A Constructive Proof of Dependent Choice, Compatible with Classical Logic ————————————————————————————————————————————————————————————————————————— (ERRATA) Section III.A: The type of "nth_C n" is "R_C(0) → A(n)", instead of "R_C(0) → R_C(n)". Section III.C: The weaker form of BI that can be obtained intuitionistically from BI_c is ∀f ∃n B(f|n) → ∀g [∀l (B(l) → g(l)=0) ∧ ∀l (g(l)≠0 → ∃x g(l⋆x)≠0)] → g(〈〉)=0 To get ∀f ∃n B(f|n) → ∀g [∀l (B(l) → g(l)=0) ∧ ∀l (∀x g(l⋆x)=0 → g(l)=0)] → g(〈〉)=0 as indicated, Markov's principle is needed.