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Abstract
Semi-simplicial and semi-cubical sets are commonly defined as presheaves over respectively, the
semi-simplex or semi-cube category. Homotopy Type Theory then popularized an alternative
definition, where the set of n-simplices or n-cubes are instead regrouped into the families of the
fibers over their faces, leading to a characterization we call indexed. Moreover, it is known that
semi-simplicial and semi-cubical sets are related to iterated Reynolds parametricity, respectively
in its unary and binary variants. We exploit this correspondence to develop an original uniform
indexed definition of both augmented semi-simplicial and semi-cubical sets, and fully formalize
it in Coq.

1. Introduction
Fibered vs indexed presentation of semi-simplicial and semi-cubical sets
A family of sets can commonly be represented in two ways: as a family properly speak-
ing, indexed by the elements of a given set S, or as a set T together with a map from T to
S, which specifies for each element of T its dependency on S. In the former case, we call it
an indexed presentation. In the latter case, the set associated to a given element of S is the
fiber of this element, so we call it a fibered presentation. The two presentations are equiv-
alent and the equivalence can be phrased concisely in the language of homotopy type
theory (The Univalent Foundations Program, 2013) as the fibered/indexed equivalencea.

(fibered) (ΣT : HSet.(T → S)) ≃ (S → HSet) (indexed)

Here, HSet represents in homotopy type theory the subset of types within a given
universe where equality of any two elements has at most one proof.

A presheaf on an category is a family of sets indexed by the object of the category with
maps indexed by the morphisms. As such, it lives on the indexed side of the equivalence,
contrasting with the fibered side, where we have discrete Grothendieck fibrations (Loregian
and Riehl, 2020). However, there are situations where a presheaf can also be seen as
living on the fibered side of the equivalence. This happens when the indexing category
is direct, or has a downwards-well-founded collection of non-identity morphisms. Let us
consider, for instance, the case of a semi-cubical set (Grandis and Mauri, 2003; Buchholtz
and Morehouse, 2017) presented with 2n face maps from the set of n-cubes to the set

Competing interests: The authors declare none
aIn an informal discussion, alternative nomenclatures were proposed: fibration/family equivalence and unbun-

dled/bundled equivalence. The fibered/indexed nomenclature echoes the Grothendieck construction of fibered
categories from indexed categories. The most elementary instance of the equivalence, with Type instead of HSet,
is sometimes called “Grothendieck construction for dummies”, and its proof requires univalence (The Univalent
Foundations Program, 2013).
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of (n − 1)-cubes. Formulated in type theory, the corresponding presheaf definition of a
semi-cubical set prescribes a family of sets and face maps between them as follows.

X0 : HSet X1 : HSet X2 : HSet . . .
∂L
∂R

∂L⋆
∂R⋆
∂⋆L
∂⋆R

up to cubical faces identities. Here, X1 can be seen as a family over X0 × X0, and X2
can be seen as a family over X1 × X1 × X1 × X1, in the fibered presentation, together
with coherence conditions between the X1 seen as families over X0 × X0. This suggests
an alternative indexed presentation of the presheaf as a stratified sequence of families
indexed by families of lower rank, taking into account those coherence conditions to
prevent duplications. Formulated in type theory, it takes the form:

X0 : HSet
X1 : X0 × X0 → HSet
X2 : Πabcd. X1(a, b)× X1(c, d)× X1(a, c)× X1(b, d)→ HSet
. . .

The idea for such an indexed presentation of presheaves over a direct category was
mentioned at the Univalent Foundations year in the context of defining semi-simplicial
typesb. A few constructions have been proposed since then. The first construction by
Voevodsky (2012) relies on the presentation of semi-simplicial sets as a presheaf over
increasing injective maps between finite ordinals. The second, by Herbelin (2015)c for-
malized in the Coq proof assistant, relies on the presentation of semi-simplicial sets as
a presheaf over face maps. Another by Part and Luo (2015) formalized in an emulation
of logic-enriched homotopy type theory in the Plastic proof assistant, and yet another
by Altenkirch et al. (2016) formalized in an emulation of a two-level type theory in the
Agda proof assistantd, rely, like in Voevodsky, on the presentation of the semi-simplicial
category from increasing injective maps between finite ordinals. The latter constructions,
besides being stated as providing semi-simplicial types (thanks to an extension of the
type theory), are particularly concise, taking advantage of a definition of increasing injec-
tive maps between finite ordinals as type-theoretic functions to inherit the associativity
of composition directly from it holding in type theory. This contrasts with the combina-
torial construction in Herbelin (2015) where equations over face maps have to be proved
by induction.

By taking the sum of each component of an indexed presentation over the indexing
set of this component, one obtains back a presheaf in the ordinary sense that has a prop-
erty of Reedy fibrancy, that is whose morphisms are projections in the set-theoretic sense.
Such Reedy fibrant presheaves over a direct category have been studied in e.g. Shulman
(2015), Kraus and Sattler (2017) and Annenkov et al. (2017, 2023), presenting generic
constructions over such presheaves.

The indexed definition of a presheaf over a direct category is technically more
involved than the presheaf definition, as it requires hard-wiring in the structure the

b ncatlab.org/nlab/show/semi-simplicial+types+in+homotopy+type+theory
cIn hindsight, the title of the paper “A dependently-typed construction of semi-simplicial types” is somewhat

confusing: it implicitly claimed to construct semi-simplicial types, but the construction was done in a type theory
with Uniqueness of Identity Proofs. Consequently, what was really obtained was an indexed presentation of semi-
simplicial sets. The confusion was however, common at the time.

d github.com/nicolaikraus/HoTT-Agda/blob/master/nicolai/SemiSimp/SStypes.agda

https://ncatlab.org/nlab/show/semi-simplicial+types+in+homotopy+type+theory
https://github.com/nicolaikraus/HoTT-Agda/blob/master/nicolai/SemiSimp/SStypes.agda
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dependencies between elements of the sets of the presheaf, including the coherence
conditions between these dependencies, such as taking the i-th face of the j-th face of
a n-simplex being the same as taking the (j − 1)-th face of the i-th face (when j > i).
However, exhibiting a concrete instance of a presheaf in indexed form only requires pro-
viding the families, since the responsibility of defining maps and showing the coherence
conditions is already accounted for in the definition of the structure.

Reynolds parametricity and its unary and binary variants
In the context of functional programming, Reynolds parametricity (1983) interprets types
as relations characterizing the observational behavior of programs of this type. More gen-
erally, families over a product of sets, or correspondences, can be used in place of relations.
Parametricity can then be iterated, and relying on the fibered presentation of correspon-
dences as spans, it has been noted that iterated Reynolds parametricity has the structure
of a cubical set (Altenkirch and Kaposi, 2015; Moulin, 2016; Johann and Sojakova, 2017;
Moeneclaey, 2021, 2022). We obtain a unary variant of Reynolds binary parametricity by
using predicates or families instead of relations or correspondences, and this is a form of
realizability (Bernardy and Moulin, 2012; Lasson, 2014; Moulin, 2016). Cubical set mod-
els which differ only by the arity one (Bernardy et al., 2015) or two (Bezem et al., 2013a)
were introduced, and this led to a general notion of affine ν-ary cubes in Nuyts and
Devriese (2024). In parallel, it has been noted that iterated unary parametricity has the
structure of an augmented simplicial sete. This suggests that the definition of augmented
semi-simplicial sets and semi-cubical sets can in turn be seen as particular instances of
the restriction of Nuyts-Devriese’s ν-ary cubes to only faces, which we call ν-sets, of
presheaves over a ν-semi-shape category made of words of some cardinal ν + 1, where
ν = 1 gives augmented semi-simplicial sets and ν = 2 gives semi-cubical sets.

Contribution
The main contribution of the paper is to describe the details of a recipe that uniformly
characterizes unary and binary iterated parametricity in indexed form, and to derive
from it a new indexed presentation, called indexed ν-sets, of augmented semi-simplicial
and semi-cubical sets.

Our work is a step in the direction of the program initiated in Altenkirch and Kaposi
(2015) to develop parametricity-based models of parametric type theory (Bernardy et al.,
2015; Nuyts et al., 2017; Cavallo and Harper, 2020) and cubical type theory (Bezem et al.,
2013a; Cohen et al., 2018; Angiuli et al., 2021), which are closer to the syntax of type
theory, and are likely to better reflect the definitional properties of type theory than
presheaf-based cubical sets would. For example, consider the loss of definitional prop-
erties when interpreting “indexed” dependent types of type theory as “fibrations” in
models such as locally cartesian closed categories (Curien et al., 2014).

Our construction has the unique property of reflecting the structure of parametricity
and of yielding both augmented semi-simplicial and semi-cubical sets from the same
construction. The approach taken in Part and Luo (2015) and Altenkirch et al. (2016)
takes benefit of the definitional compositionality of increasing injective maps, but we do
not see how they could be generalized to yield semi-cubical sets.

Our mechanization can be found at github.com/artagnon/bonak. The construction
was conceived in Summer 2019, and the mechanization began in late 2019. A sketch of

ePrivate communication with Hugo Moeneclaey and Thorsten Altenkirch.

https://github.com/artagnon/bonak
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the construction was presented at the 2020 HoTT-UF workshop, and the completion of
the mechanization was reported at the TYPES 2022 conference.

2. Semi-simplicial and semi-cubical sets
In this section, we generalize semi-simplicial and semi-cubical sets to ν-sets, subsuming
the earlier definitions. We start with some introductory material on semi-simplicial and
semi-cubical sets.

Augmented semi-simplicial sets
Augmented semi-simplicial sets are defined similarly to semi-simplicial sets, except that
the connected components are additionally dependent on a “color”. Conversely, semi-
simplicial sets can be seen as augmented semi-simplicial sets over the singleton set of a
fixed color. Let us associate dimension −1 to colors; then, points are dimension 0, lines
are dimension 1, and so on.

While ordinary semi-simplicial sets are presheaves over the semi-simplex category,
augmented semi-simplicial sets are presheaves over ∆+. There are different ways to
define ∆+, up to equivalence, and we use a definition that can be extended to semi-
cubical sets in a straightforward manner. In particular, we start numbering objects from
0 instead of −1 so that there is a shift by one compared to the standard numbering of
augmented semi-simplicial sets.

Notation 1 (Finite sequences). We denote finite sequences by i1 . . . in for ij ranging over some
domain. The empty sequence is written ϵ.

Definition 2 (∆+). The definition of ∆+ is shown below. Note that, if g ◦ f is well-defined, then
the length of f is less than or equal to that of g. It can be shown that composition is associative
and that id is neutral.

Obj∆+
:= N

Hom∆+(p, n) := {l ∈ {0, ⋆}n | number of ⋆ in l = p}

g ◦ f :=


f if g = ϵ

0 (g′ ◦ f ) if g = 0 g′

a (g′ ◦ f ′) if g = ⋆ g′, f = a f ′, where a = 0 or ⋆

id := ⋆ . . . ⋆ n times for id ∈ Hom∆+(n, n)

Definition 3 (Set∆+ ). We define the category of augmented semi-simplicial sets as the functor
category:

Set∆+ := Set∆
op
+

To provide examples, we define the standard augmented n-semi-simplex, taking into
account the shift by one in the numbering.
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Definition 4 (∆n
+). The standard augmented (n − 1)-semi-simplex ∆n−1

+ is defined as the
Yoneda embedding of n ∈ Obj(∆+):

∆n−1
+ : Set∆+

∆n−1
+ (p) := Hom(p, n)

∆n−1
+ ( f ) := λg. g ◦ f

The standard augmented (−1)-semi-simplex is a singleton made of one color (in
this case, black). Standard augmented n-semi-simplices for n ≥ 0 have a geometric
interpretation, and we illustrate them for dimensions 0, 1, and 2.

Example 5 (∆0
+). The standard augmented 0-semi-simplex can be pictured as a point,

colored black, corresponding to the unique morphism in Hom(0, 1). This point is the
identity in Hom(1, 1); it is hence shown as a singleton ⋆.

⋆

Example 6 (∆1
+). The standard augmented 1-semi-simplex is drawn as two points, given

by Hom(1, 2), along with a line connecting them, given by Hom(2, 2). We use black to
denote the unique morphisms in Hom(0, 1) and Hom(0, 2).

⋆0 0⋆⋆⋆

Example 7 (∆2
+). ∆2

+ is drawn as three points, given by Hom(1, 3), three lines connecting
them, given by Hom(2, 3), and a triangular filler given by Hom(3, 3).

00⋆

⋆00 0⋆0

0⋆⋆

⋆⋆0

⋆0⋆
⋆⋆⋆

More generally, the standard augmented (n+ 1)-semi-simplex can be obtained by tak-
ing a copy of the standard augmented n-semi-simplex serving as a base, and gluing on
top of it another copy lifted by one dimension. In the second copy, the color becomes an
extra point, the points become lines connecting the points of the base to the extra point,
and so on. In particular, the components of the base are those of the standard augmented
n-semi-simplex postfixed by 0 while the components of the lifted copy are postfixed by
⋆. Note that the components may be oriented by letting each n-dimensional component
point to the (n − 1)-dimensional component obtained by replacing the leftmost ⋆ of the
n-dimensional component with 0.

Semi-cubical sets
Semi-cubical sets are defined like augmented semi-simplicial sets except that ∆+ is
replaced by □ in which we take sequences of L, R and ⋆, instead of sequences of 0 and ⋆.
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Definition 8 (□). The definition of □ is shown below. The symbols L and R indicate opposite
faces of a cube.

Obj□ := N

Hom□(p, n) := {l ∈ {L, R, ⋆}n | number of ⋆ in l = p}

g ◦ f :=


f if g = ϵ

a (g′ ◦ f ) if g = a g′, where a = L or R
a (g′ ◦ f ′) if g = ⋆ g′, f = a f ′, where a = L, R, or ⋆

id := ⋆ . . . ⋆ n times

Again, if g ◦ f is well-defined, then the length of f is less than or equal to that of g. It can be
shown that composition is associative and that id is neutral.

Definition 9 (Set□). We define the category of semi-cubical sets as the functor category:

Set□ := Set□
op

Definition 10 (□n). The standard semi-cube □n is defined as the Yoneda embedding of n ∈
Obj(□):

□n : Set□
□n(p) := Hom(p, n)
□n( f ) := λg. g ◦ f

Standard n-semi-cubes have a geometric interpretation, which we illustrate for dimen-
sions 0, 1, and 2.

Example 11 (□0). □0 is Hom(0, 0), or the singleton set of the empty sequence:

ϵ

Example 12 (□1). □1 consists of two points, given by Hom(0, 1), and a line, given by
Hom(1, 1).

L R⋆

Example 13 (□2). □2 consists of four points, given by Hom(0, 2), four lines connecting
the four points, given by Hom(1, 2), and a filler, given by Hom(2, 2):

LR RR

LL RL

⋆R

L⋆ R⋆

⋆L

⋆⋆

More generally, the standard (n + 1)-semi-cube can be obtained by taking two copies
of the standard n-semi-cube serving as bottom and top face and connecting them on their
border by a prism obtained as a third copy stretched in the new dimension. The bottom
and top faces are obtained from the standard n-semi-cube by postfixing with respectively
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L and R while the prism is obtained by postfixing with ⋆. Note that the components can
be oriented by letting each n-dimensional component go from the (n − 1)-dimensional
component obtained by replacing the leftmost ⋆ with L, to the one obtained by replacing
the leftmost ⋆ with R.

ν-sets
Let us call ν-sets, the generalization of augmented semi-simplicial sets and semi-cubical
sets obtained by building on an arbitrary alphabet ν, so that the following holds:

Cardinal of ν 1 2

Interpretation Augmented
semi-simplicial
sets

Semi-cubical sets

To obtain this, we extend ∆+ and □ in a straightforward manner into a category which
we call 7.

Definition 14 (7). The definition of ν-semi-shape category is shown below. Note that, if g ◦ f is
well-defined, then the length of f is less than or equal to that of g. It can be shown that composition
is associative and that id is neutral.

Obj7 := N

Hom7(p, n) := {l ∈ (ν ⊔ {⋆})n | number of ⋆ in l = p}

g ◦ f :=


f if g = ϵ

a (g′ ◦ f ) if g = a g′, where a ∈ ν

a (g′ ◦ f ′) if g = ⋆ g′, f = a f ′, where a ∈ ν or a = ⋆

id := ⋆ . . . ⋆ n times for id ∈ Hom7(n, n)

A ν-set is thus a contravariant functor ϕ from the ν-semi-shape category to Set and we
call n-ν-semi-shape an element of ϕ(n). As in the augmented semi-simplicial and semi-
cubical cases, the standard (n + 1)-ν-semi-shape is obtained by connecting together ν
copies of the standard n-ν-semi-shape with an extra copy stretched in the new dimen-
sion. We clarify in the next sections, how this process of construction is similar to the
parametricity translation developed for functional programming (Reynolds, 1983) and
more generally for type theory (Bernardy et al., 2010; Bernardy and Lasson, 2011; Atkey
et al., 2014; Bernardy et al., 2015).

3. Type theory
Martin-Löf’s Type theory (1975; 1984) is a logical formalism based on the notion of a type
rather than that of a set. It can be seen as a foundation of mathematics alternative to set
theory and is the core of several tools for the formalization of mathematics such as Agda,
Coq and Lean. In type theory, propositions are types and proofs are programs. Type
theory includes definitional equality, by which all propositions and proofs are quotiented.

Type theory is a flexible formalism supporting different models. Some models come
from homotopy theory, and are based on simplicial sets or related structures (Hofmann
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and Streicher, 1994; Kapulkin and Lumsdaine, 2021; Bezem et al., 2013b; Cohen et al.,
2015): in these models, equality is interpreted as paths, and they support the univa-
lence principle stating that equality of types mimics equivalence of types, leading to the
development of Homotopy Type Theory (The Univalent Foundations Program, 2013).

Types are organized in a hierarchy of universes written Typem for m a natural number.
The main types in type theory are the type of dependent pairs, written Σa : A. B(a), the
type of dependent functions, written Πa : A. B(a), for A a type and B(a) a type dependent
on the inhabitant a of A, and the type of propositional equalities, written t = u. As a
notation, the type of dependent pairs when B is not dependent on A is shortened into
A × B and the type of dependent functions when B is not dependent on A is written
A → B. We assume our type theory to also include a distinguished singleton type, written
unit, and with inhabitant ∗, the type of boolean values, and the type of natural numbers.
We write hd and tl the projections of dependent pairs, and refl for reflexivity. Logical
propositions being types themselves, we use Π to represent universal quantification and
Σ to represent existential quantification. We also assume that our type theory includes a
coinductively-defined notion of dependent streams described in Appendix A.

A type-theoretic notion of sets can be recovered in each universe as HSetm, denoting
the subtype of Typem for which paths are degenerated, using Uniqueness of Identity
Proofs (UIP). Technically, this is expressed as a structure equipping a domain Dom with
the property UIP:

Dom : Typem

UIP : Πxy : Dom. Πpq : x = y. p = q

In HSetm, the following properties hold:

(1) UIP holds on the unit type, bool type, as well as all types of finite cardinal ν.
(2) UIP propagates to Σ-types.
(3) UIP propagates to Π-types, with some additional functional extensionality axioms.

By notation, Type and HSet mean Typem and HSetm at some unspecified universe level
m.

We are also interested in extensional type theory, a type theory with the following
reflection rule, where = is propositional equality in some type and ≡ is definitional
equality (Martin-Löf, 1984):

Γ ⊢ p : t = u

Γ ⊢ t ≡ u

Note that the reflection rule implies UIP so that HSet and Type are equivalent in
extensional type theory. The rule also implies functional extensionality. Extensional
type theory is logically equivalent to intensional type theory extended with UIP and
functional extensionality (Hofmann, 1995).
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4. Relating to parametricity
Recall from the introduction, the form taken by the indexed presentation of a semi-
cubical set:

X0 : HSet
X1 : X0 × X0 → HSet
X2 : Πabcd. X1(a, b)× X1(c, d)× X1(a, c)× X1(b, d)→ HSet
. . .

Here, the process of construction of the type of X1 from that of X0, and of the type of
X2 from that of X1, is similar to iteratively applying a binary parametricity translation.
The binary parametricity which we consider interprets a closed type A by a family A⋆

over A × A, and this can be seen as a graph whose vertices are in A. Each type construc-
tor is associated with the construction of a graph. To start with, the type of types HSet is
interpreted as the family of type of families HSet⋆, which takes AL and AR in HSet and
returns the type AL × AR → HSet of families over AL and AR. Also, for A interpreted
by A⋆ and B(a), for a : A, interpreted by B⋆((aL, aR), a⋆) with a⋆ : A⋆(aL, aR), a depen-
dent function type Πa : A. B(a) is interpreted as the graph (Πa : A. B(a))⋆ that takes two
functions fL and fR of type Πa : A. B(a), and expresses that these functions map related
arguments in A to related arguments in B:

(Πa : A. B(a))⋆( fL, fR) ≜ Π(aL, aR) : (A × A). Πa⋆ : (A⋆(aL, aR) B⋆((aL, aR), a⋆)( fL(aL), fR(aR)))

Similarly, a product type A × B is interpreted as the graph (A × B)⋆ that relates two
tuples (aL, bL) and (aR, bR) in A × B as follows:

(A × B)⋆((aL, bL), (aR, bR)) ≜ A⋆(aL, aR)× B⋆(bL, bR)

In particular, for X : HSet, applying our parametricity translation is about associat-
ing to X an inhabitant X⋆ of HSet⋆(X, X) i.e. of X × X → HSet. In turn, applying the
translation again to X⋆ : X × X → HSet is about associating to X⋆ an inhabitant X⋆⋆ of
(X × X → HSet)⋆(X⋆, X⋆) i.e. of:

Π((xLL, xLR), (xRL, xRR)) : ((X × X)× (X × X)).
(X⋆(xLL, xLR)× X⋆(xRL, xRR)→ X⋆(xLL, xRL)× X⋆(xLR, xRR)→ HSet)

which hints us at how the sequence X0, X1, X2 can be seen as a sequence of inhabitants of
the iteration of the composition of binary parametricity with the diagonal on types and
type families, applied to an initial X : HSet:

X0 ≜ X : HSet
X1 ≜ X⋆ : HSet⋆(X, X)

X2 ≜ X⋆⋆ : (HSet⋆(X, X))⋆(X⋆, X⋆)

. . .

This tells us how the informal type given to X2 in the previous section could be
rephrased so that it comes as the instance of a general recipe characterizing the type
of all Xi.

Notice, however, that the recipe obtained so far, Xn+1 : (Sn)⋆(Xn, Xn) for Xn : Sn,
applies parametricity on the syntax of the type of Xn. It does not directly yield a char-
acterization of Sn as a function from n. Reformulating the recipe as an explicit recursive
construction, without requiring an interpretation of the syntax of types, is the main
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outcome of this work, together with the mechanization and the uniform treatment of
augmented semi-simplicial and semi-cubical sets by means of the generalization to
ν-sets.

5. Our construction
In this section, we describe our parametricity-based construction of ν-sets in indexed
form at two levels of formality.

Sections 5.1 and 5.3 describe the construction at an informal level of discourse:

(1) In 5.1, we present it in informal extensional type theory where equational reason-
ing is left implicit, and we give an intuition for the construction in 5.2.

(2) While reasoning in extensional type theory is similar to reasoning in set theory
regarding how equality is handled, extensional type theory has two limitations.
The first limitation is that it enforces the principle of Uniqueness of Identity Proofs
and this is inconsistent with the Univalence principle, thus making it inexpressible
in Homotopy Type Theory. The second limitation is that we want the construc-
tion to be formalizable in the Coq proof assistant whose underlying type theory
is intensional. Section 5.3 thus rephrases the construction in (informal) intensional
type theory. Since ν-sets are 0-truncated types, we compensate for the absence of
UIP by assuming a “local UIP”, requiring types to be HSet.

Sections 5.4, 5.5, and 5.6 describe additional issues to be addressed in order to get a
fully formal construction:

(1) The well-foundedness of the induction requires a special termination evidence
which will be discussed in section 5.4.

(2) The construction is indexed over integers and holds under some constraints on the
range of these integers. There is a standard formalization dilemma in this kind of
situation: either the constraints on the range are embedded in the construction so
that the construction makes sense only on the corresponding range, or the con-
struction is made first on a more general domain than needed but restricted to a
smaller domain at the time of use. We adopted the former approach, requiring the
construction to be dependent on proofs of inequalities on natural numbers. We
discuss how we deal with such dependencies in section 5.5.

(3) A number of standard groupoid properties of equality as well as type isomor-
phisms have been left implicit in the informal definition. This is discussed in
section 5.6.

5.1 The construction in informal type theory
A ν-set in indexed form is a sequence of families of HSet, that is HSetm for some universe
level m. We call such sequence a ν-set at level m, whose type thus lives in HSetm+1.

Table 1 describes the type of a ν-set at level m as a dependent stream of type fam-
ilies representing the limit of n-truncated ν-sets: using the notations of Section 3, the
recursive equation νSet≥n

m D ≜ ΣR : νSet=n
m (D). νSet≥n+1

m (D, R) from the table formally
corresponds to the stream StreamΣn. νSet<n

m , λ(n,D). νSet=n
m (D), λ((n,D),R).(n+1,(D,R))(n, D).

Therefore, νSet≥n
m denotes an infinite sequence Xn, Xn+1, . . . dependent on a (< n)-

truncated ν-set, νSet<n
m , so that, when n is 0, it denotes a full ν-set, written νSetm. This is

made possible because the (< 0)-truncated ν-set, νSet<0
m , is degenerated: it is an empty
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family, and there is thus only one (< 0)-truncated ν-set, namely the canonical inhabitant
⋆ of unit.

The definition of the type of a n-truncated ν-set is in turn described in table 2. In
the infinite sequence of type families representing a ν-set, the n-th component is a type
dependent over a fullframe. It is recursively defined in table 3, using the auxiliary defi-
nitions of frame, layer and painting. A fullframe describes a boundary of a standard form
(simplex, cube), which we decompose into layer, and a painting corresponds to a filled
frame. Notice that the type layer relies on an operator of frame restriction restrframe which
is defined in table 4, and this restriction operator is in turn defined using auxiliary
definitions restrlayer and restrpainting.

Notably, the definition of restrlayer relies on an equality expressing the commutation
of the composition of two restrframe. The proof of this commutation is worth being made
explicit, which we do in table 5 using proof-term notations. The proof requires an induc-
tion on the dimension and on the structure of frame, layer, and painting. This is what
cohframe does using auxiliary proofs cohlayer and cohpainting. Even though it looks inde-
pendent of the definitions from the other tables, cohframe has to be proved mutually with
the definitions of frame, layer, painting, and their corresponding restrictions. More pre-
cisely, for a fixed n, the block of frame, restrframe, and cohframe has to be defined in one go
by induction on p. Also, each of painting, restrpainting, and cohpainting is built by induction
from p to n. The painting block at n relies on the frame block at n, but the converse depen-
dency is only on lower n, so this is well-founded. Note that layer, restrlayer and cohlayer
are just abbreviations. The exact way this mutual recursion is eventually formalized is
explained in section 5.4.

Note that for a fixed constant n, relying on the evaluation rules of type theory, the
coherence conditions degenerate to a reflexivity proof, so that the construction builds an
effective sequence of types not mentioning coherences anymore.

νSetm : HSetm+1

νSetm ≜ νSet≥0
m (∗)

νSet≥n
m (D : νSet<n

m ) : HSetm+1

νSet≥n
m D ≜ ΣR : νSet=n

m (D).νSet≥n+1
m (D, R)

Table 1. Main definition

νSet<n
m : HSetm+1

νSet<0
m ≜ unit

νSet<n′+1
m ≜ ΣD : νSet<n′

m . νSet=n′
m (D)

νSet=n
m (D : νSet<n

m ) : HSetm+1

νSet=n
m D ≜ fullframen

m(D)→ HSetm

Table 2. Truncated ν-sets, the core
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fullframen (D : νSet<n
m ) : HSetm

fullframen D ≜ framen,n(D)

framen,p,p≤n (D : νSet<n
m ) : HSetm

framen,0 D ≜ unit

framen,p′+1 D ≜ Σd : framen,p′ (D). layern,p′ (d)

layern,p,p<n {D : νSet<n
m }

(d : framen,p(D))
: HSetm

layern,p D d ≜ Πω.paintingn−1,p(D.2)(restrn,p
frame,ω,p(d))

paintingn,p,p≤n
(D : νSet<n

m )
(E : νSet=n

m (D))
(d : framen,p(D))

: HSetm

paintingn,p,p=n D E d ≜ E(d)

paintingn,p,p<n D E d ≜ Σl : layern,p(d). paintingn,p+1(E)(d, l)

Table 3. frame, layer, and painting

restrn,p,p≤q≤n−1
frame,ϵ,q

{D : νSet<n}
(d : framen,p(D))

: framen−1,p(D.1)

restrn,0
frame,ϵ,q D ∗ ≜ ∗

restrn,p′+1
frame,ϵ,q D (d, l) ≜ (restrn,p′

frame,ϵ,q(d), restrn,p′
layer,ϵ,q−1(l))

restrn,p,p≤q≤n−2
layer,ϵ,q

{D : νSet<n}
{d : framen,p(D)}
(l : layern,p(d))

: layern−1,p(restrn,p
frame,ϵ,q+1(d))

restrn,p
layer,ϵ,q D d l ≜ λω.(restrn−1,p

painting,ϵ,q(D.2)(lω))

restrn,p,p≤q≤n−1
painting,ϵ,q

(D : νSet<n)
(E : νSet=n(D))
(d : framen,p(D))

(c : paintingn,p(E)(d))

: paintingn−1,p(D.2)(restrn,p
frame,ϵ,q+1(d))

restrn,p,p=q
painting,ϵ,q D E d (l, _) ≜ lϵ

restrn,p,p<q
painting,ϵ,q D E d (l, c) ≜ (restrn,p

layer,ϵ,q(l), restrn,p+1
painting,ϵ,q(E)(c))

Table 4. q-th projection of restr, or faces

cohn,p,p≤r≤q≤n−2
frame,ϵ,ω,q,r

{D : νSet<n}
(d : frame(D))

:
restrn−1,p

frame,ϵ,q(restrn,p
frame,ω,r(d))

= restrn−1,p
frame,ω,r(restrn,p

frame,ϵ,q+1(d))

cohn,0
frame,ϵ,ω,q,r D ∗ ≜ refl(∗)

cohn,p′+1
frame,ϵ,ω,q,r D (d, l) ≜ (cohn,p′

frame,ϵ,ω,q,r(d), cohn,p′
layer,ϵ,ω,q,r(l))

cohn,p,p<r≤q≤n−2
layer,ϵ,ω,q,r

(D : νSet<n)
{d : frame(D)}
(l : layer(d))

:
restrn−1,p

layer,ϵ,q(restrn,p
layer,ω,r(l))

= restrn−1,p
layer,ω,r(restrn,p

layer,ϵ,q+1(l))

cohn,p
layer,ϵ,ω,q,r D d l ≜ λθ. cohn−1,p

painting,ϵ,ω,q−1,r−1(D.2)(lθ)

cohn,p,p≤r≤q≤n−2
painting,ϵ,ω,q,r

(D : νSet<n)
(E : νSet=n(D))
(d : frame(D))

(c : painting(E)(d))

:
restrn−1,p

painting,ϵ,q(D.2)(restrn,p
painting,ω,r(E)(c))

= restrn−1,p
painting,ω,r(D.2)(restrn,p

painting,ϵ,q+1(E)(c))

cohn,p,p=r
painting,ϵ,ω,q,r D E d (l, _) ≜ refl(restrn−1,p

painting,ϵ,q−1(D.2)(lϵ))

cohn,p,p<r
painting,ϵ,ω,q,r D E d (l, c) ≜ (cohn,p

layer,ϵ,ω,q,r(l), cohn,p+1
painting,ϵ,ω,q,r(E)(c))

Table 5. Commutation of q-th projection and r-th projection, or coherence conditions
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5.2 Intuition for our formal construction
There is a fullframe for each dimension n, written fullframen, and every Xn is uniformly
assigned a type of the form fullframen → HSet. Here, fullframen is a “telescope” collecting
all arguments of the type of Xi in section 4 as a nesting of Σ-types.

To illustrate how to recursively build fullframen, let us begin by setting fullframe0 ≜
unit, so that the type HSet given to X0 in section 4 can be equivalently formulated as
unit → HSet. Then, more generally, let each fullframen consist of n layers, written layern,p

with p < n, that we stack in order, starting from unit, and writing framen,p for the p first
layers of a fullframen, so that fullframen is framen,n. For instance, X1 is made of one layer, so
that it can be written as a Σ-type of an inhabitant of unit and layer1,0. Then, X2 is similarly
made of two layers.

X0 : unit︸︷︷︸
frame0,0

→ HSet

X1 : Σ∗ : unit.



X0(∗)︸ ︷︷ ︸
painting0,0

×
X0(∗)︸ ︷︷ ︸

painting0,0


︸ ︷︷ ︸

layer1,0︸ ︷︷ ︸
frame1,1

→ HSet

X2 : Σa :



Σ∗ : unit.



Σb :


X0(∗)
×

X0(∗)

 . X1 (∗, b)︸ ︷︷ ︸
restr2,0

frame,L,0︸ ︷︷ ︸
painting1,1︸ ︷︷ ︸

painting1,0

×

Σb :


X0(∗)
×

X0(∗)

 . X1 (∗, b)︸ ︷︷ ︸
restr2,0

frame,R,0︸ ︷︷ ︸
painting1,1︸ ︷︷ ︸

painting1,0


︸ ︷︷ ︸

layer2,0


︸ ︷︷ ︸

frame2,1

.



X1

a.hd,

a.tl.L.hd.L,

a.tl.R.hd.L


︸ ︷︷ ︸

restr2,1
frame,L,1︸ ︷︷ ︸

painting1,1

×

X1

a.hd,

a.tl.L.hd.R,

a.tl.R.hd.R


︸ ︷︷ ︸

restr2,1
frame,R,1︸ ︷︷ ︸

painting1,1


︸ ︷︷ ︸

layer2,1

︸ ︷︷ ︸
frame2,2

→ HSet

. . .

Let us now illustrate the construction of fullframe3, necessary to build the type of X3.
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The figure on the left is frame3,1, in the middle is frame3,2, and on the right is frame3,3,
which is full. Further, frame3,1 is made of one layer, layer3,0, shown as the front and back
faces (blue boxes), frame3,2 is made of one additional layer, layer3,1, shown as the left and
right faces (red boxes), frame3,3 is made of one more layer, layer3,2, shown as the top face
(green box).

We illustrated here the cubical case, that is ν = 2, but, in general, a layern,p is a prod-
uct of ν paintingn−1,p. A paintingn,0 is a n-dimensional object corresponding to a filled
fullframen. More generally, a paintingn,p is an n-dimensional object which has the form of
a paintingn−p,0, thus of (n − p)-dimensional form, but shifted and living in dimensions
p to n. Such paintingn,p fills a space framed by a partial framen,p so that, together, they
form a filled fullframen. For instance, in the picture, each of the two painting2,0 of layer3,0

is a filled blue square, each of the two painting2,1 of layer3,1 is a line, shown as lines across
the left and right faces (red lines), stretched into a partial square filling the partial frames
made of respectively, the left and right border of the front-back faces (blue), and each of
the two painting2,2 of layer3,2 is the point shown on the top face (green point), stretched
into a partial square filling the full frames made respectively of the upper and lower
borders of the front-back and left-right faces (blue and red squares). A paintingn,p comple-
ments a framen,p by adding layers needed to form a fullframen and by filling the resulting
fullframen with an inhabitant of Xn. Layers are added from dimension n to dimension p,
opposite to the order from 0 to p the framen,p are built, as shown below.

framen,p ≜ Σan : (. . . (Σ∗ : unit. layern,0) . . .). layern,p−1

paintingn,p ≜ Σlp : layern,p.(. . . (Σln : layern,n−1. Xn) . . .)

So far, we have not paid attention to the fact that we have a dependent type, shown as
Σ. To be more precise, note that fullframen depends on all Xi up to n − 1. So, we need to
package up Xi, for i < n, into a nesting of Σ-types, constituting the type of a n-truncated
ν-set, which we wrote νSet<n. This allows us to give the type νSet<n → HSet to fullframen.
Then, for D : νSet<n, representing an initial prefix of X0, X1, . . . Xn−1, the indexed set Xn
has type fullframen(D)→ HSet. Thus, framen,p, layern,p and paintingn,p also depend on D.
We can then reformulate the previous equation with its dependency on D. In particular,
Xn is just the last component of D, that is D.tl.

framen,p(D) ≜ Σan : (. . . (Σ∗ : unit. layern,0(D)) . . .). layern,p−1(D)

paintingn,p(D) ≜ Σlp : layern,p(D). (. . . (Σln : layern,n−1(D). D.tl) . . .)

An extra refinement arises from the fact that each new layer of a frame has to be glued
onto the border of the partial frame built so far. So, each layern,p has to depend on framen,p.
We also need a way to characterize the ν borders of each paintingn−1,p that composes a
layern,p, and this is where the restriction restrn,p

frame,ϵ,p arrives, for each ϵ < ν. For instance,

in the picture, the left and right faces (red), painting2,1, are laid on respectively the left and
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right borders of the front and back faces (blue), and hence need to depend on frame3,1. The
left and right borders of the front and back faces are then extracted as restr2,1

frame,L(D)(d)
and restr2,1

frame,R(D)(d). We can then refine again the previous equation by showing the
dependencies on d, as shown below.

framen,p(D) ≜ Σd : (. . . (Σ∗ : unit. layern,0(D)(∗)) . . .). layern,p(D)(d)

paintingn,p(D)(d) ≜ Σlp : layern,p(D)(d). (. . . (Σln : layern,n−1(D)(d, lp, . . . , ln−1).

D.tl(d, lp, . . . , ln)) . . .)

where (d, lp, . . . , lq) abbreviates ((. . . (d, lp), . . .), lq)

When ν = 2, using L and R to represent the sides, the formation of layers from
paintings amounts to:

layern,p(D)(d) ≜ paintingn−1,p(D.hd)(restrn,p
frame,L,p(d))

×
paintingn−1,p(D.hd)(restrn,p

frame,R,p(d))

The operation restrn,p
frame,ϵ,q restricts the p first layers of a frame, and the construc-

tion is by recursion on the structure of a frame d. This necessitates the definitions
restrn,p

layer,ϵ,q(d)(l) and restrn,p
painting,ϵ,q(d)(c), for l a layer, and c a painting. The key case

is restrn,p
painting,ϵ,p(d)(c), where c, a paintingn,p, necessarily has the form of ((cL, cR), _).

Here, restrn,p
painting,L,p picks out cL, a paintingn−1,p, restrn,p

painting,R,p picks out the cR, also a

paintingn−1,p, and the last component, shown as _, a paintingn,p+1, is discarded. There is
one last difficulty, which we illustrate by writing down expected and actual types.

Given cω of type

cω : paintingn−1,p(D.hd)(restrn−1,p
frame,ω,q(d))

restrn,p
layer,ϵ(d)(cL, cR) produces a layer in which the ω-component has the type

paintingn−2,p(D.hd.hd)(restrn−1,p
frame,ϵ,q(restrn,p

frame,ω,p(d)))

while we expect a component of type

paintingn−2,p(D.hd.hd)(restrn−1,p
frame,ω,p(restrn,p

frame,ϵ,q+1(d)))

Hence, we need a coherence condition to commute the restrictions. Coherence con-
ditions similar to this necessitate what are shown as, cohframe, cohlayer and cohpainting in
table 5. These are by induction on the structure of frame, layer and painting. Note that, for
the construction in intensional type theory, we further need a 2-dimensional coherence
condition, coh2frame, for cohlayer, which is explained in the next section.

5.3 From extensional to intensional type theory
In this section, we intend to get rid of the reflection rule and make explicit the equational
reasoning step needed to rephrase the construction in intensional type theory. For read-
ability purposes, we make only explicit in this section the key coherence conditions of the
construction. Other cases of equality reasoning would have to be made explicit to fully
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obtain a construction in intensional type theory, but these steps are standard enough to
be omitted at this stage. See section 5.6 for the details.

The need for transport along a proof of commutation of restrframe in the definition of
restrlayer is made explicit in table 4’, where the arrow over cohframe indicates the direction
of rewrite.

restrn,p,p≤q≤n−1
frame,ϵ,q

{D : νSet<n}
(d : framen,p(D))

: framen−1,p(D.1)

restrn,0
frame,ϵ,q D ∗ ≜ ∗

restrn,p′+1
frame,ϵ,q D (d, l) ≜ (restrn,p′

frame,ϵ,q(d), restrn,p′
layer,ϵ,q−1(l))

restrn,p,p≤q≤n−2
layer,ϵ,q

{D : νSet<n}
{d : framen,p(D)}
(l : layern,p(d))

: layern−1,p(restrn,p
frame,ϵ,q+1(d))

restrn,p
layer,ϵ,q D d l ≜ λω.(

−−−−−−−−−−−→
cohn,p

frame,ϵ,ω,q,p(d)(restrn−1,p
painting,ϵ,q(D.2)(lω)))

restrn,p,p≤q≤n−1
painting,ϵ,q

(D : νSet<n)
(E : νSet=n(D))
(d : framen,p(D))

(c : paintingn,p(E)(d))

: paintingn−1,p(D.2)(restrn,p
frame,ϵ,q+1(d))

restrn,p,p=q
painting,ϵ,q D E d (l, _) ≜ lϵ

restrn,p,p<q
painting,ϵ,q D E d (l, c) ≜ (restrn,p

layer,ϵ,q(l), restrn,p+1
painting,ϵ,q(E)(c))

Table 4’. q-th projection of restr, or faces

cohn,p,p≤r≤q≤n−2
frame,ϵ,ω,q,r

{D : νSet<n}
(d : framen,p(D))

:
restrn−1,p

frame,ϵ,q(restrn,p
frame,ω,r(d))

= restrn−1,p
frame,ω,r(restrn,p

frame,ϵ,q+1(d))

cohn,0
frame,ϵ,ω,q,r D ∗ ≜ refl(∗)

cohn,p′+1
frame,ϵ,ω,q,r D (d, l) ≜ (cohn,p′

frame,ϵ,ω,q,r(d), cohn,p′
layer,ϵ,ω,q,r(l))

cohn,p,p<r≤q≤n−2
layer,ϵ,ω,q,r

(D : νSet<n)
{d : framen,p(D)}
(l : layern,p(d))

:

−−−−−−−−−−−→
cohn,p

frame,ϵ,ω,q,r(d)(restrn−1,p
layer,ϵ,q(restrn,p

layer,ω,r(l)))

= restrn−1,p
layer,ω,r(restrn,p

layer,ϵ,q+1(l))

cohn,p
layer,ϵ,ω,q,r D d l ≜

λθ.(
−−−−−−−−−−−−→
coh2n,p

frame,ϵ,ω,θ,q,r(d))(ap (
−−−−−−−−−−−−−−−−−−−−−−→
cohn−1,p

frame,ω,θ,r,p(restrn,p
frame,ϵ,q+2(d))))

(ap (
−−−−−−−−−−−−−−−−−−−−→
restrn−1,p

frame,ω,r(cohn,p
frame,ϵ,θ,q+1,p))) cohn−1,p

painting,ϵ,ω,q−1,r−1(D.2)(lθ)

cohn,p,p≤r≤q≤n−2
painting,ϵ,ω,q,r

(D : νSet<n)
(E : νSet=n(D))
(d : framen,p(D))

(c : paintingn,p(E)(d))

:

−−−−−−−−−−−→
cohn,p

frame,ϵ,ω,q,r(d)(restrn−1,p
painting,ϵ,q(D.2)(restrn,p

painting,ω,r(E)(c)))

= restrn−1,p
painting,ω,r(D.2)(restrn,p

painting,ϵ,q+1(E)(c))

cohn,p,p=r
painting,ϵ,ω,q,r D E d (l, _) ≜ refl(restrn−1,p

painting,ϵ,q−1(D.2)(lϵ))

cohn,p,p<r
painting,ϵ,ω,q,r D E d (l, c) ≜ (cohn,p

layer,ϵ,ω,q,r(l), cohn,p+1
painting,ϵ,ω,q,r(E)(c))

Table 5’. Commutation of q-th projection and r-th projection, or coherence conditions

The proof of cohframe itself requires making explicit several rewrites which were invis-
ible in extensional type theory. The commutation of restrlayer lives in a type referring to
cohframe, so we need a transport along the commutation of restrframe in the statement
of cohlayer. The proof of cohlayer is the most involved proof of the construction, as it
requires a higher-dimensional coherence condition, coh2frame, whose exact formulation
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is as follows.

cohn,p
frame,ω,θ,r,p(restrn,p

frame,ϵ,q+2(d)) •

ap restrn,p
frame,ω,r (cohn,p

frame,ϵ,θ,q+1,p(d)) •

cohn,p
frame,ϵ,ω,q,r(restrn,p

frame,θ,p(d)) =

ap restrn,p
frame,θ,p (cohn,p

frame,ϵ,ω,q+1,r+1(d)) •

cohn,p
frame,ϵ,θ,q,p(restrn,p

frame,ω,r+1(d)) •

ap restrn,p
frame,ϵ,q (cohn,p

frame,ω,θ,r,p(d))

where ap applies a function on two sides of an equality, and • is transitivity of equality.
This property of equality proofs holds in HSet, and since our construction is done in
HSet, the term is trivially discharged.

Notice that each restrlayer in the type of cohlayer is hiding a cohframe rewrite: this makes
a sum total of three cohframe rewrites on the left-hand side, and two cohframe rewrites on
the right-hand side. In the proof term of cohlayer, cohpainting has one cohframe rewrite on its
left-hand side. This, combined with the two terms of the form ap cohframe, matches our
expectation of three cohframe on the left-hand side, and two cohframe on the right-hand
side. Then, coh2frame can be seen as expressing the commutation of these cohframe terms.

Finally, let us explain cohpainting. The base case p = r is the key case of the commutation
of restrframe, when one of the restrpainting collapses, and the remaining equation holds
trivially. The case of p < r follows the structure of restrpainting by induction.

If we were not working in HSet, but in HGpd we would need to prove one more
higher-dimensional coherence, and if we were working in Type, we would need to prove
arbitrarily many higher-dimensional coherences. Here, HGpd is the subset of types A
such that for all x and y in A, x = y is in HSet. See Herbelin (2015); Altenkirch et al. (2016);
Kraus (2021) for a discussion on the need for recursive higher-dimensional coherence
conditions in formulating higher-dimensional structures in type theory.

5.4 Well-foundedness of the construction
Since the construction shown in the previous sections is by induction on n, and
dependencies are on lower n and p < n, one would imagine formalizing this using well-
founded induction in dependent type theory. We initially tried this approach, and had
terms dependent on the proofs of the case distinction that n′ ≤ n implies n′ < n or n′ = n,
but these proofs did not come with enough definitional properties to be usable in prac-
tice. Hence, we chose a different route: in practice, since restrn

frame depends on framen

and framen−1, while cohn
frame depends on framen, framen−1, and framen−2, we only need to

keep track of three consecutive dimensions. Hence, what we build by induction at level
n, is a structure made not only of the definitions shown in the tables 3, 4’, and 5’, but
also of frame, layer, painting at levels n − 1 and n − 2, as well as restrframe, restrlayer, and
restrpainting at level n − 1, together with helper equations.

5.5 Dependencies in inequality proofs
The entire construction relies on inequalities over natural numbers, and we use two dif-
ferent definitions of ≤ addressing different concerns in our formalization. In order to
build our first variant, we use an intermediate “recursive definition” phrased as:
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Fixpoint leR (n m : nat) : SProp :=
match n, m with
| O, _ => STrue
| S n, O => SFalse
| S n, S m => leR n m
end.

Here, SProp is a definitionally proof-irrelevant impredicative universe morallyf living
at the bottom of the universe hierarchy (Gilbert et al., 2019). By placing the definition in
SProp, we have definitional equality of inequality proofs. However, for the purpose of
unification, this definition does not go far enough. Consider the unification problems:

leR_trans ?p leR_refl = ?p
leR_trans leR_refl ?p = ?p

where leR_trans is transitivity, leR_refl is reflexivity, and ?p is an existential vari-
able. These two problems definitionally hold in SProp, but equating them does not solve
the existential variable. For unification to be useful in solving existential variables, we
present our first variant of ≤, which we dub as the “Yoneda variant”:

Definition leY n m :=
forall p, leR p n -> leR p m.

This definition is an improvement over leR since reflexivity is now definitionally the
neutral element of transitivity, and associativity of transitivity also holds definitionally.
Although it significantly eases our proof, there are some instances where unification is
unable to solve the existential variables, and we have to provide them explicitly.

The second variant of ≤, the “inductive variant”, is phrased as:

Inductive leI : nat -> nat -> Type :=
| leI_refl n : n <~ n
| leI_down {n p} : p.+1 <~ n -> p <~ n
where "n <~ m" := (leI n m) : nat_scope.

Compared to leY, leI has no proof-irrelevance properties. This definition is specially
crafted for painting, where we have to reason inductively from p ≤ n to n. In our usage,
we have lemmas leY_of_leI and leI_of_leY in order to equip leY with the induc-
tion scheme of leI. The resulting induction scheme has computational rules holding
propositionally.

5.6 Groupoid properties of equality and basic type isomorphisms
The construction relies on groupoid properties of equality which are left implicit in
table 5’. The use of the equivalence between u = v and Σ(p : u.hd = v.hd).(u.tl = v.tl) for
u and v in a Σ-type is left implicit in the same table. Also implicit is the use of the equiv-
alence between f = g and Πa : A. f (a) = g(a) for f and g in Πa : A. B, where it should
be recalled that the right-to-left map, or functional extensionality, holds by default in
extensional type theory. These have to be made explicit in the formalization.

fIn Coq, it is however a stand-alone universe unrelated to the universe hierarchy.
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As a final remark, note that as a consequence of η-conversion for finite enumerated
types, the requirement of functional extensionality disappears when ν is finite. However,
this is a conversion which Coq does not implement, and the alternative would be to
replace Πa : ν. B by a “flat” iterated product B(1)× B(2)× . . . × B(ν).

6. Future work
The construction could be extended with degeneracies as well as with permuta-
tions (Grandis and Mauri, 2003). Dependent ν-sets could also be defined, opening the
way to construct Π-types and Σ-types of ν-sets. A ν-set of ν-sets representing a universe
could also be defined as sketched in a talk at the HoTT-UF workshop for the bridge
case (2020). More generally, we believe these lines of work would eventually provide
alternative models to parametric type theories (Nuyts et al., 2017; Cavallo and Harper,
2020) where equality of types, now a family rather than the total space of a fibration, is
not only definitionally isomorphic to bridges (Bernardy et al., 2015), but definitionally
the same as bridges.

By equipping the universe construction with a structure of equivalences, as suggested
along the lines of Altenkirch and Kaposi (2015), we also suspect the construction to be
able to serve as a basis for syntactic models of various versions of cubical type the-
ory (Bezem et al., 2013a; Cohen et al., 2018; Angiuli et al., 2021), saving the detour via the
fibered approach inherent to usual presheaf models. In particular, we conjecture being
able to justify univalence holding definitionally. Our approach would also firmly ground
cubical type theory in iterated parametricity.

Although prior approaches to constructing the indexed presentation of a presheaf over
a direct category rely on it being evident by inspection that the fibered and indexed pre-
sentations are equivalent, no formal proof has been given, and this is a direction for
future work. In our construction, we can check by computation of the first levels that it
indeed computes the expected sets.
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Appendix A. Definition of dependent stream

type formation
Γ ⊢ A : Typem Γ, a : A ⊢ B(a) : Typem Γ, a : A, b : B(a) ⊢ f (a, b) : A Γ ⊢ u : A

Γ ⊢ StreamA,B, f u : Typem

introduction and eliminations

Γ ⊢ A : Typem Γ, a : A ⊢ B(a) : Typem Γ, a : A, b : B(a) ⊢ f (a, b) : A Γ ⊢ u : A

Γ, a : A ⊢ D(a) : Typem Γ ⊢ w : D(u)

Γ, a : A, d : D(a) ⊢ v(a, d) : B(a) Γ, a : A, d : D(a) ⊢ s(a, d) : D( f (a, v(a, d)))

Γ ⊢ cofixu,w
a,d,g{this := v(a, d); next := g( f (a, v(a, d)), s(a, d))} : StreamA,B, f u

Γ ⊢ t : StreamA,B, f u

Γ ⊢ t.this : B(u)
Γ ⊢ t : StreamA,B, f u

Γ ⊢ t.next : StreamA,B, f f (u, t.this)

computation

Γ ⊢ A : Typem Γ, a : A ⊢ B(a) : Typem Γ, a : A, b : B(a) ⊢ f (a, b) : A Γ ⊢ u : A

Γ, a : A ⊢ D(a) : Typem Γ ⊢ w : D(u)

Γ, a : A, d : D(a) ⊢ v(a, d) : B(a) Γ, a : A, d : D(a) ⊢ s(a, d) : D( f (a, v(a, d)))

Γ ⊢ cofixu,w
a,d,g{this := v(a, d); next := g( f (a, v(a, d)), s(a, d))}.this ≡ v(u, w) : B(u)

Γ ⊢ A : Typem Γ, a : A ⊢ B(a) : Typem Γ, a : A, b : B(a) ⊢ f (a, b) : A Γ ⊢ u : A

Γ, a : A ⊢ D(a) : Typem Γ ⊢ w : D(u)

Γ, a : A, d : D(a) ⊢ v(a, d) : B(a) Γ, a : A, d : D(a) ⊢ s(a, d) : D( f (a, v(a, d)))

Γ ⊢ cofixu,w
a,d,g{this := v(a, d); next := g( f (a, v(a, d)), s(a, d))}.next ≡

cofix f (u,v(u,w)),s(u,w))
a,d,g {this := v(a, d); next := g( f (a, v(a, d)), s(a, d))}

: StreamA,B, f f (u, v(u, w))

where cofixu,w
a,d,g{this := v(a, d); next := g( f (a, v(a, d)), s(a, d))} is a notation for the

instantiation on parameter u and internal value w of the corecursive definition of a
stream over an arbitrary a generated by a recipe dependent on an arbitrary internal
value d : D(a) with first component given by v(a, d) and second component given by
g( f (a, v(a, d)), s(a, d)) where g, typed as Γ, a : A, d : D(a) ⊢ g(a, d) : StreamA,B, f ( f (a, d)),
formally represents the recursive call, and where s(a, d) tells how the internal value
evolves.


	Introduction
	Semi-simplicial and semi-cubical sets
	Type theory
	Relating to parametricity
	Our construction
	Future work
	Definition of dependent stream

