
λµ-calculus and Λµ-calculus:
a Capital Difference

Hugo Herbelin a & Alexis Saurin b

aINRIA. Address: PPS, Université Paris 7, Case 7014, 75205 Paris Cedex 13,
France. E-mail: Hugo.Herbelin@inria.fr

bUniversità di Torino. Address: Corso Svizzera 185, I-10149 Torino, Italy. E-mail:
Saurin@di.unito.it

Abstract

Since Parigot designed the λµ-calculus to algorithmically interpret classical natural
deduction, several variants of λµ-calculus have been proposed. Some of these vari-
ants derived from an alteration of the original syntax due to de Groote, leading in
particular to the Λµ-calculus of the second author, a calculus truly different from
λµ-calculus since, in the untyped case, it provides a Böhm separation theorem that
the original calculus does not satisfy.

In addition to a survey of some aspects of the history of λµ-calculus, we study
connections between Parigot’s calculus and the modified syntax by means of an addi-
tional toplevel continuation. This analysis is twofold: first we relate λµ-calculus and
Λµ-calculus in the typed case using λµtp-calculus, which contains a toplevel contin-
uation constant tp, and then we use calculi of the family of λµt̂p-calculi, containing
a toplevel continuation variable t̂p, to study the untyped setting and in particular
relate calculi in the modified syntax.

Key words: λµ-calculus, Λµ-calculus, classical logic, control operators, toplevel
continuation

1 Introduction

The problem of understanding the computational content of classical logic
has been an active and vivid topic for a long time: while the Curry-Howard
correspondence evidenced the connections between intuitionistic proofs and
typed λ-calculus, the question of whether classical proofs could be endowed
with a computational meaning remained mysterious for years.

In the early 90’s however, the topic progressed in an impressively fast way

Preprint submitted to Elsevier January 29, 2010

as several proposals were being made almost simultaneously. Soon after Grif-
fin [Gri90] revealed that classical logic could be used to compute using Felleisen
et al λC-calculus [FFKD86] by typing operator C of type ¬¬A → A, Parigot
designed the λµ-calculus [Par92] to provide an algorithmic interpretation of
classical natural deduction. λµ-calculus was based on Parigot’s earlier study
of free deduction [Par91] and is built as an extension of λ-calculus, λµ-terms
following the syntax 1 :

Σλµ 3 M ::= x || λx.M || (M)M || µα.[β]M

While other formalisms have been proposed (Girard’s LC [Gir91,Mur92] of
which the underlying untyped calculus could be formalized or Barbanera
and Berardi’s symmetric λ-calculus [BB96] for instance), λµ-calculus became
widely studied and several variants of the calculus have been considered in
the literature. In particular, de Groote [dG94] introduced a slight variant of
the syntax of λµ-terms when studying the relation between λµ-calculus and
λC-calculus. De Groote’s syntax for λµ-calculus was:

ΣΛµ 3 M ::= x || λx.M || (M)M || µα.M || [α]M

Though this change might seem trivial, it actually leads to two different calculi,
at least in the untyped case: indeed, whereas Böhm separation theorem fails
for Parigot’s syntax [DP01], the second author could recover this property by
considering an extension of λµ-calculus on ΣΛµ, Λµ-calculus, which is very
close to de Groote’s presentation of λµ-calculus.

The aim of this article is (i) to survey some aspects of the history of λµ-
calculus that led to such a variety of calculi and (ii) to study the connections
between Parigot’s calculus and calculi based on de Groote’s alternative syn-
tax. We shall develop this study by considering an additional continuation tp
(a toplevel continuation) previously introduced in several works by the first
author [AH03,AHS07a,HG08]. Our investigation of the connections between
λµ and Λµ will be twofold: first we relate λµ-calculus and Λµ-calculus in the
typed case and then we study the relation in the untyped case and in particular
we relate de Groote’s λµε-calculus [dG98] with a variant of λµt̂p-calculus.

1 We adopt Krivine’s convention regarding the notation for application construction.
First, it is the function which is surrounded by parentheses in an application and not
the full application. Secondly, application is left-associative so that for an n-ary ap-
plication, only the head function needs parentheses around as e.g. in (λx.M)N P Q
(see [Kri93] for details).

2

2 The development of λµ-calculus and Λµ-calculus

The purpose of this extended historical section is to review some of the mile-
stones of the development of λµ-calculus. We think that, almost 20 years after
the discovery by Griffin that control operators provided a computational mean-
ing to classical logic and the introduction of λµ-calculus by Parigot, such an
historical survey may be useful to put things in the context of their discovery.

2.1 The genesis of λµ-calculus (1992)

Parigot derived his λµ-calculus in 1991 from his previous work on free de-
duction [Par91], a hybrid logic generalising both natural deduction and se-
quent calculus. λµ-calculus was presented at the LPAR conference in July
1992 [Par92]. One year before, in January 1990 at the POPL conference, Grif-
fin [Gri90] revealed that classical logic could be executed in practice and that
an appropriate candidate for computing with classical logic was Felleisen et
al’s λC-calculus [FFKD86].

Two elements immediately stressed λµ-calculus as an original contribution:

• λµ was explicitly thought as an untyped calculus relevant to denote proofs
in classical natural deduction and
• the focus was implicitly put on the call-by-name variant even though alter-

native reduction rules, specific to call-by-value, were also considered.

Definition 1 (λµ-calculus [Par92]) The syntax of λµ-calculus is:

Σλµ 3 M,N ::= x || λx.M || (M)M || µα.c (unnamed terms)

c ::= [α]M (named terms)

where x ranges over a set of λ-variables and α over a (disjoint) set of µ-
variables, also called continuation variables. λµ-calculus reduction rules are
presented in figure 1 where c {[α](P)N/[α]P} denotes the capture-avoiding
substitution of every subterm [α]P in c by [α](P)N .

Names in the left column were considered by Parigot in [Par93] while R1,
R2 and S1 are respectively called logical reduction, structural reduction and
renaming in [Par92]. Moreover, notice that the two-levels syntax of λµ-calculus
forces a constraint on terms in Σλµ that we refer to as the µ[] constraint: any
term with prefix µα has actually µα.[β] as prefix for some variable β. Also,
note that rule S1 applies to named terms only and should be rephrased as
µγ.[β]µα.c→ µγ.c {β/α} to apply on λµ-terms.

3

(R1) (λx.M)N → M {N/x}

(R2) (µα.c)N → µβ.c {[β](P)N/[α]P} if β not free in c,N

(S1) [β]µα.c → c {β/α}

(S2) µα.[α]M → M if α not free in M

Figure 1. λµ-calculus reduction rules.

Comment 1 Retrospectively, one can point out the fact that structural re-
duction and renaming are two facets of the same notion, namely of the bind-
ing of the surrounding evaluation context of an expression. This latter obser-
vation which is obvious when observing λµ-calculus from the point of view
of the “duality of computation” [CH00] or from the stream viewpoint of Λµ-
calculus [Sau05] was apparently unknown of Parigot when designing λµ.

A posteriori, we think that the fundamental discovery in λµ, compared to λC,
is the notion of structural substitution which moves pieces of evaluation con-
texts along continuation variables. The more fundamental nature of structural
substitution compared to the λC substitution of evaluation contexts reified as
ordinary functions (i.e. as functions of the form λx.E[x] for E a given eval-
uation context), is undoubtable 2 . As for the at-the-time unsuspected duality
between substitution of terms along ordinary variables and substitution of eval-
uation contexts along continuation variables, it comes from Curien and Her-
belin [CH00] (see Section 2.4).

Based on the fact that continuation variables are used in λµ-calculus as place-
holders for evaluation contexts, a more precise name for calling them could be
“evaluation contexts variables”. By convenience, we shall continue to call them
“continuation variables” (as first suggested in [HS97]) even though the term
“continuation” itself has no precise definition in this context.

In his LPAR paper, Parigot attempts to show how λµ could be used to in-
terpret the full strength of classical logic, namely to interpret ¬¬A → A.
He adopts the convention that variables of type ⊥ must be hidden in typing

2 If E is some evaluation context, say []N , the C operator of λC typically reduces
E[C λk.M] to C λk′.M {λx.(k′)E[x]/k}] where we can see that E has been first
reified into the regular function λx.(k′)E[x] before being substituted in place of k.
In a call-by-name setting, this further reduces to C λk′.M {(k′)E[P]/(k)P}] if ever
all occurrences of k in M are applied to some term. However, in a call-by-value,
there is no reason that M {λx.(k′)E[x]/k} ever reduces to M {(k′)E[P]/(k)P}]
since the P are not necessarily values. Conversely, C is directly definable with its
intended semantics from µ by setting CM , µα.[tp](M)λx.µδ.[β]x (see Section 2.5
for explanations about tp and [AH07] for a detailed analysis of the correspondence
between λC and λµ).

4

Γ, x : A ` x : A; ∆
Γ, x : A `M : B; ∆

Γ ` λx.M : A→ B; ∆

Γ `M : A→ B; ∆ Γ ` N : A; ∆

Γ ` (M)N : B; ∆
Γ ` c; ∆, α : A

Γ ` µα.c : A; ∆

Γ `M : A; ∆, α : A

Γ ` [α]M ; ∆, α : A

Figure 2. Parigot’s typing system for λµ-calculus.

derivations for classical logic (the full original typing system for Parigot’s λµ-
calculus is shown in figure 2). Nevertheless, this convention cannot hide the
variables of type ⊥ that occur in the terms themselves. Especially, the term
that proves ¬¬A→ A in Parigot’s λµ-calculus 3 is not a closed term, which re-
mains unsatisfactory from the proof-theoretic point of view (one would expect
of a proof-term that its free variables refer to proper assumptions).

Two lines of work provide more satisfactory answers to this question while
still preserving the benefit of structural substitution: de Groote’s extended
syntax [dG94,dG98] and Ariola et al’s [AH03,AHS07a] introduction of an ad-
ditional continuation constant tp as we shall see below.

2.2 De Groote’s modified syntax for λµ-calculus (1994)

On the relations between λµ and λC. In 1993, de Groote studied
some aspects of the relation between λµ-calculus and Felleisen et al’s λC-
calculus [FFKD86] (his work was presented at LPAR in 1994 [dG94]) which
led him to introduce a syntactic variant of λµ-calculus and of its system of
simple types.

λC-calculus was initially motivated as a formal language for studying control
constructs such as call/cc in Scheme 4 and de Groote’s approach to λC-
calculus is rather ad hoc. Indeed, on the one hand, while Felleisen et al treat
call-by-value only, de Groote focuses on a call-by-name formulation of λC-
calculus. On the other hand while Felleisen et al basically consider untyped
λC-calculus, de Groote focuses on a typed variant.

3 Parigot shows ℵ = λy.µα.[β](y)λx.µδ.[α]x as a term of type ¬¬A → A, where β
is a free continuation variable of type ⊥.
4 Even if λC actually turned out to be unable to faithfully simulate the operational
semantics of call/cc, see [AH07].

5

(β) (λx.M)N → M {N/x}

(CL) (CM) N → C λk.(M)λf.(k) (f) N

(Ctop) CM → C λk.(M)λf.(k) f

Figure 3. de Groote’s presentation of call-by-name λC reduction rules.

The syntax considered by de Groote for call-by-name λC was:

ΣλC 3 M,N ::= x || λx.M || (M)M || CM

while the reduction rules are presented in figure 3. Some remarks deserve to
be done:

• The rule (CL) already appears in Felleisen et al but with the original form
(CM) N → C λk.(M)λf.(A) (k) (f) N where A, defined as λx.C λk.x, is an
abort operator that throws its evaluation context away. The removal of abort
from the original CL of Felleisen is a relevant simplification of the rule as it
was also observed, e.g., by [RS94], whatever the setting is typed or not.
• The rule (Cidem) C λk.CM → C λk.(M)λx.C λy.(k)x from Felleisen et al

is disregarded, though needed to get a meaningful operational semantics:
without (Cidem), the calculus does not satisfy the property of progress that
any closed term M which is not a value is reducible when evaluated in an
abortive context 5 .
• The motivation for keeping the rule Ctop is difficult to understand. As it

is presented, it adds no expressive power since it simply amounts to a se-
quence of two η-expansions. The original rule in Felleisen et al is CM →
C λk.(M)λf.(A)(k) f and the justification of de Groote for removing the
abort is that it is not needed for typing. This argument is sound from the
operational point of view for CL but not for Ctop : with abort disregarded
from Ctop , we do not get the expected equivalence say, between C λk.(f)(k)x
and C λk.(k)x for f of type ⊥ → ⊥.
• As noticed later on by Hofmann and Streicher [HS02], call-by-name λC, such

as defined in de Groote, is not expressive enough to support an equivalent
to the renaming rule. The problem is that there is no local criterion for the
needed distinction between continuation variables (that have to be captured
by C so that a Cidem gets applicable) and ordinary variables (that have not to
be captured by C because of the call-by-name discipline). The sole hope of
an operationally complete semantics for call-by-name λC and of the ability
to produce values out of closed computations is to reason at the level of the
evaluation semantics, as done e.g. in Murthy [Mur91].

5 This property is sometimes stated in λ-calculus under the form of a unique context
lemma (as e.g. in [FF86]) telling that any term M which is not weak-head normal
has the form E[R] with R a redex, a redex which is the head redex of M .

6

Regarding λµ-calculus, de Groote’s approach is also rather specific. His con-
tribution is to provide a nice solution to the problem of having ¬¬A → A
proved by a closed term: in his variant of λµ-calculus, named terms and un-
named terms were not syntactically distinguished. De Groote’s syntax for λµ-
calculus was (in the following, we shall denote the set of terms of this syntax
as ΣΛµ):

ΣΛµ 3 M,N ::= x || λx.M || (M)M || µα.M || [α]M

De Groote also changed the typing system so that terms of the form [α]M
have type ⊥ and terms of the form µα.M expect M to be of type ⊥. With
this trick, there is no need anymore for a free variable to coerce M of type ⊥
to a term of type, say A: it is enough to write µα.M where Parigot required
to have µα.[β]M for β a free variable of type ⊥ 6 .

De Groote’s modified syntax turned to be historically important and fruitful.
Especially, this was the syntax used by the second author to prove a sepa-
rability result [Sau05] which was wrong for the original syntax (as shown by
David & Py [DP01]). At this time, the new syntax was not properly compared
to the original calculus, and the comparison is actually not so trivial: this is
the main purpose of the latter part of this paper.

λµε-calculus. The status of the extended calculus introduced by de Groote
is actually not absolutely clear since de Groote himself considers different vari-
ants of the extended calculus in his articles without analysing their relations.

In particular, in 1998, de Groote [dG98] defined an abstract machine for λµ-
calculus in the extended syntax but considered new reduction rules. This al-
ternative calculus, that we shall refer to as λµε-calculus, is defined as follows:
λµε-terms are the elements of ΣΛµ. λµε-reduction is as follows:

Definition 2 (λµε-calculus reduction) λµε-calculus reduction, which is writ-
ten −→λµε, is given by the following five reduction rules 7 presented in figure 4
where |M |β is the result of removing all free occurrences of β in M .

The main novelty in λµε-calculus – which extends Parigot’s calculus – is
rule (ε):

µα.µβ.M →ε µα. |M |β

6 ¬¬A→ A is inhabited by ℵ′ = λy.µα.(y)λx.[α]x for instance.
7 De Groote attributes to Parigot the naming of rule µ. However, we could not trace
this notation back to Parigot’s writings.

7

(β) (λx.M)N −→ M {N/x}

(µ) (µα.M)N −→ µβ.M {[β](P)N/[α]P} if β 6∈ FV (MN)

(ρ) µγ.[β]µα.M −→ µγ.M {β/α}

(θ) µα.[α]M −→ M if α 6∈ FV (M)

(ε) µα.µβ.M −→ µα. |M |β

Figure 4. λµε-calculus reduction rules.

De Groote’s motivation in adding this rule was to allow erasure of continuation
variables of type ⊥ 8 but without requiring the term to carry type information.
He thus had to rely on syntactical constraints which force the appropriate
type 9 : indeed, for µα.µβ.M to be well typed, µβ.M is forced to be of type ⊥
and thus β is also of type ⊥.

Comment 2 An early version of this rule was already discussed in the con-
clusion of his LPAR paper [dG94] comparing λµ-calculus and λC-calculus, ε
being viewed as useful for encoding the abort operator in λµ-calculus (see the
discussion above).

Moreover, rules closely related with ε are present in Ong and Selinger’s pre-
sentations of λµ-calculus as we shall see below.

The introduction of rule ε requires several modifications on the other rules of
the calculus. A constraint on reduction S1 shall be added in order not to lose
confluence, which leads de Groote to reformulate reduction S1 as ρ-reduction 10

shown below:
µγ.[β]µα.M −→ρ µγ.M {β/α} .

In the remaining of this section, we shall (i) focus on other contributions on
λµ which are based on the extended syntax ΣΛµ, and more particularly Ong’s
and Selinger’s contributions, (ii) discuss the duality of computation approach

8 He refers to this rule as “elimination of absurd weakening”.
9 According to his own words: “we have to define these notions of reduction at the
level of untyped terms since we do not want the notion of type to play any dynamic
part when evaluating a λµ-term”.
10 This constraint restricts the application of reduction ρ to redexes where Parigot’s
syntactical constraint µ[] is satisfied. Otherwise there is a critical pair involving ε
and ρ which cannot converge as exemplified by [ζ][δ]µγ.µβ.µα.M :

[ζ][δ]µγ.µβ.µα.M −→ε [ζ][δ]µγ.µα. |M |β −→2
ρ |M |β {δ/γ} {ζ/α}

[ζ][δ]µγ.µβ.µα.M −→ε [ζ][δ]µγ.µβ. |M |α −→2
ρ |M |α {δ/γ} {ζ/β} .

8

(β) (λxA.M)N = M {N/x}

(η) λxA.(M)x = M if x 6∈ FV (M)

(µ−β) [βB]µαB.c = c
{
βB/αB

}
(µ−η) µαB.[αB]M = M if αB 6∈ FV (M)

(ζ) µαA→B.c = λxA.µβB.c
{

[βB](P)x/[αA→B]P
}

if xA, βB 6∈ FV (c)

(ζ⊥) µαA→⊥.c = λxA.c
{

(P)x/[αA→⊥]P
}

if xA 6∈ FV (c)

Figure 5. Complete equational theory for Ong’s λµ-calculus in modified syntax.

which made clear the duality between terms and evaluation contexts and of
their respective substitutions which also led to considering a continuation con-
stant tp of type ⊥, and finally (iii) evidence the distinction between λµ and
Λµ (that is, between the original and the extended syntax) in the untyped
case by discussing the separation property in λµ.

2.3 From Ong (1996) to Selinger (2000): a study of the theory of typed λµ-
calculus in modified syntax through semantical criteria

Ong studied call-by-name λµ-calculus from a categorical point of view. For this
purpose, he was led to consider an equational theory for λµ-calculus that is
complete with respect to the equations of the categorical model (a categorical
model that is characterised as a fibred cartesian closed category). In particular,
the semantics approach forces to consider η-rules (universal properties) for the
two connectives considered, namely A→ B and ⊥. Because of the presence of
two connectives, η-rules need to know the type of the term to η-expand, what
requires explicitly typed reduction rules. Ong’s syntax is:

B ::= X || A→ A (non-empty types)

A ::= B || ⊥ (types)

M ::= x || λxA.M || (M)M || µαB.M || [αB]M (terms)

Besides providing an equational theory complete with respect to some cate-
gorical semantics, Ong improved on the way Parigot named the rules of λµ.
The complete equational theory with Ong’s genuine rule names is given in
figure 5.

The advantage of Ong’s rules (ζ)/(ζ⊥) compared to the original structural

9

reduction of Parigot is unclear to us. Indeed, while structural reduction was
purely operational, Ong’s rules (ζ) and (ζ⊥) introduce a bit of η-expansion.
It can indeed be decomposed as an η-expansion together with a structural
reduction (if xA, βB 6∈ FV (c)):

µαA→B.c = λxA(µαA→B.c)x = λxA.µβB.c
{

[βB](P)x/[αA→B]P
}

As a consequence, it breaks the clean separation between a set of operational
rules and a set of purely observational rules (see figure 13 for a presentation
where operational and observational fragments are clearly separated). More-
over, Ong’s system is not minimal since η can be derived from (ζ) and (µ−η).

The motivation for forbidding continuation variables of type ⊥ is unclear too:
at the end, Ong’s typed λµ-calculus can be conservatively extended using the
following more uniform syntax:

A,B ::= X || ⊥ || A→ A (types)

M ::= x || λxA.M || (M)M || µαB.M || [αB]M (terms)

and by replacing (ζ⊥) with

(η⊥) [α⊥]M = M.

Both these peculiarities are solved in Selinger [Sel01], who, in addition to his
contribution to the understanding of the semantical duality between call-by-
name and call-by-value, switched back to structural reduction and explicitly
supported continuation variables of type ⊥. Moreover, Selinger slightly im-
proved on the rationale for naming rules and insisted on formulating the rules
on type derivations, thus avoiding problems such that ensuring the correctness
of the type annotation in (β) or the validity of (η) when used from right to
left.

Selinger’s presentation of typed λµ-calculus in modified syntax is given in
figure 6 (we drop the constructions and rules for pairs, sums and units) 11 .

There is a canonical mapping of Selinger’s typed terms to Ong’s typed terms
which is compositional except for µα.M and [α]M for α of type ⊥ in which
case the translation isM . Actually, we have the following proposition (implicit
in Selinger’s work) stating that Selinger’s axiomatic is equivalent to Ong’s
axiomatic:

Proposition 3 There is an equational correspondence between Ong’s simply-
typed Λµ and Selinger’s simply-typed Λµ.

11 Moreover, [Sel01] says B instead of A→ B and we assume it is a typo.

10

(β→) (λxA.M)N = M {N/x} : B

(η→) λxA.(M)x = M : A→ B 12 if x 6∈ FV (M)

(ζ→) (µαA→B.M)N = µβB.M
{

[βB](P)N/[αA→B]P
}
if βB 6∈ FV (M,N)

(βµ) [β]µαA.M = M {β/α} : ⊥

(ηµ) µαA.[α]M = M : A if α 6∈ FV (M)

(β⊥) [α⊥]M = M : ⊥

Figure 6. Selinger’s presentation of typed λµ-calculus in modified syntax.

Proof: We briefly sketch the proof of the proposition. (ζ) is directly derivable
from (η→) and (ζ→) while (ζ⊥) can be derived from (η→), (ζ→), (β⊥) and (ηµ).
In the other way round, (β⊥) becomes an identity and (ζ→) derives from (ζ)
or (ζ⊥) and (β).

Let us briefly come back to λµε-calculus: de Groote’s ε rule is related with the
(ζ⊥) rule by Ong and the (β⊥) rule by Selinger 13 . However, contrarily to Ong’s
and Selinger’s calculi de Groote’s λµε-calculus has a type-free presentation due
to the use of the implicit type constraint of µ encapsulated terms.

One owes to Ong, together with Stewart with whom he provided a typed
call-by-value variant of the modified syntax [OS97], to have introduced a no-
tation M [β,K/α] generic over evaluation context K that lets suggest that
Parigot’s structural reduction is indeed a notion of substitution of evaluation
contexts.

Hofmann and Streicher [HS97] later provided an alternative, more syntactic
characterisation in terms of continuation-passing-style (cps) transformation
of the completeness of Ong’s equational theory of λµ-calculus in modified
syntax. As noticed by Streicher and Reus [SR98], Plotkin’s call-by-name cps-
translation extended to λµ-calculus 14 is not appropriate as it validates (→),
(µ→) and (ηµ) but not (η→). Hofmann and Streicher’s completeness result
indeed relies on Lafont-Reus-Streicher’s call-by-name cps-semantics [LRS93].

13 Actually, in the typed case, ε is validated by Selinger’s equational theory:
µαA.µβ⊥.M =β⊥ µα

A.µβ⊥. |M |β =β⊥ µα
A.µβ⊥.[β] |M |β =ηµ µα

A. |M |β .

14 The translation is as follows:
[|x|]K = (x)K [|λx.M |]K = (K)λx.[|M |] [|[β]M |] = [|M |]kβ
[|(M)N |]K = [|M |]λf.(f) [|N |]K [|µα.c|]K = (λkα.[|c|])K [|M |] = λk.[|M |]k

11

In 2002, Hofmann and Streicher [HS02] showed that Ong and Stewart’s seman-
tics of call-by-value λµ-calculus (in modified syntax) is equivalent to Hofmann
and Sabry-Felleisen’s call-by-value λC semantics [Hof95,SF93] and hence com-
plete with respect to Plotkin or Fisher’s call-by-value continuation-passing-
style semantics.

2.4 Looking at λµ-calculus from the duality-of-computation point of view

In 2000, Curien and the first author [CH00] designed a variant of λµ-calculus
based on the syntax of Gentzen’s sequent calculus. In sequent calculus, con-
nectives are introduced by left or right introduction rules that echo to other
introduction rules on the other side of the sequent. In sequent calculus, the
computation is expressed in a purely structural way as a cut between a formula
on the left and a formula on the right. Altogether, this contributes to establish
a duality between the right-hand side and the left-hand side of a sequent.

Eliminating cuts necessarily breaks the symmetry of the calculus because one
side has to get the priority over the other and the two dual ways to break the
symmetry have been shown to correspond to the call-by-name/call-by-value
duality, giving at the same time a purely syntactic emphasis of this duality.

In this computational interpretation of sequent calculus, right introduction
rules correspond to constructors of terms and left introduction rules to con-
structors of evaluation contexts, leading to a duality between these notions
and more generally to a reformulation of the concept of computation as an
interaction happening at the frontier between a term and its evaluation con-
text 15 .

15 For the record, the syntax of λµµ̃-calculus is
c ::= 〈t||e〉 (commands)
t ::= x || λx.t || µα.c (terms)
e ::= α || t · e || µ̃x.c (evaluation contexts)
where µ̃x.c is a notation for the context let x = [] in c, t · e for the context e[[] t]
and α alone for the context [α]([]). The reduction rules are

(µ) 〈µα.c||e〉 → c {e/α}
(µ̃) 〈t||µ̃x.c〉 → c {v/x}
(→) 〈λx.t||t′ · e〉 → 〈t′||µ̃x.〈t||e〉〉
with the call-by-name calculus obtained by giving priority to µ̃x.c in the critical
pair 〈µα.c||µ̃x.c′〉 and the call-by-value calculus obtained by giving instead priority
to µα.c. In practise, the construction µ̃x.c can be made implicit in the call-by-name
fragment providing a correspondence with call-by-name λµ-calculus by informally
identifying M N1 . . . Nn in the latter by µα.〈M ||N1 · . . . ·Nn · α〉, for α fresh.

12

One of the consequences of the syntactic duality between terms and evaluation
contexts and between call-by-name and call-by-value is that µ is revealed as
the exact dual of an evaluation context let x = [] inM that binds the program
to which it is applied to x before continuing the computation with programM
(an evaluation context which is commonly used in the context of call-by-value
semantics). This allows to see that µ is a binder of evaluation contexts in the
same way as a let x = [] in M expression is a binder of terms. Especially,
it appears that renaming and structural substitution are two complementary
pieces of the same notion, namely the substitution of evaluation contexts.

As explored in [Her05], another consequence of the sequent calculus approach
of λµ-calculus is the ability to make a clear distinction between the logical (=
computational) rules and the observational rules.

Finally, by emphasising a syntactic duality between terms and evaluation con-
texts, [CH00] promotes the use of an explicit continuation constant for inter-
preting the elimination rule of ⊥, as a parallel to the use of an explicit term
constant for interpreting the introduction rule of >.

2.5 Classical Logic vs. Minimal Classical Logic (2003)

In section 2.1, we saw that in Parigot’s λµ-calculus it is not possible to build
a closed proof-term for ¬¬A → A, which is not satisfactory from the proof-
theoretic point of view. There is an alternative solution to the extended syntax
in order to solve this problem: Ariola and Herbelin [AH03] (extended version
with Sabry [AHS07a]) replace the “trick” of hiding continuation variables of
type ⊥ by the introduction in the syntax of a continuation constant tp of type
⊥ (i.e. that expects an argument of type ⊥). In particular, this clarifies that
pure λµ-calculus is in correspondence with minimal classical logic (Peirce’s law
((A → B) → A) → A holds but ⊥ → A does not) and not with full classical
logic (both Peirce’s law and ⊥ → A hold, what amounts to have ¬¬A→ A).

Comment 3 Reconsidering [AH03], we think that Ariola and Herbelin ap-
proach can be improved by simply considering that ⊥ is a connective and that
the construction [tp]M is its elimination rule. This view also is obvious from
the point of view of the duality of computation for which tp is the only con-
structor, in the class of evaluation contexts, of connective ⊥.

2.6 Separation property in λµ-calculus (2005)

In his seminal paper [Par92], Parigot remarks that “in λµ-calculus (contrary
to λ-calculus), there are terms which give always the same result, indepen-

13

(Wy)AB1 . . . Bk −→? µα.[α]A

µβ.[α]A u′0 B1 . . . Bk

u′0 y B1 . . . Bk

Figure 7. Counter-example to separation in λµ-calculus.

dently of the number of arguments they are applied to. For instance, the
term τ = λx.λy.µδ.[φ](x)y is such that, for each n ∈ N, (τ)xyz1 . . . zn →?

µδ[φ](x)y.” The situation is actually worse: separation (aka. Böhm theorem)
fails in λµ-calculus, i.e. there exist non-equivalent terms that give the same
results whatever context they are placed in.

Failure of separation was proved by David and Py [DP01] 16 . For this, they
introduce new reduction rules to consider a confluent λµ-calculus with η-rules:

λx.(M)x −→ M if x 6∈ FV (M)

µα.c −→ λx.µβ.c {[β](P)x/[α]P} if x, β 6∈ FV (c)

They then prove that separation fails in λµ by finding a counter-example to
separation. They exhibit two values W0,W1 ∈ Σλµ

17 that are not equivalent
for the equivalence relation induced by λµ-reduction rules (with extensional-
ity) but that no context can distinguish.

The failure of separation in λµ-calculus may be understood as the fact that
some separating contexts are missing in λµ for separation to hold resulting in
the impossibility of observing y in the term of footnote 17 as shown in figure 7.
This led the second author to define Λµ-calculus [Sau05], an extension to λµ
for which Böhm theorem was proved. In Λµ-calculus, the validity of separation
may be understood as the fact that the new contexts made available by the
new syntax are sufficient to realise a Böhm Out.

Λµ-calculus syntax actually coincides with the extended syntax of de Groote
and, up to the extensionality rules, the two calculi are identical:

Definition 4 (Λµ-calculus reduction) Λµ-calculus reduction, which is writ-
ten −→Λµ, is induced by the five reduction rules presented in figure 8 18 .

A separation result is stated with respect to a set of observables (in λ-calculus,

16 The result was already in Py’s thesis [Py98].
17 The terms are obtained by substituting y by 0 = λx, x′.x′ and 1 = λx, x′.x

14

(βT) (λx.M)N −→ M {N/x}

(ηT) λx.(M)x −→ M if x 6∈ FV (M)

(βS) [β]µα.M −→ M {β/α}

(ηS) µα.[α]M −→ M if α 6∈ FV (M)

(fst) µα.M −→ λx.µβ.M {[β](P)x/[α]P} if x, β 6∈ FV (M)

Figure 8. Λµ-calculus reduction rules.

they are the βη-normal forms). Since fst is an expansion rule, there are very
few normal forms in Λµ. We thus consider a set of Λµ-canonical normal
forms [Sau05,Sau08b] as basic observables for separation:

Definition 5 M ∈ ΣΛµ is in Λµ-canonical normal form if it is normal for
βTηTβSηS and it contains no subterm of the form [α]λx.M nor (µα.M)N .

We can now state the separation result for Λµ-calculus [Sau05]:

Theorem 6 (Böhm theorem for Λµ) LetM,M ′ ∈ ΣΛµ. IfM 6=Λµ M
′ and

they are both Λµ-canonical normal forms, there exists a context C[] such that:

C[M] −→?
Λµ λx.λy.x and C[M ′] −→?

Λµ λx.λy.y.

By showing that the untyped modified syntax of λµ-calculus satisfies the Böhm
separation theorem [Sau05] while the untyped original syntax did not [DP01],
Saurin emphasised that, given a same set of reduction rules, the modified
syntax was more expressive than the original syntax. This justified to give it
the distinct name of Λµ-calculus, which is the name we keep for denoting the
modified syntax in the rest of this article.

2.7 A global view of λµ-calculi.

In figure 9, we collect the various notations for reduction rules used in standard
references that we discussed above, both in the standard and the modified
syntax. The right-most column shows notations that shall be followed in the
remaining sections of the present paper.

respectively in Wy = λx.µα.[α]((x)µβ.[α](x)U0y)U0 with U0 = µδ.[α]λz1, z2.z2.
18 Notice that µ is not part of Λµ-calculus reduction system (but could be
added): it can indeed be simulated by a fst-reduction followed by a βT -reduction:
(µα.M)N −→fst (λx.µα.M {[α](P)x/[α]P})N −→βT µα.M {[α](P)N/[α]P} .

15

[Par91,Par93] [Ong96] [dG98] [DP01] [Sel01] [Sau05] [this paper]

(R1) (β) (β) (β) (β→) (βT) (→)

(η) (η) (η→) (ηT) (η→)

(R2) (µ) (µ) (ζ→) (µ→)

(S1) (µ− β) (ρ) (ρ) (βµ) (βS) (µvar)

(S2) (µ− η) (θ) (θ) (ηµ) (ηS) (ηµ)

(S3) (ζ) (ν) (fst)

(ζ⊥) (ε) (β⊥) (id⊥)

Figure 9. Notations for λµ-reductions in the literature.

3 Connecting the original and the modified syntax of λµ-calculus
in the typed case

Connecting the original syntax based on two syntactical categories of terms
and the approaches based on the modified syntax with a single category of
term requires in the typed case two extensions of the original syntax. Following
David and Py, we first complete Parigot’s reduction system with η-rules while,
in a second step, we add to λµ-calculus a ⊥ connective.

As a first step, we remind some results on the notion of cps-completeness that
we use for characterising the minimum of equations to be valid in a sensible
axiomatic theory of λµ-calculus.

3.1 Cps-complete extension of Parigot’s λµ-calculus

Ong [Ong96] studied λµ-calculus as an equational theory with η-rules for impli-
cation but it was for the modified syntax and in a typed setting. Hofmann and
Streicher [HS97] showed that this same equational theory was also sound and
complete with respect to Lafont-Reus-Streicher’s call-by-name continuation-
passing-style semantics [LRS93].

For the original syntax, the extension with η for implication was considered
by David and Py [DP01] who showed that Böhm separation theorem does
not hold. Later on, Fujita adapted Hofmann and Streicher’s soundness and
completeness proof from the modified syntax to the original syntax and in an
untyped setting. The corresponding equational theory is presented in figure 10.

16

(→) (λx.M)N = M {N/x}

(η→) λx.(M)x = M if x not free in M

(µ→) (µα.c)N = µβ.c {[β](P)N/[α]P} if β not free in c,N

(µvar) [β]µα.c = c {β/α}

(ηµ) µα.[α]M = M if α not free in M

Figure 10. CPS-Complete equational theory for Parigot’s λµ-calculus.

Proposition 7 ([Fuj03]) The equational theory is validated by its call-by-
name continuation-passing-style (cps) to λ-calculus with pairs.

3.2 Extension of the original syntax with a constructor for the ⊥ connective

So as to clarify the connection with the modified syntax of λµ-calculus, we
show the extension of Parigot’s λµ-calculus to the ⊥ connective and its infer-
ence rules. Following [AH03], this extension is obtained by adding a construc-
tion [tp]M where tp is a continuation constant typable of type ⊥.

Σλµtp 3 M ::= x || λx.M || (M)M || µα.c

c ::= [α]M || [tp]M

In the typed case, extensionality rules are [tp]M =η⊥ [α]M for the ⊥ connec-
tive 19 and λx.(M)x =η→ M (for x not free inM) for the→ connective. While
η→ can be easily considered in the untyped case, it is not the case of η⊥ which
is hardly manageable without type information. As a consequence, we shall
stay in the typed case at the moment, as given on the left column of Figure 13
where a rule M = N : A denotes a transformation between derivations of the
form Γ `M : A; ∆ and Γ ` N : A; ∆ for some ∆ and Γ.

3.3 Cps-complete presentation of the typed modified syntax of λµ-calculus
(Λµ→st)

Let us use the name Λµst for Selinger’s axiomatics of the simply-typed modified
syntax of λµ-calculus [Sel01]. This calculus is recalled on the right column of
Figure 13. The η-reduction rules related to connectives are applicable when

19 This rule expresses that the only “continuation” of type ⊥ is tp, in the same way
as extensionality for > is x = () : >, where () is the canonical proof inhabiting >.

17

λµ⊥st Λµ⊥st

Γ ` c; ∆ ←→ Γ ` c : ⊥; ∆

Γ `M : A; ∆ ←→ Γ `M : A; ∆

[α]M 7−→ [α]M

[tp]M 7−→ [tp]M

µα.c 7−→ µα.c

µα.[tp]M ←− [µα.M

µ_.[α]M ←− [[α]M

µ_.[tp]M ←− [[tp]M

Figure 11. Translations between λµ⊥st and Λµ⊥st.

Λµ⊥st Λµst

Γ `M : A; ∆ ←→ Γ `M : A; ∆

[α]M ←→ [α]M

µα.M ←→ µα.M

[tp]M 7−→ M

Figure 12. Translations between Λµ⊥st and Λµst.

both terms are typable of the same type. Moreover, to move from one calculus
to another, the following translations shall be applied:

Definition 8 Translations between λµ⊥st, Λµ⊥stand Λµst are defined as follows:

• translations between λµ⊥st and Λµ⊥st are presented in figure 11. They are
written | |Λµ⊥ for the translation from λµ⊥st to Λµ⊥st and | |λµ⊥ for the reverse
translation.
• translations between Λµ⊥st and Λµst are presented in figure 12.

3.4 Modified syntax extended with a constructor for the ⊥ connective

As in subsection 3.2, we extend Λµst with an explicit continuation constant
tp witnessing the ⊥ elimination rule. This will ease the comparison with λµ⊥st.
The resulting calculus, which is shown on the central column of Figure 13, is
equivalent to Selinger’s calculus. More precisely, we have:

18

λ
µ
⊥ st

Λ
µ
⊥ st

Λ
µ
st

Sy
nt
ax

ς
::=

α
||t

p
ς

::=
α

M
,N

::=
x
||λ
x
.M
||(
M

)M
||µ
α
.c

c
::=

[ς
]M

M
,N
,c

::=
x
||λ
x
.M
||(
M

)M
||µ
α
.M
||[
ς]
M

O
pe
ra
ti
on

al
ru
le
s

(→
)

(λ
x
.M

)N
=
M
{N

/
x
}

(µ
→

)
(µ
α
.c

)N
=
µ
β
.{

[β
](
P

)N
/[
α

]P
}

(µ
va

r
)

[ς
]µ
α
.c

=
c
{ς
/α
}

O
bs
er
va
ti
on

al
ru
le
s

(η
µ
)
µ
α
.[α

]x
=
x

:
A

(η
→

)
λ
x
.(
y
)x

=
y

:
A
→
B

(η
⊥

)
[t
p]
M

=
[α

]M
(η
⊥

)
[t
p]
M

=
[α

]M
:
⊥

(i
d
⊥

)
[ς

]M
=
M

:
⊥

(i
d
⊥

)
[ς

]M
=
M

:
⊥

T
yp
in
g
ru
le
s

(A
::=

X
||A
→
A
||⊥

)
Γ
`
M

:A
→
B

;∆
Γ
`
N

:A
;∆

Γ
`

(M
)N

:B
;∆

Γ
,x

:A
`
x

:A
;∆

Γ
,x

:A
`
M

:B
;∆

Γ
`
λ
x
.M

:A
→
B

;∆
Γ
`
M

:A
;∆
,α

:A

Γ
`

[α
]M

;∆
,α

:A

Γ
`
c;

∆
,α

:A

Γ
`
µ
α
.c

:A
;∆

Γ
`
M

:A
;∆
,α

:A

Γ
`

[α
]M

:⊥
;∆
,α

:A

Γ
`
M

:⊥
;∆
,α

:A

Γ
`
µ
α
.M

:A
;∆

Γ
`
M

:⊥
;∆

Γ
`

[t
p]
M

;∆

Γ
`
M

:⊥
;∆

Γ
`

[t
p]
M

:⊥
;∆

In
or
de
r
to

m
in
im

is
e
th
e
re
du

nd
an

cy
in

th
e
ta
bl
e
an

d
to

sh
ow

as
m
uc
h
of

th
e
co
m
m
on

el
em

en
ts

be
tw

ee
n
th
e
ca
lc
ul
ia

s
po

ss
ib
le
,w

e
ad

op
t

th
e
fo
llo

w
in
g
w
ri
ti
ng

co
nv

en
ti
on

s:
w
he
n
so
m
e
pa

rt
s
of

a
de

fin
it
io
n
ar
e
co
m
m
on

to
se
ve
ra
lc

al
cu

li,
w
e
ha

ve
m
er
ge
d
as
so
ci
at
ed

co
lu
m
ns

by
re
m
ov
in
g
th
e
ve
rt
ic
al

ba
r
be

tw
ee
n
tw

o
co
lu
m
ns
.
Fo

r
in
st
an

ce
,
in

de
fin

in
g
th
e
sy
nt
ax

of
th
e
ca
lc
ul
i,
it

sh
al
l
be

re
ad

th
at

bo
th

λ
µ
⊥ st

an
d

Λ
µ
⊥ st

ha
ve

a
sy
nt
ac
ti
ca
l
co
ns
tr
uc
t
ς
w
hi
ch

is
ei
th
er

a
co
nt
in
ua

ti
on

va
ri
ab

le
,
α
,
or

a
to
pl
ev
el

co
ns
ta
nt
,
tp
,
w
hi
le

Λ
µ
st

al
lo
w
s
ς
to

de
no

te
on

ly
co
nt
in
ua

ti
on

va
ri
ab

le
s.

O
n
th
e
ot
he
r
ha

nd
,
th
e
de
fin

it
io
n
of

te
rm

s
in
vo
lv
e
tw

o
le
ve
ls

in
λ
µ
⊥ st

(f
ol
lo
w
in
g
P
ar
ig
ot
’s

co
ns
tr
ai
nt
)
w
hi
le

it
is

no
t
th
e
ca
se

fo
r

Λ
µ
⊥ st

an
d

Λ
µ
st

(f
ol
lo
w
in
g
ex
te
nd

ed
sy
nt
ax

).
M
or
eo
ve
r
th
e
op

er
at
io
na

l
ru
le
s
ar
e
co
m
m
on

tw
o
th
e
th
re
e
ca
lc
ul
i:
th
e

th
re
e
co
lu
m
ns

ar
e
m
er
ge
d.

F
ig
ur
e
13

.D
efi

ni
ng

an
d
co
nn

ec
ti
ng

λ
µ
⊥ st
,Λ
µ
⊥ st

an
d

Λ
µ
st
:s

yn
ta
x,

op
er
at
io
na

lr
ul
es
,o

bs
er
va
ti
on

al
ru
le
s
an

d
ty
pi
ng

ru
le
s.

19

Proposition 9 Λµst and Λµ⊥st are in equational correspondence.

Proof: The sketch of the proof is as follows. First, notice that the η-rule for
⊥ is a consequence of the property (id⊥) that the only construction from ⊥
to ⊥ is the identity. Moreover, there is a retract from Λµ⊥st to Λµst that erases
[tp]. This retracts maps (η⊥) steps to (id⊥) steps.

We are now ready to relate Λµ⊥st and λµ⊥st and hence Λµst and λµ⊥st. Again, there
is a retract from Λµ⊥st to λµ⊥st that inserts a µ_ step (where “_” denotes an
arbitrary fresh evaluation context variable of type ⊥) in front of any derivation
of the form [ς]M not already prefixed by a µα, and inserts a [tp] below any
µα whose argument is not already prefixed by a [β]. We have:

Proposition 10 λµ⊥st and Λµ⊥st are in equational correspondence.

Proof: The translation of (id⊥) in λµ⊥st is either µβ.[ς]M = M : ⊥ (for β
fresh) or [ς]M = [tp]M : ⊥, depending on whether the equation is used in the
immediate scope of a µ or not. The validity of (id⊥) thus derives in the first case
from (η⊥) together with (ηµ) so as to get µβ.[ς]M = µβ.[tp]M = µβ.[β]M = M
and derives directly from (η⊥) in the second case.

Finally, the equational correspondence between λµ⊥st and Λµst is an immediate
corollary of propositions 9 and 10:

Corollary 11 λµ⊥st and Λµst are in equational correspondence.

3.5 The operational correspondence between λµ⊥st and Λµst

If we omit the observational rules, and in particular the ones related to ⊥, then
λµ⊥st gets more distinct equivalence classes of terms than Λµ⊥st, but in a non
essential way. If we write→ for the left-to-right orientation of the operational
rules, then the following holds:

Proposition 12

• For M and N in λµ⊥st, M → N iff |M |Λµ⊥ → |N |Λµ⊥;
• For M and N in Λµ⊥st, if M → N then (µvar) can be postponed and, if we

exclude (µvar) steps then M → N iff |M |λµ⊥ → |N |λµ⊥.

Proof: The first equivalence is not problematic, we concentrate on the second
equivalence. In this case, (µvar) shall be avoided. Indeed, considering (µvar),
the equivalence would fail for |µα.µβ.x|λµ⊥ = µα.[tp]µβ.[tp]x which reduces
via (µvar) to µα.[tp]x = |µα.x|λµ⊥ and obviously µα.µβ.x 6→ µα.x.

20

Postponement of (µvar) holds because we are in the typed case: in the untyped
case, this is not true for the extended syntax since a (µvar) reduction may
unlock a β-redex as shown by ([β]µα.λx.(x)x)λx.(x)x→ (λx.(x)x)λx.(x)x.

We can also show that λµ⊥ and Λµ are equivalent, even in the untyped case,
if we change (µvar) to

(µvar
′) µγ[β]µα.c = µγ.c {β/α}

since then, all uses of (µvar
′) in Λµ⊥st are simulated in λµ⊥st.

The present section has been devoted to the investigation of the typed case:
we established equational correspondence results between three calculi with
an explicit representation of the toplevel as a toplevel continuation constant
tp of type ⊥. Actually, our results amount to show that in the typed setting,
the original syntax and the modified syntax are essentially equivalent, as soon
as one considers both an explicit construction for ⊥ and observational rules.

We shall now turn our attention to the untyped setting.

4 Connecting the original and the modified syntax of λµ-calculus
in the untyped case.

In this section, we first recall the connections between Λµ-calculus and call-by-
name λµt̂p-calculus introduced in [HG08]. Then, we analyse λµε according to
the same methodology: we build an equational correspondence with a variant
of λµt̂p.

4.1 Equational correspondence between Λµ-calculus and call-by-name λµt̂p

Introduced in [AHS04,AHS07b], the λµt̂p-calculus is a fine-grained calculus for
delimited continuations of which a call-by-name version has been introduced
by the first author and Ghilezan [HG08]. We recall the syntax of λµt̂p-calculus
in the following definition:

Definition 13 (λµt̂p-terms) λµt̂p-terms (M,N, · · · ∈ Σλµt̂p) are given by
the following syntax:

Σλµt̂p 3 M,N ::= x || λx.M || (M)M || µq.c

c ::= [q]M q ::= α || t̂p

21

Π : ΣΛµ 7−→ Σλµt̂p Σ : Σλµt̂p 7→ ΣΛµ

Π(x) , x

Π(λx.M) , λx.Π(M)

Π((M)N) , (Π(M))Π(N)

Π(µα.M) , µα.[t̂p]Π(M)

Π([α]M) , µt̂p.[α]Π(M)

Σ(x) , x

Σ(λx.M) , λx.Σ(M)

Σ((M)N) , (Σ(M))Σ(N)

Σ(µα.[β]M) , µα.[β]Σ(M)

Σ(µα.[t̂p]M) , µα.Σ(M)

Σ(µt̂p.[α]M) , [α]Σ(M)

Σ(µt̂p.[t̂p]M) , Σ(M)

Figure 14. Translations between Λµ and λµt̂p [HG08].

While in the previous section we were considering a constant tp, things shall
now be different in the rest of the paper. Indeed, in Σλµt̂p, t̂p is a toplevel
continuation variable of a special kind. First, contrarily to the case of Σλµtp,
one can abstract over t̂p using µt̂p. while tp could not be bound. The second
main difference is that t̂p will be considered as a dynamic variable: it will be
dynamically bound by the closest encapsulating µt̂p. As a conclusion, while
substitution in the previous calculi involved α-conversion in order to avoid
variable-capture, the substitution of t̂p for a usual continuation variable α will
not imply such a conversion. As an example:

(λx.µt̂p.[α].x)
{
t̂p/α

}
, λx.µt̂p.

[
t̂p
]
.x

This shall be crucial in building the correspondence with Λµ-calculus and λµε-
calculus. In particular, λµtp is not equationally correspondent to Λµ-calculus
in the untyped case for the following reason: [α][β]µγ.µδ.M would translate
into µζ.[α]µζ.[β]µγ.[tp]µδ.[tp]M ′ =µvar µζ.[tp]M ′ {β/γ} {tp/δ}. The only way
to get this correspondence back would be to restrict µvar/ρ as described in the
previous section.

The equational theory of call-by-name λµt̂p-calculus is:

Definition 14 (CBN λµt̂p equational theory) λµt̂p-equational theory is
given by the equations presented in figure 15.

Λµ-calculus and λµt̂p-calculus are in equational correspondence as proved
in [HG08]:

Proposition 15 (Equational correspondence between Λµ and λµt̂p) Let
M,N ∈ ΣΛµ and M ′, N ′ ∈ Σλµt̂p. Then one has:

• If M =Λµ N then Π(M) =λµt̂p Π(N);
• If M ′ =λµt̂p N

′ then Σ(M ′) =Λµ Σ(N ′);

22

(→) (λx.M) N = M {N/x}

(η→) λx. (M)x = M if x is not free in M

(µ→) (µα. c) M = µβ.c {[β](P)M/[α]P} if β is not free in c,M

(µnvar) [β]µα.c = c {β/α}

(ηµ) µα.[α]M = M if α is not free in M

(µt̂p)
[
t̂p
]
µt̂p.c = c

(ηt̂p) µt̂p.
[
t̂p
]
M = M even if t̂p occurs free in M

Figure 15. λµt̂p-calculus equational theory.

• Σ(Π(M)) = M ;
• Π(Σ(M ′)) =µ

t̂p
M ′.

With Π and Σ, the translations between Λµ and λµt̂p that are given in fig-
ure 14.

In the remaining of this section, we study a similar result for λµε.

4.2 An alternative call-by-name delimited control calculus, λµt̂p`

Λµ (through its equational correspondence with λµt̂p) is not the only call-by-
name calculus with delimited control. Ongoing work with Ghilezan [HGS09] is
providing a uniform classification of calculi with delimited control which arise
from choices among critical pairs (two CBN and two CBV calculi). In partic-
ular, λµt̂p` is an alternative CBN calculus in which the toplevel continuation
variable t̂p behaves as a regular linear evaluation context: in λµt̂p`, one of the
changes is that rule µnvar is replaced by µvar:

[q]µα.c −→ c {q/α}

allowing to substitute t̂p for a usual continuation variable.

The translation of µα.µβ.M in Σλµt̂p, µα.
[
t̂p
]
µβ.

[
t̂p
]
Π(M), contains a µvar

redex and thus reduces to µα.
[
t̂p
]
Π(M)

{
t̂p/β

}
. Similarity with ε-reduction

in λµε-calculus is striking and this is what we shall investigate in the following
subsections: can Π(M)

{
t̂p/β

}
be related to Π(|M |β)? We shall now introduce

λµt̂p` and see to what extent this may simulate λµε. This shall finally lead
us to present an alternative λµt̂p-calculus, called λµt̂pε-calculus, which is in

23

(→) (λx.M) N −→ M {N/x}

(µ→) (µα. c) M −→ µβ.c {[β](P)M/[α]P} if β is not free in c,M

(µvar) [q]µα.c −→ c {q/α}

(ηµ) µα.[α]M −→ M if α is not free in M

(µt̂p)
[
t̂p
]
µt̂p.c −→ c

(ηvt̂p) µt̂p.
[
t̂p
]
V −→ V (even if t̂p occurs free in V)

Figure 16. λµt̂p`-calculus reduction rules.

equational correspondence with λµε.

Terms of λµt̂p` are in Σλµt̂p and we additionally consider a set of values:

V ::= λx.M || µt̂p.c

Definition 16 (λµt̂p`-reduction) λµt̂p`-reduction system is defined by the
six reductions presented in figure 16.

4.3 Comparing λµε with λµt̂p`

A quick analysis reveals that it is not always the case that if M,N ∈ ΣΛµ are
such that M −→ε N then Π(M) =λµt̂p` Π(N). Indeed, in λµε, an ε-reduction
may unlock a hidden µ-redex as shown in the following examples:

M = µα.µβ.([β]µγ.N)P −→ε µα.(µγ. |N |β) |P |β

whereas

Π(M) −→λµt̂p` µα.
[
t̂p
]
(µt̂p.

[
t̂p
]
µγ.

[
t̂p
]
Π(N)

{
t̂p/β

}
)Π(P)

{
t̂p/β

}
and the variable t̂p should be substituted to γ, thus forbidding to simulate the
µ-reduction made available in λµε 20 . Thus, while in λµε an ε rule may unlock
a µ-reduction, in λµt̂p`, the substitution of continuation variables by toplevel
continuation variables may be propagated through continuation variables via
the µvar rule.

20 The problem does not occur with a hidden β-redex (such as with
term M ′ = µα.µβ.([β]λx.N)P) since one obtains in λµt̂p` the term
µα.
[
t̂p
]
(µt̂p.

[
t̂p
]
λx.Π(N)

{
t̂p/β

}
)Π(P)

{
t̂p/β

}
to which a reduction ηv

t̂p
can be ap-

plied because λx.Π(N)
{
t̂p/β

}
is a value.

24

Since neither λµε nor λµt̂p` can directly simulate the other calculus, one shall
try to compare variants of the calculi. One option is to require a restriction on
the ε-rule to the cases where it cannot unlock a hidden µ-redex. It is actually
fairly simple to do: consider a term of the form µα.µβ.M and consider all the
subterms of M of the form [β]N . If N is λx.P , there is no problem, if it is
[γ]P , there is no problem either. On the contrary, if N is either of the form
µα.P , (P)Q or x, then N is or may eventually reduce to a µ-abstracted term
and the problem would occur. We thus consider the following restriction to
ε-reduction:

µα.µβ.M −→εv µα. |M |β iff all free β in M occur at subterms [β]V .

with V ::= λx.M || [α]M . In this case, we are sure that ε will not unlock a
hidden µ-redex.

The resulting reduction is denoted as λµεv. One can thus have a simulation
result:

Proposition 17 For any M,N ∈ ΣΛµ, if M −→λµεv N then Π(M) =λµt̂p`
Π(N).

Proof: Indeed, every reduction in λµεv can easily be simulated in λµt̂p`. The
result is thus proved by an easy by induction on the length of λµεv-reduction
sequence.

In addition to the fact that the previous result is fairly weak and can hardly
be strengthened, we moved farther from de Groote’s original calculus by in-
troducing λµεv, while λµε was the calculus we wanted to analyse.

The direction we shall follow in the next section is on the contrary to extract
a variant of λµt̂p which indeed equationally corresponds to λµε.

4.4 A λµt̂p-calculus in equational correspondence with λµε

Thanks to the previous remarks, a λµt̂p-calculus that would be in equational
correspondence with λµε would require:

• to have rule µvar and not only µnvar;
• redexes not to be blocked by toplevel continuation variables as in λµt̂p`

because of ηvt̂p.

25

(→) (λx.M) N −→ M {N/x}

(µ→) (µα. c) M −→ µβ.c {[β](P)M/[α]P} if β 6∈ FV (c,M)

(µ′var) µα.[q]µβ.c −→ µα.c {q/β}

(ηµ) µα.[α]M −→ M if α is not free in M

(µt̂p)
[
t̂p
]
µt̂p.c −→ c

(ηt̂p) µt̂p.
[
t̂p
]
M −→ M even if t̂p occurs free in M

Figure 17. λµt̂pε-reduction rules.

This suggests to consider both µvar and ηt̂p, but this cannot be done directly
since these rules create a critical pair:

µα.c ←−η
t̂p

µt̂p.
[
t̂p
]
µα.c −→µvar µt̂p.c

{
t̂p/α

}

Since we just liberalised ηt̂p with respect to λµt̂p`, the sensible choice to avoid
the critical pair above is to forbid the right-most reduction, by requiring µvar
to occur only under a µα prefix and not under a µt̂p prefix. This leads to the
following form of µvar reduction 21 :

µα.[q]µβ.c −→µ′var µα.c {q/β}

We can thus present the reduction rules of the new calculus, that we shall
refer to as λµt̂pε:

Definition 18 λµt̂pε-calculus is defined on Σλµt̂p and its reduction rules are
defined in figure 17.

λµt̂pε is an intermediate calculus between λµt̂p and λµt̂p` as presented in
Figure 18.

We can now formulate that λµε and λµt̂pε are equationally equivalent:

Proposition 19 (Equational correspondence between λµε and λµt̂pε)
Let M,N ∈ ΣΛµ and M ′, N ′ ∈ Σλµt̂p. Then one has:

• If M =λµε N then Π(M) =λµt̂pε Π(N);
• If M ′ =λµt̂pε N

′ then Σ(M ′) =λµε Σ(N ′);

21 Notice that the formulation of µnvar on λµt̂p-terms was µq.[α]µβ.c −→µnvar
µq.c {α/β}.

26

λ
µ
t̂p

λ
µ
t̂p
ε

λ
µ
t̂p
`

Sy
nt
ax

Σ
λ
µ
t̂p
3

M
,N

::
=
x
||λ
x
.M
||(
M

)M
||µ
q.
c

c
::
=

[q
]M

q
::
=
α
||t̂

p

V
::
=
λ
x
.M
||µ

t̂p
.c

R
ed
uc
tio

n
R
ul
es

(→
)

(λ
x
.M

)
N
−→

M
{N

/x
}

(µ
→

)
(µ
α
.c

)
M
−→

µ
β
.c
{[
β

](
P

)M
/[
α

]P
}

(µ
n v
a
r
)
µ
q.

[α
]µ
β
.c
−→

µ
q.
c
{α
/β
}

(µ
′ va
r
)
µ
α
.[
q]
µ
β
.c
−→

µ
α
.c
{q
/β
}

(µ
v
a
r
)
µ
q.

[q
′]
µ
α
.c
−→

µ
q.
c
{q
′ /
α
}

(µ
t̂p

)
[t̂p
] µ

t̂p
.c
−→

c

(η
µ
)
µ
α
.[
α

]M
−→

M
(?

)

(η
t̂p

)
µ
t̂p
.[
t̂p

]M
−→

M
(?
?)

(η
v t̂p

)
µ
t̂p
.[
t̂p

]V
−→

V
(?
?
?)

(?
)
if
α
6∈
F
V

(M
)

(?
?)

(e
ve
n
if

t̂p
∈
F
V

(M
))

(?
?
?)

(e
ve
n
if

t̂p
∈
F
V

(V
))
.

F
ig
ur
e
18

.T
hr
ee
λ
µ
t̂p
-c
al
cu

li.

27

• Σ(Π(M)) = M ;
• Π(Σ(M ′)) =µ

t̂p
M ′.

Proof: First, one shall notice the following substitution result: if M ∈ ΣΛµ,
β a continuation variable, then Π(|M |β) =η

t̂p
Π(M)

{
t̂p/β

}
. Indeed, for ev-

ery free occurrence of β in M , of the form [β]N , this is translated into
µt̂p.[β]Π(N) and thus by substituting t̂p for β, one obtains a subterm of the
form µt̂p.

[
t̂p
]
(Π(N)

{
t̂p/β

}
) which is ηt̂p-equivalent to Π(N)

{
t̂p/β

}
and thus,

by induction, to Π(|N |β).

We show some of the cases for the first assertion of the proposition, the other
ones being non-problematic.

• case of ε-reduction:

Π(µα.µβ.M) = µα.
[
t̂p
]
µβ.

[
t̂p
]
Π(M)

=µ′var µα.
[
t̂p
]
Π(M)

{
t̂p/β

}
=η

t̂p
µα.

[
t̂p
]
Π(|M |β)

= Π(µα. |M |β)

• case of ρ-reduction:

Π(µα.[β]µγ.M) = µα.
[
t̂p
]
µt̂p.[β]µγ.

[
t̂p
]
Π(M)

=µ
t̂p

µα.[β]µγ.
[
t̂p
]
Π(M)

=µ′var µα.
[
t̂p
]
Π(M) {β/γ}

= Π(µα.M {β/γ})

The second part of the proposition, namely that if M ′, N ′ ∈ Σλµt̂p and
M ′ =λµt̂pε N

′ then Σ(M ′) =λµε Σ(N ′), is easily checked, as well as the stabil-
ity by translations (which is identical to proposition 15 since the translations
are the same and both λµt̂p and λµt̂pε share the same (µt̂p) rule.

An interesting remark about the previous equational correspondence is that
both reductions ε and ρ in λµε are in correspondence with µ′var: the first corre-
spondence occurs when q is t̂p and the second when q is a usual continuation
variable.

Actually, the restriction we imposed on (µ′var) plays a specific role in each of
those cases: in the first case (reduction ε in λµε), the restriction on (µ′var)
corresponds to the fact that ε will not be propagated to subterms where it

28

should not be, while in the second case (reduction ρ in λµε), the restriction
on (µ′var) corresponds to the restriction on ρ in λµε.

5 Conclusion

Studies on λµ-calculus have been numerous since Parigot introduced his cal-
culus in 1992 [Par92], short after Griffin showed that control operators in
λC-calculus could be typed using axioms of classical logic [Gri90]. Many vari-
ants of Parigot’s calculus arose from these various studies, which are mainly
organised around two variants of the syntax that we refer to as the origi-
nal syntax (or Σλµ) and the modified syntax (or ΣΛµ). While the difference
between the calculi had been exemplified by the separation property which
holds in Λµ-calculus but not in λµ-calculus [Sau05], precise comparisons of
these calculi had not been pursued 22 .

Our primary goal in this paper was to give a detailed historical account of the
development of λµ-calculus. The presentation of λµ-calculi, in the form of a
survey, focused on the calculi built along the two variants of the syntax of λµ-
calculus: calculi in Parigot’s original syntax which respects the µ[] constraint
and calculi in the modified syntax for which no such constraint is imposed. In
the following two sections, we developed an analysis of the different variants of
λµ-calculus which uses the mediation of calculi with an explicit representation
of the toplevel, first in the typed setting, second in the untyped setting.

In the typed setting, we saw that the calculi in the original and the modified
syntax are essentially identical as soon as one adds explicitly the ⊥ connective
as well as extensionality rules. In this case, the toplevel is represented as a
constant, tp.

The analysis in the untyped case is more complex and subtile: in this setting,
our results about λµε-calculus extend previously known results connecting Λµ-
calculus with λµt̂p-calculus, where the toplevel continuation is represented as
a dynamically bound variable t̂p. In particular, we believe our contribution em-
phasizes how λµt̂p-calculus provides an adequate framework for investigating
uniformly different variants of λµ-calculi.

22 Except for some results on the comparison between λµ-calculi that have been
reported in [Sau08a] but that were much less developed than in the present article
and which do not use the same techniques.

29

References

[AH03] Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control
operators. In Thirtieth International Colloquium on Automata, Languages
and Programming , ICALP’03, Eindhoven, The Netherlands, June 30 -
July 4, 2003, volume 2719, pages 871–885. Springer-Verlag, LNCS, 2003.

[AH07] Zena M. Ariola and Hugo Herbelin. Control reduction theories: the benefit
of structural substitution. J. Funct. Program., 2007. Includes a Historical
Note by Matthias Felleisen. To appear.

[AHS04] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic
foundation of continuations and prompts. In Proceedings of the Ninth
ACM SIGPLAN International Conference on Functional Programming,
ICFP 2004, Snowbird, UT, USA, September 19-21, 2004, pages 40–53.
ACM Press, New York, 2004.

[AHS07a] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A proof-theoretic
foundation of abortive continuations. Higher Order and Symbolic
Computation, 2007. To appear.

[AHS07b] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic
foundation of delimited continuations. Higher Order and Symbolic
Computation, 2007. To appear.

[BB96] Franco Barbanera and Stefano Berardi. A symmetric λ-calculus for
classical program extraction. Information and Computation, 125(2):103–
117, 1996.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation.
In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming, ICFP 2000, Montreal, Canada, September 18-
21, 2000, SIGPLAN Notices 35(9), pages 233–243. ACM, 2000.

[dG94] Philippe de Groote. On the relation between the λµ-calculus and the
syntactic theory of sequential control. In F. Pfenning, editor, Logic
Programming and Automated Reasoning, Proc. of the 5th International
Conference, LPAR’94, volume 822 of Lecture Notes in Artificial
Intelligence, pages 31–43. Springer-Verlag, 1994.

[dG98] Philippe de Groote. An environment machine for the λµ-calculus.
Mathematical Structures in Computer Science, 8(6):637–669, 1998.

[DP01] René David and Walter Py. λµ-calculus and Böhm’s theorem. J. Symb.
Log., 66(1):407–413, 2001.

[FF86] Matthias Felleisen and Daniel Friedman. Control operators, the secd
machine, and the lambda-calculus. In Formal description of programming
concepts-III, pages 193–217. North-Holland, 1986.

30

[FFKD86] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce F.
Duba. Reasoning with continuations. In First Symposium on Logic and
Computer Science, pages 131–141, 1986.

[Fuj03] Ken-etsu Fujita. A sound and complete cps-translation for λµ-calculus.
In TLCA, pages 120–134, 2003.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical
Structures in Computer Science, 1(3):255–296, 1991.

[Gri90] Timothy G. Griffin. The formulae-as-types notion of control. In
Conf. Record 17th Annual ACM Symp. on Principles of Programming
Languages, POPL ’90, San Francisco, CA, USA, 17-19 Jan 1990, pages
47–57. ACM Press, New York, 1990.

[Her05] Hugo Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité.
Habilitation à diriger les recherches, Université Paris 11, December 2005.

[HG08] Hugo Herbelin and Silvia Ghilezan. An approach to call-by-name
delimited continuations. In POPL. ACM Sigplan, January 2008.

[HGS09] Hugo Herbelin, Silvia Ghilezan, and Alexis Saurin. A uniform approach
to call-by-name and call-by-value delimited control. manuscript, 2009.

[Hof95] Martin Hofmann. Sound and complete axiomatisations of call-by-
value control operators. Mathematical Structures in Computer Science,
5(4):461–482, 1995.

[HS97] Martin Hofmann and Thomas Streicher. Continuation models are
universal for λµ-calculus. In LICS, pages 387–395, 1997.

[HS02] Martin Hofmann and Thomas Streicher. Completeness of continuation
models for λµ-calculus. Inf. Comput., 179(2):332–355, 2002.

[Kri93] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood,
1993.

[LRS93] Yves Lafont, Bernhard Reus, and Thomas Streicher. Continuations
semantics or expressing implication by negation. Technical Report 9321,
Ludwig-Maximilians-Universität, München, 1993.

[Mur91] Chetan R. Murthy. An evaluation semantics for classical proofs. In
Proceedings, Sixth Annual IEEE Symposium on Logic in Computer
Science, 15-18 July, 1991, Amsterdam, The Netherlands, pages 96–107.
IEEE Computer Society, 1991.

[Mur92] Chetan R. Murthy. A computational analysis of girard’s translation and
lc. In Proc. of the Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 90–101, Santa Cruz, CA, 1992.

[Ong96] C.-H. Luke Ong. A semantic view of classical proofs: type-theoretic,
categorical, denotational characterizations. In Proceedings of 11th IEEE
Annual Symposium on Logic in Computer Science, pages 230–241. IEEE
Computer Society Press, 1996.

31

[OS97] C.-H. Luke Ong and Charles A. Stewart. A Curry-Howard foundation for
functional computation with control. In Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principle of Programming Languages, Paris,
January 1997, pages 215–227. ACM Press, 1997.

[Par91] Michel Parigot. Free deduction: An analysis of Computations in classical
logic. In Andrei Voronkov, editor, Logic Programming, First Russian
Conference on Logic Programming, Irkutsk, Russia, September 14-18,
1990 - Second Russian Conference on Logic Programming, St. Petersburg,
Russia, September 11-16, 1991, Proceedings, volume 592 of Lecture Notes
in Computer Science, pages 361–380. Springer, 1991.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical
natural deduction. In Logic Programming and Automated Reasoning:
International Conference LPAR ’92 Proceedings, St. Petersburg, Russia,
pages 190–201. Springer-Verlag, 1992.

[Par93] Michel Parigot. Classical proofs as programs. In Proceedings of the
Third Kurt Gödel Colloquium on Computational Logic and Proof Theory,
volume 713 of LNCS, pages 263 – 276, London, UK, 1993. Springer-Verlag.

[Py98] Walter Py. Confluence en λµ-calcul. Thèse de doctorat, Université de
Savoie, 1998.

[RS94] Jakob Rehof and Morten Heine Sørensen. The λ∆-calculus. In Masami
Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer
Software, International Conference TACS ’94, Sendai, Japan, April 19-
22, 1994, Proceedings, volume 789 of Lecture Notes in Computer Science,
pages 516–542. Springer, 1994.

[Sau05] Alexis Saurin. Separation with streams in the Λµ-calculus. In Proceedings,
20th Annual IEEE Symposium on Logic in Computer Science (LICS ’05),
pages 356–365. IEEE Computer Society Press, 2005.

[Sau08a] Alexis Saurin. On the relations between the syntactic theories of λµ-
calculi. In 17th EACSL Annual Conference on Computer Science Logic
2008 (CSL 2008), LNCS. Springer, September 2008.

[Sau08b] Alexis Saurin. Une étude logique du contrôle, appliquée à la
programmation fonctionnelle et logique. PhD thesis, École Polytechnique,
September 2008.

[Sel01] Peter Selinger. Control categories and duality: on the categorical
semantics of the lambda-mu calculus. Mathematical Structures in
Computer Science, 11(2):207–260, 2001.

[SF93] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 6(3-4):289–
360, 1993.

[SR98] Thomas Streicher and Bernhard Reus. Classical logic, continuation
semantics and abstract machines. J. Funct. Program., 8(6):543–572, 1998.

32

