
Kripke Models for Classical Logic

Danko Ilika, Gyesik Leeb,∗, Hugo Herbelinc

aÉcole Polytechnique. Address: INRIA PI.R2, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France
E-mail: danko.ilik@polytechnique.edu

bROSAEC Center. Address: Bldg 138, Seoul National University, 171-742 Seoul, Korea.
E-mail: gslee@ropas.snu.ac.kr

cINRIA. Address: INRIA PI.R2, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France.
E-mail: hugo.herbelin@inria.fr

Abstract

We introduce a notion of Kripke model for classical logic for which we constructively
prove soundness and cut-free completeness. We discuss the novelty of the notion and
its potential applications.

Key words: Kripke model, classical logic, sequent calculus, lambda mu calculus,
classical realizability, normalization by evaluation
2000 MSC: 03F99, 03H05, 03B30, 03B40

1. Introduction

Kripke models have been introduced as means of giving semantics to modal logics
and were later used to give semantics for intuitionistic logic as well.[22, 23] The pur-
pose of the present paper is to show that Kripke models can also be used as semantics
for classical logic. Of course, Kripke semantics can be indirectly assigned to classical
logic by means of some appropriate double-negation translation, as in [3], but our goal
here is to provide a direct presentation of a notion of Kripke semantics for classical
logic.

We will use the LKµµ̃ sequent calculus of [8] to represent proofs, but the conclu-
sions given apply to any complete formal system for classical logic. There are at least
two reasons for choosing LKµµ̃: first, it is a typing system for a calculus very close to
λ-calculus and we are ultimately interested in the computational content of classical
logic; second, the symmetry of left/right distinguished formulae of LKµµ̃ allows to give
two dual notions of models, of which only one needs to be, and is, presented in this
paper, while the other can be derived by analogy.

This paper is organised as follows. Section 2 introduces the notion of classical
Kripke model, based on two modifications to the traditional notion, and discusses the
relationship between the traditional and our notion. Section 3 introduces the sequent

∗For Gyesik Lee, this work was partially supported by the Engineering Research Center of Excellence
Program of Korea Ministry of Education, Science and Technology(MEST) / Korea Science and Engineering
Foundation(KOSEF), grant number R11-2008-007-01002-0.

Preprint submitted to Elsevier January 30, 2010

calculus LKµµ̃ and gives a soundness theorem for it. Section 4 proves a completeness
theorem for a universal model constructed from the deduction system itself. Section 5
is the concluding section which discusses related and future work.

We use the standard inductive definition of first-order formulae for the connectives
{>,⊥,∧,∨,→,∃,∀}. The language has infinitely many constants. A sentence is a
formula where all variables are bound by quantifiers. An atomic formula is one which
is not built up from logical connectives, i.e. it is one built up of a predicate symbol.
The shorthand ¬A stands for A→ ⊥.

All statements and proofs are constructive.

2. Classical Kripke Models

Kripke models can be considered as the “most classical” of all the semantics for
intuitionistic logic, for two reasons: first, each of the ‘possible worlds’ that define a
Kripke model is a classical world in itself (where either an atom or its negation are
true); second, it is the single of the semantics for intuitionistic logic which has only
a classical proof of completeness, when disjunction and existential quantification are
considered.1

In the last two decades, the Curry-Howard correspondence between intuitionistic
proof systems and typed lambda-calculi has been extended to classical proof systems
[17, 29, 8]. The idea for introducing direct-style Kripke models for classical logic came
from their usefulness in providing normalisation-by-evaluation for intuitionistic proof
systems [6, 7]. To account for a classical proof system we modify the traditional notion
of Kripke model in the following two ways.

Not taking the forcing relation as primitive. We take as primitive the notion of “strong
refutation”, and define forcing in terms of it.2 The forcing definition we get in this
way partly coincides with the traditional definition of forcing, as explained in subsec-
tion 2.1.

Allowing certain nodes to validate absurdity. We allow certain possible worlds to be
marked as “fallible”, or “exploding”. This approach has been taken for Kripke models
in [35], for Beth models by Friedman [31] and is necessary in order to have a con-
structive proof of completeness, in the view of the meta-mathematical results from
[21, 26, 27], which preclude constructive proofs3 of completeness in case one wants to
retain that absurdity must never be valid in a possible world4.

Definition 1. A classical Kripke model is given by a quintuple (K,≤,D,
s,
⊥), K in-
habited, such that

1There is an intuitionistic proof in [35], but it makes use of the fan theorem which is not universally
recognised as constructive.

2For an alternative, see the discussion on dual models in Section 5.
3Strictly speaking, the cited results show that having a constructive proof of completeness implies having

a proof of Markov’s Principle.
4Extending the class of Boolean models with inconsistent models is also the key to the constructive proof

of the classical completeness theorem in [24]. For an analysis of that result, see [4].

2

• (K,≤) is a poset of “possible worlds”;

• D is the “domain function” assigning sets to the elements of K such that

∀w,w′ ∈ K, (w ≤ w′ ⇒ D(w) ⊆ D(w′))

i.e., D is monotone;

Let the language be extended with constant symbols for each element of D :=
∪{D(w) : w ∈ K}.

• (−) : (−)
s is a binary relation of “strong refutation” between worlds and atomic
sentences in the extended language such that

– w : X(d1, ..., dn)
s ⇒ di ∈ D(w) for each i ∈ {1, ..., n},

– (Monotonicity) w : X(d1, ..., dn)
s & w ≤ w′ ⇒ w′ : X(d1, ..., dn)
s,

• (−)
⊥ is a unary relation on worlds labelling a world as “exploding”, which is
also monotone in the above sense.

The strong refutation relation is extended from atomic to composite sentences in-
ductively and by mutually defining the relations of forcing and (non-strong) refutation.

Definition 2. The relation (−) : (−)
s of strong refutation is extended to the relation
between worlds w and composite sentences A in the extended language with constants
in D(w), inductively, together with the two new relations:

• A sentence A is forced in the world w (notation w :
 A) if any world w′ ≥ w,
which strongly refutes A, is exploding;

• A sentence A is refuted in the world w (notation w : A
) if any world w′ ≥ w,
which forces A, is exploding;

• w : A ∧ B
s if w : A
 or w : B
;

• w : A ∨ B
s if w : A
 and w : B
;

• w : A→ B
s if w :
 A and w : B
;

• w : ∀x.A(x)
s if w : A(d)
 for some d ∈ D(w);

• w : ∃x.A(x)
s if, for any w′ ≥ w and d ∈ D(w′), w′ : A(d)
;

• ⊥ is always strongly refuted;

• > is never strongly refuted.

The notions of forcing and refutation can be somewhat understood as the classical
notions of being true and being false. However, a statement of form P⇒ w
⊥ should
not be thought of as negation of P at the meta-level, because in the concrete model we
provide in section 4, w
⊥ is always an inhabited set. In other words, we never use ex
falso quodlibet at the meta-level to handle exploding nodes.

3

The notion of strong refutation is more informative than the notion of (non-strong)
refutation, not only because the former implies the latter, but also because, for example,
having w : A ∧ B
s tells use which one of A, B is refuted, while w : A ∧ B
 does not.

A more detailed characterisation of the notions is given in the rest of this section.

Lemma 3. Strong refutation, forcing and refutation are monotone in any classical
Kripke model.

Proof. The monotonicity of strong refutation can be proved by induction on the for-
mula in question, while that of forcing and refutation is obviously true.

Lemma 4. Strong refutation implies refutation: In any world w and for any sentence
A, w : A
s implies w : A
.

Proof. Suppose w : A
s, w′ ≥ w and w′ :
 A. Then w′ is exploding because w′ : A
s
by monotonicity. Since w′ was arbitrary, w : A
.

2.1. Relation to Traditional Forcing and Further Properties

It is natural to ask what is the relationship between traditional intuitionistic forcing[31]
and our forcing whose definition relies on a more primitive notion. Lemmas 5 and 8
give that the two notions coincide on the fragment of formulae constructed by {→
,∧,∀,>}

Lemma 5. The following statements hold.

w :
 A→ B ⇐⇒ for all w′ ≥ w,w′ :
 A⇒ w′ :
 B (1)
w :
 A ∧ B ⇐⇒ w :
 A and w :
 B (2)

w :
 ∀x.A(x) ⇐⇒ for all w′ ≥ w and d ∈ D(w′),w′ :
 A(d) (3)
w :
 A ∨ B ⇐= w :
 A or w :
 B (4)

w :
 ∃x.A(x) ⇐= for some d ∈ D(w),w :
 A(d) (5)

Proof. Lemma 3 and Lemma 4 are used implicitly in the following proof.

(1) Left-to-right: Suppose w′ ≥ w and w′ :
 A. To show w′ :
 B we let w′′ ≥ w′

and w′′ : B
s and have to show that w′′ is exploding. Since then w′′ : A → B
s
holds by monotonicity and Lemma 4, the claim follows from the definition of
w :
 A→ B.

Right-to-left: Suppose w′ ≥ w and w′ : A → B
s, i.e., w′ :
 A and w′ : B
.
We have to show w′ is exploding. But, this is immediate, since w′ :
 B by
assumption.

(2) Left-to-right: Suppose w′ ≥ w and w′ : A
s. Then w′ : A
, and so w′ : A ∧ B
s.
This implies that w′ is exploding, that is, w :
 A. Similarly, we can show w :
 B.

Right-to-left: Suppose w′ ≥ w and w′ : A ∧ B
s. Therefore we have w′ : A
 or
w′ : B
. Each case leads to w′ :
⊥ since w′ :
 A and w′ :
 B by monotonicity.

4

(3) Left-to-right: Suppose w′′ ≥ w′ ≥ w, d ∈ D(w′), and w′′ : A(d)
s. Then
w′′ : ∀x.A(x)
s, so w′′ is exploding.

Right-to-left: Suppose w′ ≥ w and w′ : ∀x.A(x)
s, i.e., w′ : A(d)
 for some
d ∈ D(w′). So w′ is exploding by assumption.

The rest of the cases are obvious.

Note, however, that although the definitions of our and intuitionistic forcing match
on the fragment {→,∧,∀,>}, that does not mean that a formula in that fragment is
forced in our sense if and only if it is forced in the intuitionistic sense. The law of
Peirce ((A → B) → A) → A is one counterexample to that, it is classically but not
intuitionistically forced.

Remark 6. The following do not hold in general, even if reasoning classically.

• w :
 A ∨ B =⇒ w :
 A or w :
 B.

• w :
 ∃x.A(x) =⇒ for some t ∈ D(w),w :
 A(t).

The explanation is deferred to Remark 20.

Lemma 7. Given a classical Kripke model K , the following hold.

1. w : A→ B
 iff w : A→ B
s.
2. w : A ∨ B
 iff w : A ∨ B
s.
3. w : ∃x.A(x)
 iff w : ∃x.A(x)
s.
4. If w : A
 or w : B
, then w : A ∧ B
.
5. If w : A(d)
 for some d ∈ D(w), then w : ∀x.A(x)
.

Proof. 1. Right-to-left is Lemma 4.
Left-to-right: Suppose w′ ≥ w and w′ : A
s. In order to show that w′ is exploding
it suffices to show w′ :
 A → B. For this assume w′′ ≥ w′ and w′′ : A → B
s,
i.e., w′′ :
 A and w′′ : B
. Then w′′ is exploding since we have w′′ : A
s by
monotonicity. Similarly, we can show w : B
.

2. Right-to-left is Lemma 4.
Left-to-right: Suppose w′ ≥ w and w′ :
 A. Then by Lemma 5, w′ :
 A∨B holds.
So w′ is exploding. That is w : A
. Similarly, w : B
 holds.

3. Right-to-left is Lemma 4.
Left-to-right: Suppose w′′ ≥ w′ ≥ w, d ∈ D(w′) and w′′ :
 A(d). Then by
Lemma 5, w′′ :
 ∃x.A(x). So w′′ is exploding since we have w′′ : ∃x.A(x)
 by
monotonicity.

4. Suppose w.l.o.g. w : A
, w′ ≥ w and w′ :
 A ∧ B. Then by Lemma 5, w′ :
 A.
So w′ is exploding because we have w′ : A
 by monotonicity.

5. Suppose w′ ≥ w and w′ :
 ∀x.A(x). Then by Lemma 5, w′ :
 A(d). So w′ is
exploding because we have w′ : A(d)
 by monotonicity.

We can also say that forcing of ⊥ and > behaves like expected with respect to
exploding nodes [35, 24]:

5

Lemma 8. 1. w :
 > and w : ⊥
.
2. w is exploding iff w :
 ⊥.
3. w is exploding iff w : >
.

Proof. 1. Obvious.
2. Let w be an arbitrary world.

w :
 ⊥ ⇐⇒ ∀(w′ ≥ w) (w′ : ⊥
s ⇒ w′ :
⊥)
⇐⇒ ∀(w′ ≥ w) (w′ :
⊥) ⇐⇒ w :
⊥

3. Similar.

We can use the previous lemmas to show that the forcing relation for classical logic
behaves “classically” indeed:

Lemma 9. The following hold in the classical Kripke semantics.

1. w :
 A ⇐⇒ w : ¬A
s.
2. w : A
⇐⇒ w :
 ¬A.
3. w : ¬A
⇐⇒ w :
 A.
4. w : ¬A
⇐⇒ w : ¬A
s.
5. w :
 A ⇐⇒ w :
 ¬¬A.
6. w : A
⇐⇒ w : ¬¬A
.
7. w : ¬A
s ⇐⇒ w :
 ¬¬A
⇐⇒ w :
 A.

Proof. 1. Obvious by definition because w : ⊥
.
2. It follows from Lemma 5.
3. Obvious by Lemma 7 and the previous claims.
4. ∼ 7. Obvious from the previous claims.

Corollary 10. In any classical Kripke model, the following holds.

w : ¬A
s ⇐⇒ w :
 ¬¬A ⇐⇒ w :
 A

We now consider the following double-negation translation (·)∗, which is the one of
Gödel-Gentzen[16, 15], except that atomic formulae, ⊥ and > are not doubly negated:

X∗ := X (X is atomic, ⊥ or >)
(A ∧ B)∗ := A∗ ∧ B∗

(A→ B)∗ := A∗ → B∗

(∀x.A)∗ := ∀x.A∗

(A ∨ B)∗ := ¬(¬A∗ ∧ ¬B∗)
(∃x.A)∗ := ¬∀x.¬A∗

6

Proposition 11. Every classical Kripke model C = (K,≤,D,
s,
⊥) gives rise to an
intuitionistic Kripke model with exploding worlds I = (K,≤,D,
i,
⊥), which inherits
all components of C, except for
i, which is defined for atomic formulae by non-strong
forcing, i.e.

w
i X iff w :
 X

The translation (·)∗ relates C and I, that is, for any world w and any formula A we
have

w
i A∗ iff w :
 A.

Proof. By induction on the complexity of A and by using (1)-(3) from Lemma 5 and
(2) from Lemma 8. We detail only the induction case for ∨, which is the most involved
one:

w
i (A ∨ B)∗ ⇐⇒

w
i ¬(¬A∗ ∧ ¬B∗) ⇐⇒

(∀w′ ≥ w) [w′
i ¬A∗,w′
i ¬B∗ =⇒ w′
i ⊥] ⇐⇒

(∀w′ ≥ w)[(∀w′′ ≥ w′)[w′′
i A∗ =⇒ w′′
i ⊥],
(∀w′′ ≥ w′)[w′′
i B∗ =⇒ w′′
i ⊥]

=⇒ w′
i ⊥] ⇐⇒

(∀w′ ≥ w)[(∀w′′ ≥ w′)[w′′ :
 A =⇒ w′′
⊥],
(∀w′′ ≥ w′)[w′′ :
 B =⇒ w′′
⊥]

=⇒ w′
⊥] ⇐⇒

(∀w′ ≥ w) [w′ : A
,w′ : B
=⇒ w′
⊥] ⇐⇒

(∀w′ ≥ w) [w′ : A ∨ B
s=⇒ w′
⊥] ⇐⇒

w :
 A ∨ B

3. LKµµ̃ and Soundness

To emphasise the symmetries of classical logic, we use a sequent calculus in the
style of Gentzen’s LK as proof system. We could have directly used LK or one of its
variants with implicit structural rules, à la Kleene-Kanger. In practise, even though the
current paper does not go into the details of the computational content of proofs, we
rely here on LKµµ̃ which has a simple symmetrical variant of λ-calculus as underlying
language of proofs [8, 18]5.

LKµµ̃ is presented on Table 1. It differs from LK in the following points:

• Sequents come with an explicitly distinguished formula on the right or on the left,
or no distinguished formula at all, resulting in three kinds of sequents: “Γ ` ∆”,
“Γ|A ` ∆” and ”Γ ` A|∆”. Especially, the distinguished formula plays an “active”
rôle in the rules.

5Note that even if not based on λ-calculus, there are calculi of proof-terms for LK too, see e.g. [32, 25, 34].

7

(AxL)
Γ|A ` A,∆

(AxR)
A,Γ ` A|∆

Γ, A ` ∆ (µ̃)
Γ|A ` ∆

Γ ` A,∆ (µ)
Γ ` A|∆

Γ ` A|∆ Γ|B ` ∆
(→L)

Γ|A→ B ` ∆

Γ, A ` B|∆
(→R)

Γ ` A→ B|∆

Γ|A ` ∆ Γ|B ` ∆
(∨L)

Γ|A ∨ B ` ∆

Γ ` A|∆
(∨1

R)
Γ ` A ∨ B|∆

Γ ` B|∆
(∨2

R)
Γ ` A ∨ B|∆

Γ|A ` ∆
(∧1

L)
Γ|A ∧ B ` ∆

Γ|B ` ∆
(∧2

L)
Γ|A ∧ B ` ∆

Γ ` A|∆ Γ ` B|∆
(∧R)

Γ ` A ∧ B|∆

Γ|A(x) ` ∆ x fresh
(∃L)

Γ|∃xA(x) ` ∆

Γ ` A(t)|∆
(∃R)

Γ ` ∃x.A(x)|∆

Γ|A(t) ` ∆
(∀L)

Γ|∀x.A(x) ` ∆

Γ ` A(x)|∆ x fresh
(∀R)

Γ ` ∀xA(x)|∆

(⊥L)
Γ|⊥ ` ∆

(>R)
Γ ` >|∆

Γ ` A|∆ Γ|A ` ∆
(Cut)

Γ ` ∆

Table 1: The sequent calculus LKµµ̃

• Accordingly, the axiom rule splits into two variants (AxL) and (AxR) depending
on whether the left active formula or the right active formula is distinguished.
There are also two new rules, (µ) and (µ̃), for making a formula active6.

• There are no explicit contraction rules: contractions are derivable from a cut
against an axiom as follows:

– Left contraction:
(AxR)

Γ, A ` A | ∆ Γ, A | A ` ∆
(Cut)

Γ, A ` ∆
(ContrL)

6Note that we have to define the contexts of formulae Γ and ∆ as ordered sequences to get a non am-
biguous interpretation of LKµµ̃ as a typed λ-calculus. In this case, the notation A,∆ has to be understood as
∆1, A,∆2 for ∆1,∆2 a split of ∆.

8

– Right contraction:

Γ ` A | A,∆
(AxL)

Γ | A ` A,∆
(Cut)

Γ ` A,∆
(ContrR)

• Consequently, the notion of normal proof, or cut-freeness, is slightly different
from the notion of cut-freeness in LK: a normal proof is a proof whose only cuts
are of the form of a cut between an axiom and an introduction rule7. This is the
notion that we refer to when below, very often, we say “cut-free” or “provable
without a cut”.

The correspondence between normal proofs of LK and normal proofs of LKµµ̃ is di-
rect. If we present LK with weakening rules attached to the axiom rules à la Kleene’s
G4 or Kanger’s LC, we obtain an LK proof from an LKµµ̃ proof by erasing the bars
serving to distinguish active formulae, and by removing the trivial inferences coming
from the rules (µ) and (µ̃). In the other way round, every introduction rule of LK can
be derived in LKµµ̃ by applying the rules (µ) and (µ̃) on the premises and a (possibly
dummy) contraction (i.e. a cut against an axiom) on the conclusion of the rule. Simi-
larly for the axiom rule (for which there are two possible derivations) and the cut rule.
For more details we refer the reader to [8].

For a constant c, let Γc(t),∆c(t), Ac(t) be obtained from Γ,∆, A by replacing each
constant c with a term t.

Lemma 12 (Weakening). Suppose Γ ⊆ Γ′ and ∆ ⊆ ∆′.

• Γ ` ∆ implies Γ′ ` ∆′.

• Γ ` A | ∆ implies Γ′ ` A | ∆′.

• Γ | A ` ∆ implies Γ′ | A ` ∆′.

Moreover, no further cuts in the derivations on the right-hand side are necessary.

Lemma 13. Let c be a constant and y a variable which does not appear in Γ,∆, A.

• Γ ` ∆ implies Γc(y) ` ∆c(y).

• Γ ` A | ∆ implies Γc(y) ` Ac(y) | ∆c(y).

• Γ | A ` ∆ implies Γc(y) | Ac(y) ` ∆c(y).

Moreover, no further cuts in the derivations on the right-hand side are necessary.

The following lemma says that a fresh constant is as good as a fresh variable and
will play an important role in the proof of cut-free completeness below.

Lemma 14 (Fresh constants). Let c be a constant and y a variable which does not
appear in Γ,∆, A. Assume furthermore that c does not appear in Γ,∆.

7The rules (µ) and (µ̃) are not introduction rules, because they do not introduce a formula constructor.

9

• Γ ` A(c) | ∆ implies Γ ` A(y) | ∆.

• Γ | A(c) ` ∆ implies Γ | A(y) ` ∆.

Moreover, no further cuts in the derivations on the right-hand side are necessary.

Proof. It follows directly from the lemma just before.

The fact that Lemma 12 ∼ Lemma 14 need not introduce any new cuts in the deriva-
tions on the right-hand side of the implication will be important for the proof of cut-free
completeness.

We now show the soundness of LKµµ̃ with respect to the Kripke semantics. First
we need some preparations.

Let (K,≤,D,
s,
⊥) be a Kripke model. Associations are functions from a finite
set of free variables to

⋃
w∈K D(w). The letters ρ, η, ... vary over associations. Given an

association ρ and a free variable x, ρ−x denotes the function obtained from ρ by deleting
x from its domain, i.e., dom(ρ−x) = dom(ρ)\{x}. Let ρ(x 7→ d) denote the function ρ′

such that ρ′(y) = ρ(y) if y , x and d otherwise.
Let c0 be a distinguished constant of the language. Given a formula A, let A[ρ]

denote the sentence in the extended language with fresh constants for each element of
D obtained from A by replacing each free variable x with ρ(x) if x ∈ dom(ρ) and with
c0 otherwise. Γ[ρ] is the context obtained from Γ by replacing each A ∈ Γ with A[ρ].

We write w :
 Γ when w forces all sentences from Γ and w : ∆
 when w refutes
all sentences from ∆.

The intuitive meaning of the following theorem is that if every formula in the as-
sumption is forced, then not all formulae in the conclusion can be refuted.

Theorem 15 (Soundness). Let A be a formula and Γ,∆ contexts of formulae. In any
classical Kripke model (K,≤,D,
s,
⊥) the following holds: Let w ∈ K and ρ be an
associations with the values from D(w).

• If Γ ` ∆, w :
 Γ[ρ] and w : ∆[ρ]
, then w :
⊥.

• If Γ ` A|∆, w :
 Γ[ρ] and w : ∆[ρ]
, then w :
 A[ρ].

• If Γ|A ` ∆, w :
 Γ[ρ] and w : ∆[ρ]
, then w : A[ρ]
.

Proof. One proves easily the three statements simultaneously by induction on the
derivations. We demonstrate two non-trivial cases. Suppose w :
 Γ[ρ] and w : ∆[ρ]
.

• Case (∨L): Suppose w′ ≥ w and w′ :
 A[ρ] ∨ B[ρ]. We have to show w′ is
exploding. But this follows from the fact that w′ : A[ρ] ∨ B[ρ]
s. Note just that
w′ : A[ρ]
 and w′ : B[ρ]
 follow from the I.H. using monotonicity.

• Case (∃L): Suppose w′ ≥ w and w′ :
 (∃x.A)[ρ]. We have to show w′ is explod-
ing. For this it suffices to show w′ : (∃x.A(x))[ρ]
s, i.e., w′′ : A[ρ(x 7→ d)])

for all w′′ ≥ w′ and d ∈ D(w′′). Note first that w′′ :
 Γ[ρ(x 7→ d)] and
w′′ : ∆[ρ(x 7→ d)]
 by monotonicity because of the freshness of x. By I.H.
the claim follows.

10

4. Completeness

As usual when constructively proving completeness of Kripke semantics for a frag-
ment8 of intuitionistic logic [6, 19, 30], we define a special purpose model, called the
universal model, built from the deduction system itself. Once we show completeness
for this special model, completeness for any model follows (Corollary 19).

Definition 16. The Universal classical Kripke modelU is obtained by setting:

• K to the set of pairs (Γ,∆) of contexts of LKµµ̃;

• (Γ,∆) ≤ (Γ′,∆′) iff both Γ ⊆ Γ′ and ∆ ⊆ ∆′;

• (Γ,∆) : X
s iff the sequent Γ|X ` ∆ is provable without a cut in LKµµ̃;

• (Γ,∆) :
⊥ iff the sequent Γ ` ∆ is provable without a cut in LKµµ̃;

• for any w, D(w) is the set of closed terms of LKµµ̃.

Note that the domain function D is a constant function, while in the abstract definition
of model we allow for non-constant domain functions because that allows building
more counter-models in applications.

Monotonicity of strong refutation on atoms follows from Lemma 12.

Theorem 17 (Cut-Free Completeness for U). For any sentence A and contexts of
sentences Γ and ∆, the following hold inU:

(Γ,∆) :
 A =⇒ Γ ` A|∆ (1)
(Γ,∆) : A
 =⇒ Γ|A ` ∆ (2)

Moreover, the derivations on the right-hand side of (1) and (2) are cut-free.

Proof. We proceed by simultaneously proving the two statements by induction on the
complexity of A. When quantifiers are concerned, A(t) has lower complexity than
∃x.A(x) and ∀x.A(x).

The derivation trees in this proof use meta-rules (*) and multi-step derivations
(ContrL,ContrL) in addition to the derivation rules of the calculus from Table 1 in
order to make the proofs easier to read.

We also remind the reader that the notion of cut-freeness is the one of LKµµ̃, intro-
duced in the previous section.

Base case for atomic formulae. In the base case we have forcing and refutation on
atomic sentences, which by definition reduce to strong refutation on atomic sentences,
which by definition reduces just to statements about the deductions in LKµµ̃

(1) Suppose
∀(Γ′,∆′) ≥ (Γ,∆), {Γ′|X ` ∆′ =⇒ Γ′ ` ∆′} (*)

where the RHS is cut-free. Then the following holds for Γ′ = Γ and ∆′ = X,∆:

8As previously remarked, there is no constructive proof for full intuitionistic predicate logic.

11

(AxL)
Γ|X ` X,∆

(*)
Γ ` X,∆

(µ)
Γ ` X|∆

(2) Suppose (Γ,∆) : X
, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆),
{
(Γ′,∆′) :
 X =⇒ Γ′ ` ∆′

}
(*)

We use (∗) to prove Γ, X ` ∆ without introducing a cut from which the claim
follows by the (µ̃)-rule. For this, we need to show ((Γ, X),∆) :
 X. Assume
(Γ′′,∆′′) ≥ ((Γ, X),∆) such that there is a cut-free proof for Γ′′ | X ` ∆′′. Then by
(ContrL), Γ′′ ` ∆′′, that is, (Γ′′,∆′′) is exploding.

Base cases for > and ⊥. Obvious.

Induction case for implication.

(1) Suppose (Γ,∆) :
 A1 → A2, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {(Γ′,∆′) : A1 → A2
s =⇒ Γ′ ` ∆′} (*)

We use (∗) to prove Γ, A1 ` A2,∆ without introducing a cut from which the claim
follows by the (µ) and (→R) rules. We need to show ((Γ, A1), (A2,∆)) : A1 →

A2
s, i.e. ((Γ, A1), (A2,∆)) :
 A1 and ((Γ, A1), (A2,∆)) : A2
. We show the first
one. The second case is similar.
Assume (Γ′,∆′) ≥ ((Γ, A1), (∆, A2)) such that (Γ′,∆′) : A1
s. Using the induction
hypothesis we get the following cut-free proof:

Γ′ | A1 ` ∆′
(ContrL)

Γ′ ` ∆′

That is, (Γ′,∆′) is exploding.
(2) Suppose (Γ,∆) : A1 → A2
, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {(Γ′,∆′) :
 A1 → A2 =⇒ Γ′ ` ∆′} (*)

We use (∗) to prove Γ, A1 → A2 ` ∆ without introducing a cut from which the
claim follows by the (µ̃)-rule. We need to show ((Γ, A1 → A2),∆) :
 A1 → A2.
Assume (Γ′′,∆′′) ≥ ((Γ, A1 → A2),∆) such that (Γ′′,∆′′)
 A1 and (Γ′′,∆′′) :
A2
. Then, using the induction hypotheses we have the following cut-free proof:

Γ′′ ` A1 | ∆
′′ Γ′′ | A2 ` ∆′′

(→L)
Γ′′ | A1 → A2 ` ∆′′

(ContrL)
Γ′′ ` ∆′′

That is, (Γ′′,∆′′) is exploding.

12

Induction case for ∨.

(1) Suppose (Γ,∆) :
 A1 ∨ A2, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {(Γ′,∆′) : A1 ∨ A2
s =⇒ (Γ′,∆′)
⊥} (*)

First we use (∗) to show Γ ` A1, A2, A1 ∨ A2,∆ without introducing a cut. For this
we set Γ′ = Γ and ∆′ = A1, A2, A1 ∨ A2,∆, that is, we need to show (Γ′,∆′) : Ai

for i = 1, 2. Assume (Γ′′,∆′′) ≥ (Γ′,∆′) such that (Γ′′,∆′′) :
 Ai, then by induction
hypotheses Γ′′ ` Ai | ∆

′′. Therefore, by (ContrR), (Γ′′,∆′′) is exploding.
Now we can prove the claim.

Γ ` A2, A1, A1 ∨ A2,∆ (µ)
Γ ` A2|A1, A1 ∨ A2,∆ (∨2

L)
Γ ` A1 ∨ A2|A1, A1 ∨ A2,∆ (ContrR)

Γ ` A1, A1 ∨ A2,∆ (µ)
Γ ` A1|A1 ∨ A2,∆ (∨1

L)
Γ ` A1 ∨ A2|A1 ∨ A2,∆ (ContrR)

Γ ` A1 ∨ A2,∆ (µ)
Γ ` A1 ∨ A2|∆

(2) The claim follows directly from the (∨L)-rule and the induction hypothesis be-
cause (Γ,∆) : A1 ∨ A2
 implies both (Γ,∆) : A1
 and (Γ,∆) : A2
 by Lemma 7,
which does not need to introduce new cuts.

Induction case for ∧.

(1) The claim follows directly from the (∧R)-rule and the induction hypotheses be-
cause (Γ,∆) :
 A1 ∧ A2 implies both (Γ,∆) :
 A1 and (Γ,∆) :
 A2, by Lemma 5,
which does not need to intruduce new cuts.

(2) Suppose (Γ,∆) : A1 ∧ A2
, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {(Γ′,∆′) :
 A1 ∧ A2 =⇒ (Γ′,∆′)
⊥} (*)

We use (∗) to show Γ, A1 ∧A2 ` ∆ without introducing a cut from which the claim
follows by the (µ̃)-rule. By Lemma 5, we need to show ((Γ, A1 ∧ A2),∆) :
 Ai for
i = 1, 2. Assume (Γ′′,∆′′) ≥ ((Γ, A1 ∧ A2),∆) such that (Γ′′,∆′′) : Ai
s. Using
induction hypotheses we get the following cut-free proof:

Γ′′ | Ai ` ∆′′
(∧i

L)
Γ′′ | A1 ∧ A2 ` ∆′′

(ContrL)
Γ′′ ` ∆′′

Therefore, (Γ′′,∆′′) is exploding.

13

Induction case for ∀.

(1) Assume (Γ,∆) :
 ∀x.A(x). Then, by Lemma 5, (Γ,∆) :
 A(t) for all closed
terms. In particular, we have (Γ,∆) :
 A(c) for some fresh constant c which does
not occur in Γ,∆, A. Using the induction hypothesis we get a cut-free proof of
Γ ` A(c) | ∆. By Lemma 14, this implies a cut-free proof of Γ ` A(x) | ∆ for any
fresh variable x, so the claim follows.

(2) Suppose (Γ,∆) : ∀x.A(x)
, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {(Γ′,∆′) :
 ∀x.A(x) =⇒ (Γ′,∆′)
⊥} (*)

We use (∗) to show Γ,∀x.A(x) ` ∆ without introducing a cut from which the claim
follows by the (µ̃)-rule, that is, we need to show ((Γ,∀x.A(x)),∆) :
 A(t) for any
closed term t. Assume (Γ′′,∆′′) ≥ ((Γ,∀x.A(x)),∆) such that (Γ′′,∆′′) : A(t)
s.
Using the induction hypothesis we get the following cut-free proof:

Γ′′ | A(t) ` ∆′′
(∀L)

Γ′′ | ∀x.A(x) ` ∆′′
(ContrL)

Γ′′ ` ∆′′

Therefore, (Γ′′,∆′′) is exploding.

Induction case for ∃.

(1) Suppose (Γ,∆) :
 ∃x.A(x), i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {(Γ′,∆′) : ∃x.A(x)
s =⇒ (Γ′,∆′)
⊥} (*)

We use (∗) to show Γ ` ∃x.A(x),∆ without introducing a cut from which the claim
follows using the (µ)-rule. We need to show (Γ, (∆,∃x.A(x))) : A(t)
 for any
closed term t.
Assume (Γ′′,∆′′) ≥ (Γ, (∆,∃x.A(x))) such that (Γ′′,∆′′) :
 A(t). Using the induc-
tion hypothesis we get the following cut-free proof:

Γ′′ ` A(t) | ∆′′
(∃R)

Γ′′ ` ∃x.A(x) | ∆′′
(ContrR)

Γ′′ ` ∆′′

Therefore, (Γ′′,∆′′) is exploding.
(2) Assume (Γ,∆) : ∃x.A(x)
, then (Γ,∆) : ∃x.A(x)
s by Lemma 7. That is, (Γ,∆) :

A(t)
 for all closed terms. In particular, we have (Γ,∆) : A(c)
 for some fresh
constant c which does not occur in Γ,∆, A. Using induction hypotheses we have
a cut-free proof of Γ | A(c) ` ∆. By Lemma 14, this implies a cut-free proof of
Γ | A(x) ` ∆ for any fresh variable, so the claim follows.

Corollary 18. For any sentence A and contexts of sentences Γ,∆, the following hold
inU:

1. If A ∈ Γ then (Γ,∆) :
 A.

14

2. If B ∈ ∆ then (Γ,∆) : B
.

Proof. 1. Assume A ∈ Γ, (Γ′,∆′) ≥ (Γ,∆) and (Γ′,∆′) : A
s. Then by Theorem 17,
Γ′ | A ` ∆′, so we obtain a cut-free proof for Γ′ ` ∆′ using (ContrL). That is,
(Γ′,∆′) is exploding.

2. Assume B ∈ ∆, (Γ′,∆′) ≥ (Γ,∆) and (Γ′,∆′) :
 B. Then by Theorem 17, Γ′ ` B |
∆′, so we obtain a cut-free proof for Γ′ ` ∆′ using (ContrR). That is, (Γ′,∆′) is
exploding.

Corollary 19 (Completeness of Classical Logic). If in every Kripke model, at every
possible world, the sentence A is forced whenever all the sentences of Γ are forced and
all the sentences of ∆ are refuted, then there exists a cut-free derivation in LKµµ̃ of the
sequent Γ ` A|∆.

Proof. If the hypothesis holds for any Kripke model, so does it hold for U. Theorem
17 and Corollary 18 lead to the claim, since (Γ,∆) :
 Γ and (Γ,∆) : ∆
.

Remark 20. The following are false, even if reasoning classically.

• w :
 A ∨ B implies w :
 A or w :
 B.

• w :
 ∃x.A(x) implies w :
 A(d) for some d ∈ D(w).

Because of the completeness of classical logic with respect to the universal model,
the claims correspond to Disjunction property (DP) and Explicit definability property
(ED), respectively, which are in general not true in classical logic.

A constructive cut-free completeness theorem can also be used for proof normali-
sation.

Corollary 21 (Semantic Cut-Elimination). For all contexts Γ,∆ of sentences, if there
is a derivation of Γ ` ∆, then there is a cut-free derivation of Γ ` ∆.

Proof. From the hypothesis Γ ` ∆, the soundness theorem applied to U gives us that
there is indeed a cut-free derivation for Γ ` ∆ because the world (Γ,∆) forces all for-
mulae of Γ and refutes all formulae of ∆ as shown in Corollary 18.

5. Discussion, Related and Future Work

5.1. Normalisation by Evaluation

The last corollary is at the origin of our work, where we wanted to do a normalisation-
by-evaluation (NBE) proof for computational classical logic. The general idea of the
NBE method is to use an “evaluation” (soundness) function from the object-language
to a constructive meta-language and then use a “reification” (completeness) function
from the meta-language back to the object-language. The interpretation of the object-
language inside the meta-language, that goes via evaluation/soundness, is usually done
using some form of Kripke models.

15

So far, NBE has been used to show normalisation of various intuitionistic proof sys-
tems [5, 11, 2, 1, 28, 30] as well as purely computational calculi [12]. One advantage
of taking this approach to that of studying a reduction relation for a proof calculus for
classical logic, explicitly as a rewrite system, is that one circumvents both difficulties of
rewrite systems and validating equalities arising from η-conversion. For more details
on these difficulties the reader is referred to [33], for classical proof systems, and [13]
for intuitionistic proof systems. Another advantage is that these kinds of proofs manip-
ulate finite structures only and avoid working with saturated models as, for example, in
[31].

Note also that, although as output from the NBE algorithm we get a β-reduced η-
long normal form, we proved a weak NBE result, as we did not prove that the output
can be obtained from the input by a number of rewrite steps, as it is done in [6].

5.2. Dual Notion of Model
Thanks to the symmetry of the LKµµ̃ rules for left-distinguished and right-distinguished

formulae, it is possible to define a dual notion of model in which:

• “strong forcing” is taken as primitive and “refutation” and non-strong “forcing”
are defined from it by orthogonality like in Definition 2,

• for the universal model, strong forcing is defined as cut-free provability of right-
distinguished formulae (instead of left-distinguished ones for strong refutation),

and prove, completely analogously to the proofs presented in this paper, that we have
the same soundness and completeness theorems holding.

The reader interested in the computational behaviour of the completeness theorem,
should look at its partial Coq formalisation[20]. From that work it follows that the NBE
theorem computes the normal forms of proofs in call-by-name discipline. We mention
this work because we would like to conjecture that the presented classical Kripke model
always gives rise to call-by-name behaviour for proof normalisation, while the dual
notion gives rise to call-by-value behaviour. As one of the referees remarked, there is a
variety of different strategies for doing proof normalisation, of which call-by-name and
call-by-value are the simplest ones to describe, but also the most standard ones. For
a general study of cut-elimination strategies that are more complex than call-by-name
and call-by-value, the reader is referred to [10].

5.3. Using Intuitionistic Kripke Models on Doubly-Negated Formulae
Although one can define a double-negation interpretation A∗ of formulae and use

intuitionistic Kripke models and an intuitionistic completeness theorem to obtain a
normalisation result, one would have to pass through the chain of inferences

`c A =⇒ `i A∗ =⇒
i A∗ =⇒ `
nf
i A∗ =⇒ `

nf
c A

where “i” stands for “intuitionistic”, “c” for “classical” and “nf” for “in normal form”,
in which how to do the last inference is not obvious. We consider that to be a detour
since we can prove, simply, the chain of inferences

`c A =⇒
c A =⇒ `
nf
c A

16

The interest in having a direct-style semantics for classical logic is the same as the
interest in having a proof calculus for classical logic instead of restricting oneself to
an intuitionistic calculus and working with doubly-negated formulae; or, in the theory
of programming languages, to having a separate constant call-cc instead of writing all
programs in continuation-passing style.

Avigad shows in [3] how classical cut-elimination is a special case of intuitionistic
one, work which resembles the first chain of inferences of this subsection. However,
his work is specialised to “negative” formulae, that is, it is not clear how to extend it to
formulae that use ∨ and ∃.

Finally, we remark that an interpretation through intuitionistic Kripke models and a
double-negation interpretation would have to be done in Kripke models with exploding
nodes, because of the meta-mathematical results from [21, 26, 27].

5.4. Boolean vs. Kripke Semantics for Classical Logic

We compare Boolean and Kripke semantics in a constructive setting, based on our
own observations (which we hope to submit for publication soon) and based on a strand
of works in mathematical logic from the 1960s.

Computational Behaviour. The only known constructive completeness proof of classi-
cal logic with respect to Boolean models is the one of Krivine[24], who used a double-
negation interpretation to translate Gödel’s original proof. Krivine’s proof was later
reworked by Berardi and Valentini [4] to show that its main ingredient is a constructive
version of the ultra-filter theorem for countable Boolean algebras. This theorem, how-
ever, crucially relies on an enumeration of the members of the algebra (the formulae).

In the work we mentioned as yet to be put into words, a formalisation in construc-
tive type theory of the proof of Berardi and Valentini, we saw that, as a consequence of
relying on the linear order, the reduction relation for proof-terms corresponding to im-
plicative formulae is not β-reduction, but an ad hoc reduction relation which depends
on the particular way one defines the linear order (enumeration of formulae). As a
consequence, there is no clear notion of normal form suggested by the ad hoc reduc-
tion relation. The cut-free completeness theorem given in this paper, however, gives
rise to a normalisation algorithm which respects the β-reduction relation of the object-
language, when the Kripke models are interpreted in a type theory which is based on
β-reduction itself.

Expressiveness. We think of classical Kripke model validity as being more expressive,
i.e. containing more information, than Boolean model validity. That is indicated by the
presented completeness theorem which is both simpler than (constructive) complete-
ness theorems for Boolean models, and manipulates finite structures directly, instead
of relying on structures built up by an infinite saturation process.

Also, only after submitting the first version of the present text, we became aware
of the work done in the 1960s on using Kripke models to do model theory of classical
logic [14]. Although conducted in a classical meta-language, the work indicates that it
is possible to use Kripke models to express elegantly some cumbersome constructions
of model theory, like set theoretic forcing [9, 14]. Indeed, the connection between

17

the two had been spotted already by Kripke [23] and hence the term “forcing” ap-
peared in Kripke semantics. We hope that looking at those kind of constructions inside
Kripke models, but this time inside a constructive meta-language, might be an inter-
esting venue to finding out the constructive content of techniques of classical model
theory.

In this respect, our work can also be seen as a contribution to the field of construc-
tive model theory of classical logic.

References

[1] Andreas Abel. Typed applicative structures and normalization by evaluation for
system Fω. In Erich Grädel and Reinhard Kahle, editors, CSL, volume 5771 of
Lecture Notes in Computer Science, pages 40–54. Springer, 2009.

[2] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation
for martin-lof type theory with typed equality judgements. In LICS, pages 3–12.
IEEE Computer Society, 2007.

[3] Jeremy Avigad. Algebraic proofs of cut elimination. J. Log. Algebr. Program.,
49(1-2):15–30, 2001.

[4] Stefano Berardi and Silvio Valentini. Krivine’s intuitionistic proof of classical
completeness (for countable languages). Ann. Pure Appl. Logic, 129(1-3):93–
106, 2004.

[5] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation func-
tional for typed lambda-calculus. In LICS, pages 203–211. IEEE Computer Soci-
ety, 1991.

[6] Catarina Coquand. From Semantics to Rules: A Machine Assisted Analysis.
In CSL ’93, volume 832 of Lecture Notes in Computer Science, pages 91–105.
Springer, 1993.

[7] Catarina Coquand. A formalised proof of the soundness and completeness of a
simply typed lambda-calculus with explicit substitutions. Higher Order Symbol.
Comput., 15(1):57–90, 2002.

[8] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP,
pages 233–243, 2000.

[9] Bernd I. Dahn. Constructions of classical models by means of kripke models
(survey). Studia Logica, 38(4):401–405, 1979.

[10] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Computational iso-
morphisms in classical logic. Theor. Comput. Sci., 294(3):353–378, 2003.

[11] Olivier Danvy. Type-directed partial evaluation. In POPL, pages 242–257, 1996.

18

[12] Andrzej Filinski and Henning Korsholm Rohde. A denotational account of un-
typed normalization by evaluation. In Igor Walukiewicz, editor, FoSSaCS, volume
2987 of Lecture Notes in Computer Science, pages 167–181. Springer, 2004.

[13] Marcelo P. Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomor-
phisms in typed lambda calculi with empty and sum types. Ann. Pure Appl.
Logic, 141(1-2):35–50, 2006.

[14] Melvin Fitting. Intuitionistic Logic, Model Theory, and Forcing. North-Holland
Publishing Co., 1969.

[15] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math.
Ann., 112(1):493–565, 1936.

[16] Kurt Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse
eines mathematischen Kolloquiums, 4:34–38, 1933.

[17] Timothy Griffin. A formulae-as-types notion of control. In POPL, pages 47–58,
1990.

[18] Hugo Herbelin. C’est maintenant qu’on calcule: au coeur de la dualité. Habili-
tation thesis, University Paris 11, Dec. 2005.

[19] Hugo Herbelin and Gyesik Lee. Forcing-based cut-elimination for gentzen-style
intuitionistic sequent calculus. In Hiroakira Ono, Makoto Kanazawa, and Ruy J.
G. B. de Queiroz, editors, WoLLIC, volume 5514 of Lecture Notes in Computer
Science, pages 209–217. Springer, 2009.

[20] Danko Ilik. Formalisation in Coq of the non-quantifier fragment
of completeness for call-by-name classical Kripke models, 2009.
http://www.lix.polytechnique.fr/∼danko/lbmmt kripke.v.

[21] Georg Kreisel. On Weak Completeness of Intuitionistic Predicate Logic. J. Symb.
Log., 27(2):139–158, 1962.

[22] Saul Kripke. A Completeness Theorem in Modal Logic. J. Symb. Log., 24(1):1–
14, 1959.

[23] Saul Kripke. Semantical considerations on modal and intuitionistic logic. Acta
Philos. Fennica, 16:83–94, 1963.

[24] Jean-Louis Krivine. Une preuve formelle et intuitionniste du théorème de
complétude de la logique classique. Bulletin of Symbolic Logic, 2(4):405–421,
1996.

[25] Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for
the classical sequent calculus. Electr. Notes Theor. Comput. Sci., 86(4), 2003.

[26] David Charles McCarty. On Theorems of Gödel and Kreisel: Completeness and
Markov’s Principle. Notre Dame Journal of Formal Logic, 35(1):99–107, 1994.

19

[27] David Charles McCarty. Intuitionistic completeness and classical logic. Notre
Dame Journal of Formal Logic, 43(4):243–248, 2002.

[28] Mitsuhiro Okada. A uniform semantic proof for cut-elimination and completeness
of various first and higher order logics. Theor. Comput. Sci., 281(1-2):471–498,
2002.

[29] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In Logic Programming and Automated Reasoning: Interna-
tional Conference LPAR ’92 Proceedings, St. Petersburg, Russia, pages 190–201.
Springer-Verlag, 1992.

[30] Matthieu Sozeau and Thorsten Altenkirch. Kripke semantics for simply-typed
lambda calculus, 2008. http://mattam.org/research/coq.en.html.

[31] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics: An In-
troduction I and II, volume 121, 123 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1988.

[32] Christian Urban. Classical Logic and Computation. Ph.D. thesis, University of
Cambridge, October 2000.

[33] Christian Urban and Diana Ratiu. Classical logic is better than in-
tuitionistic logic: A conjecture about double-negation translations, 2006.
http://www.doc.ic.ac.uk/∼svb/CLaC06/programme.html.

[34] Steffen van Bakel, Stéphane Lengrand, and Pierre Lescanne. The language X:
Circuits, computations and classical logic. In Mario Coppo, Elena Lodi, and
G. Michele Pinna, editors, ICTCS, volume 3701 of Lecture Notes in Computer
Science, pages 81–96. Springer, 2005.

[35] Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate
logic. J. Symb. Log., 41(1):159–166, 1976.

20

