
Duality of computation and sequent calculus: a few more remarks

Hugo Herbelin
INRIA-Saclay

École Polytechnique
F-91128 Palaiseau Cedex
Hugo.Herbelin@inria.fr

Abstract

A succession of works have contributed to the under-
standing of the computational content of Gentzen-style
classical sequent calculus. Especially, it has been shown
that the left-right duality of sequent calculus expresses a
syntactic duality between programs and their evaluation
contexts and that sequent calculus has two dual syn-
tactic restrictions that respectively correspond to call-
by-name evaluation and call-by-value evaluation. We
propose here an interpretation of the unrestricted syn-
tax of sequent calculus, which, thanks to the use of lazi-
ness operators, validates eta-equalities and for which
the call-by-name and call-by-value subsystems are ob-
tained by restrictions at the semantic level only. Also, to
reason with connectives in sequent calculus, we intro-
duce a purely computational and generic approach of
the notion of logical connective.

Introduction

A succession of works have contributed to the un-
derstanding of the computational content of Gentzen-
style classical sequent calculus since the awareness of
the proofs-as-programs correspondence exemplified by
Curry [2] and Howard [9] in the context of Hilbert’s
style logic and natural deduction: Parigot contributed
with his µ operator [13] to the understanding of multiple-
conclusions sequents, [7] contributed to the understand-
ing of the left introduction rules, and [1] provided an
analysis of the symmetry of sequent calculus as a syn-
tactic duality between terms and evaluation contexts and
a semantical duality between call-by-name and call-by-
value evaluation. Besides this latter line of work that
is characterized by a close connection with λ-calculus
and slight divergences on the way to deal with the

non logical rules of sequent calculus, Danos, Joinet
and Schellinx investigated all possible embeddings of
Gentzen’s LK into linear logic [3], and van Bakel,
Lengrand and Lescanne [18], following Lengrand [11],
investigated some properties of the underlying compu-
tational structure of LK. Relying on [1], Wadler also in-
vestigated how to interpret pairs and sums in sequent
calculus.

None of these works really cared about η-equalities.
The interpretations from [1] and [20] provide with close
correspondences with more well studied λ-calculi such
as λµ-calculus [8, 20] and they consequently support η-
equality but the normal terms in these interpretations
capture only a subset of the normal forms of sequent
calculus. For the other interpretations, all normal proofs
of sequent calculus are captured by normal expressions
of the associated computational language, but evaluation
of the arguments of connectives is “weak” (e.g. a pair is
in normal form even if its arguments are not values) and
η-equalities are not validated (see the end of Section 1).

We here address the question of computationally in-
terpreting all normal forms of sequent calculus while
still being compatible with η-equalities (such as sur-
jective pairing or the usual η rule of λ-calculus). We
achieve this goal by introducing an explicit operator to
delay the evaluation of the arguments of the construc-
tors of the calculus (such as the arguments of a pair or
the argument of sum injections).

Incidentally, and to provide with a more uniform pre-
sentation of sequent calculus with its different connec-
tives, we investigate a generic notion of connective, at-
tacked from the computational perspective, that covers
most of standard constructions such as pairs and pro-
jections, λ-abstraction and application, sums and case
analysis.

1

1 Review of previous works

In a previous work with Pierre-Louis Curien was in-
troduced the λµµ̃-calculus [1]. It is a calculus which
computationally interprets a variant of Gentzen’s se-
quent calculus LK in the spirit of the Curry-Howard cor-
respondence between Hilbert-style logic and combina-
tory logic and between natural deduction and λ-calculus.

The syntax of λµµ̃-calculus has three categories of
expressions:

Commands c ::= 〈v||e〉
Terms v ::= µα.c | x | λx.v
Evaluation contexts e ::= µ̃x.c | α | v · e

Commands interpret the cut rule of sequent calculus
and they create the opportunity for a term and an evalua-
tion context to interact together. Terms interpret right in-
troduction rules of sequent calculus and evaluation con-
texts interpret left introduction rules. These latter cat-
egories are dual one of the other. Especially, there are
variables for terms, written x, y, ... and variables for
evaluation contexts, written α, β, ... The operators µα.c
and µ̃x.c are binders. The operator µα.c builds a term
which, when in interaction with an evaluation context e,
binds e to α and expects to substitute it at the bound oc-
currences of α. The operator µ̃x.c is the evaluation con-
text which, when in interaction with a term v, binds it to
x and expects to substitute it at the bound occurrences
of x. Finally, λx.t is ordinary abstraction of λ-calculus
and v · e is the evaluation context that first applies v to its
argument before continuing the evaluation with context
e.

The variant of sequent calculus in Curry-Howard cor-
respondence with λµµ̃-calculus is called LKµµ̃ and it is
shown, simultaneously with its proof-term annotations,
in Figure 1. The definition of this sequent calculus re-
lies on three kinds of sequents. In each kind of sequent,
the contexts, written Γ, Γ′, ... on the left-hand side and
∆, ∆′, ... on the right-hand side are finite maps from
names to formulas. The first kind of sequent, Γ ` ∆ in-
terprets commands, and the interpretation of Γ ` ∆ as
a typing judgments for c is written c : (Γ ` ∆). The
second kind of sequent, Γ ` A |∆, has a distinguished
formula on the right-hand side and it corresponds to the
typing of a term, the distinguished formula being the
type of the term. Symmetrically, sequents of the third
kind, Γ | A ` ∆, corresponds to the typing of an evalua-
tion context expecting to interact with a term of type A.
The sequent calculus has two axiom rules, one for intro-
ducing each kind of variable and the operators µα.c and
µ̃x.c act as focusing rules. Note that weakening rules are

AxR

Γ, x : A ` x : A |∆
AxL

Γ |α : A ` α : A,∆

µ
c : (Γ ` α : A,∆)

Γ ` µα.c : A |∆
µ̃

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆

Cut
Γ ` v : A |∆ Γ | e : A ` ∆

c : (Γ ` ∆)

→R
Γ, x : A ` t : B |∆

Γ ` λx.t : A→ B |∆
→L
Γ`v : A |∆ Γ | e : B`∆

Γ | v · e : A→ B ` ∆

Figure 1. LKµµ̃: a system of simple types
for λµµ̃

treated at the level of axiom rules, as is it common in
type systems and that contraction rules are simulated by
a cut with an axiom. Contexts are treated additively.

Due to the absence of explicit contraction and weak-
ening rules and to the additive management of contexts,
LKµµ̃ also admits a presentation as a derivation of formu-
las [8], with no explicit representation of the context, but
using discharge of assumption for binders as it was orig-
inally done for natural deduction in Gentzen [5]. This
is given in Figure 1. Since LKµµ̃ has three kinds of se-
quents, so has its presentation with implicit context. The
three kinds of derivation are ` A, standing for A is true,
A ` standing for A is false, and ⊥⊥ standing for a contra-
diction. For instance, here follows a derivation of Peirce
law where each discharge is annotated by a number. The
corresponding λµµ̃-term is λx.µα.〈x||(λy.µβ.〈y||α〉) · α〉.

[` (A→ B)→ A]2

[` A]3 [A `]1

⊥⊥

` B
4

` A→ B
3

[A `]1

(A→ B)→ A `

⊥⊥

` A
1

` ((A→ B)→ A)→ A
2

There are three rules of reduction for λµµ̃ and seen
from the perspective of LKµµ̃, these three rules imple-

2

µ

[A `]
...
⊥⊥

` A
µ̃

[` A]
...
⊥⊥

A `

Cut ` A A `

⊥⊥

→R

[` A]
...

` B

` A→ B
→L

` A B `

A→ B `

Figure 2. Presentation of LKµµ̃ with implicit
context

ment elimination of cuts (to the exception of cuts that
involves an axiom and no focusing rule since these latter
cuts are used to simulate contraction – this restriction
does not preclude the subformula property which still
holds):

(µ) 〈µα.c||e〉 → c[α← e]
(µ̃) 〈v||µ̃x.c〉 → c[x← v]
(→) 〈λx.v||v′ · e〉 → 〈v′||µ̃x.〈v||e〉〉

where c[α ← e] and c[x ← v] are capture-free substitu-
tions.

The above system is non-deterministic and non-
confluent: The first two rules create a critical pair and it
is shown in [1] that giving priority to (µ) leads to a call-
by-value language and giving priority to (µ̃) leads to a
call-by-name language: in the critical pair 〈µα.c||µ̃x.c〉, it
is a call-by-name evaluation discipline if the evaluation
context binds its argument as it stands to x, it is a call-
by-value evaluation discipline if the evaluation context
expects first its argument to be evaluated before binding
it to x, which means yielding its priority to the term.

To the contrary of, say, natural deduction and λ-
calculus, abstraction and the constructor of evaluation
context that stands for application are not necessary for
the rest of the calculus to be meaningful. The resulting
subsystem, called system µµ̃, has been studied in [8].

Two restrictions of the λµµ̃-calculus are given in [1].
In both cases, the constructor of evaluation contexts that
stands for application is constrained. More precisely, the

restricted syntax for call-by-name is

c ::= 〈v||e〉 E ::= α || v · E
v ::= x || µβ.c || λx.v e ::= µ̃x.c || E

and the restricted syntax for call-by-value is

c ::= 〈v||e〉 V ::= x || λx.v
e ::= α || µ̃x.c || V · e v ::= µβ.c || V

In 2003, Wadler presented a variant of λµµ̃ based on
disjunction, conjunction and negation instead of impli-
cation [19]. The syntax of the calculus is:

Statements S ::= M • K
Terms M,N ::= (S).α | x | 〈M,N〉 | [K]not

| 〈M〉inl | 〈M〉inr
Coterms K, L ::= x.(S) | α | [K, L] | not〈M〉

| fst[K] | snd[L]

where (S).α matches µα.c and x.(S) matches µ̃x.c.
Two dual systems of reduction were defined, one for

call-by-name evaluation and the other for call-by-value
evaluation. The definition of call-by-name reduction re-
lies on a notion of covalue and of coterm context:

Covalues P,Q ::= α | [P,Q] | not〈M〉
| fst[P] | snd[Q]

Coterm contexts F ::= [{},K] | [P, {}]
| fst[{}] || snd[{}]

(β&) 〈M,N〉 • fst[P] →n M • P
(β&) 〈M,N〉 • snd[Q] →n N • Q
(β∨) 〈M〉inl • [P,Q] →n M • P
(β∨) 〈N〉inr • [P,Q] →n N • Q
(β¬) [K]not • not〈M〉 →n M • K
(βL) M • x.(S) →n S {M/x}
(βR) (S).α • P →n S {P/α}
(ς) F{K} →n y.((y • F{α}).α • K)

Observe that the rule (ς) is a rule that forces strong
evaluation of the argument of fst[], snd[] and [,]
(which are the dual of the sum injections and of pairing
in call-by-value). Due to this strong evaluation disci-
pline, it can be shown that the normal forms of the call-
by-name subcalculus of Wadler’s calculus are generated
by the following syntax:

Statements S ::= x • P | W • α
Weak terms W ::= 〈M,N〉 | [K]not

| 〈M〉inl | 〈M〉inr
Terms M,N ::= (S).α | x | W
Covalues P,Q ::= α | [P,Q] | not〈M〉

| fst[P] | snd[Q]

3

Obviously, the same can be said by duality of the call-
by-value fragment of Wadler’s calculus.

In both [1] and [19], the call-by-name and call-by-
value subcalculi are then obtained by restricting not only
the reduction rules but also the syntax.

If one does not restrict the syntax of λµµ̃-calculus, the
η rule for abstraction, which is stated as λy.µα.〈v||y · α〉 =
v for x and α not free in v, does not hold in the call-by-
name fragment. Indeed, we have the following diver-
gence (_ denotes a variable that binds no occurrence):

〈λy.µα.〈µ_.c1||y · α〉||v · µ̃_.c2〉 = 〈µ_.c1||v · µ̃_.c2〉

↓n ↓n

〈v||µ̃y.〈µα.〈µ_.c1||y · α〉||µ̃_.c2〉〉 c2
↓?n
c1

The λξ-calculus is the re-interpretation of a non-
deterministic cut-elimination procedure for LK formal-
ized by Urban [17] as an untyped language admit-
ting two dual call-by-name and call-by-value restrictions
(see Lengrand [11]). The λξ-calculus (which has been
renamed in more recent works into X [18]) interprets all
normal proofs of LK but for the same reason as above,
it does not support η-equality.

The sequent calculus LKtq, defined in Danos, Joinet
and Schellinx [3], provides with a computational anal-
ysis of LK through linear logic. It does not validate η-
equality either.

2 Computational connectives

The addition of a connective to the system µµ̃ is a
modular operation. New connectives are obtained by
providing syntax rules for forming terms, syntax rules
for forming evaluation contexts and reduction rules de-
scribing the interaction between a term and an evalua-
tion context of the same connective. For instance, im-
plication is characterized by the constructions λx.t and
v · e and the reduction rule (→), while the conjunction
of Wadler’s calculus is characterized by the construc-
tions 〈M,N〉, fst[K], snd[K] and the two reduction rules
named (β&).

Especially, connectives are characterized by their
constructions and they are no longer seen a constructor
of formula or type. This suggests to introduce a notion
of purely computational connective. A computational
connective (or simply connective hereafter) is the pair
of a sign, called the sign of the connective, and of a fam-
ily of finite sequences of signs, at most one sign of each
sequence being possibly distinguished and called dot-
ted. If S is a connective, its domain, written DS, is the

domain of the family and the cardinal of the connec-
tive is defined to be the cardinal of DS. The signs are
either + or −, referring respectively the class of terms
and the class of evaluation contexts. We use the nota-
tion {s1

1 . . . s
1
n1
, . . . , sq

nq }s for representing connectives of
finite cardinal where each s is a sign and, in each se-
quence, at most one si

j is possibly dotted. For a con-
nective of infinite cardinal, we write {si

1 . . . s
i
ni
|i ∈ D}s

or also {si
1 . . . s

i
ni
}i∈Ds. This kind of notations is called a

signature. If s is +, we say that the connective is posi-
tive, otherwise, we say that it is negative.

To each connective of cardinality α is associated a
family of general constructors of cardinality α + 1 and
a family of reduction rules of cardinality α. The gen-
eral constructors are split into a family of α constructors
called irreversible constructors (or simply constructors)
and a single constructor called reversible constructor (or
also co-constructor). If the connective is positive, the ir-
reversible constructors are constructors of terms and the
reversible constructor is a constructor of evaluation con-
texts. If the connective is negative, the α irreversible
constructors are constructors of evaluation contexts and
the co-constructor is a constructor of terms.

Each irreversible constructors of a connective takes
as many arguments as the length of the sequence in the
corresponding component of the family, and each of
these arguments is a term if the corresponding sign in
the sequence is + and an evaluation context if the cor-
responding sign in the sequence is −. For i ∈ DS, we
write ιi(wS i

1 , ...,wS i
ni) (resp. πi[wS i

1 , ...,wS i
ni]) for the irre-

versible constructor of a positive (resp. negative) con-
nective S where S i

j is the jth sign of the sequence of in-
dex i and w+ and w− are respectively a term and an evalu-
ation context. In case the connective is of cardinal 1, we
simply abbreviate ι1(ws1 , ...,wsn) into (ws1 , ...,wsn) and
π1[ts1 , ..., tsn] into [ts1 , ..., tsn].

The unique reversible constructor of a connective
has as many arguments as the cardinality of the family
of sequences and each of these arguments is obtained by
binding as many variables as the number of non-dotted
elements in the corresponding sequence. If there
is no dotted element, the multiple binders takes a
command as argument, otherwise, it takes as argument
an evaluation context if the dotted sign is + or a term
if the dotted sign is −. In case no sign is dotted at
all, we write [µ̃(aS 1

1 , ..., aS 1
n1).c1, ..., µ̃(aS q

1 , ..., aS q
nq).cq]

(resp. (µ[aS 1
1 , ..., aS 1

n1].c1, ..., µ[aS q
1 , ..., aS q

nq].cq)) for the
reversible constructor of a positive (resp. negative) con-
nective of finite cardinal. We write [µ̃(aS i

1 , ..., aS i
ni).ci]i

(resp. (µ[aS i
1 , ..., aS i

ni].ci)i) in case the cardinal is
infinite. In each case, ni is the length of the sequence

4

associated to i in the domain of the connective and
each ai is a term variable or an evaluation context
variable depending on whether the corresponding
sign in the sequence is + or − respectively. If
the lth sign is dotted in the sequence of order i,
the corresponding subexpressions µ[a1, ..., an].c (resp.
µ̃(a1, ..., an).c) is replaced by µ̃(a1, ..., al−1, al+1, . . . , an).e
(resp. µ[a1, ..., al−1, al+1, . . . , an].e) if al is a
term variable or µ̃(a1, ..., al−1, al+1, . . . , an).v (resp.
µ[a1, ..., al−1, al+1, . . . , an].v) if al is an evaluation con-
text variable. In case the connective is of cardinal 1 and
the single sequence not made of a dotted single sign, we
may drop the surrounding parentheses or brackets.

We now give the reduction rules for computational
connectives. There are two variants, depending on the
sign of the connective. For non-dotted connective, the
rules are given in Figure 2.

In case the sequence of index i0 has a dot, when
the associated expression is µ̃(a1, ..., al−1, al+1, ..., an).e
or µ(a1, ..., al−1, al+1, ..., an).e instead of µ̃(a1, ..., an).c
or µ(a1, ..., an).c then the right-hand side of the rule is
〈wl||e[a1, ..., al−1, al+1, ..., an ← w1, ...,wl−1,wl+1, ...,wn]〉,
and dually when the expression associated to the dot
sequence ends with some term v. Notice then that
dotted sign are here only for convenience so as to obtain
shortest notation. Indeed, the right-hand side of the
reduction rules for a connective with dots and for the
same connective expressed without any dot are the
same. We give some examples.

Additive disjunction We call computational additive
disjunction and write ∨a for the connective character-
ized by {+̇, +̇}+ (with domain {1, 2}). It introduces the
following constructors and reduction rules:

Terms v ::= ι1(v) | ι2(v)
Evaluation contexts e ::= [e, e]

(∨1
a) 〈ι1(v1)||[e1, e2]〉 → 〈v1||e1〉

(∨2
a) 〈ι2(v2)||[e1, e2]〉 → 〈v2||e2〉

Additive conjunction We call computational additive
conjunction and write ∧a for the connective character-
ized by {−̇, −̇}− (with domain {1, 2}). It introduces the
following constructors and reduction rules:

Terms v ::= (v, v)
Evaluation contexts e ::= π1[e] | π2[v]

(∧1
a) 〈(v1, v2)||π1[e1]〉 → 〈v1||e1〉

(∧2
a) 〈(v1, v2)||π2[e2]〉 → 〈v1||e2〉

Multiplicative conjunction We call computational
multiplicative conjunction and write ∧m for the connec-
tive characterized by {++}+ (with domain {1}). It intro-
duces the following constructors and reduction rules:

Terms v ::= (v, v)
Evaluation contexts e ::= µ̃(x, y).c

(∧m) 〈(v1, v2)||µ̃(x1, x2).c〉 → c[x1←v1][x2←v2]

Multiplicative disjunction We call computational
multiplicative disjunction and write ∨m for the connec-
tive characterized by {−−}− (with domain {1}). It intro-
duces the following constructors and reduction rules:

Terms v ::= µ[α, β].c
Evaluation contexts e ::= [e, e]

(∨m) 〈µ[α1, α2].c||[e1, e2]〉 → c[α1←e1][α2←e2]

Implication Computational implication, written → is
characterized by {+−̇}− (with domain {1}). It introduces
the following constructors and reduction rules:

Terms v ::= λx.t
Evaluation contexts e ::= v · e

(→) 〈λx.t||v · e〉 → 〈t[x← v]||e〉

where λx.t is just another writing for the standardized
notation µ[x].t and v · e an alternative writing for the
standardized notation [v, e].

Negation There are two isomorphic forms of compu-
tational negation. The positive negation is characterized
by {−̇}+ and the negative negation by {+̇}− (both with
domain {1}). The constructors and reduction rules of
positive negation are:

Terms v ::= (e)
Evaluation contexts e ::= [v]

(¬+) 〈(e)||[v]〉 → 〈v||e〉

Relation with Girard’s ludics connectives

Computational connections can be seen as a two-sided
variant of Girard’s notion of synthetic connective [6]
with an emphasis on the purely computational aspect of
the connective. A (finite) synthetic connective of the
form {{n1

1, ..., n
1
p1
}, ..., {nq

1, ..., n
q
pq }} is interpreted by the

computational connective

{

p1 times︷ ︸︸ ︷
+ . . .+ , ...,

pq times︷ ︸︸ ︷
+ . . .+ }+

5

(S) 〈ιSi0 (wS i0
1 , ...,wS i0

ni0)||[µ̃(aS i
1 , ..., aS i

ni).ci]i〉
h
→ ci0 [aS i

1 , ..., aS i
ni ← wS i0

1 , ...,wS i0
ni0]

(T) 〈(µ[aT i
1 , ..., aT i

ni].ci)i||π
T
i0

[wT i0
1 , ...,wT i0

ni0]〉
h
→ ci0 [aT i

1 , ..., aT i
ni ← wT i0

1 , ...,wT i0
ni0]

Figure 3. Generic reduction rules for non-dotted positive and negative computational connec-
tives

of domain D , {{n1
1, ..., n

1
p1
}, ..., {nq

1, ..., n
q
pq }}. More gen-

erally, the infinite form of synthetic connectives used in
ludics’ designs [6] is interpreted by the computational
connective

{. . . ,

|I| times︷ ︸︸ ︷
+ . . .+ , . . .}I+

where I ranges over finite subsets of N and |I| is the car-
dinality of I. Observe incidentally that only the cardinal
of I is relevant from the computational point of view
and that we also need arbitrary many distinct copies of
a subset of cardinal n. Henceforth, an alternative defini-
tion of ludics’ connective that computationally behaves
the same can be obtained if one replaces the indexation
over the subset of N by an indexation over the pair of
a finite cardinality and of a multiplicity number. Con-
cretely, this corresponds to the computational connec-
tive

{. . . ,

p times︷ ︸︸ ︷
+ . . .+ , . . .}{n,p}+

where n and p range over N. Note that to be computa-
tionally strictly equivalent to ludics’ connective, p must
not range over N when n is 0 since there is only one
empty subset of N. Making p range over N even when
n is 0 provides with a generalization that allows for in-
stance to represent the connective 1 ⊕ 1, what cannot be
captured in ludics.

Computational connectives not captured by the gen-
eral definition

Observe that some other forms of constructions escape
this definition. For instance, the if-and-only-if connec-
tive defined in Raghunandan and Summers [14] is char-
acterized by

V ::= (µ(x, β).c1, µ(y, α).c2)
E ::= [µ̃(x, y).c1, µ̃(α, β).c2]

with reduction either (we overline the inner command to
better visualize the nested structure of the expressions):

〈(µ(x, β).c1, µ(y, α).c2)||[µ̃(x′, y′).c′1, µ̃(α
′, β′).c′2]〉

→ 〈µβ.〈µα′.c′2[β′←β]||µ̃x.c1〉||µ̃y.〈µα.c2||µ̃x′.c′1[y′←y]〉〉

or:

〈(µ(x, β).c1, µ(y, α).c2)||[µ̃(x′, y′).c′1, µ̃(α
′, β′).c′2]〉

→ 〈µα.〈µβ′.c′2[α′←α]||µ̃y.c2〉||µ̃x.〈µβ.c1||µ̃y′.c′1[x′←x]〉〉

Other connectives not captured by our definition are
the dependent product type and dependent sum type of
type theory.

Eta-equalities for computational connectives

Eta-equalities can be formulated in a generic way on
computational connectives. Eta-equalities expresses an
observational property: any variable in the category of
the opposite sign of the connective behaves as if it were
an expression constructed from a reversible constructor.
We have two such η-equalities depending on the sign of
the connective:

(ηS) α = [µ̃(aS i
1 , ..., aS i

ni).〈ιi(aS i
1 , ..., aS i

ni)||α〉]i

(ηT) x = (µ[aT i
1 , ..., aT i

ni].〈x||πi[aT i
1 , ..., aT i

ni]〉)

where, in case the lth sign is dotted in the se-
quence of index i, the expression fragment
µ̃(aS i

1 , ..., aS i
ni) (resp. µ[aT i

1 , ..., aT i
ni]) is re-

placed by µ̃(aS i
1 , ..., aS i

l−1 , aS i
l+1 , ..., aS i

ni).µ+aS i
l (resp.

µ(aT i
1 , ..., aT i

l−1 , aT i
l+1 , ..., aT i

ni).µ+aT i
l) with µ+ being µ is S i

l
is negative and µ̃ otherwise.

As examples, we give the η-equality for the connec-
tives considered above.

(η∨a) α = [µ̃x1.〈ι1(x1)||α〉, µ̃x2.〈ι(x2)||α〉]
(η∨m) x = µ[α1, α2].〈x||[α1, α2]〉
(η∧a) x = (µα1.〈x||π1[α]〉, µα2.〈x||π2[α2]〉]
(η∧m) α = µ̃(x1, x2).〈(x1, x2)||α〉
(η→) x = λy.µα.〈x||y · α〉
(η¬+) α = [µ̃x.〈x||α〉]

3 System L

We are now ready to define an extension of system
µµ̃ that interprets all normal forms of sequent calculus,

6

which still admits two confluent call-by-name and call-
by-value restrictions and which restrictions still interpret
all normal forms of sequent calculus and additionally
validate η-equalities. This system is called system L
(by reference to Gentzen’s Logistischen Kalküle LJ and
LK). Compared to system µµ̃ and its extensions, sys-
tem L has laziness operators (“quotes”) whose purpose
is to delay evaluation. We formulate the calculus with a
generic positive computational connective and a generic
negative connective without any dotted sign, but it could
be formulated with any arbitrary collection of computa-
tional connectives, possibly with dots, such as, say, im-
plication, multiplicative disjunction, additive conjunc-
tion, etc. It is the use of quotes in the arguments of
the connective that allows the η-reduction to hold. The
syntax and reduction semantics of system L are given
in Figure 3. The notation w is used to denote weak ex-
pressions, i.e. w+ is W and w− is F. Standard notions
of calculi with binders such as closed expressions, free
variables, bound variables, etc. apply to system L.

Like system µµ̃, the reduction system has the crit-
ical pair 〈µα..c||µ̃x.c′〉 but it also has the new critical
pair 〈´v||´e〉. Like for system µµ̃ and its extensions,
we can consider two confluent restrictions that respec-
tively correspond to a call-by-name and a call-by-value
restriction. We only present the call-by-name restriction,
knowing that the call-by-value restriction is dual.

3.1 Call-by-name system L

Call-by-name system L, shortly Ln, is obtained by
giving priority to the right-hand side in the command
〈µα..c||µ̃x.c′〉, and to the left-hand side in the command
〈´v||´e〉. This is obtained by restricting e to be a weak
evaluation context in (µ) and by restricting W to be a
value in (′R). As a consequence of the first restriction,
evaluation context variables can only be substituted by
weak evaluation contexts and as a consequence of the
second restriction, quoted terms behave the same as non
quoted terms with respect to interaction.

This suggests to identify terms and quoted terms and
then to merge the categories of terms and weak terms
and the categories of linear evaluation contexts and weak
evaluation contexts together. We then arrive to the refor-
mulation of the syntax and semantics given in Figure 3.1
where now, w+ is v (since v and W have been merged)
and w− is E (since F and E have been merged). The re-

duction →n is defined as the congruence of
h
→ and the

reduction
∗
→n as the reflexive-transitive closure of→n.

The reduction system can be embedded as a Higher-
order Rewriting System (HRS). It has no critical pairs

and is hence confluent (for the theory of HRS, see Nip-
kow [12]).

Proposition 1 The reduction rules of system Ln are con-
fluent.

As a corollary, system Ln, whatever connectives it is
equipped with, is consistent, in the sense that it does not
identify all expressions (take for instance 〈x||α〉 and 〈y||α〉
which have no redex and are distinct as soon as x and y
are themselves distinct).

3.2 Normal forms and operational com-
pleteness

A command is said to be in weak-head normal form
if it has the form 〈x||E〉 or 〈V ||α〉. An expression of Ln

is syntactically in normal form (or simply normal) if all
commands occurring in the expression are in weak-head
normal form. Our notions of normal form and reduction
match in the following sense:

Proposition 2 An expression is syntactically in normal
form iff it has no redex.

Based on typing, we could in fact assert a stronger
statement of operational completeness by observing that
typed normal terms satisfy the subtype property (i.e. any
type occurring in the derivation of a normal term is a
subtype of a type occurring in the end sequent of the
typing derivation).

3.3 Eta-equalities

A call-by-name substitution is a multiple substitution
of evaluation contexts variables by weak evaluation con-
texts and of term variables by arbitrary terms.

We say that two normal forms v1 and v2 (resp. e1 and
e2) are separable in Ln if for all commands c1 and c2,
there is a call-by-name substitution ρ and an evaluation
context e (resp. a term v) such that 〈v1[ρ]||e〉

∗
→n c1 and

〈v2[ρ]||e〉
∗
→n c2 (resp. 〈v||e1[ρ]〉

∗
→n c1 and 〈v||e2[ρ]〉

∗
→n

c2). We say that an equation v1 = v2 (resp. e1 = e2)
between normal expressions with free variables belongs
to the observational closure of→n if v1 and v2 (resp. e1
and e2) are not separable.

Collecting the observational equalities that are not al-
ready captured by the reduction system is a priori not
an easy task. At least, the following equalities can be
proved to be part of the observational closure of→n.

7

Commands c ::= 〈v||e〉
Values V ::= . . . | ιSi (wS i

1 , ...,wS i
ni) | . . . | (µ[aT i

1 , ..., aT i
ni].c)i

Weak terms W ::= ´v | V
Terms v ::= µα.c | x | W
Linear eval. ctx E ::= . . . | πTi [wT i

1 , ...,wT i
ni] | . . . | [µ̃(aS i

1 , ..., aS i
ni).c]i

Weak eval. ctx F ::= ´e | E
Eval. contexts e ::= µ̃x.c | α | F

(µ) 〈µα.c||e〉
h
→ c[α← e]

(µ̃) 〈v||µ̃x.c〉
h
→ c[x← v]

(′L) 〈´v||F〉
h
→ 〈v||F〉

(′R) 〈W ||´e〉
h
→ 〈W ||e〉

(S) 〈ιSi0 (wS i0
1 , ...,wS i0

ni0)||[µ̃(aS i
1 , ..., aS i

ni).ci]i〉
h
→ ci0 [aS i

1 , ..., aS i
ni ← wS i0

1 , ...,wS i0
ni0]

(T) 〈(µ[aT i
1 , ..., aT i

ni].ci)i||π
T
i0

[wT i0
1 , ...,wT i0

ni0]〉
h
→ ci0 [aT i

1 , ..., aT i
ni ← wT i0

1 , ...,wT i0
ni0]

Figure 4. Syntax and reduction semantics of system L

Commands c ::= 〈v||e〉
Values V ::= . . . | ιSi (wS i

1 , ...,wS i
ni) | . . . | (µ[aT i

1 , ..., aT i
ni].c)i

Terms v ::= µα.c | x | V
Weak eval. contexts E ::= α | ´e | . . . | πTi [wT i

1 , ...,wT i
ni] | . . . | [µ̃(aS i

1 , ..., aS i
ni).c]i

Evaluation contexts e ::= µ̃x.c | E

(µ) 〈µα.c||E〉
h
→n c[α← E]

(µ̃) 〈v||µ̃x.c〉
h
→n c[x← v]

(′) 〈V ||´e〉
h
→n 〈V ||e〉

(S) 〈ιSi0 (wS i0
1 , ...,wS i0

ni0)||[µ̃(aS i
1 , ..., aS i

ni).ci]i〉
h
→n ci0 [aS i

1 , ..., aS i
ni ← wS i0

1 , ...,wS i0
ni0]

(T) 〈(µ[aT i
1 , ..., aT i

ni].ci)i||π
T
i0

[wT i0
1 , ...,wT i0

ni0]〉
h
→n ci0 [aT i

1 , ..., aT i
ni ← wT i0

1 , ...,wT i0
ni0]

Figure 5. Syntax and reduction semantics of system Ln

Proposition 3 (Some observational equalities) The
following equations belong to the observational closure
of→n:

(ηµ) x = µα.〈x||α〉
(ηµ̃) α = µ̃x.〈x||α〉
(ηS) α = [µ̃(aS i

1 , ..., aS i
ni).〈ιi(aS i

1 , ..., aS i
ni)||α〉]i

(ηT) x = (µ[aT i
1 , ..., aT i

ni].〈x||πi[aT i
1 , ..., aT i

ni]〉)

Observational equalities do not change the consis-
tency of the underlying reduction system. Hence, as a
corollary, we have the consistency of the equational the-
ory generated by the reduction system and the η rules.

3.4 System L and sequent calculus

We give in Figure 3.4 a typing system for system L.
For simplicity we do not give the generic introduction
rules of a positive connective S and a negative connec-
tive T but instead consider the case with a single neg-
ative connective, namely implication. There are seven
kinds of judgments accordingly to the number of syn-
tactic categories in system L:
• Γ ` v : A |∆ for terms
• Γ | e : A ` ∆ for evaluation contexts
• Γ ` W : A ||∆ for weak terms
• Γ ||K : A ` ∆ for weak evaluation contexts
• Γ ` V : A ; ∆ for values (linear terms)

8

AxR

Γ, x : A ` x : A |∆
AxL

Γ |α : A ` α : A,∆

µ
c : (Γ ` α : A,∆)

Γ ` µα.c : A |∆
µ̃

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆

′
R

Γ ` v : A |∆

Γ ` ´v : A ||∆

′
L

Γ | e : A ` ∆

Γ || ´e : A ` ∆

DerR
Γ ` V : A ; ∆

Γ ` V : A ||∆
DerL

Γ ; E : A ` ∆

Γ || E : A ` ∆

Cut
Γ ` v : A |∆ Γ | e : A ` ∆

c : (Γ ` ∆)

→R
Γ, x : A ` v : B |∆

Γ ` λx.v : A→ B ; ∆
→L
Γ`W : A ||∆ Γ || F : B`∆

Γ ; W · F : A→ B ` ∆

Figure 6. A system of simple types for sys-
tem L with the implication connective

• Γ ; E : A ` ∆ for linear evaluation contexts
• c : (Γ ` ∆) for commands

Obviously, any cut-free proof of LK can be inter-
preted as a typed command of system L. To this aim,
let’s first consider a version of LK with no explicit weak-
ening and contraction rule thanks to the integration of
weakening at the level of the axiom rule and of the con-
traction at the level of the logical introduction rules. In
the interpretation of LK, the cut rule is then used to sim-
ulate the axiom rule of LK (leading to a normal form
such as 〈x||α〉), and to simulate the contraction rule (lead-
ing to normal forms such as 〈x||E〉 or 〈V ||α〉). As for
the introduction rules of the connectives, the rule on
one side is simply interpreted by a reversible constructor
(followed by a cut with an axiom to perform contraction)
and the rules on the other side by irreversible construc-
tors whose arguments have been first focused (with µ or
µ̃) then quoted.

The same interpretation still holds for the type sys-
tem of system Ln which is shown in Figure 3.4. We can
check that reduction preserves typing for both systems L
and Ln.

AxR

Γ, x : A ` x : A |∆
AxL

Γ ||α : A ` α : A,∆

µ
c : (Γ ` α : A,∆)

Γ ` µα.c : A |∆
µ̃

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆

DerR
Γ ` V : A ; ∆

Γ ` V : A |∆

′
L

Γ | e : A ` ∆

Γ || ´e : A ` ∆

Cut
Γ ` v : A |∆ Γ | e : A ` ∆

c : (Γ ` ∆)

→R
Γ, x : A ` v : B |∆

Γ ` λx.v : A→ B ; ∆
→L
Γ`v : A |∆ Γ || E : B`∆

Γ || v · E : A→ B ` ∆

Figure 7. A system of simple types for sys-
tem Ln with the implication connective

3.5 Simulation in linear logic

The typed system Ln can be embedded into linear
logic so that the reduction follows cut-elimination in lin-
ear logic. The embedding is not a strict decoration (in
the sense of Joinet [10]) because the quote operator in-
troduces a cut. The sequents Γ ` ∆, Γ ` A ; ∆, Γ ` A |∆,
Γ || A ` ∆ and Γ | A ` ∆ are respectively interpreted as
!?!Γ `?!∆, !?!Γ ` A, ?!∆, !?!Γ `?!A, ?!∆, !?!Γ, !A `?!∆
and !?!Γ, !?!A `?!∆, and the quote operator is interpreted
as a cut with the proof of !A `!?!A.

3.6 Strong constructors

Compared to λµµ̃-calculus or to Wadler’s dual cal-
culus, system L misses connectives whose arguments
are evaluated following a strong strategy as in the re-
duction 〈λx.v||µα.c · e〉 →v 〈µα.c||µ̃x.〈v||e〉〉 →v c[α ←
µ̃x.〈v||e〉] of call-by-value λµµ̃-calculus or as in the re-
duction snd[x.(S)] →n y.((y • snd[α]).α • x.(S)) →n

y.(S [x← (y • snd[α]).α]) of call-by-name Wadler’s cal-
culus.

However, it is still possible to provide connectives
whose arguments are strongly reduced by using syntac-
tic sugar. In the case of implication and additive con-
junction, this amounts to define

v · e , µ̃x.〈v||µ̃y.〈µα.〈x||´ x · ´α〉||e〉〉
(v1, v2) , muα.〈v1||µ̃x1.〈v2||µ̃x2.〈(´ x1, ´ x2)||α〉〉〉

9

Besides validating η-equality, this approach has the
advantage of letting the asymmetry of strong evaluation
of connectors, such as the asymmetry of conjunction
in call-by-value setting, outside of the language, hence
keeping pure the symmetry of the underlying language
(we follow in this way comments made Selinger in [15]).

Conclusion

We extended the existing computational interpre-
tations of sequent calculus with laziness operators
(“quotes”) so as to capture the full set of normal form
of sequent calculus without sacrificing η-equalities. At
the end, we obtain some form of call-by-name calculus
with strict features, and dually, we would have obtain
a call-by-value calculus with laziness features. We be-
lieve that it is worth to investigate from a more practical
side such calculi which integrate both call-by-name and
call-by-value features.

Beyond η-equalities, what can be said about the ob-
servational completeness of these languages? Do we
capture all observational equalities in the same way as
Böhm’s theorem asserts that it is enough to add η to
get the observational completeness of β in λ-calculus
for the finite Böhm trees? Certainly not since David
and Py showed that λµ-calculus does not satisfy Böhm
separation theorem [4], a result which holds for call-by-
name λµµ̃-calculus too. Thanks to our uniform compu-
tational characterization of connectives, we can imagine
extending the calculus with heterogeneous reductions,
say between the constructors of implication and the con-
structors of additive conjunction, as done by Støvring
to prove the conservativity of λ-calculus when extended
with surjective pairing [16].

Acknowledgments

I’m particularly grateful to Guillaume Munch with
whom I had many fruitful discussions on the topic. Es-
pecially, I was strongly influenced by his own use of a
quote operator to computationally interpret the modal-
ities of linear logic. I’m also grateful to Pierre-Louis
Curien for his support and feedback on this work.

References

[1] P.-L. Curien and H. Herbelin. The duality of computa-
tion. In Proceedings of ICFP 2000, SIGPLAN Notices
35(9), pages 233–243. ACM, 2000.

[2] H. B. Curry, R. Feys, and W. Craig. Combinatory Logic,
volume 1. North-Holland, 1958. §9E.

[3] V. Danos, J.-B. Joinet, and H. Schellinx. A new decon-
structive logic: Linear logic. J. Symb. Log., 62(3):755–
807, 1997.

[4] R. David and W. Py. Lambda-mu-calculus and Böhm’s
theorem. J. Symb. Log., 66(1):407–413, 2001.

[5] G. Gentzen. Untersuchungen über das logische
Schließen. Mathematische Zeitschrift, 39:176–210,405–
431, 1935. English Translation in The Collected Works
of Gerhard Gentzen, “Investigations into logical deduc-
tion”, North Holland, 1969, pages 68-131.

[6] J.-Y. Girard. Locus solum: From the rules of logic to
the logic of rules. Mathematical Structures in Computer
Science, 11(3):301–506, 2001.

[7] H. Herbelin. A lambda-calculus structure isomorphic to
Gentzen-style sequent calculus structure. In L. Pacholski
and J. Tiuryn, editors, CSL ’94, Selected Papers, volume
933 of LNCS, pages 61–75. Springer, 1995.

[8] H. Herbelin. C’est maintenant qu’on calcule: au cœur
de la dualité. Habilitation thesis, University Paris 11,
Dec. 2005.

[9] W. A. Howard. The formulae-as-types notion of con-
structions. In to H.B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism. Academic
Press, 1980. Unpublished manuscript of 1969.

[10] J.-B. Joinet. Étude de la normalisation du calcul des
séquents classique à travers la logique linéaire. Ph.D.
thesis, University Paris 7, Jan. 1993.

[11] S. Lengrand. Call-by-value, call-by-name, and strong
normalization for the classical sequent calculus. Electr.
Notes Theor. Comput. Sci., 86(4), 2003.

[12] T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE
Symp. Logic in Computer Science, pages 342–349. IEEE
Press, 1991.

[13] M. Parigot. Lambda-mu-calculus: An algorithmic in-
terpretation of classical natural deduction. In LPAR ’92
Proceedings, pages 190–201. Springer-Verlag, 1992.

[14] J. Raghunandan and A. J. Summers. On the compu-
tational representation of classical logical connectives.
Electr. Notes Theor. Comput. Sci., 171(3):85–109, 2007.

[15] P. Selinger. Some remarks on control categories. Avail-
able on the author web page, 2003.

[16] K. Støvring. Extending the extensional lambda calculus
with surjective pairing is conservative. Logical Methods
in Computer Science, 2(2), 2006.

[17] C. Urban. Classical Logic and Computation. Ph.D. the-
sis, University of Cambridge, Oct. 2000.

[18] S. van Bakel, S. Lengrand, and P. Lescanne. The lan-
guage chi: Circuits, computations and classical logic. In
M. Coppo, E. Lodi, and G. M. Pinna, editors, ICTCS
2005, Proceedings, volume 3701 of LNCS, pages 81–96.
Springer, 2005.

[19] P. Wadler. Call-by-value is dual to call-by-name. In
C. Runciman and O. Shivers, editors, Proceedings of
ICFP 2003, volume 38(9) of SIGPLAN Notices, pages
189–201. ACM, 2003.

[20] P. Wadler. Call-by-value is dual to call-by-name -
reloaded. In J. Giesl, editor, RTA 2005, Proceedings,
volume 3467 of LNCS, pages 185–203. Springer, 2005.

10

