanguage.

In contrast, for the purpose of completeness, possibly-exploding models are needed for an intuitionistic
proof of C1 to be possible, but none of Peirce(M) and Exfalso(M) are required.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 13

C1′. ⊨e A ⇒ ⊢ A
S 1′. T ⊨e A ⇒ T ⊢ A

where
T ⊨e A ≜ ∀M∀σ (M ⊨eσ Classic⇒M ⊨eσ T ⇒M ⊨

e
σ A)

In particular, it is worthwhile to notice that T ⊨e A and T ⊨ A are classically equiv-
alent since, up to logical equivalence, ⊨e only differs from ⊨ by an extra quantification
over the degenerate always-true model. Hence C1 and C1’, as well as S1 and S1’,
are classically equivalent too. But C1’ as well as S1’ are intuitionistically provable
for recursively enumerable theories, while C1 and S1, even for recursively enumerable
theories, would require Markov’s principle19.

Let us conclude this section by considering C3 and S3. These statements are not
intuitionistically provable: if they were, provability could be decided. This does not
mean however that we cannot compute with C3 and S3. Classical logic is computational
(see e.g. [71]), but for an evaluation to be possible, an interaction with a proof of a
statement which uses C3 or S3 is needed. The formalisation by Blanchette, Popescu
and Traytel [12] might be a good starting point to analyse the proof but we will not
explore this further here.

1.8. Chronology and recent related works. The extraction of a computational con-
tent from Henkin’s proof was obtained by the authors from an analysis of the formalisa-
tion [49] in the Coq proof assistant [17] of Henkin’s proof. It was first presented at the
TYPES conference in Warsaw, 2010. The paper was essentially written in 2013 but it
remained in draft and unstable form until 2016. A non-peer-reviewed version was made
publicly available on the web page of the first author late 2016 and slightly updated in
2019. Our constructive presentation of Henkin’s proof inspired Forster, Kirst and Wehr
to formalise the completeness theorem in the intuitionistic setting of Coq [27, 28]. This
urged us to polish the paper one step further and to submit it for publication.

The need for a weakening rule was not addressed in the 2016 version. This is fixed
in the current version which at the same time presents the proof in a more structured
way. The extension of our intuitionistic version of Henkin’s proof to the disjunction
is also new. It relies on (a slight generalisation of) the weakly classical principle of
Double Negation Shift (DNS) which is known to preserve the witness and disjunction
properties of intuitionistic logic.

Various investigations of Gödel’s completeness in an intuitionistic setting have been
published since our proof was first presented. To our knowledge, in addition to [27, 28],
this includes papers by Krivtsov [67] in intuitionistic arithmetic20 and Espíndola [24,
25] in intuitionistic set theory. In particular, Krivtsov showed that Gödel’s complete-
ness with respect to exploding models is equivalent to the Weak Fan Theorem, which
is an intuitionistic counterpart to the equivalence of Gödel’s completeness with Weak
Kőnig’s Lemma in classical reverse mathematics of the subsystems of second-order
arithmetic [76]. There are however different variants of the Weak Fan Theorem (WFT)
depending on how infinite paths are represented in a binary tree (see [13]). Let us call

19Markov’s principle can actually be “intuitionistically” implemented e.g. by using an exception mecha-
nism [41], so a computational content to weak completeness and strong completeness for recursively enumer-
able theories could as well be obtained without any change to the interpretation of ⊥̇.

20Krivtsov gives an intuitionistic proof of the Beth-Hintikka-Kanger-Schütte style

14 HUGO HERBELIN AND DANKO ILIK

WFTpred the intuitionistically provable21 variant of WFT where infinite paths are repre-
sented using a predicate and WFTdec the weakly classical variant22 where infinite paths
are represented using a decidable predicate. We conjecture, consistently with the equiv-
alence between WFTpred and completeness with respect to Scott entailment relations
in [13] that Krivtsov’s result can be strengthened into an equivalence between explod-
ing completeness without disjunction nor existential quantification and WFTpred while,
as in Krivtsov, exploding completeness in the presence of disjunction and existential
completeness is equivalent to WFTdec. In turn, we conjecture that WFTdec, thus com-
pleteness with respect to exploding models and all connectives, is equivalent to WFTpred

together with the slight generalisation of DNS used in Section 2.6.

§2. The computational content of Henkin’s proof of Gödel’s completeness. We
now recall Henkin’s proof of completeness and analyse its computational content.

2.1. Henkin’s proof of statement S2, slightly simplified. We give a simplified form
of Henkin’s proof of the strong form of Gödel’s completeness theorem [39], formulated
as statement S2. The simplification is on the use of free variables instead of constants in
Henkin axioms and in the use of only implicative formulae in the process of completion
of a consistent set of formulae into a maximally consistent one23.

Let T be a consistent set of formulae mentioning an at most countable24 number of
function symbols and predicate symbols. Let X1 and X2 be countable sets of variables
forming a partition ofX. We can assume without loss of generality that the free variables
of the formulae in T are in X1 leaving X2 as a pool of fresh variables.

We want to show that T has a model, and for that purpose, we shall complete it into
a consistent set Sω of formulae which is maximal in the sense that if A < Sω then
¬̇A ∈ Sω. We shall also ensure that for every universally quantified formula ∀̇x A(x),
there is a corresponding so-called Henkin axiom A(y) ⇒̇ ∀̇x A(x) in Sω with y fresh in
∀̇x A(x). For the purpose of this construction, we fix an injective enumeration ϕ of
formulae of the form ∀̇x A(x) or A ⇒̇ B and write ⌈A⌉ for the index of a formula A of
such form in the enumeration. We also take ϕ so that formulae of even index are of the
form ∀̇x A(x) and formulae of odd index are of the form A ⇒̇ B.

Let S0 be T and assume that we have already built Sn. If n is even, ϕ(n) has the form
∀̇x A(x). We then consider a variable xn/2 ∈ X2 which is fresh in all ϕ(i) for i ≤ n and
we set Sn+1 ≜ Sn ∪ (A(xn/2) ⇒̇ ∀̇x A(x)). Otherwise, ϕ(n) is an implicative formula and
we consider two cases. If Sn ∪ ϕ(n) is consistent, i.e., if (Sn ∪ ϕ(n) ⊢ ⊥̇) ⇒ ⊥, we
set Sn+1 ≜ Sn ∪ ϕ(n). Otherwise, we set Sn+1 ≜ Sn. We finally define the predicate
A ∈ Sω ≜ ∃n (Sn ⊢ A), i.e. ∃n∃Γ ⊂ Sn (Γ ⊢ A), and this is the basis of a syntactic model
M0 defined by taking

21See a proof relying on intuitionistic ACA0 in the Coq standard library [18, WeakFan.v]
22See Berger [9] who identifies the classical part of (a functional form of) WFT as a principle called Lfan.
23Smullyan [77] credits Hasenjaeger [38] and Henkin independently for proof variants using free variables

(see also Henkin [40]). In particular, this allows to build a maximal consistent theory in one step instead of
a countable number of steps as in Henkin’s original proof. See also [76, Th. IV.3.3] for a proof building a
maximal consistent theory in one step.

24In the presence of uncountably many symbols, one would need the ultrafilter theorem to build the model
and this would require extra computational tools to make the proof constructive. See [54] for the equivalence
in set theory between the ultrafilter theorem and the completeness theorem on non-necessarily countable
signatures.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 15

D ≜ Term
F (f)(t1, ..., tn) ≜ f (t1, ..., tn)
P(P)(t1, ..., tn) ≜ P(t1, ..., tn) ∈ Sω

By induction, each Sn is consistent. Indeed, if ϕ(n) is implicative and Sn+1 ≡

Sn ∪ ϕ(n), it is precisely because Sn+1 is consistent. Otherwise, the consistency of
Sn+1 comes from the consistency of Sn. If ϕ(n) is some ∀̇x A(x), then Sn+1 ≡ Sn ∪

(A(xn/2) ⇒̇ ∀̇x A(x)). This is consistent by freshness of xn/2 in both T and in the ϕ(i) for
i ≤ n. Indeed, because xn/2 is fresh, any proof of Sn ∪ (A(xn/2) ⇒̇ ∀̇x A(x)) ⊢ ⊥̇ can be
turned into a proof of Sn ∪ ¬̇∀̇y ¬̇(A(y) ⇒̇ ∀̇x A(x)) ⊢ ⊥̇, which itself can be turned into
a proof of Sn ⊢ ⊥̇ since ¬̇∀̇y ¬̇ (A(y) ⇒̇ ∀̇x A(x)) is a classical tautology25

Let A be a formula and σ a substitution of its free variables. We now show by induc-
tion on the logical depth26 of A thatM0 ⊨σ A ⇔ A[σ] ∈ Sω, where A[σ] denotes the
result of substituting the free variables of A by the terms in σ. This is sometimes con-
sidered an easy combinatoric argument but we shall detail the proof because it is here
that the computational content of the proof is non-trivial. Moreover, we do not closely
follow Henkin’s proof who is making strong use of classical reasoning. We shall instead
reason intuitionistically, which does not raise any practical difficulty here.

• Let us focus first on the case when A is B ⇒̇C. One way to show B[σ] ⇒̇C[σ] ∈
Sω from M0 ⊨σ B ⇒̇C is to show that for n being ⌈B[σ] ⇒̇C[σ]⌉, the set Sn ∪

B[σ] ⇒̇C[σ] is consistent, i.e. that a contradiction arises fromSn∪B[σ] ⇒̇C[σ] ⊢
⊥̇. Indeed, from the latter, we get both Sn ⊢ B[σ] and Sn ⊢ ¬̇C[σ]. From Sn ⊢

B[σ] we getM0 ⊨σ B by induction hypothesis, henceM0 ⊨σ C by assumption on
the truth of B ⇒̇C. Then C[σ] ∈ Sω again by induction hypothesis, hence Sn′ ⊢

C[σ] for some n′. But also Sn ⊢ ¬̇C[σ], hence Smax(n,n′) ⊢ ⊥̇ which contradicts
the consistency of Smax(n,n′).

• Conversely, if B[σ] ⇒̇C[σ] ∈ Sω, this means Sn ⊢ B[σ] ⇒̇C[σ] for some n. To
prove M0 ⊨σ B ⇒̇C, let us assume M0 ⊨σ B. By induction hypothesis we get
Sn′ ⊢ B[σ] for some n′ and hence Smax(n,n′) ⊢ C[σ], i.e. C[σ] ∈ Sω. We conclude
by induction hypothesis to getM0 ⊨σ C.

• Let us then focus on the case when A is ∀̇x B. For n even being ⌈(∀̇x B)[σ]⌉,
we have (B[σ, x ← xn/2] ⇒̇ (∀̇x B)[σ]) ∈ Sn+1. From M0 ⊨σ ∀̇x B(x) we get
M0 ⊨σ,x←xn/2 B(x) and by the induction hypothesis we then get the existence of
some n′ such that Sn′ ⊢ B[σ, x ← xn/2]. Hence, Smax(n+1,n′) ⊢ (∀̇x B)[σ], which
means (∀̇x B)[σ] ∈ Sω.

• Conversely, assume Sn ⊢ (∀̇x B)[σ] for some n and prove M0 ⊨σ ∀x B. Let t
be a term. From Sn ⊢ (∀̇x B)[σ] we get Sn ⊢ B[σ, x ← t], hence, by induction
hypothesis,M0 ⊨σ,x←t B(x).

• Let us then consider the case A is ⊥̇. By ex falso quodlibet in the metalanguage, it
is direct that ⊥ ⇒ (⊥̇ ∈ Sω).

• Conversely, let us prove (⊥̇ ∈ Sω)⇒ ⊥. From ⊥̇ ∈ Sω we know Sn ⊢ ⊥̇ for some
n which, again, contradicts the consistency of Sn.

• The case when A is P(t1, . . . , tn) is by definition.

25The famous “Drinker Paradox”.
26In particular, we consider B(t) to be smaller to ∀x B(x) for any t.

16 HUGO HERBELIN AND DANKO ILIK

Before completing the proof, it remains to prove that the model is classical. Using the
equivalence betweenM0 ⊨id A and A ∈ Sω for A closed and id the empty substitution,
it is enough to prove that ¬̇¬̇A ∈ Sω implies A ∈ Sω. But the former means Sn ⊢ ¬̇¬̇A
for some n, hence Sn ⊢ A by classical reasoning in the object language, hence A ∈ Sω.

We are now ready to complete the proof: for every B ∈ T , since T ⊢ B, we get
B ∈ Sω and henceM0 ⊨id B.

2.2. From Henkin’s proof of statement S2 to a proof of statement S1’. Let us
fix a formula A0 and a recursively enumerable theory T0, i.e. a theory defined by a
Σ0

1-statement. To get a proof of statement S1 for T0 and A0 is easy by using Markov’s
principle: to prove T0 ⊢ A0 from T0 ⊨ A0, let us assume the contrary, namely that
T0 ∪ ¬̇A0 is consistent. Then, we can complete S0 ≜ T0 ∪ ¬̇A0 into Sω and build out
of it a classical model M0 such that ∀B ∈ T0M0 ⊨id B as well as M0 ⊨id ¬̇A0, i.e.
¬(M0 ⊨id A0). But this contradicts T0 ⊨ A0 and, because T0 is Σ0

1, hence T0 ⊢ A as well,
Markov’s principle applies.

As discussed in Section 1.7, S1 cannot be proved without Markov’s principle, so
we shall instead prove S1’. To turn the proof of S2 into a proof of S1’ which does not
require reasoning by contradiction, we shall slightly change the construction of Sω from
T0 ∪ ¬̇A0 so that it is not consistent in an absolute sense, but instead consistent relative
to T0 ∪ ¬̇A0. In particular, we change the condition for extending S2n+1 with ϕ(2n + 1)
to be that S2n+1 ∪ ϕ(2n + 1) is consistent relative to T0 ∪ ¬̇A0.

Then, we show by induction not thatSn is consistent but that its inconsistency reduces
to the inconsistency of T0 ∪ ¬̇A0.

For the construction of the now possibly-exploding model, we take as interpretation
of ⊥̇ the formula T0, ¬̇A0 ⊢ ⊥̇. Proving ⊥̇ ∈ Sω ⇒ M0 ⊨

e
σ ⊥̇ now reduces to proving

Sn ⊢ ⊥̇ ⇒ T0, ¬̇A0 ⊢ ⊥̇ which is the statement of relative consistency27. Conversely,
M0 ⊨

e
σ ⊥̇ ⇒ ⊥̇ ∈ Sω now comes by definition of S0.

The change in the definition of Sω as well as the use of possibly-exploding models is
connected to Friedman’s A-translation [32] being able to turn Markov’s principle into
an admissible rule. Here, A is the Σ0

1-formula T0 ⊢ A0 and by replacing ⊥ with A in the
definition of model, hence of validity, as well as in the definition of Sω, we are able to
prove (A ⇒ A) ⇒ A whereas only (A ⇒ ⊥) ⇒ ⊥ was otherwise provable. Then, A
comes trivially from (A⇒ A)⇒ A.

This was the idea followed by Krivine [65] in his constructive proof of Gödel’s the-
orem for a language restricted to ⇒̇ and ∀̇, as analysed and clarified in Berardi and
Valentini [8].

As a final remark, one could wonder whether the construction of S2n+2 by case on an
undecidable statement is compatible with intuitionistic reasoning. Indeed, constructing
the sequence of formulae added to T0 ∪ ¬̇A0 in order to get Sn seems to require a use
of excluded-middle. However, in the proof of completeness, only the property A ∈ Sn

matters, and this property is directly definable by induction as

27Interestingly enough, since T0 ⊢ A effectively holds as soon as an effective proof of validity of A is
given, the model we build is then the degenerate one in which all formulae are true.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 17

A ∈ S0 ≜ A ∈ T0 ∪ ¬̇A0
A ∈ Sn+1 ≜ A ∈ Sn

∨ (∃p (n = 2p + 1) ∧ ϕ(n) = ∀̇x B(x) ∧ A = (B(xp+1) ⇒̇ ∀̇x B(x))
∨ (∃p (n = 2p) ∧ (Sn, A ⊢ ⊥̇ ⇒ T0, ¬̇A0 ⊢ ⊥̇) ∧ A = ϕ(n))

Note however that Sn is used in negative position of an implication in the definition
of Sn+1. Hence, the complexity of the formula A ∈ Sn seen as a type of functions is a
type of higher-order functions of depth n.

2.3. The computational content of the proof of completeness. We are now ready
to formulate the proof as a program. We shall place ourselves in an axiom-free second-
order intuitionistic arithmetic equipped with a proof-as-program interpretation28, as al-
ready considered in Section 1.6. Additionally, we shall identify the construction of ex-
istentially quantified formulae and the construction of proofs of conjunctive formulae.
For instance, we shall use the notation (p1, ..., pn) for the proof of an n-ary combination
of existential quantifiers and conjunctions. We shall also write dest p as (x1, ..., xn) in q
for a proof obtained by decomposition of the proof p of an n-ary combination of exis-
tential quantifiers and conjunctions. We shall write efq p for a proof of A obtained by
ex falso quodlibet from a proof p of ⊥.

We shall use the letters n, A, Γ, m, p, q, r, h, g, f , k and their variants to refer to
natural numbers, formulae, contexts of formulae, proofs of truth, proofs of derivability
in the object language, proofs of belonging to Sω, proofs of inconsistency from adding
an implicative formula to S2n+1, proofs of belonging to T0, proofs of inclusion in T0,
proofs of inclusion in extensions of T0, proofs of relative consistency, respectively.

The key property is A ∈ Sω which unfolds as ∃n∃Γ (Γ ⊂ Sn ∧ Γ ⊢ A). Rather than
defining Γ ⊂ Sn from A ∈ Sn and the latter by cases, we now directly take Γ ⊂ Sn as our
primitive concept, so that defining A ∈ Sn is actually not needed anymore. Rephrasing
the property that Sn is inconsistent in terms of Γ ⊂ Sn is easy: it is enough to tell
that Γ ⊢ ⊥̇ for some Γ ⊂ Sn. In particular, we can write Sn, A ⊢ ⊥̇ to mean ∃Γ (Γ ⊂
Sn ∧ Γ, A ⊢ ⊥̇).

We first define by cases the predicate Γ ⊂ T0:

ϵ ⊂ T0
Jbase

Γ ⊂ T0 A ∈ T0

Γ, A ⊂ T0
Jcons

Then, we can define Γ ⊂ Sn by cases: a formula B is allowed to occur in such Γ
either because it is in T0 (clause Jcons), or because it is an Henkin axiom added at step
2n (clause I∀), or because it is an implication added at step 2n + 1 together with a proof
of relative consistency of Sn+1 ∪ B with respect to T0 ∪ ¬̇A0 (clause I⇒). Note that we
enforce in all cases that at least ¬̇A0 is in such Γ (clause I0) and that we can always skip
adding a formula at some step of the construction (clause IS). Formally, the definition
is:

28A typical effective framework for that purpose would be a fragment of the Calculus of Inductive Con-
structions such as it is implemented in the Coq proof assistant [16], or Matita [5]. The Calculus of Inductive
Constructions is an impredicative extension of Martin-Löf’s type theory [68].

18 HUGO HERBELIN AND DANKO ILIK

Γ ⊂ T0

Γ, ¬̇A0 ⊂ S0
I0

Γ ⊂ Sn

Γ ⊂ Sn+1
IS

Γ ⊂ S2n

Γ, A(xn) ⇒̇ ∀̇x A(x) ⊂ S2n+1
I∀

Γ ⊂ S2n+1 S2n+1, A ⇒̇ B ⊢ ⊥̇ ⇒ T0, ¬̇A0 ⊢ ⊥̇

Γ, A ⇒̇ B ⊂ S2n+2
I⇒

where ϕ(2n) is ∀̇x A(x) in I∀ and ϕ(2n + 1) is A ⇒̇ B in I⇒.
We now write as a program the proof that Sω is consistent relative to T0 ∪ ¬̇A0, i.e.

that ⊥̇ ∈ Sω implies T0, ¬̇A0 ⊢ ⊥̇. The latter expands to ∃Γ (Γ ⊂ T0 ∧ Γ, ¬̇A0 ⊢ ⊥̇)
which we see as made of triples of the form (Γ, g, p), with Γ a context, g a proof of
Γ ⊂ T0 and p a proof of Γ′, ¬̇A0 ⊢ ⊥̇.

This proof, which we call flushΓn , takes as arguments a quadruple (n,Γ, f , p) where f
is a proof of Γ ⊂ Sn and p proof of Γ ⊢ ⊥̇. It proceeds by cases on the proof of Γ ⊂ Sn.
When extended at odd n, it works by calling the continuation justifying that adding the
formula ϕ(2p + 1) preserves consistency, and, when extended at even n, by composing
the resulting proof of inconsistency with a proof of the Drinker’s paradox (˙drinkery is
the proof which builds a proof of Γ ⊢ ⊥̇ from a proof of Γ, A(y) ⇒̇ ∀̇x A(x) ⊢ ⊥̇, knowing
that y does not occur in Γ, ∀̇x A(x), see Figure 2).

flush : ⊥̇ ∈ Sω ⇒ T0, ¬̇A0 ⊢ ⊥̇

flush (0, (Γ, ¬̇A0), I0 g, p) ≜ (Γ, g, p)
flush (n + 1,Γ, IS f , p) ≜ flush (n,Γ, f , p)
flush (2n + 1, (Γ, A), I∀ f , p) ≜ flush (2n,Γ, f , ˙drinkerxn p)
flush (2n + 2, (Γ, A), I⇒ (f , k), p) ≜ k (Γ, f , p)

A trivial lemma implicit in the natural language formulation of the proof of complete-
ness is the lemma asserting ¬̇A0 ⊂ Sn. The proof is by induction on n:

injn : ¬̇A0 ⊂ Sn

inj0 ≜ I0(Jbase)
injn+1 ≜ IS(injn)

A boring lemma which is implicit in the proof of completeness in natural language is
that Γ ⊂ Sn and Γ′ ⊂ Sn′ imply Γ ∪ Γ′ ⊂ Smax(n,n′). It looks obvious because one tends
to think of Γ ⊂ Sn as denoting the inclusion of Γ within a uniquely defined relatively
consistent set Sn. However, the computational approach to the proof shows that Sn

has no computational content per se: only proofs of Γ ⊂ Sn have, and such proofs are
collections of proofs of relative consistency for only those implicative formulae which
are in Γ. These formulae are those inspected by the lemma A ∈ Sω ⇔M0 ⊨

e
σ A, which

in practice are subformulae of the formulae in T0.
For Γ1 and Γ2 included in T0, we write Γ1,Γ2 for their concatenation (possibly with

redundancies). Otherwise, by construction, any Γ included in Sn for some n has either
the form Γ′, ¬̇A0 where Γ′ is included in T0, or the form Γ′, A where A has been added
in the process of enumeration. We can then define Γ1 ∪ Γ2 for Γ1 and Γ2 included in Sn

for some n by cases29:

29Strictly speaking, this decomposition of any Γ included in Sn for some n should be part of the structure
of Γ so as to be able to compute with it.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 19

Γ1, ¬̇A0 ∪ Γ2, ¬̇A0 ::= Γ1,Γ2, ¬̇A0
Γ1, ¬̇A0 ∪ Γ2, A ::= (Γ1, ¬̇A0 ∪ Γ2), A
Γ1, A ∪ Γ2, ¬̇A0 ::= (Γ1 ∪ Γ2, ¬̇A0), A
Γ1, A ∪ Γ2, A ::= (Γ1 ∪ Γ2), A
Γ1, A ∪ Γ2, B ::= (Γ1, A ∪ Γ2), B if ⌈B⌉ > ⌈A⌉
Γ1, A ∪ Γ2, B ::= (Γ1 ∪ Γ2, B), A if ⌈A⌉ > ⌈B⌉

We can then define the merge of two proofs of Γ ⊂ Sn by distinguishing when the
contexts are considered as subsets of T0 or as subsets of some Sn:

joinΓ1Γ2
⊂ : Γ1 ⊂ T0 ∧ Γ2 ⊂ T0 ⇒ Γ1,Γ2 ⊂ T0

joinΓ1ϵ
⊂ (g1 , Jbase) ≜ g1

joinΓ1(Γ2,A2)
⊂ (g1 , Jcons(g2, h2)) ≜ Jcons(joinΓ1Γ2

⊂ (g1, g2), h2)

joinΓ1Γ2
n : Γ1 ⊂ Sn ∧ Γ2 ⊂ Sn ⇒ Γ1 ∪ Γ2 ⊂ Sn

join(Γ1,¬̇A0)(Γ2,¬̇A0)
0 (I0(g1) , I0(g2)) ≜ I0(joinΓ1Γ2

⊂ (g1, g2)
join(Γ1A)(Γ2A)

2n+1 (I∀(f1) , I∀(f2)) ≜ I∀(joinΓ1Γ2
2n (f1, f2))

join(Γ1A)(Γ2A)
2n+2 (I⇒(f1, k1) , I⇒(f2, k2)) ≜ I⇒(joinΓ1Γ2

2n+1(f1, f2), k1)
join(Γ1A)Γ2

2n+1 (I∀(f1) , IS(f2)) ≜ I∀(joinΓ1Γ2
2n (f1, f2))

join(Γ1A)Γ2
2n+2 (I⇒(f1, k1) , IS(f2)) ≜ I⇒(joinΓ1Γ2

2n+1(f1, f2), k1)
joinΓ1(Γ2A)

2n+1 (IS(f1) , I∀(f2)) ≜ I∀(joinΓ1Γ2
2n (f1, f2))

joinΓ1(Γ2A)
2n+2 (IS(f1) , I⇒(f2, k2)) ≜ I⇒(joinΓ1Γ2

2n+1(f1, f2), k2)
joinΓ1Γ2

n+1 (IS(f1) , IS(f2)) ≜ IS(joinΓ1Γ2
n (f1, f2))

hjoinΓ1Γ2
n1n2

: Γ1 ⊂ Sn1 ∧ Γ2 ⊂ Sn2 ⇒ Γ1 ∪ Γ2 ⊂ Smax(n1,n2)

hjoinΓ1Γ2
nn (f1 , f2) ≜ joinΓ1Γ2

n (f1, f2)
hjoinΓ1Γ2

n′1+1>n2
(IS(f1) , f2) ≜ IS(hjoinΓ1Γ2

n′1n2
(f1, f2))

hjoin(Γ1A1)Γ2
n′1+1>n2

(I∀(f1) , f2) ≜ I∀(hjoinΓ1Γ2
n′1n2

(f1, f2))

hjoin(Γ1A1)Γ2
n′1+1>n2

(I⇒(f1, k1) , f2) ≜ I⇒(hjoinΓ1Γ2
n′1n2

(f1, f2), k1)

hjoinΓ1Γ2
n1<n′2+1 (f1 , IS(f2)) ≜ IS(hjoinΓ1Γ2

n1n′2
(f1, f2))

hjoinΓ1(Γ2A2)
n1<n′2+1 (f1 , I∀(f2)) ≜ I∀(hjoinΓ1Γ2

n1n′2
(f1, f2))

hjoinΓ1(Γ2A2)
n1<n′2+1 (f1 , I⇒(f2, k2)) ≜ I⇒(hjoinΓ1Γ2

n1n′2
(f1, f2), k2)

In particular, it has to be noticed that the merge possibly does arbitrary choices: when
the same implicative formula A occurs in both contexts, only one of the two proofs
telling how to reduce Γ, A ⊢ ⊥̇ to T0, ¬̇A0 ⊢ ⊥̇ (third clause of joinn) is (arbitrarily) kept.

Another combinatoric lemma is that the merge of contexts indeed produces a bigger
context. To state the lemma, we already need to define the inclusion of contexts Γ ⊂ Γ′.
This can be done inductively by the following clauses:

ϵ ⊂ ϵ
L⊂0

Γ ⊂ Γ′

Γ ⊂ Γ′, A
L⊂N

Γ ⊂ Γ′

Γ, A ⊂ Γ′, A
L⊂S

20 HUGO HERBELIN AND DANKO ILIK

Two straightforward lemmas are that Γ1 ⊂ Γ1,Γ2 and Γ2 ⊂ Γ1,Γ2 for Γ1 and Γ2
included in T0. The proofs are by induction on Γ1 and Γ2 where i is either 1 or 2:

inclΓ1,Γ2
i : Γi ⊂ Γ1,Γ2

inclϵ,ϵi ≜ L0

incl(Γ1,A),ϵ
1 ≜ LS (inclΓ1ϵ

1)
incl(Γ1,A),ϵ

2 ≜ LN(inclΓ1ϵ
2)

inclΓ1,(Γ2,A)
1 ≜ LN(inclΓ1Γ2

1)
inclΓ1,(Γ2,A)

2 ≜ LS (inclΓ1Γ2
2)

This allows to prove the following lemma where i is either 1 or 2:

incl′Γ1,Γ2
i : Γi ⊂ Γ1 ∪ Γ2

incl′(Γ1,¬̇A0),(Γ2,¬̇A0)
i ≜ LS (inclΓ1,Γ2

i)
incl′(Γ1,¬̇A0),(Γ2,A)

1 ≜ LN(incl′(Γ1,¬̇A0),Γ2
1)

incl′(Γ1,¬̇A0),(Γ2,A)
2 ≜ LS (incl′(Γ1,¬̇A0),Γ2

2)
incl′(Γ1,A),(Γ2,¬̇A0)

1 ≜ LS (incl′Γ1,(Γ2,¬̇A0)
1)

incl′(Γ1,A),(Γ2,¬̇A0)
2 ≜ LN(incl′Γ1,(Γ2,¬̇A0)

2)
incl′(Γ1,A),(Γ2,A)

i ≜ LS (incl′Γ1,Γ2
i)

incl′(Γ1,A),(Γ2,B)
1 ≜ LN(incl′(Γ1,A),Γ2

1) if ⌈A⌉ < ⌈B⌉
incl′(Γ1,A),(Γ2,B)

2 ≜ LS (incl′(Γ1,A),Γ2
2) if ⌈A⌉ < ⌈B⌉

incl′(Γ1,A),(Γ2,B)
1 ≜ LS (incl′Γ1,(Γ2,B)

1) if ⌈A⌉ > ⌈B⌉
incl′(Γ1,A),(Γ2,B)

2 ≜ LN(incl′Γ1,(Γ2,B)
2) if ⌈A⌉ > ⌈B⌉

Our object logic is defined by the rules on Figure 2. Note that we shall use non
standard derived rules. For instance, we shall not use the rule ˙abs⇒ and ˙abs∀ but instead
the derived rules π ⇒̇1 , π ⇒̇2 and ˙drinkery.

Thanks to the previous lemma, we are able to translate proofs of A1 ∈ Sω and A2 ∈

Sω living in possibly two different contexts to eventually live in the union of the two
contexts:

share : A1 ∈ Sω ∧ A2 ∈ Sω ⇒ ∃n∃Γ(Γ ⊂ Sn ∧ Γ ⊢ A1 ∧ Γ ⊢ A2)

share (n1,Γ1, f1, p1) (n2,Γ2, f2, p2) ≜


max(n1, n2), (Γ1 ∪ Γ2), hjoin(f1, f2),

˙weak(incl′Γ1,Γ2
1 , p1),

˙weak(incl′Γ1,Γ2
2 , p2)


where ˙weak is an admissible rule of the object logic.

Thanks to the ability to ensure distinct proofs to live in the same context, we can
reformulate the relevant rules of the object logic as rules over Sω, as well as provide

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 21

proofs of specific formulae:

˙APP ⇒̇ : A ⇒̇ B ∈ Sω ∧ A ∈ Sω ⇒ B ∈ Sω
˙APP ⇒̇ q q′ ≜

dest share (q, q′) as (n′,Γ′, f ′, p′p′′) in
(n′,Γ′, f ′, ˙app ⇒̇ (p′, p′′))

˙APP∀̇ : ∀̇x A(x) ∈ Sω ∧ Term ⇒ A(t) ∈ Sω
˙APP∀̇ (n,Γ, f , p) t ≜ (n,Γ, f , ˙app∀̇(p, t))

ḊN : ¬̇¬̇A ∈ Sω ⇒ A ∈ Sω
ḊN (n,Γ, f , p) ≜ (n,Γ, f , ḋn(p))

ȦX∀̇x A(x) : A(xn) ⇒̇ ∀̇x A(x) ∈ Sω
ȦX∀̇x A(x) ≜ (2n + 1, (¬̇A0, A(xn) ⇒̇ ∀̇x A(x)), I∀(inj2n), ȧx0)

where 2n = ⌈∀̇x A(x)⌉

ȦX0
¬̇A0

: ¬̇A0 ∈ Sω

ȦX0
¬̇A0

≜ (0, ¬̇A0, Jbase, ȧx0)

Similarly, we can formulate rules on provability in T0:

˙DNABS : T0, ¬̇A0 ⊢ ⊥̇ ⇒ T0 ⊢ A0
˙DNABS (Γ, g, p) ≜ (Γ, g, ḋn(˙abs ⇒̇ (p)))

˙BOT : T0, ¬̇A0 ⊢ ⊥̇ ⇒ ⊥̇ ∈ Sω
˙BOT (Γ, g, p) ≜ (0, (Γ, ¬̇A0), I0(g), p)

When ⌈A ⇒̇ B⌉ = 2n + 1, we can also derive the following properties:

ȦXA ⇒̇ B : ((S2n+1, A ⇒̇ B ⊢ ⊥̇)⇒ (T0, ¬̇A0 ⊢ ⊥̇)) ⇒ A ⇒̇ B ∈ Sω

ȦXA ⇒̇ B k ≜

(
2n + 2, (¬̇A0, A ⇒̇ B),
I⇒(inj2n+1, k), ȧx0

)
˙PROJ ⇒̇1 : S2n+1, A ⇒̇ B ⊢ ⊥̇ ⇒ A ∈ Sω
˙PROJ ⇒̇1 (Γ, f , p) ≜ (2n + 1,Γ, f , π ⇒̇1 p)

˙PROJ ⇒̇2 : S2n+1, A ⇒̇ B ⊢ ⊥̇ ⇒ ¬̇B ∈ Sω
˙PROJ ⇒̇2 (Γ, f , p) ≜ (2n + 1,Γ, f , π ⇒̇2 p)

We are now ready to present the main computational piece of the completeness proof
and we shall use for that notations reminiscent from semantic normalisation [19], or
type-directed partial evaluation [23], as considered when proving completeness of intu-
itionistic logic with respect to models such a Kripke or Beth models.

We have to proveM0 ⊨
e
σ A⇔ A[σ] ∈ Sω, which means provingM0 ⊨

e
σ A⇒ A[σ] ∈

Sω and A[σ] ∈ Sω ⇒ M0 ⊨
e
σ A. As in semantic normalisation (see Section 1.6), we

shall call reification and write ↓A
σ the proof mapping a semantic formula (i.e. M0 ⊨

e
σ A)

to a syntactic formula, i.e. A[σ] ∈ Sω. We shall call reflection and write ↑A
σ for the way

up going from the syntactic view to the semantic view.

22 HUGO HERBELIN AND DANKO ILIK

Primitive rules

|Γ′| = i

Γ, A,Γ′ ⊢ A
ȧxi

Γ ⊢ ¬̇¬̇A

Γ ⊢ A
ḋn

Γ ⊢ A ⇒̇ B Γ′ ⊢ A

Γ ∪ Γ′ ⊢ B
˙app ⇒̇

Γ ⊢ ∀̇x A(x)

Γ ⊢ A(t)
˙app∀̇t

Γ, A ⊢ B

Γ ⊢ A ⇒̇ B
˙abs⇒

Γ ⊢ A(y) y not in ∀̇x A(x),Γ

Γ ⊢ ∀̇x A(x)
˙abs∀

Admissible rules

Γ, A(y) ⇒̇ ∀̇x A(x) ⊢ ⊥̇ y not in ∀̇x A(x),Γ

Γ ⊢ ⊥̇

˙drinkery

Γ, A ⇒̇ B ⊢ ⊥̇

Γ ⊢ A
π ⇒̇1

Γ, A ⇒̇ B ⊢ ⊥̇

Γ ⊢ ¬̇B
π ⇒̇2

Γ ⊢ ⊥̇

Γ ⊢ A
efq

Γ ⊂ Γ′ Γ ⊢ A

Γ′ ⊢ A
˙weak

Figure 2. Inference rules characterising classical first-order predicate calculus

↓A
σ : M0 ⊨

e
σ A ⇒ A[σ] ∈ Sω

↓
P(⃗t)
σ m ≜ m
↓⊥̇σ m ≜ ˙BOT(m)
↓A ⇒̇ B
σ m ≜ ȦXA[σ] ⇒̇ B[σ](kontA ⇒̇ B

σ (m))
↓∀̇x A
σ m ≜ ˙APP ⇒̇ (ȦX(∀x A)[σ], ↓

A
σ,x←xn

(m xn)) where 2n = ⌈(∀̇x A)[σ]⌉

↑A
σ : A[σ] ∈ Sω ⇒ M0 ⊨

e
σ A

↑
P(⃗t)
σ q ≜ q
↑⊥̇σ q ≜ flush q
↑A ⇒̇ B
σ q ≜ m 7→↑B

σ (˙APP ⇒̇ (q, ↓A
σm))

↑∀̇x A
σ q ≜ t 7→↑A

σ,x←t (˙APP∀̇(q, t))

where, for m provingM0 ⊨
e
σ A ⇒̇ B, the relative consistency proof kontA ⇒̇ B

σ (m) is de-
fined by:

kontA ⇒̇ B
σ (m) : (S⌈A[σ] ⇒̇ B[σ]⌉, A[σ] ⇒̇ B[σ] ⊢ ⊥̇)⇒ (T0, ¬̇A0 ⊢ ⊥̇)

kontA ⇒̇ B
σ (m) ≜ r 7→flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r), ↓B

σ (m (↑A
σ (˙PROJ ⇒̇1 (r))))))

We still have to prove that the model is classical, which we do by lifting the double-
negation elimination rule to the semantics:

classic0 : ∀A ((M0 ⊨
e
id ¬̇¬̇A)⇒ (M0 ⊨

e
id A))

classic0 ≜ A 7→ m 7→↑A
id (ḊN (↓¬̇¬̇A

id m))

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 23

It remains also to show that every formula of T0 is true inM0 and this is obtained by
the axiom rule:

init0 : ∀B ∈ T0M0 ⊨
e
id B

init0 ≜ B 7→ h 7→↑B
id (0, (B, ¬̇A0), I0(Jcons(Jbase, h)), ȧx1)

Finally, we get the completeness result stated as S1’ by:

completeness : ∀M∀σ (M ⊨eσ Classic⇒M ⊨eσ T0 ⇒M ⊨
e
σ A0)⇒ T0 ⊢ A0

completeness ≜ ψ 7→ ˙DNABS (flush (˙APP ⇒̇ (ȦX0
¬̇A0

, ↓A0
id (ψM0 id classic0 init0))))

Notice that the final result is a triple (Γ, g, p) such that p is a proof of Γ ⊢ A0 and g is a
proof of Γ ⊂ T0.

2.4. The computational content on examples. To illustrate the behaviour of the
completeness proofs, we consider two examples. We use notations of λ-calculus to
represent proofs in the meta-logic and constructors from Figure 2 for proofs in the
object logic.

We place ourselves in the empty theory and consider the formula A0 ≜ X ⇒̇Y ⇒̇ X
with X and Y propositional atoms.

The expansion of ⊨e A0 is ∀M ∀σ (σ ⊨e
M
Classic ⇒ M ⊨e X ⇒ M ⊨e Y ⇒

M ⊨e X). It has a canonical proof, which, as a λ-term, is the closure of the so-called
combinator K over the symbols it depends on:

m ≜ (D,F ,P, B) 7→ σ 7→ c 7→ (x : P(X)) 7→ (y : P(Y)) 7→ x

Applying completeness means instantiating the model by the syntactic model and the
substitution by the empty substitution so as to obtain from m the proof

m0 ≜ (x : X ∈ Sω) 7→ (y : Y ∈ Sω) 7→ x

Our object proof is then the result of evaluating

˙DNABS (flush (˙APP ⇒̇ (ȦX0
¬̇A0

, ↓A0 m0)))

which proceeds as follows:

˙DNABS (flush (˙APP ⇒̇ (ȦX0
¬̇A0

, ȦXA0 (kontA0 (m0)))))

where kontA0 (m0)(r) reduces to flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r), ↓Y ⇒̇ X (m0 (↑X (˙PROJ ⇒̇1 (r))))))
for r proving S⌈A0⌉, A0 ⊢ ⊥̇, that is to

flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r), ȦXY ⇒̇ X(kontY ⇒̇ X(m0 (˙PROJ ⇒̇1 (r))))))

In there, kontY ⇒̇ X(m0 (˙PROJ ⇒̇1 (r)))(r′), for r′ proving S⌈Y ⇒̇ X⌉,Y ⇒̇ X ⊢ ⊥̇, reduces in
turn to

flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r′),m0 (˙PROJ ⇒̇1 (r)) (˙PROJ ⇒̇1 (r′))))

Evaluating ˙APP ⇒̇ (ȦX0
¬̇A0

, ȦXA0 (kontA0 (m0))) gives a tuple

(⌈A0⌉, (¬̇A0, A0), I⇒(inj⌈A0⌉
, kontA0 (m0)), p0)

where p0 ≜ ˙app ⇒̇ (ȧx1, ȧx0) is a proof of ¬̇A0, A0 ⊢ ⊥̇ obtained by application of the
two axiom rules proving ¬̇A0 ⊢ ¬̇A0 and ¬̇A0, A0 ⊢ A0.

Evaluating the outermost flush triggers the application of the continuation kontA0 (m0)
to r0 ≜ (¬̇A0, inj⌈A0⌉

, p0), meaning that the whole object proof becomes

˙DNABS (flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r0), ȦXY ⇒̇ X(kontY ⇒̇ X(m0 (˙PROJ ⇒̇1 (r0)))))))

24 HUGO HERBELIN AND DANKO ILIK

Evaluating ˙APP ⇒̇ (˙PROJ ⇒̇2 (r0), ȦXY ⇒̇ X(kontY ⇒̇ X(m0 (˙PROJ ⇒̇1 (r0))))) gives a tuple

(⌈Y ⇒̇ X⌉, (¬̇A0,Y ⇒̇ X), I⇒(inj⌈Y ⇒̇ X⌉, kontY ⇒̇ X(m0 (˙PROJ ⇒̇1 (r0)))), p1)

where p1 ≜ ˙app ⇒̇ (π ⇒̇2 (p0), ȧx0) is a proof of ¬̇A0,Y ⇒̇ X ⊢ ⊥̇.
Evaluating the new outermost flush triggers in turn the application of the continuation

kontY ⇒̇ X(m0 (˙PROJ ⇒̇1 (r0))) to r1 ≜ (¬̇A0, inj⌈Y ⇒̇ X⌉, p1) and this results in

˙DNABS (flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r1),m0 (˙PROJ ⇒̇1 (r0)) (˙PROJ ⇒̇1 (r1)))))(1)

that is, taking into account the definition of m0

˙DNABS (flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r1), ˙PROJ ⇒̇1 (r0))))

No continuations are produced by ˙APP ⇒̇ (˙PROJ ⇒̇2 (r1), ˙PROJ ⇒̇1 (r0)) so the only role
of the last flush is to peel the IS leading to a proof r2 ≜ (ϵ, Jbase, ḋn(p2)) where p2 ≜

˙app ⇒̇ (π ⇒̇2 (p1), π ⇒̇1 (p0)) combines a proof of ¬̇A0 ⊢ ¬̇X with a proof of ¬̇A0 ⊢ X to get
a proof of ¬̇A0 ⊢ ⊥̇.

To summarise, the object proof produced is:

.... p0

¬̇A0, A0 ⊢ ⊥̇

¬̇A0 ⊢ ¬̇(Y ⇒̇ X)
π⇒2 ¬̇A0,Y ⇒̇ X ⊢ Y ⇒̇ X ȧx

¬̇A0,Y ⇒̇ X ⊢ ⊥̇
˙app ⇒̇

¬̇A0 ⊢ ¬̇X
π⇒2

.... p0

¬̇A0, A0 ⊢ ⊥̇

¬̇A0 ⊢ X
π⇒1

¬̇A0 ⊢ ⊥̇
˙app ⇒̇

⊢ ¬̇¬̇A0
˙abs ⇒̇

⊢ A0
ḋn

where p0 is:

¬̇A0 ⊢ ¬̇A0
ȧx A0 ⊢ A0

ȧx

¬̇A0, A0 ⊢ ⊥̇
˙app ⇒̇

As a matter of comparison, for the canonical proof of the validity of A′0 ≜ X ⇒̇Y ⇒̇Y ,
everything up to step (1) above is the same modulo the change of A0 into A′0 and of
Y ⇒̇ X into Y ⇒̇Y . After step (1), one obtains

˙DNABS (flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r′1), ˙PROJ ⇒̇1 (r′1))))

where

r′1 ≜ (¬̇A′0, inj⌈Y ⇒̇Y⌉, p′1)
p′1 ≜ ˙app ⇒̇ (π ⇒̇2 (p′0), ȧx0)
p′0 ≜ ˙app ⇒̇ (ȧx1, ȧx0)

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 25

Finally, this yields (ϵ, Jbase, ḋn(p′2)) where p′2 ≜
˙app ⇒̇ (π ⇒̇2 (p′1), π ⇒̇1 (p′1)), that is, graph-

ically:
.... p′1

¬̇A′0,Y ⇒̇Y ⊢ ⊥̇
¬̇A′0 ⊢ ¬̇Y

π⇒2

.... p′1
¬̇A′0,Y ⇒̇Y ⊢ ⊥̇
¬̇A′0 ⊢ Y

π⇒1

¬̇A′0 ⊢ ⊥̇
˙app ⇒̇

⊢ ¬̇¬̇A′0
˙abs ⇒̇

⊢ A′0
ḋn

where, graphically, p′1 is:

¬̇A′0 ⊢ ¬̇A′0
ȧx A′0 ⊢ A′0

ȧx

¬̇A′0, A
′
0 ⊢ ⊥̇

˙app ⇒̇

¬̇A′0 ⊢ ¬̇(Y ⇒̇Y)
π⇒2 ¬̇A′0,Y ⇒̇Y ⊢ Y ⇒̇Y ȧx

¬̇A′0,Y ⇒̇Y ⊢ ⊥̇

We can notice in particular that, treating the metalanguage as a λ-calculus as we did,
the two canonical proofs of validity of X ⇒̇ X ⇒̇ X would not produce the same object
language proofs.

2.5. Extension to conjunction. Henkin’s original proof [39] includes only impli-
cation, universal quantification and the false connective. Handling conjunction in our
presentation of Henkin’s proof is straightforward. Let us assume the object language
being equipped with the following rules for conjunction:

Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧̇ A2

˙pair
Γ ⊢ A1 ∧̇ A2

Γ ⊢ A1
π̇∧1

Γ ⊢ A1 ∧̇ A2

Γ ⊢ A2
π̇∧2

Truth for conjunction being defined by

M ⊨eσ A1 ∧̇ A2 ≜ M ⊨
e
σ A1 ∧M ⊨

e
σ A2

a case is added for conjunctive formulae in each direction of the proof ofM0 ⊨σ A ⇔
A[σ] ∈ Sω as follows:

↓
A1 ∧̇ A2
σ (m1,m2) ≜ ˙PAIR (↓A1

σ m1, ↓
A2
σ m2)

↑
A1 ∧̇ A2
σ q ≜ (↑A1

σ (˙PROJ∧1 q), ↑A2
σ (˙PROJ∧2 q))

where the following combinators lift inference rules on Sω:

˙PAIR(q1, q2) ≜ dest share(q1, q2) as (n,Γ, f , p1, p2) in (n,Γ, f , ˙pair(p1, p2))
˙PROJ∧i (n,Γ, f , p) ≜ (n,Γ, f , π̇∧i p)

In particular, there is no need to consider conjunctive formulae in the enumeration.
2.6. Extension to disjunction. Taking inspiration from works on normalisation-by-

evaluation in the presence of disjunction (e.g. [1, 2]), we give a proof for disjunction
that relies on the following arithmetical generalised form of Double Negation Shift

26 HUGO HERBELIN AND DANKO ILIK

introduced30 in [50]:

DNS∀ ∀n ((A(n)⇒ C)⇒ C)⇒ (∀nA(n)⇒ C)⇒ C

for C a Σ0
1-formula andA arbitrary.

The proof however requires a significant change: instead of proving M0 ⊨
e
σ A ⇔

A[σ] ∈ Sω, we prove:

↓A
σ : M0 ⊨

e
σ A⇒ A[σ] ∈ Sω

↑′σ
A : A[σ] ∈ Sω ⇒ KONT(M0 ⊨

e
σ A)

where KONT(A), a continuation monad31, is defined by:

KONT(A) ≜ (A ⇒ T0, ¬̇A0 ⊢ ⊥̇) ⇒ T0, ¬̇A0 ⊢ ⊥̇

Let us assume the object language equipped with the following rules for disjunction:

Γ ⊢ A1

Γ ⊢ A1 ∨̇ A2

˙inj1
Γ ⊢ A2

Γ ⊢ A1 ∨̇ A2

˙inj2
Γ ⊢ A1 ∨̇ A2 Γ ⊢ A1 ⇒̇ B Γ ⊢ A2 ⇒̇ B

Γ ⊢ B
˙case

Let us also consider the following lifting of the inference rules to provability in Sω:

˙INJi : Ai ∈ Sω ⇒ A1 ∨̇ A2 ∈ Sω
˙INJi (n,Γ, f , p) ≜ (n,Γ, f , ˙inji p)

˙CASE :

 A ∨̇ B ∈ Sω
A ⇒̇C ∈ Sω
B ⇒̇C ∈ Sω

 ⇒ C ∈ Sω

˙CASE (q, q1, q2) ≜
dest share3(q, q1, q2) as (n,Γ, f , p, p1, p2) in
(n,Γ, f , ˙case p p1 p2)

where we needed the following three-part variant share3 of share:

share3 : A1 ∈ Sω ∧ A2 ∈ Sω ∧ A3 ∈ Sω ⇒ ∃n∃Γ(Γ ⊂ Sn ∧ Γ ⊢ A1 ∧ Γ ⊢ A2 ∧ Γ ⊢ A3)

share3 (q1, q2, (n,Γ, f , p3)) ≜

dest share(q1, q2) as (n′,Γ′, f ′, p1, p2) in
dest share((n′,Γ′, f ′, p2), (n,Γ, f , p3))
as (n′′,Γ′′, f ′′, p′2, p3)
in (n′′,Γ′′, f ′′, ˙weak(incl′Γ

′,Γ
1 , p1), p′2, p3)

Truth for disjunction being defined by

M ⊨eσ A1 ∨̇ A2 ≜ M ⊨
e
σ A1 ∨M ⊨

e
σ A2

we show the extended reification below where case does a case analysis on the form
inj1(m) or inj2(m) of a proof of disjunction in the typed λ-calculus which we use to
represent our metalanguage.

30In the presence of Markov’s principle, this generalised form of DNS is equivalent to the usual form.
The interest of the generalised form is precisely that it can be used in situations which would have required
Markov’s principle without requiring Markov’s principle explicitly.

31Note that KONT(M0 ⊨
e
σ A) is actually the same asM0 ⊨

e
σ ¬̇¬̇A but we shall use KONT also on formulae

which are not of the formM0 ⊨
e
σ A.

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 27

↓A
σ : M0 ⊨

e
σ A ⇒ A[σ] ∈ Sω

↓
P(⃗t)
σ m ≜ m
↓⊥̇σ m ≜ ˙BOT(m)
↓A ⇒̇ B
σ m ≜ ȦXA[σ] ⇒̇ B[σ](kont′A ⇒̇ B

σ (m))
↓∀̇x A
σ m ≜ ˙APP ⇒̇ (ȦX(∀x A)[σ], ↓

A
σ,x←xn

(m xn)) where 2n = ⌈(∀̇x A)[σ]⌉
↓

A1 ∧̇ A2
σ (m1,m2) ≜ ˙PAIR (↓A1

σ m1, ↓
A2
σ m2)

↓
A1 ∨̇ A2
σ m ≜ case m of [inj1(m1) 7→ ˙INJ1(↓A1

σ m1)
| inj2(m2) 7→ ˙INJ2(↓A2

σ m2)]

Note that this extended reification is unchanged except for the replacement of kontA ⇒̇ B
σ

by kont′A ⇒̇ B
σ so as to take into account the use of KONT in ↑′:

kont′A ⇒̇ B
σ (m)(r) ≜ (↑

′A
σ (˙PROJ ⇒̇1 (r))) (m′ 7→ flush (˙APP ⇒̇ (˙PROJ ⇒̇2 (r), ↓B

σ (mm′))))

Before giving the modified reflection proof, we need to prove a form of ex falso
quodlibet deriving the truth of any formula A from any inconsistency T0, ¬̇A0 ⊢ ⊥̇. This
is a standard proof by induction on A:

EFQA
σ : T0, ¬̇A0 ⊢ ⊥̇ ⇒ M0 ⊨

e
σ A

EFQP(⃗t)
σ (Γ, g, p) ≜ (0, (Γ, ¬̇A0), I0(g), efq p)

EFQ⊥̇σ (Γ, g, p) ≜ (Γ, g, p)
EFQA ⇒̇ B

σ (Γ, g, p) ≜ m 7→ EFQB
σ(Γ, g, p)

EFQ∀̇x A
σ (Γ, g, p) ≜ t 7→ EFQA

σ,x←t(Γ, g, p)
EFQA1 ∧̇ A2

σ (Γ, g, p) ≜ (EFQA1
σ (Γ, g, p),EFQA2

σ (Γ, g, p))
EFQA1 ∨̇ A2

σ (Γ, g, p) ≜ inj1 (EFQA1
σ (Γ, g, p))

where we may notice in passing that an arbitrary choice is made in the disjunction case.
We need the shift of double negation with respect to implication to formulae express-

ing truth. Ex falso quodlibet being obtained on formulae expressing truth with respect
to possibly-exploding models, the proof is standard:

DNS⇒ : (A ⇒ KONT(M0 ⊨
e
σ B)) ⇒ KONT(A ⇒M0 ⊨

e
σ B)

DNS⇒ ≜ H 7→ K 7→ K (mA 7→ EFQB
σ (H mA (mB 7→ K (m′A 7→ mB))))

We also need the shift of double negation with respect to conjunction. The intuition-
istic proof is easy:

DNS∧ : KONT(A1) ∧ KONT(A2)⇒ KONT(A1 ∧A2)
DNS∧ ≜ (H1,H2) 7→ K 7→ H1 (m1 7→ H2 (m2 7→ K (m1,m2)))

We are now ready to reformulate reflection, including the case for disjunction:

↑
′A
σ : A[σ] ∈ Sω → KONT (M0 ⊨

e
σ A)

↑
′P(⃗t)
σ q ≜ K 7→ K q
↑
′⊥̇
σ q ≜ K 7→ flush q
↑
′A ⇒̇ B
σ q ≜ DNS⇒(m 7→↑

′B
σ (˙APP ⇒̇ (q, ↓A m)))

↑
′∀̇x A(x)
σ q ≜ DNS∀ (t 7→↑

′A
σ,x←t (˙APP∀̇(q, t)))

↑
′A1 ∧̇ A2
σ q ≜ DNS∧(↑

′A1
σ (˙PROJ∧1 q), ↑

′A2
σ (˙PROJ∧2 q))

↑
′A1 ∨̇ A2
σ q ≜ K 7→ flush (˙CASE(q, ȦX¬̇A1 (kontA1 ∨̇ A2

σ,1 (K)),
ȦX¬̇A2 (kontA1 ∨̇ A2

σ,2 (K))))

28 HUGO HERBELIN AND DANKO ILIK

where, for K provingM0 ⊨
e
id ¬̇(A1 ∨̇ A2), the continuation kontA1 ∨̇ A2

σ,i (K) is defined by:

kontA1 ∨̇ A2
σ,i (K) : (S⌈¬̇Ai[σ]⌉, ¬̇Ai[σ] ⊢ ⊥̇) ⇒ (T0, ¬̇A0 ⊢ ⊥̇)

kontA1 ∨̇ A2
σ,i (K) ≜ r 7→ (↑

′Ai
σ (˙PROJ ⇒̇1 (r))) (m 7→ K (inji m))

The proof of classic0 follows a different pattern than the one without KONT. For it
and for the proof of init0, we use again DNS∀ to distribute the quantification over the
axioms of the theory:

classic0 : KONT(∀A ((M0 ⊨
e
id ¬̇¬̇A)⇒ (M0 ⊨

e
id A)))

classic0 ≜ DNS∀ (A 7→ DNS⇒(m 7→ m))

init0 : KONT(∀B ∈ T0M0 ⊨
e
id B)

init0 ≜ DNS∀ (B 7→ DNS⇒(h 7→↑
′B
id (0, (B, ¬̇A0), I0(Jcons(Jbase, h)), ȧx1)))

Finally, the proof of completeness also needs to chain continuations:

completeness : ∀M∀σ (M ⊨eσ Classic⇒M ⊨eσ T0 ⇒M ⊨
e
σ A0)⇒ T0 ⊢ A0

completeness ≜ ψ 7→ ˙DNABS (completeness′ ψ)

where

completeness′ : ∀M∀σ (M ⊨eσ Classic⇒M ⊨eσ T0 ⇒M ⊨
e
σ A0)⇒ ¬̇A0,T0 ⊢ ⊥̇

completeness′ ≜ ψ 7→classic0 (c 7→ init0 (i 7→flush (˙APP ⇒̇ (ȦX0
¬̇A0

, ↓A0
id (ψM0 id c i)))))

An interesting remark is that T0, ¬̇A0 ⊢ ⊥̇ intuitionistically implies KONT(⊥), so, by
using KONT, reflection for ⊥̇ does not need any more to consider possibly-exploding
model in order to be intuitionistically valid. The need for possibly-exploding models
(or Markov’s principle) shows up instead in proving EFQ⊥̇σ : T0, ¬̇A0 ⊢ ⊥̇ ⇒ M0 ⊨

e
σ ⊥̇

which is in turn required to prove our specific version of DNS⇒, itself used to prove
reflection for the connective ⇒̇ , as well as to prove classic0 and init0.

We conjecture that the use of DNS∀ is necessary, that is that the statement of com-
pleteness in the presence of disjunction implies DNS∀ for ∃-free formulae. For instance,
Kirst [57] proved in the slightly different context of intuitionistic epistemic logic that
completeness with respect to (non-exploding) Kripke semantics implies the following
principle:

¬¬∀n (¬A(n) ∨ ¬¬A(n))

which in turn is equivalent to:

∀n¬¬ (¬A(n) ∨ ¬B(n))⇒ ¬¬∀n (¬A(n) ∨ ¬B(n))

Note also that like Markov’s principle, DNS∀ preserves the witness and disjunction
properties of intuitionistic logic, so they are in this sense intuitionistically valid. Also,
to compute with DNS∀, bar recursion [78] or delimited continuations [50] can be used.

2.7. Extension to existential quantification. The situation for existential quantifi-
cation is simpler than for disjunction and modifying the statement of reflection is not
necessary. The idea is to consider an enumeration of formulae which takes existen-
tial formulae into account, then to add a clause to the definition of Γ ⊂ Sn similar to
the one for universal quantification, using Henkin’s axiom ∃̇y A(y) ⇒̇ A(x) for x taken

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 29

fresh in the finite set of formulae coming before ∃̇y A(y) in the enumeration32. Reifi-
cation is direct, using the witness coming from the proof of truth as a witness for the
proof of derivability. For reflection, the idea is to combine a proof of (∃y A)[σ] ∈ Sω
with the proof of (∃̇y A)[σ] ⇒̇ A[σ, y ← x] available at some level Sn to get a proof of
A[σ, y← x] ∈ Sω, then a proof ofM ⊨eσ,y←x A, thus a proof 33 ofM ⊨eσ ∃y A.

REFERENCES

[1] Andreas Abel and Christian Sattler, Normalization by evaluation for call-by-push-value and po-
larized lambda calculus, Proceedings of the 21st international symposium on principles and practice of
declarative programming (New York, NY, USA), PPDP ’19, Association for Computing Machinery, 2019.

[2] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott, Normalization by evalu-
ation for typed lambda calculus with coproducts, Lics ’01: Proceedings of the 16th annual ieee symposium
on logic in computer science (Washington, DC, USA), IEEE Computer Society, 2001, pp. 303–310.

[3] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher, Reduction-free normalisation for
a polymorphic system, Proceedings, 11th annual IEEE symposium on logic in computer science, new
brunswick, new jersey, usa, july 27-30, 1996, 1996, pp. 98–106.

[4] Zena M. Ariola and Hugo Herbelin, Minimal classical logic and control operators, Thirtieth inter-
national colloquium on automata, languages and programming , ICALP’03, eindhoven, the netherlands,
june 30 - july 4, 2003, Lecture Notes in Computer Science, vol. 2719, Springer-Verlag, 2003, pp. 871–885.

[5] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi, Formal metatheory
of programming languages in the Matita interactive theorem prover, J. Autom. Reasoning, vol. 49 (2012),
no. 3, pp. 427–451.

[6] Jon Barwise, An introduction to first-order logic, Handbook of mathematical logic (Jon Barwise,
editor), Studies in Logic and The Foundations of Mathematics, vol. 90, Elsevier, 1977, pp. 5–46.

[7] Stefano Berardi, Intuitionistic completeness for first order classical logic, J. Symb. Log., vol. 64
(1999), no. 1, pp. 304–312.

[8] Stefano Berardi and Silvio Valentini, Krivine’s intuitionistic proof of classical completeness (for
countable languages), Ann. Pure Appl. Logic, vol. 129 (2004), no. 1-3, pp. 93–106.

[9] Josef Berger, A decomposition of Brouwer’s fan theorem, J. Logic & Analysis, vol. 1 (2009).
[10] Ulrich Berger and Helmut Schwichtenberg, An inverse of the evaluation functional for typed

lambda-calculus, Proceedings, sixth annual ieee symposium on logic in computer science, 15-18 july, 1991,
amsterdam, the netherlands, IEEE Computer Society, 1991, pp. 203–211.

[11] EvertWillem Beth, Semantic entailment and formal derivability, Meded. Kon. Ned. Akad. Weten-
schappen, Afd. Letterhunde, N.R., vol. 18 (1955), pp. 309–342.

[12] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel, Unified classical logic com-
pleteness, Automated reasoning (Cham) (Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, edi-
tors), Springer International Publishing, 2014, pp. 46–60.

[13] Nuria Brede and Hugo Herbelin, On the logical structure of choice and bar induction principles,
LICS, IEEE, 2021, pp. 1–13.

[14] SamuelR. Buss, An introduction to proof theory, Handbook of proof theory (Samuel R. Buss, editor),
North-Holland, North-Holland, 1998, pp. 1–78.

[15] Alonzo Church, Introduction to mathematical logic, vol. 1, The Princeton University Press, 1956.
[16] The Coq Development Team, The Coq reference manual, version 8.9, October 2019, Distributed

electronically at http://coq.inria.fr/doc.

32If universal quantification is present among the connectives, we can also reuse Henkin’s axiom
¬̇A(x) ⇒̇ ∀̇y ¬̇A(y) up to some extra classical reasoning in the object language.

33One may wonder if the ability to extend Henkin’s proof to existential quantification without modifying
the statement of reflection is compatible with the ability to encode A ∨̇ B as an existential formula ∃b ((b =
0 ⇒̇ A) ∧̇ (b = 1 ⇒̇ B)) in any signature containing at least 0 and 1. The point is that we would still have to
include an axiom ensuring that 0 and 1 are different. If this axiom is b = 0 ∨̇ b = 1, we are back to a case
analysis to determine which of the conjunct we may use in (b = 0 ⇒̇ A) ∧̇ (b = 1 ⇒̇ B). If this axiom is of the
form say ¬̇(b , 0 ∧̇ b , 1), we are back to reasoning by contradiction to exploit the axiom.

http://coq.inria.fr/doc

30 HUGO HERBELIN AND DANKO ILIK

[17] , The Coq reference manual, version 8.15, December 2021, Distributed electronically at
http://coq.inria.fr/refman.

[18] , The Coq standard library, version 8.15, Technical report, November 2022, Distributed
electronically at http://coq.inria.fr/distrib/current/stdlib.

[19] Catarina Coquand, A formalised proof of the soundness and completeness of a simply typed lambda-
calculus with explicit substitutions, Higher Order Symbol. Comput., vol. 15 (2002), no. 1, pp. 57–90.

[20] Thierry Coquand and Peter Dybjer, Intuitionistic model constructions and normalization proofs,
Mathematical Structures in Computer Science, vol. 7 (1997), no. 1, pp. 75–94.

[21] Thierry Coquand and Christine Paulin-Mohring, Inductively defined types, Proceedings of colog’88
(P. Martin-Löf and G. Mints, editors), Lecture Notes in Computer Science, vol. 417, Springer-Verlag, 1990.

[22] Thierry Coquand and Jan M. Smith, An application of constructive completeness, TYPES, Lecture
Notes in Computer Science, vol. 1158, Springer, 1995, pp. 76–84.

[23] Olivier Danvy, Type-directed partial evaluation, Popl, 1996, pp. 242–257.
[24] Christian Espíndola, Achieving completeness: from constructive set theory to large cardinals, Ph.D.

thesis, Stockholm University, 2016.
[25] , Semantic completeness of first-order theories in constructive reverse mathematics, Notre

Dame J. Formal Logic, vol. 57 (2016), no. 2, pp. 281–286.
[26] Solomon Feferman, John W. Dawson Jr, Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay,

and Jean van Heijenoort (editors), Kurt gödel: Collected works. vol. 1: Publications 1929-1936, Oxford
University Press, New York, 1986.

[27] Yannick Forster, Dominik Kirst, and Dominik Wehr, Completeness theorems for first-order logic
analysed in constructive type theory, LFCS, Lecture Notes in Computer Science, vol. 11972, Springer, 2020,
pp. 47–74.

[28] Yannick Forster, Dominik Kirst, and Dominik Wehr, Completeness theorems for first-order logic
analysed in constructive type theory: Extended version, Journal of Logic and Computation, vol. 31 (2021),
no. 1, pp. 112–151.

[29] Gottlob Frege, Begriffschrift, eine der arithmetischen nachgebildete formelsprache des reinen
denkens, Halle, 1879, English translation e.g. in [30] or [81].

[30] , Begriffschrift, eine der arithmetischen nachgebildete formelsprache des reinen denkens,
Halle, 1879, English translation e.g. in [81].

[31] Harvey Friedman, Intuitionistic completeness of heyting’s predicate calculus, Notices of the Ameri-
can Mathematical Society, vol. 22 (1975), pp. A–648.

[32] , Classically and intuitionistically provably recursive functions, Higher set theory (D. S.
Scott and G. H. Muller, editors), Lecture Notes in Mathematics, vol. 669, Springer, Berlin/Heidelberg, 1978,
pp. 21–27.

[33] Gerhard Gentzen, Untersuchungen über das logische Schließen, Mathematische Zeitschrift, vol. 39
(1935), pp. 176–210,405–431, English Translation in [79], “Investigations into logical deduction”, pages 68-
131.

[34] Kurt Gödel, Über die vollständigkeit des logikkalküls, Doctoral thesis, University of Vienna, 1929,
English translation in [81] or [26].

[35] , Die vollständigkeit des axiome des logischen functionenkalküls, Monatshefte für Mathe-
matik und Physik, vol. 37 (1930), pp. 349–360, Reprinted in [26].

[36] , Über formal unentscheidbare sätze der principia mathematica und verwandter systeme,
Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–198.

[37] Timothy G. Griffin, The formulae-as-types notion of control, Conf. record 17th annual ACM symp.
on principles of programming languages, POPL ’90, san francisco, CA, USA, 17-19 jan 1990, ACM Press,
New York, 1990, pp. 47–57.

[38] Gisbert Hasenjaeger, Eine bemerkung zu henkin’s beweis für die vollständigkeit des
prädikatenkalküls der ersten stufe, this Journal, (1953), p. 18:42–48.

[39] Leon Henkin, The completeness of the first-order functional calculus, J. Symb. Log., vol. 14 (1949),
no. 3, pp. 159–166.

[40] , The discovery of my completeness proofs, The Bulletin of Symbolic Logic, vol. 2 (1996),
no. 2, pp. 127–158.

[41] Hugo Herbelin, An intuitionistic logic that proves Markov’s principle, Proceedings of the 25th an-
nual ieee symposium on logic in computer science, lics 2010, 11-14 july 2010, edinburgh, united kingdom,
IEEE Computer Society, 2010, pp. 50–56.

http://coq.inria.fr/refman
http://coq.inria.fr/distrib/current/stdlib

THE CONSTRUCTIVE CONTENT OF HENKIN’S PROOF OF GÖDEL’S COMPLETENESS THEOREM 31

[42] Hugo Herbelin and Gyesik Lee, Forcing-based cut-elimination for gentzen-style intuitionistic se-
quent calculus, Logic, language, information and computation, 16th international workshop, wollic 2009,
tokyo, japan, june 21-25, 2009, proceedings (Hiroakira Ono, Makoto Kanazama, and Ruy de Queiroz, edi-
tors), Lecture Notes in Computer Science, vol. 5514, Springer, 2009, pp. 209–217.

[43] Olivier Hermant, Semantic cut elimination in the intuitionistic sequent calculus, Typed lambda cal-
culi and applications, 7th international conference, TLCA 2005, nara, japan, april 21-23, 2005, proceed-
ings (Paweł Urzyczyn, editor), Lecture Notes in Computer Science, vol. 3461, Springer, 2005, pp. 221–233.

[44] Olivier Hermant and James Lipton, Completeness and cut-elimination in the intuitionistic theory of
types - part 2, J. Log. Comput., vol. 20 (2010), no. 2, pp. 597–602.

[45] DavidHilbert and WilhemAckermann, Grundzüge der theoretischen logik, Springer Verlag, Berlin,
1928, English translation of the 1938 edition in [46].

[46] , Principles of mathematical logic, Oxford University Press, New York, 1928.
[47] Jaakko Hintikka, Form and content in quantification theory, Acta Philosophica Fennica, vol. 8

(1955), pp. 11–55.
[48] , Notes on the quantification theory, Societas Scientiarum Fennica, Commentationes

physico-mathematicae, vol. 17 (1955), no. 1.
[49] Danko Ilik, Constructive ultrafilter theorem and completeness for classical predicate logic (formal-

isation), https://iaddg.net/danko/boolean_completeness.zip, 2008.
[50] , Delimited control operators prove double-negation shift, Annals of Pure and Applied

Logic, vol. 163 (2011), no. 11, pp. 1549–1559, In press.
[51] , Continuation-passing style models complete for intuitionistic logic, Annals of Pure and

Applied Logic, vol. 164 (2016), no. 6, pp. 651–662.
[52] Danko Ilik, Gyesik Lee, and Hugo Herbelin, Kripke models for classical logic, Annals of Pure and

Applied Logic, vol. 161 (2010), no. 11, pp. 1367–1378, Special Issue on Classical Logic and Computation.
[53] Stanaslaw Jaškowski, On the rules of suppositions in formal logic, Studia Logica, vol. 1 (1934),

pp. 5–32, Reprinted in S. McCall (1967) Polish Logic 1920-1939, Oxford: Oxford Univ. Press, pp. 232–258.
[54] Thomas J. Jech, The axiom of choice, Dover Books on Mathematics Series, Courier corporation,

1973.
[55] Ingebrigt Johansson, Der minimalkalkül, ein reduzierter intuitionistischer formalismus, Compositio

Mathematica, vol. 4 (1937), pp. 119–136.
[56] Stig Kanger, Provability in logic, Acta Universitatis Stockholmiensis, Stockholm, Almqvist & Wik-

sell, 1957.
[57] Dominik Kirst, Mechanised metamathematics: An investigation of first-order logic and set theory in

constructive type theory, Ph.D. thesis, University of Sarrbrücken, 2023, private communication.
[58] Stephen C. Kleene, Recursive functions and intuitionistic mathematics, Proceedings of the interna-

tional congress of mathemaiticans (L.M. Graves, E. Hille, P.A. Smith, and O. Zariski, editors), Cambridge,
Mass., August 1950, p. 679–685.

[59] Georg Kreisel, Mathematical significance of consistency proofs, this Journal, vol. 23 (1958), no. 2,
pp. 155–182.

[60] , On weak completeness of intuitionistic predicate logic, J. Symb. Log., vol. 27 (1962), no. 2,
pp. 139–158.

[61] Jean-Louis Krivine, Lambda-calcul, types et modèles, Masson, Paris, 1990.
[62] Jean-Louis Krivine, Opérateurs de mise en mémoire et traduction de gödel, Archive for Mathemat-

ical Logic, vol. 30 (1990), no. 4, pp. 241–267 (French).
[63] Jean-Louis Krivine, Lambda-calculus, types and models, Ellis Horwood, 1993.
[64] Jean-Louis Krivine, Classical logic, storage operators and second-order lambda-calculus, Ann.

Pure Appl. Logic, vol. 68 (1994), no. 1, pp. 53–78.
[65] Jean-Louis Krivine, Une preuve formelle et intuitionniste du théorème de complétude de la logique

classique, The Bulletin of Symbolic Logic, vol. 2 (1996), no. 4, pp. 405–421.
[66] Victor N. Krivtsov, An intuitionistic completeness theorem for classical predicate logic, Studia

Logica: An International Journal for Symbolic Logic, vol. 96 (2010), no. 1, pp. 109–115.
[67] , Semantical completeness of first-order predicate logic and the weak fan theorem, Studia

Logica, vol. 103 (2015), no. 3, pp. 623–638.
[68] Per Martin-Löf, An intuitionistic theory of types, predicative part, Logic colloquium, North Hol-

land, 1975, pp. 73–118.

32 HUGO HERBELIN AND DANKO ILIK

[69] Charles McCarty, Completeness and incompleteness for intuitionistic logic, this Journal, vol. 73
(2008), no. 4.

[70] Mitsuhiro Okada, A uniform semantic proof for cut-elimination and completeness of various first
and higher order logics, Theor. Comput. Sci., vol. 281 (2002), no. 1-2, pp. 471–498.

[71] Michel Parigot, Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction,
Logic programming and automated reasoning: International conference lpar ’92 proceedings, st. peters-
burg, russia, Springer-Verlag, 1992, pp. 190–201.

[72] Helena Rasiowa and Roman Sikorski, A proof of the completeness theorem of grödel., Fundamenta
Mathematicae, vol. 37 (1950), no. 1, pp. 193–200.

[73] Giovanni Sambin, Pretopologies and completeness proofs, J. Symb. Log., vol. 60 (1995), no. 3, pp.
861–878.

[74] Helmut Schwichtenberg and Stanley S. Wainer, Proofs and computations, Cambridge University
Press, 2011.

[75] Kurt Schütte, Ein system des verknüpfenden schliessens, Archiv für mathematische Logik und
Grundlagenforschung, vol. 2 (1956), no. 2-4, pp. 55–67 (German).

[76] Stephen G. Simpson, Subsystems of second order arithmetic, Springer seminars in immunopathol-
ogy, Springer, 1999.

[77] RaymondM. Smullyan, First-order logic, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band
43, Springer-Verlag New York, Inc., New York, 1968.

[78] Clifford Spector, Provably recursive functionals of analysis: A consistency proof of analysis by
an extension of principles in current intuitionistic mathematics, Recursive function theory: Proceedings
of symposia in pure mathematics (Providence, Rhode Island) (F. D. E. Dekker, editor), vol. 5, American
Mathematical Society, 1962, p. 1–27.

[79] Manfred E. Szabo (editor), The collected works of gerhard gentzen, North Holland, Amsterdam,
1969.

[80] Anne S. Troelstra, Metamathematical investigation of intuitionistic arithmetic and analysis, Lec-
ture Notes in Mathematics, vol. 344, Springer-Verlag, Berlin, 1973.

[81] Jean van Heijenoort (editor), From frege to gödel, a source book in mathematical logic, 1879-1931,
Harvard University Press, New York, 1967.

[82] Wim Veldman, An intuitionistic completeness theorem for intuitionistic predicate logic, J. Symb.
Log., vol. 41 (1976), no. 1, pp. 159–166.

IRIF, CNRS, INRIA, UNIVERSITÉ PARIS CITÉ
E-mail: Hugo.Herbelin@inria.fr

CNES, FRANCE
E-mail: dankoilik@gmail.com

	1. Preliminaries
	1.1. The completeness theorem
	1.2. Weak and strong completeness
	1.3. The standard existing proofs of completeness
	1.4. Models and truth
	1.5. Regarding the metalanguage as a formal system
	1.6. Former results about the computational content of completeness proofs for intuitionistic logic
	1.7. The intuitionistic provability of the different statements of completeness
	1.8. Chronology and recent related works

	2. The computational content of Henkin's proof of Gödel's completeness
	2.1. Henkin's proof of statement S2, slightly simplified
	2.2. From Henkin's proof of statement S2 to a proof of statement S1'
	2.3. The computational content of the proof of completeness
	2.4. The computational content on examples
	2.5. Extension to conjunction
	2.6. Extension to disjunction
	2.7. Extension to existential quantification

