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Abstract. The work presented here is an extension of a previous work realised jointly with Pierre-Louis
Curien [CH00]. The title has been kept unchanged. The current work focuses on the pure calculus of vari-
ables and binders that operates at the core of the duality between call-by-name and call-by-value evaluations.
A Curry-Howard-de Bruijn correspondence is given that shed light on some aspects of Gentzen’s sequent
calculus. This includes a sequent-free presentation of it.

Introduction

Call-by-name and call-by-valueWhen evaluating a programf(e) wheref is a function of some parameterx,
there are basically two different strategies. Eitherf is evaluated and, each time its argumentx is needed,e is
evaluated, or,e is evaluated first, and, if everf needsx, the value ofe is used. In the first case, the argumente is
passed by its namex: it is a call-by-name strategy of reduction. In the second case, the value ofe is passed: it is
a call-by-value strategy of reduction. Most of the actual programming languages obey a call-by-value strategy of
reduction.

Church’sλ-calculus is a model of computation which is both universal (it is assumed to be complete with
respect to what is effectively computable) and remarkably simple to formulate. Long before the design of effective
programming languages, call-by-name was studied as an equational theory by Church and Rosser. Call-by-value
evaluation as a theory has first been investigated by Plotkin, then by Moggi. Note that inλ-calculus, the difference
between call-by-value and call-by-name is observable only when considering non-terminating objects.

Control operators From 1965, Landin, then Reynolds, explored programming constructs able to manipulate
the execution stack. Some of these operators, called control operators, have been implemented in effective pro-
gramming languages. This is the case of the operatorcall-with-current-continuation to be found in
Scheme. The theory of control operators have been first investigated by Felleisenet al in 1986.

In presence of control operators, the semantical difference of call-by-name and call-by-value can be observed,
even in presence of terminating programs only.

Continuation-passing-style (CPS) transformations provide a way to simulate the behaviour of control opera-
tors within Church’s call-by-name lambda-calculus. CPS-transformations are the computational counterparts of
Kolmogorov-style double negation translations [Mur92]. There are CPS for simulating call-by-name and CPS for
simulating call-by-value.

The call-by-name/call-by-value dualityIn 1989, Filinski designed a symmetric syntax forλ-calculus that he
equipped with two dual CPS semantics that express the choices between call-by-name and call-by-value. This was
the first explicit work showing (at a semantical level) a duality between the two notions.

In 2000, Selinger designed dual notions of control and co-control categories that characterise the equational
theory of Parigot’sλµ-calculus, in its call-by-name and call-by-value variants.

In 2000, Curien and Herbelin designed a symmetricλ-calculus exhibiting a duality between terms and eval-
uation contexts. This calculus was equipped with a symmetric but non-deterministic reduction system such that
solving the non-determinism amounted to falling either in the call-by-name theory or in its syntactically dual
call-by-value theory.

The main kind of logical formalismsThe first formal systems were axiomatic: the only inference rule in the
propositional case was modus ponens and the properties of connectives were expressed by axioms. These are
“Hilbert-style” formalisms.

In 1935, Gentzen introduced two major alternative formalisms. The first class of formalism is Natural Deduc-
tion. In Natural Deduction, the properties of connectives are expressed by means of introduction and elimination



rules plus an extra axiom rule to express the fact that under some hypothetical reasoning, the result stated by
the hypothesis holds. Gentzen represented the proofs in natural deduction by trees of formulae, each node being
justified by an introduction or elimination rule and each leaf by an axiom rule.

The second class of formalism was called Logistic Calculus but, following Prawitz, it remains in the history
with the name Gentzen’s sequent calculus. The definition of Logistic Calculus relies on sequents that consist of
a list of hypotheses and a list of conclusions. Sequents have become a standard way to represent the context of a
derivation, whatever the logical formalism is, but at the time of Prawitz, “Logistic Calculus” was the only formal-
ism to be expressed this way. Nowadays, it is no longer a discriminating feature. The properties of connective in
“Gentzen’s sequent calculus” are expressed by left introduction rules and by right introduction rules.

The property of sequent calculus we are interested in is its deep symmetry between the left and right hand side
of the sequents.

Minimal, intuitionistic and classical logicClassical logic is a logic in which¬¬A → A holds for any formula
A. The principle¬¬A → A is equivalent to the conjunction of Peirce’s law,((A → B) → A) → A for anyA
andB and of the principleex falso quodlibet, namely⊥ → A for anyA. Intuitionistic logic is a logic that does
not validate Peirce’s law but that validatesex falso quodlibetwhile minimal is usually considered as the logic that
validates neither Peirce’s law norex falso quodlibet. Following [AH03], we call minimal classical logic the logic
that validates Peirce’s law without validatingex falso quodlibet.

The Curry-Howard-de Bruijn’s proofs-as-programs correspondenceA major breakthrough of the late 70’s is the
emergence of the consciousness of an intimate identity between the structure of proofs and the one of programs.

This identity was first observed in 1958 by Curry who remarked a coincidence, both between the types of the
basic combinators of combinatory logic and the form of the basic axioms of Hilbert’s propositional calculus, and
between the application construction of combinatory logic and the principle of modus ponens in logic.

The identity was then made explicit in 1969 by Howard for the proofs of intuitionistic Gentzen’s natural
deduction and Church’s simply-typedλ-calculus. Independently, de Bruijn usedλ-calculus for denoting the proofs
of his AUTOMATH system.

In 1990, Griffin discovered that theC control operator, designed in 1986 by Felleisen, Friedman, Kohlberger
and Duba, was typable with type¬¬A → A, when used in a context of type⊥. This was the starting point
for investigating the proof-as-programs correspondence beyond minimal logic. In 1992, Parigot designed theλµ-
calculus which is a “clean” formulation ofλ-calculus with control.

The computational content of sequent calculusGriffin’s result brought the stimulus not only to investigate the
computational content of classical logic, but also of other logical structures and axioms. In the mid 90’s, various
works proposed computational interpretations of Gentzen’s sequent calculus. Kesneret al proposed an interpre-
tation of the left introduction rules as pattern constructors [KPT96] while we proposed an approach based on the
interpretation the left introduction rules as constructors of argument lists [Her95].

Outline Our work is at the intersection of these different subjects. We first exhibit a minimal syntax, theµµ̃-
subsystem, that expresses a syntactic duality between call-by-name and call-by-value. Then, we investigate the
connections withλµ-calculus. Finally, we show that theµµ̃-subsystem provides with a proof-as-correspondence
with Gentzen’s sequent calculus.

1 Theµµ̃-Subsystem: the Core of Computation

1.1 Syntax of theµµ̃-subsystem

Theµµ̃-subsystem is a structure based on three syntactic categories: terms, evaluation contexts and commands.
We call expressions the elements in the union of these categories.

We assume the existence of two infinite sets of variablesX andA called the sets of term variables and of
evaluation context variables respectively. We respectively denote these variables by names based on the Roman
lettersx, y, z, . . . and on the Greek letterα, β, γ, . . .

Terms and evaluation contexts are dual objects while commands link terms and evaluation contexts together.
The syntax of theµµ̃-subsystem is the following:

Commands c ::= 〈v||e〉
Terms v ::= µα.c || x
Evaluation contexts e ::= µ̃x.c || α
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The µµ̃-subsystem is a “classical” calculus. It is also a pure calculus withoutλ-abstraction norλ-application.
Up to the absence of theλ-constructions, the terms of theµµ̃-subsystem are the named terms ofλµ-calculus
and the commands of theµµ̃-subsystem have the same role as the unnamed terms ofλµ-calculus. Synonyms for
commands areprogramsor executables(see e.g. Krivine [Kri01]) orstates(by analogy with the role of states in
abstract evaluation devices, see e.g. Landin).

In theµµ̃-subsystem, any computation is the result of an interaction between a term and an evaluation context.
The expressionµα.c, when, in interaction with some evaluation context, binds this context toα and continues the
computation withc.

The evaluation context variables play in theµµ̃-subsystem the same role as they play in theλµ-calculus. They
are bound to evaluation contexts and as such are the basic components of the syntactic category of evaluation
contexts. The constructioñµx.c builds a “let-in” evaluation contexts. When put into interaction with a termv, it
bindsv to x and continues the computation withc.

The bindersµα.c and µ̃x.c induce a notion ofα-conversion on the expressions of theµµ̃-calculus and we
reason from now up toα-conversion. The notions of free and bound variables are defined accordingly.

In the context ofλ-calculus andλµ-calculus, evaluation contexts are often written using terms with holes and
interactions come from the graft of a term in the hole of an evaluation context. Using this kind of notations, the
syntax of theµµ̃-subsystem can be rewritten as follows:

Syntactic rephrasing inλµ-calculus

Commands c ::= e[v]
Terms v ::= µα.c || x
Evaluation contexts e[ ] ::= let x = [ ] in c || [α]([ ])

This syntax may be useful to keep in mind for comparison but we prefer the symmetric syntax. First because of the
elegance provided by its symmetry. Secondly because the interpretation of evaluation contexts as terms with holes
is not structural and will not scale when theµµ̃-subsystem will be extended with new constructions. Refining an
evaluation context that is represented as a term with some hole needs to refine the hole deep inside the term, while
we really expect in the extensions of theµµ̃-subsystem to have algebraic constructors of evaluation contexts.

1.2 Semantics of theµµ̃-subsystem

Evaluation is the result of an interaction between a term and an evaluation context. Either the term binds its
evaluation context (this is the typical behaviour of a control operator), or the evaluation context binds the term that
is given to it, as a “let-in context” does. Hence, the reduction rules of theµµ̃-subsystem are the following:

(µ) 〈µα.c||e〉 → c[α← e]
(µ̃) 〈v||µ̃x.c〉 → c[x← v]

wherec[α← e] andc[x← v] are capture-free substitutions.
The rule(µ̃) is the “standard” reduction rules of the “let-in” construction. This is obvious from the rephrasing

of the reduction rules in the syntax ofλµ-calculus:

Syntactic rephrasing inλµ-calculus

(µ) e[µα.c] → c[[α]v ← e[v]]
(µ̃) let x = v in c→ c[x← v]

In the λµ-calculus, evaluation contexts are moved around piece by piece. Contrastingly, the rule(µ) of the
µµ̃-subsystem moves a whole evaluation context at once. Polonovski [Pol03] proved the following:

Proposition: Rules(µ) and(µ̃) together are terminating.

1.3 The fundamental dilemma of computation

The two symmetric reduction rules(µ) and(µ̃) overlap. The resulting theory, defined as the reflexive-symmetric-
transitive congruent closure of(µ) and(µ̃), is inconsistent as we can prove that any two commands are equal:

〈v||e〉 ← 〈µα.〈v||e〉||µ̃x.〈v′||e′〉〉 → 〈v′||e′〉
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wherex andα are fresh variables, not occurring inv, v′, e ande′.
The two canonical, symmetrical, ways to solve the critical pair lead to either call-by-value or call-by-name

reduction. The terminology comes from the point of view of the term variables. In the critical pair〈µα.c||µ̃x.c′〉,
if the term is substituted as such without first evaluating it, i.e. if rule(µ̃) is applied, then the reference tox is
“by name”. Otherwise, if we require that the term is first evaluated before binding it tox, then it is a call “by
value”. Of course, if the evaluation of the term does not terminate (assuming the language is rich enough to have
non termination), or the evaluation of the term removes its evaluation context (as control operators can do), then
the term never gets bound tox. For comparison matters, here is how the critical pair is expressed in the syntax of
λµ-calculus:

c[[α]v ← let x = v in c′]
(µ)← let x = µα.c in c′

(µ̃)← c[x← µα.c]

1.4 Call-by-name and call-by-value reduction

Call-by-name is obtained by restricting the rule(µ) to a new category of linear evaluation contexts. Call-by-value
is dually obtained by restricting the rule(µ̃) to a new class of linear terms, or synonymously, values. The syntax
and semantics of the call-by-name and call-by-valueµµ̃-subsystems are the following (the dots indicate where the
extensions of theµµ̃-subsystem take place):

Call-by-name Call-by-value

Commands c ::= 〈v||e〉 Commands c ::= 〈v||e〉
Terms v ::= µα.c || x || . . . Terms v ::= µα.c || V
Linear ev. contexts E ::= α || . . . Values V ::= x || . . .
Evaluation contexts e ::= µ̃x.c || E Evaluation contexts e ::= µ̃x.c || α . . .

(µn) 〈µα.c||E〉 → c[α← E]
(µ̃) 〈v||µ̃x.c〉 → c[x← v]

(µ) 〈µα.c||e〉 → c[α← e]
(µ̃v) 〈V ||µ̃x.c〉 → c[x← V ]

1.5 Extensional equalities

We take as equality the reflexive-symmetric-transitive congruent closure of→. In any interaction with a context,
v andµα.〈v||α〉, for α not free inv, are equal. Similarly, fore andµ̃x.〈x||e〉 for x not free ine. This justifies to
define the followingη-reduction rules:

(ηµ) µα.〈V ||α〉 → V α not free inV
(ηµ̃) µ̃x.〈x||E〉 → E x not free inE

1.6 Extension with implication

Implication is characterised by a value constructor and a linear evaluation context constructor. The value con-
structor is the usualλ-abstraction, writtenλx.t. Abstraction is intended to interact with an applicative context. An
applicative context is any context that has at least one argument ready to be bound. Hence, an applicative context
has the formv · e reminiscent of the list structure of stacks in abstract computation devices. The extra syntactic
constructions and the extra reduction rule characterising the implication connective are the followings:

Terms v ::= . . . || λx.v
Evaluation contexts e ::= . . . || v · e

(→) 〈λx.v||v′ · e〉 → 〈v′||µ̃x.〈v||e〉〉

The resultingλ-calculus is theλµµ̃-calculus [CH00]. A canonical name for it could have beenµµ̃→-calculus.
As a matter of comparison, the rephrasing of the constructions and rule for implication in standardλ-calculus
syntax are:

Syntactic rephrasing inλ-calculus

Terms v ::= . . . || λx.v
Evaluation contexts e[ ] ::= . . . || e[[ ] v]
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(→) e[(λx.v)v′]→ let x = v′ in e[v]

Note that the reduction rule for implication introduces no extra critical pair. Depending on how the fundamen-
tal dilemma is solved, we fall either on theµµ̃→n -calculus or on theµvµ̃→-calculus. These calculi respectively
correspond to theλµµ̃T -calculus and to theλµµ̃Q-calculus in [CH00], to the exception of the exact characterisa-
tion of the evaluation context constructor. The followingη-equality is satisfied by implication

(η→) λx.µα.〈V ||x · α〉 = V α not free inV

Embeddings from Natural Deduction to Sequent Calculus have been given by Gentzen and Prawitz. Both
embeddings can be generalised to embeddings fromλµ-calculus toµµ̃→-calculus.

1.7 The “canonical” call-by-name and call-by-valueλ-calculi: the λµn- and λµ̃v-calculi

It can be shown that the theory ofµnµ̃→-calculus (withη-rules) is equivalent, when observed on terms and
commands, to the theory of a restricted calculus calledλµn-calculus. Similarly, it can be shown that the theory of
µµ̃→v -calculus (withη-rules) is equivalent, when observed on values, evaluation contexts and commands, to the
theory of a restricted calculus calledλµ̃v-calculus (this calculus comes from [CH00], up to theη-reduction rule).
The calculi are defined as follows (the usual occurrence restrictions of variables onη-rules applies):

λµn-calculus λµ̃v-calculus

c ::= 〈v||E〉
v ::= µα.c || x || λx.v
E ::= α || v · E

c ::= 〈V ||e〉
V ::= x || λ(x, α).c
e ::= α || V · e || µ̃x.c

(µn) 〈µα.c||E〉 → c[α← E]
(→β) 〈λx.v||v′ · E〉 → 〈v[x← v′]||E〉
(ηµ) µα.〈v||α〉 → v
(ηR
→n) v → λx.µα.〈v||x · α〉

(µ̃v) 〈V ||µ̃x.c〉 → c[x← V ]
(→β

v ) 〈λ(x, α).c||V · e〉 → c[x← V ][α← e]
(ηµ̃) µ̃x.〈x||e〉 → e
(ηR
→v) λ(x, α).〈V ||x · α〉 → V

It is easy to show that the theory of theλµn-calculus is isomorphic to the theory ofλµ-calculus (as described
e.g. in David and Py [DP01]. Conversely, the theory of call-by-valueλµ-calculus is not as well studied (and
as simple) as the theory of call-by-nameλµ-calculus. We believe that theλµ̃v-calculus provides an interesting
alternative to call-by-valueλµ-calculus.

2 Theµµ̃-Subsystem and Sequent Calculus

2.1 A proof-as-program correspondence for Sequent Calculus

Theµµ̃-subsystem and its extensions provide a proof-as-program correspondence with Gentzen’s sequent calcu-
lus. More precisely, it provides with a proof-as-program correspondence with a variant of sequent calculus that
has the following specificities: 1) it has two axiom rules 2) contraction rule are not primitive but simulated by cuts
3) only the cuts not used to simulate contraction can be eliminated.

Following [CH00], we callLKµµ̃ this variant of sequent calculus. We use the lettersA, B, C, . . . to denote
formulae. Contexts, writtenΓ or ∆ are sets of named formulae1. The calculus has three kinds of judgements,
written Γ ` A;∆, andΓ ;A ` ∆, andΓ ` ∆. The inference rules, together with their corresponding denotation
in theµµ̃-subsystem, are the following:

AxR

Γ, x : A ` x : A |∆
AxL

Γ |α : A ` α : A,∆

µ
c : (Γ ` α : A,∆)

Γ ` µα.c : A |∆
Cut

Γ ` v : A |∆ Γ | e : A ` ∆

c : (Γ ` ∆)
µ̃

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆

Sequent calculus has more normal proofs than (call-by-name) natural deduction. Its interpretation along the
lines of theµµ̃-calculus shows that the extra proofs it has are call-by-value normal proof.

1 If contexts were multisets of formulae, the correspondence with simply-typedµµ̃-subsystem would not be one-to-one.
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2.2 A sequent-free presentation of sequent calculus

Thanks to the absence of contraction, the variant of sequent calculus whose underlying structure is theµµ̃-
subsystem can be presented without sequents, in the same way as natural deduction was originally presented
by Gentzen. We use the notation` A to indicate a formula that is asserted andA ` for a formula that is refuted.
We write⊥⊥ for a contradiction. The rules of the sequent-free presentation of sequent calculus (with implication)
are the following:

→R

[` A]

...
` B

` A→ B

µ

[A `]
...
⊥⊥

` A

Cut
` A A `

⊥⊥
µ̃

[` A]

...
⊥⊥

A `
→L

` A B `

A→ B `
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