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Abstract

Gödel’s completeness theorem for first-order logic is one of the best-known theorems of logic. Central to any
foundational course in logic, it connects the notion of valid formula to the notion of provable formula.

There are various views on the completeness theorem, various presentations, various formalisations, various
proofs of it.

We survey the most standard different approaches and eventually focus on a formalization of a slight modification
of Henkin’s proof in intuitionistic second order arithmetic.

In many cases, proofs compute: this is the Curry-Howard correspondence between proofs and programs, and
its further extensions. In particular, it is standard that proofs of completeness of intuitionistic logic with respect to
various semantics such as Kripke or Beth semantics can be rephrased as programs which turn proofs of validity for
these semantics into proofs of derivability.

We apply this approach to Henkin’s proof to rephrase it as a program which transforms proofs of validity with
respect to Tarski semantics into proofs of derivability.

By doing so, we hope to shed an “effective” light on the relation between Tarski semantics and syntax: semantics
proofs are syntactic objects of a meta-language that we can manipulate and compute with like ordinary syntax.
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1 Preliminaries

1.1 The completeness theorem
The completeness theorem for first-order logic is one of the most basic and standard theorems of logic. Proved by
Gödel in 1929 [22] as an answer to a question raised by Hilbert and Ackermann in 1928 [32], it states that any of
the standard formal systems for defining provability in first-order logic is complete enough to contain a derivation for
every valid formula. A formula A is valid when it is true under all interpretations of its primitive symbols over any
domain of quantification.

Let L be a language of first-order logic, i.e. the data of a set1 Fun of function symbols, each of them coming with
an arity a f ≥ 0, as well as of a set Pred of predicate symbols, each of them also coming with an arity aP ≥ 0. We
call constants the function symbols of arity 0. When studying the computational content of Gödel’s completeness in
Section 2, we shall restrict the language to a countable one but the rest of this section does not require restrictions on
the cardinal of the language.

We let f range over Fun and P range over Pred. Let x range over a countable set X of variables and let t range
over the set Term of terms over L as described by the following grammar:

t ::= x | f (t1, ..., ta f )

Let A range over the set Form of formulae over L as described by the following grammar:

A ::= P(t1, ..., tP f ) | ⊥̇ | A⇒̇A | ∀̇x A

Note that since we are in classical logic, we can restrict ourselves to a language of negative connectives and quantifiers,
such as ⇒̇, ∀̇ and ⊥̇ (handling conjunction is straightforward, while the case of disjunction and existential quantifica-
tion will be discussed in Section 2.5). We write a dot over each notation of a connective or quantifier to clarify that we
are defining an object logic, i.e. a logic we are talking about. In particular, we will use notations without a dot for the
connectives and quantifiers of the meta-logic in which the completeness theorem is stated and proved. We take ⊥̇ as
a primitive connective which allows to express consistency in a direct way as the non-provability of ⊥̇. Negation can
then be defined as ¬̇A , A⇒̇⊥̇. Also, in ∀̇x A, we say that x is a binding variable which binds all occurrences of x in
A (if any). If the occurrence of a variable is not in the scope of a ∀ with same name, it is called free.

Let us write Γ for finite contexts of hypotheses, as defined by the following grammar:

Γ ::= ε | Γ, A

In particular, ε denotes the empty context, which we might also not write at all, as e.g. in ` A standing for ε ` A.
We assume having chosen a formal system for provability in classical first-order logic, e.g. one of the axiomatic

systems given in Frege [17] or in Hilbert and Ackermann [32], or one of the systems such as Gentzen-Jaśkowski’s
natural deduction [38, 21] or Gentzen’s sequent calculus [21], etc., and we write Γ ` A for the statement that A is
provable under the finite context of hypotheses Γ. IfM is a model for classical logic and σ an interpretation of the
variables fromX in the model, we writeM �σ A for the statement expressing that A is true in the modelM. Validity of
A under assumptions Γ, written Γ � A is defined to be ∀M ∀σ (M �σ Γ⇒M �σ A) whereM �σ Γ is the conjunction
of allM �σ B for every B in Γ, i.e.

∧
B∈ΓM �σ B. Note that⇒, ∀, ∧ and later on, below, ∨, ∃, ⊥, as well as derived

¬, represent the connectives and quantifiers of the meta-language.
We say that Γ is inconsistent if Γ ` ⊥̇ and consistent if Γ 0 ⊥̇, i.e. if (Γ ` ⊥̇) ⇒ ⊥, i.e., if a contradiction in the

object language is reflected as a contradiction in the meta-logic. We say that Γ has a model if there existsM and σ
such thatM �σ Γ. The completeness theorem, actually a weak form of the completeness theorem as discussed in the
next section, is commonly stated under one of the following classically but not intuitionistically equivalent forms:

C1. � A ⇒ ` A
C2. Γ is consistent ⇒ Γ has a model
C3. Γ,¬A has a model ∨ Γ ` A

1We use here “set” in an informal way, not necessarily assuming the meta-language to be specifically set theory.
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1.2 Weak and strong completeness
In a strong form, referred to as strong completeness2, completeness states that any formula valid under some possibly
infinite theory is provable under a finite subset of this theory. This is the most standard formulation of completeness
in textbooks, and, as such, it is a key component of the compactness theorem. Also proved by Gödel [23], the
compactness theorem states that any formula valid with respect to any finite subset of a theory is valid with respect
to the whole theory. In contrast, completeness with respect to finite theories as stated above is referred to as weak
completeness. Let T be a set of formulae and let T ` A mean the existence of a finite sequence Γ of formulae in
T such that Γ ` A. LetM �σ T be ∀B ∈ T M �σ B and let the definitions of T is consistent and of T has model
be extended accordingly. The strong formulations of the three perceptions at weak completeness above are now the
following:

S 1. T � A ⇒ T ` A
S 2. T is consistent ⇒ T has a model
S 3. T ∪ {¬A} has a model ∨ T ` A

We shall consider the formalisation and computational content of strong completeness. Weak completeness will
then arrive as a special case.

1.3 The standard existing proofs of completeness
Let us list the traditional proofs from the classic literature3.

• Gödel’s original proof [22] considers formulae in prenex form and works by induction on the number of quan-
tifiers for reducing the completeness of first-order predicate logic completeness to the completeness of proposi-
tional logic.

• Henkin’s proof [26] is related to statement 2: from the assumption that T is consistent, a syntactic model over
the terms is built as a maximal consistent extension of T obtained by ordering the set of formulae and extending
T with those formulae that preserve consistency, following the ordering.

• In the 1950’s, a new kind of proof credited to Beth [9], Hintikka [34, 35], Kanger [39] and Schütte [57],
independently, was given. The underlying idea is to build an infinite normal derivation, typically in sequent
calculus. Rules are applied in a fair way, such that all possible combinations of rules are considered. If the
derivation happens to be finite, a proof is obtained. Otherwise, by weak König’s lemma, there is an infinite
branch and this infinite branch gives rise to a countermodel. The intuition underlying this proof is then best
represented by statement 3.

• In the 1950’s also, Rasiowa and Sikorski [55] gave a variant of Henkin’s proof by using the existence of an
ultrafilter for the Lindenbaum algebra of classes of logically equivalent formulae, identifying validity with hav-
ing value 1 in all interpretations of a formula within the two-value Boolean algebra {0, 1}. This is connected
to Henkin’s proof in the sense that Henkin’s proof de facto implicitly builds an ultrafilter of the Lindenbaum
algebra of formulae.

Our main contribution is the analysis in Section 2 of the computational content of Henkin’s proof.

2We follow here a terminology dubbed by Henkin in his 1947 dissertation, according to [27].
However, in the context of intuitionistic logic, some authors use the weak and strong qualifying with different meanings. For instance, in

Kreisel [41, 42], the statement (� A)⇒ (` A) is called strong completeness while weak completeness is the statement (� A)⇒ ¬¬(` A).
In the context of semantic cut-elimination, e.g. in Okada [52], (� A) ⇒ (` A) is only a weak form of completeness whose strong form is the

statement (� A)⇒ (`cut−free A), for a notion of cut-freeness similar to the notion of cut-freeness in Gentzen’s sequent calculus or to Prawitz’ notion
of normal proofs [54] in natural deduction.

3We cite the most common proofs in the classic pre-1960 literature. Recent developments include e.g. Joyal’s categorical presentation of a
completeness theorem. We can also cite Berger’s [56, Sec. 1.4.3] or Krivtsov [48] construction of a classical model from a Beth model for classical
provability.
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1.4 Models and truth
The interpretation of terms in a modelM is given by a domain D and by an interpretation F of the symbols in Fun
such that F ( f ) ∈ Da f → D, where Da f → D denotes the set of functions of arity a f over D. Then, given an
assignment σ ∈ X → D of the variables to arbitrary values of the domain, the interpretation of terms inD is given by:

[[x]]σ
M

, σ(x)
[[ f (t1, . . . , ta f )]]

σ
M
, F ( f )([[t1]]σ

M
, . . . , [[ta f ]]

σ
M

)

Let us look at the different possible concrete definitions of a model. In particular, to define a two-valued interpre-
tation of formulae, two approaches are generally considered.

• Predicates as predicates. The approach followed e.g. in the Handbook of Mathematical Logic [5] or the
Handbook of Proof Theory [10] is to interpret formulae of the object language propositionally, i.e. as formulae
of the meta-language. In this case, the interpretation is not explicitly two-valued and the interpretation depends
on whether the meta-logic is classical or not. For instance, in a classical meta-language, the theory

Classic , {¬̇¬̇A⇒̇A | A ∈ Form}

would be true in all models. On the other side, in an intuitionistic meta-language, a formula such as, say,
¬̇¬̇X⇒̇X could not be proved true in all models, and, in a strongly anti-classical intuitionistic meta-language
refuting double-negation elimination, it could even be proved that there are models which refute ¬̇¬̇X⇒̇X.

As we shall see, this is not a problem for proving completeness, whose proof works by producing a particular
syntactic model and looking at the truth of a sequent in this model, independently of whether the sequent is valid
or not.

However, the difference of interpretation of validity whether the meta-language is classical or intuitionistic is a
problem for the soundness property, namely the standard statement that the provability of A implies the validity
of A.

As a consequence, for the definition of validity to be meaningful in this approach, whether the setting is intu-
itionistic or classical, we shall define explicitly classical validity as

T � A , ∀M ∀σ (M �σ Classic⇒M �σ T ⇒M �σ A)

• Predicates as binary functions. Another common approach is to interpret formulae explicitly within a two-
valued set {0, 1}, in such a way that (M �σ A) is truthM(A, σ) = 1 for some function truth such that truthM(A, σ) =

0 ∨ truthM(A, σ) = 1 holds. This is the approach followed e.g. in Rasiowa-Sikorski’s proof, or also e.g.
in [11, 58], among others.

However, the proof of completeness requires to build a model in which truth is not a recursive function (Gödel’s
completeness is logically equivalent over recursive arithmetic to the existence of an infinite branch in any infinite
binary tree [58], which is not a recursive process). Hence, truthM(A, σ) = 0∨ truthM(A, σ) = 1 could hold only
by requiring classical reasoning.

It is known how to compute with classical logic in second-order arithmetic [25, 53, 46] and we could study the
computational content of a formalisation of the completeness proof which uses this definition of truth. The extra
need for classical reasoning in this approach looks however like a useless complication, so we shall favour the
first approach.
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So, to summarise, we shall adopt from now on the following definitions4 of validity and existence of a model:

T � A , ∀M∀σ (M �σ Classic⇒M �σ T ⇒M �σ A)
T has a model , ∃M∃σ (M �σ Classic ∧M �σ T )

Two auxiliary choices of formalisation can be made5.

• Recursively-defined truth. The approach followed e.g. in the Handbook of Mathematical Logic [5] or the
Handbook of Proof Theory [10] is to have the model interpret only the predicate symbols and to have the truth
of formulae defined recursively. This is obtained by giving an interpretationMP mapping any symbol P ∈ Pred
to a set P(P) ⊂ DaP . Then, the truth of a formula with respect to some assignment σ of the free variables is
given recursively by:

M �σ P(t1, . . . , ta f ) , ([[t1]]σ
M
, . . . , [[taP ]]σ

M
) ∈ P(P)

M �σ ⊥̇ , ⊥

M �σ A∧̇B , M �σ A ∧M �σ B
M �σ A⇒̇B , M �σ A⇒M �σ B
M �σ ∀̇x A , ∀v ∈ DM �σ∪[x←v] A

• Axiomatically-defined truth. A common alternative approach is to define truth as a subset S of closed formulae
in the language of terms extended with the constants of D, such that: ⊥̇ is not in S; A∧̇B is in S iff both A and
B are; A⇒̇B is in S iff B is whenever A is; ∀̇x A is in S iff A[x← v] is for all values v ∈ D; A[x← f (v1, ..., vn)]
is in S iff A[x← v] is in S whenever F ( f )(v1, ..., vn) = v for some value v ∈ S.

We shall retain the first approach as it reflects more closely the view that a model is literally about replicating
the uninterpreted (hence generic) symbols of the object language as symbols of the meta-language (the domain of
quantification, the functional symbols, the predicate symbols) and in particular that ∀M∀σM �σ A is the reflection
of the universal closure of the object language formula A as a meta-language formula. Additionally, the first approach
exempts us from defining the set of formulae enriched with constants fromD, which is convenient.

1.5 Regarding the meta-language as a formal system
Let M be the meta-language in which completeness is stated and O be the object language used to represent provability
in first-order logic. In M, a proof of the validity of a formula A is essentially a proof of the universal second-order
closure of A, seen as a formula of M, along the free predicate atoms of A and over the domain of individuals over which
the predicate atoms range. Otherwise said, the weak completeness theorem in form C1 states that from a generic proof
of A given in M one can extract a generic proof of A in the proof object language O (and conversely, the soundness
theorem can be seen as stating an embedding of O into M). Similarly, a proof of the validity of a formula A with
respect to an infinite theory T is a proof in M of the universal closure of . . . ⇒ Bi ⇒ . . . ⇒ A for Bi ranging over T ,
and, computationally speaking, statement S1 is a process to turn such a proof in M (which is a finite object using only
a finite subset of T in the meta-language seen as a formal system) into a proof in O.

The key point is however that this transformation of a proof in M into a proof in O is done in M itself, and, within
M itself, there is no way to observe a proof of the validity of A in M. The only way to extract information out of a proof
of validity is by instantiating the free symbols of the interpretation of A in M by actual function and predicate symbols
of M, i.e. by producing what at the end is a model, i.e. an effective domain and effective function and predicate
expressions definable in M.

4For the record, note that, in the presence of only negative connectives, an equivalent way to define � A so that it means the same in an
intuitionistic and classical setting is to replace the definition ofM �σ P(t1, ..., taP ) by

M �σ P(t1, ..., taP ) , ¬¬([[t1]]σ
M
, . . . , [[taP ]]σ

M
) ∈ M(P)

or even, saving a negation as in Krivine [44], by

M �σ P(t1, ..., taP ) , ¬([[t1]]σ
M
, . . . , [[taP ]]σ

M
) ∈ M(P)

Indeed, in these cases, the definition of truth becomes a purely negative formula for which intuitionistic and classical provability coincide.
5These auxiliary choices would have been relevant as well if we had chosen to represent truth as a map to {0, 1}.
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1.6 Former results about the computational content of completeness proofs for intuitionistic
logic

It is known that composing soundness and completeness for propositional or predicate logic gives a cut-elimination
theorem, as soon as completeness is formulated in such a way that it produces a normal proof6. Now, if soundness
and completeness are formulated in a meta-logic equipped with a normalisation procedure, e.g. by formulating com-
pleteness and soundness in a proofs-as-programs presentation of second-order arithmetic [43, 45, Ch. 9], one gets
an effective cut-elimination theorem, namely an effective procedure which turns any non-necessary normal proof of
Γ ` A into a normal proof of Γ ` A. In the context of intuitionistic provability, i.e. of Γ `I A, and more generally in
the context of typed λ-calculus, this has been explored several times under the name of semantic normalisation, also
known as normalisation by evaluation, based on ideas by Berger and Schwichtenberg [8], and further studied under
various angles and contexts in e.g. [14, 2], C. Coquand [13], Okada [52], Hermant [30], Lipton [31], ...

Let us recall how it works e.g. for implicative propositional logic using soundness and completeness with respect
to Kripke models. Let K range over Kripke models (W,≤,X) where ≤ is a preorder on W and X a monotonic
predicate over W for each propositional atom X. Let w range over W, i.e. worlds in the corresponding Kripke
models. Let us write w K A (resp. w K Γ) for truth of A (resp. for the conjunction of the truth of all formulae
in Γ) at world w in the Kripke model K . In particular, w K A is extended from atoms to all formulae by defining
w K A⇒̇B , ∀w′(w′ ≥ w⇒ w′ K A⇒ w′ K B). Let us write Γ �I A for validity of A relative to Γ at all worlds of
all Kripke models, i.e. for the formula ∀K∀w (w K Γ⇒ w K A).

We shall write proofs of the meta-language as functions, defining a proof f of an implication with a notation of
the form f (x) , t. We might also write x 7→ t for the proof of an implication and proofs of universal quantification,
possibly also writing (x : A) 7→ t to make explicit that x is the name of a proof of A. We shall use application of
functions, written t u, for modus ponens and instantiation of universal quantification. We shall use the notation () for
the canonical proof of an empty conjunction and the notation (t, u) for the proof of a conjunction, seen as a product
type and obtained by taking the pair of the proofs of the components of the conjunction.

For instance, the proof that Kripke forcing is monotone, i.e. that ∀ww′ (w′ ≥ w∧w  A⇒ w′  A), can be written
as the following function ⇑A, recursive in the structure of A, taking as arguments two worlds w and w′:

⇑
w,w′
A : w′ ≥ w ∧ w  A ⇒ w′  A
⇑

w,w′
X ( h , m ) , pw,w′

X (h,m)
⇑

w,w′

A⇒̇B ( h , m ) , w′′ 7→ (h′ : w′′ ≥ w′) 7→ m w′′ (trans(h, h′))

where pX is the proof of monotonicity of X and trans is the proof of transitivity of ≥, both coming with the definition
of Kripke models, while, in the definition, h is a proof of w′ ≥ w and m a proof of w  A.

Similarly, the extension of ⇑ to a proof that forcing of contexts is monotone can be written as follows, where we
reuse the notation ⇑, with now a context as index, to denote a proof of ∀ww′ (w′ ≥ w ∧ w  Γ⇒ w′  Γ):

⇑
w,w′

Γ
: w′ ≥ w ∧ w  Γ ⇒ w′  Γ

⇑
w,w′
ε ( h , () ) , ()
⇑

w,w′

Γ,A ( h , (σ,m) ) , (⇑w,w′

Γ
(h, σ), ⇑w,w′

A (h,m))

Let us now consider the canonical proof soundnessΓ
A of (Γ `I A) ⇒ (Γ I A) proved by reasoning by induction on

the derivation of Γ `I A. We write the proof as a recursive function:

soundnessΓ
A : Γ `I A ⇒ Γ �I A

soundnessΓ
A ȧxi , K 7→ w 7→ σ 7→ σ(i)

soundnessΓ
A⇒B

˙abs(p) , K 7→ w 7→ σ 7→ w′ 7→ (h : w ≤ w′) 7→ m 7→ soundnessΓ,A
B pK w′ (⇑w,w′

Γ
(h, σ),m)

soundnessΓ
B ˙app(p, q) , K 7→ w 7→ σ 7→ (soundnessΓ

A⇒B pK wσ) w refl (soundnessΓ
A qK wσ)

where u is a proof of Γ `I A in the last line, ˙app, ˙abs, ȧxi are the name of inference rules defining object-level
implicational propositional logic as a natural deduction (see Figure 1), σ(i) is the (i + 1)th component of σ starting
from the right, and refl is the proof of reflexivity of ≥ coming with the definition of Kripke models.

6Using e.g. Beth-Hintikka-Kanger-Schütte’s proof.
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Primitive rules

|Γ′| = i

Γ, A,Γ′ ` A
ȧxi

Γ ` A⇒̇B Γ ` A

Γ ` B
˙app

Γ, A ` B

Γ ` A⇒̇B
˙abs

Admissible rule

Γ ⊂ Γ′ Γ ` A

Γ′ ` A
˙weak

Figure 1: Inference rules characterising minimal implicational logic

Let us also consider the following canonical proof of cut-free completeness completeness : (Γ �I A) ⇒ (Γ `cf
I A)

based on the universal model of context K0 defined by taking forW the set of contexts Γ ordered by inclusion and
by taking Γ `

cf
I X for the forcing X of atom X at world Γ. It comes from mutually proving the two directions of

Γ K0 A ⇔ Γ `
cf
I A by induction on A. It is common to write ↓ for the left-to-right direction (called reify, or quote)

and ↑ for the right-to-left direction (called reflect, or eval):

↓Γ
A : Γ K0 A ⇒ Γ ` A
↓Γ

P m , m
↓Γ

A⇒̇B m , ˙abs (↓Γ,A
B (m (Γ, A) injA

Γ (↑Γ,A
A ȧx0)))

↑Γ
A : Γ ` A ⇒ Γ K0 A
↑Γ

P p , p
↑Γ

A⇒̇B p , Γ′ 7→ f 7→ m 7→↑Γ′

B ( ˙app( ˙weak( f , p), ↓Γ′

A m))

initΓΓ′ : Γ K0 Γ′

initΓε , ()
initΓΓ′,A , (initΓΓ′ , ↑

Γ
A (ȧx|Γ|−|Γ′,A|)

completenessΓ
A : Γ �I A ⇒ Γ `I A

completenessΓ
A m , ↓Γ

A (m K0 Γ initΓΓ)

where |Γ| is the length of Γ, ˙weak is the admissible rule of weakening in object implicational propositional logic and
injA

Γ is a proof of Γ ⊂ Γ, A.
In particular, by placing ourselves in a meta-meta-logic, such that the meta-logic is seen as a proofs-as-programs-

style natural deduction object language, one would be able to show that

• for every given proof of Γ `I , soundness produces, by normalisation in the meta-logic, a proof of Γ �I A whose
structure follows the one of the proof of Γ `I ;

• for every proof of validity taken in canonical form (i.e. as a closed β-normal η-long λ-term of type Γ � A in
the meta-logic), the resulting proof of Γ `

cf
I A obtained by completeness is, by normalisation in the meta-logic

which we took to be a natural deduction, i.e. a λ-calculus, the same λ-term with the abstractions and applications
over K , w and proofs of w ≤ w′ removed.

That the composition of completeness and soundness performs normalisation can be shown from the meta-logic
itself. This is what C. Coquand did by showing that the above proofs of soundness and completeness, seeing the
statements as types and the proofs as functions, satisfy the following properties:

∀p : (Γ `I A) p ∼ soundnessΓ
A pK0 Γ initΓ

Γ

∀p : (Γ `I A)∀m : (Γ �I A) (p ∼ mK0 Γ initΓ
Γ
⇒ p =βη completenessΓ

A m)
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where ∼ is an appropriate “Tait computability” relation between object proofs and semantic proofs expressing that
soundness p reflects p.

Then, since completeness returns normal forms, we get that completeness(soundness p) is a normal form q such
that q =β p.

Let us conclude this section by saying that the extension of this proof to universal quantification and falsity, using
so called exploding nodes, or to classical logic has been studied e.g. in [29]. The case of disjunction and existential
quantification is however more difficult ([36, 37] or [1] give a partial answer to it).

One of the purposes of this paper is precisely to start comparatively exploring the computational content of proofs
of Gödel’s completeness theorem and their ability to provide normalisation. In the case of Henkin’s proof, the answer
is negative: even if the resulting object proof is related to the proof of validity in the meta-logic, it is neither cut-free
nor isomorphic to it. In particular, it drops information from the meta-logic proof by sharing subparts that prove the
same subformula as will be emphasised in Section 2.2.

1.7 The intuitionistic provability of the different statements of completeness
Statements C1, C2 and C3, as well as statements S1, S2, S3 are classically equivalent but not intuitionistically equiv-
alent.

Since our object language is only composed of negative connectives, the formulaM �σ T is itself composed of
only negative connectives in the meta-language. Hence, the only positive connective in statements C2 and S2 is the
existential quantifier asserting the existence of a model.

This existential quantifier is intuitionistically provable as Henkin’s proof of S2 given in the next section shows:
given a proof of consistency of a theory, we can define a predicate which happens to be a model of the theory.

It shall however be noted that this predicate is not itself recursive in general, since constructing this model is
equivalent in general to producing an infinite path in any arbitrary infinite binary tree (such an infinite path is a priori
not recursive, see Kleene [40], Simpson [58]).

From an intuitionistic point of view, statements C1 and S1 are the most interesting ones, as they promise to produce
(object) proofs in the object language out of proofs of validity in the meta-logic. However, Kreisel [41] showed, using
a result by Gödel [24], that C1 is equivalent to Markov’s principle over intuitionistic second order arithmetic. This
has been studied in depth by McCarty [51] as a conclusion of which it turns out that S1 is also equivalent to Markov’s
principle if the theory is recursively enumerable.

However, for theories with arbitrary logical complexity, reasoning by contradiction on formulae of arbitrarily large
logical complexity is correspondingly needed as the following adaptation of McCarty’s proof shows: Let A be an
arbitrary formula and consider e.g. the theory defined by B ∈ T , (B = ⊥̇)∧A∨ (B = ¬̇X)∧¬A. We intuitionistically
have that T � ¬X because this is a negative formulation of a classically provable statement7. By completeness, we
gets T ` ¬X, and, by case analysis on the normal form of the so-obtained proof, one infers that either A or ¬A.

The need for Markov’s principle is connected to how ⊥̇ is interpreted in the model. Krivine [47] showed that for
a language without ⊥̇8, C1 is provable intuitionistically. As analysed by Berardi [6] and Berardi and Valentini [7],
Markov’s principle is not needed anymore if we accept the extra degenerate model where all formulae including ⊥̇ are
interpreted as true9. Let us formalise this precisely.

We define a possibly-exploding modelM to be a model (D,F ,P, X) such that (D,F ,P) is a model in the sense
previously defined together with the following modified definition of truth of ⊥̇:

M �eσ ⊥̇ , X

and the rest of clauses unchanged. In [7], a classical possibly-exploding model is called a minimal model.

7for M and σ being given, prove M �σ ¬̇X by taking B = ¬̇X where the proof that B ∈ T needs a proof of ¬A. The latter is obtained by
assuming A, and using again the hypothesisM �σ T , but this time with B = ⊥̇, thanks to A.

8so-called minimal classical logic in [3], which is not functionally complete since no formula can then be given the falsified.
9This is similar to the approach followed by Friedman [19] and Veldman [61] to intuitionistically prove the completeness of intuitionistic

logic with respect to a relaxing of Beth models with so-called fallible models and to a relaxing of Kripke models with so-called exploding nodes,
respectively.
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Note that because ⊥̇⇒̇A is a consequence of ¬̇¬̇A⇒̇A, the following holds for all A and all σ in any classical
possibly-exploding model:

X ⇒ M �eσ A

So we do not need to enforce it further10. Let us rephrase C1 and S1 using classical possibly-exploding models:

C1′. �e A ⇒ ` A
S 1′. T �e A ⇒ T ` A

where
T �e A , ∀M∀σ (M �eσ Classic⇒M �eσ T ⇒M �

e
σ A)

In particular, it is worthwhile to notice that T �e A and T � A are classically equivalent since �e only differs from
� by an extra quantification over the degenerate always-true model. Hence C1 and C1’, as well as S1 and S1’, are
classically equivalent too. But C1’ as well as S1’ for recursively enumerable theories are provable intuitionistically,
while C1 and S1, even for recursively enumerable theories, would require Markov’s principle11.

Let us conclude this section by considering statements C3 and S3. These statements are strongly not intuitionis-
tically provable, as, if they were, provability could be decided. This does not mean however that we cannot compute
with C3 and S3. Classical logic is computational (see e.g. [53]), but for an evaluation to be possible, an interaction
with a proof of a statement which uses C3 or S3 is needed. We will not explore this further here.

1.8 Related works
We discovered after writing of this paper that the intuitionistic provability of Gödel’s completeness theorem with
respect to models with exploding nodes was studied independently of Berardi and Valentini by Krivtsov [48]. Krivtsov
calls these models intuitionistic structures and he shows that the weak Fan theorem is enough to get an intuitionistic
proof for an object language with all connectives [49].

2 The computational content of Henkin’s proof of Gödel’s completeness
We shall now recall Henkin’s proof of completeness and analyse its computational content.

2.1 Henkin’s proof of statement S2, slightly simplified
We shall give a simplified form of Henkin’s proof of the strong form of Gödel’s completeness theorem [26], formulated
as statement S2. The simplification is on the use of free variables instead of constants in Henkin axioms and in the use
of only implicative formulae in the process of completion of a consistent set of formulae into a maximally consistent
one.

Let T be a consistent set of formulae mentioning an at most countable12 number of function symbols and predicate
symbols. Let X1 and X2 be countable sets of variables forming a partition of X. We can assume without loss of
generality that the free variables of the formulae in T are in X1 leaving X2 as a pool of variables fresh in T .

10As a matter of purity, since it is standard that the classical scheme ¬̇¬̇A⇒̇A is equivalent to the conjunction of a purely classical part, namely
Peirce’s law representing the scheme ((A⇒̇B)⇒̇A)⇒̇B and of a purely intuitionistic part, namely ex falso quodlibet representing the scheme ⊥̇⇒̇A,
we could have decomposed Classic into the disjoint sum of Peirce , {((A⇒̇B)⇒̇A)⇒̇A | A ∈ Form} and of Exfalso , {⊥̇⇒̇A | A ∈ Form}.

As already said in Section 1.4, the conditionM �σ Classic, and in particular the conditionsM �σ Peirce andM �σ Exfalso are needed to show
soundness with respect to classical models in a minimal setting. In an intuitionistic setting,M �σ Exfalso holds by default and does not have to be
explicitly enforced. In a classical setting,M �σ Peirce does not have to be explicitly enforced. So, requiring these conditions is to ensure that the
definition of validity is the one we want independently of the specific properties of the meta-language.

In contrast, for the purpose of completeness, possible explosion is needed for an intuitionistic proof of C1 to be possible, but none of Peirce(M)
and Exfalso(M) are required.

11Markov’s principle can actually be “intuitionistically” implemented e.g. by using an exception mechanism [28], so a computational content to
weak completeness and strong completeness for recursively enumerable theories can be obtained without any change in the interpretation of ⊥̇.

12in the presence of uncountably many symbols, one would need the ultrafilter lemma to well-order formulae and we do not know how to make
the proof constructive in this case.
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We want to show that T has a model, and for that purpose, we shall complete it into a consistent set Sω of formulae
which is maximal in the sense that if A < Sω then ¬̇A ∈ Sω. We shall also ensure that for every universally quantified
formula ∀̇x A(x), there is a corresponding so-called Henkin axiom A(y)⇒̇∀̇x A(x) in Sω with y fresh in ∀̇x A(x). For
the purpose of this construction, we fix an injective enumeration φ of formulae of the form ∀̇x A(x) or A⇒̇B and write
dAe for the index of a formula A in the enumeration. We also take φ so that formulae of even index are of the form
∀̇x A(x) and formulae of odd index are of the form A⇒̇B.

Let S0 be T and assume that we have already built Sn. If n is even, φ(n) has the form ∀̇x A(x). We then consider
a variable xn/2 ∈ X2 which is fresh in all φ(i) for i ≤ n and we set Sn+1 , Sn ∪ (A(xn/2)⇒̇∀̇x A(x)). Otherwise, φ(n)
is an implicative formula and we consider two cases. If Sn ∪ φ(n) is consistent, i.e. if (Sn ∪ φ(n) ` ⊥̇) ⇒ ⊥, we
set Sn+1 , Sn ∪ φ(n). Otherwise, we set Sn+1 , Sn. We finally define the predicate A ∈ Sω , ∃n (Sn ` A), i.e.
∃n∃Γ ⊂ Sn (Γ ` A), and this is the base of a syntactic modelM0 defined by taking

D , Term
F ( f )(t1, ..., tn) , f (t1, ..., tn)
P(P)(t1, ..., tn) , P(t1, ..., tn) ∈ Sω

By induction, each Sn is consistent. Indeed, if φ(n) is implicative and Sn+1 ≡ Sn ∪ φ(n), it is precisely because
Sn+1 is consistent. Otherwise, the consistency of Sn+1 comes from the consistency of Sn. If φ(n) is some ∀̇x A(x),
then Sn+1 ≡ Sn ∪ (A(xn/2)⇒̇∀̇x A(x)). This is consistent by freshness of xn/2 in both T and in the φ(i) for i ≤ n
otherwise. Indeed, because xn/2 is fresh, any proof of Sn ∪ (A(xn/2)⇒̇∀̇x A(x)) ` ⊥̇ can be turned into a proof of
Sn ∪ ¬̇∀y ¬̇(A(y)⇒̇∀̇x A(x)) ` ⊥̇, which itself can be turned into a proof of Sn ` ⊥̇ since ¬̇∀y ¬̇ (A(y)⇒̇∀̇x A(x)) is a
classical tautology.

Let id be the identity substitution. We can show by induction on A thatM0 �id A ⇔ A ∈ Sω. This is sometimes
considered easy because mainly combinatoric but we shall detail the proof because it is here that the computational
content of the proof is non-trivial. Moreover, we do not closely follow Henkin’s proof who is making strong use of
classical reasoning. We shall instead reason intuitionistically, which does not raise any practical difficulty here.

• Let us focus first on the case when A is B⇒̇C. One way to show B⇒̇C ∈ Sω fromM0 �id B⇒̇C is to show that
for n being dB⇒̇Ce, the set Sn ∪ (B⇒̇C) is consistent, i.e. that a contradiction arises from Sn ∪ (B⇒̇C) ` ⊥̇.
Indeed, from the latter, we get both Sn ` B and Sn ` ¬̇C. From Sn ` B we getM0 �id B by induction hypothesis,
henceM0 �id C by assumption on the truth of B⇒̇C. Then C ∈ Sω again by induction hypothesis, hence Sn′ ` C
for some n′. But also Sn ` ¬̇C, hence Smax(n,n′) ` ⊥̇ which contradicts the consistency of Smax(n,n′).

• Conversely, if B⇒̇C ∈ Sω, this means Sn ` B⇒̇C for some n. To proveM0 �id B⇒̇C, let us assumeM0 �id B.
By induction hypothesis we get Sn′ ` B for some n′ and hence Smax(n,n′) ` C, i.e. C ∈ Sω. We conclude by
induction hypothesis to getM0 �id C.

• Let us then focus on the case when A is ∀̇x B(x). For n even being d∀̇x B(x)e, we have the formula (B(xn/2)⇒̇∀̇x B(x)) ∈
Sn+1. By the induction hypothesis applied on M0 �id B(xn/2), we also get the existence of some n′ such that
Sn′ ` B(xn/2). Hence, Smax(n+1,n′) ` ∀̇x B(x), which means ∀̇x B(x) ∈ Sω.

• Conversely, assume Sn ` ∀̇x B(x) for some n and proveM0 �id ∀x B(x). Let t be a term. From Sn ` ∀̇x B(x) we
get Sn ` B(t) and henceM0 �id B(t) by induction hypothesis, i.e. M0 �(x 7→t) B(x).

• Let us then consider the case A is ⊥̇. By ex falso quodlibet in the meta-logic, it is direct that ⊥ ⇒ (⊥̇ ∈ Sω).

• Conversely, let us prove (⊥̇ ∈ Sω) ⇒ ⊥. From ⊥̇ ∈ Sω we know Sn ` ⊥̇ for some n which, again, contradicts
the consistency of Sn.

• The case when A is P(t1, . . . , tn) is trivial.

Before completing the proof, it remains to prove that the model is classical. Using the equivalence between
M0 �id A and A ∈ Sω it is enough to prove that ¬̇¬̇A ∈ Sω implies A ∈ Sω. But the former means Sn ` ¬̇¬̇A for some
n, hence Sn ` A by classical reasoning in the object language, hence A ∈ Sω.

We are now ready to complete the proof. For every B ∈ T , since T ` B, we get B ∈ Sω and henceM0 �id B.
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In Henkin’s proof, the language is extended with constants and Henkin axioms are of the form ∃̇x A(x)⇒̇A(c)
with c not occurring in ∃̇x A(x). In practice fresh variables are as good as constants, and, since our language does
not have the ∃̇ quantifier, we also have to use dual axioms A(xn)⇒̇∀̇x A(x). In standard presentations of Henkin’s
proof, including the original proof by Henkin, the completion is made by stages, completing So into S0ω so that either
A < S0ω or ¬̇A ∈ S0ω for A defined on the the initial language, then considering a countable set of constant c0i and
completing S0ω with Henkin axioms to get S1ω, repeating the process countable many times on a language extended
with the constants to get Sω. One step is however enough as shown e.g. in [58, Th. IV.3.3], and using variables instead
of constants is as well enough.

2.2 From Henkin’s proof of statement S2 to a proof of statement S1’
Let us fix a formula A0 and a recursively enumerable theory T0, i.e. a theory defined by a Σ0

1-statement. To get a proof
of statement S1 for T0 and A0 is easy by using Markov’s principle: to prove T0 ` A0 from T0 �

e A0, let us assume the
contrary, namely that T , T0 ∪ ¬̇A0 is inconsistent. Then, we can complete T into Sω and build out of it a classical
modelM0 such that ∀B ∈ T0M0 �

e
id B as well asM0 �

e
id ¬̇A0, i.e. ¬(M0 �

e
id A0). But this contradicts T0 �

e A0 and,
because T0 is Σ0

1, hence T0 ` A as well, Markov’s principle applies.
As discussed in Section 1.7, S1 cannot be proved without Markov’s principle, so we shall instead prove S1’. To

turn the proof of C1 into a proof of S1’ which does not require reasoning by contradiction, we shall slightly change
the construction of Sω from T so that it is not consistent in an absolute sense, but instead consistent relative to T . In
particular, we change the condition for extending S2n+2 with φ(2n+1) to be that S2n+1∪φ(2n+1) is consistent relative
to T .

Then, we show by induction not that Sn is consistent but that its inconsistency reduces to the inconsistency of T .
For the construction of the now possibly-exploding model, we take as interpretation of ⊥̇ the formula T ` ⊥̇.

Proving ⊥̇ ∈ Sω ⇒ M0 �
e
id ⊥̇ now reduces to proving Sn ` ⊥̇ ⇒ T ` ⊥̇ which is the statement of relative

consistency13.
The change in the definition of Sω as well as the use of possibly-exploding models is directly connected to using

Friedman’s A-translation [20] to absorb the need for Markov’s principle. Here, A is the Σ0
1-formula T0 ` A0 and by

replacing ⊥ by A in the definition of model, hence of validity, as well as in the definition of Sω, we are able to prove
(A⇒ A)⇒ A whereas only (A⇒ ⊥)⇒ ⊥ was provable. Then, A comes trivially from (A⇒ A)⇒ A.

This was the idea followed by Krivine [47] in his constructive proof of Gödel’s theorem for a language restricted
to ⇒̇ and ∀̇, as analysed and clarified in Berardi and Valentini [7].

As a final remark, one could wonder whether the construction of S2n+2 by case on an undecidable statement is
compatible with intuitionistic reasoning. Indeed, constructing the sequence of formulae added to T in order to get Sn

seems to require a use of excluded-middle. However, in the proof of completeness, only the property A ∈ Sn matters,
and this property is directly definable by induction as

A ∈ S0 , A ∈ T
A ∈ Sn+1 , A ∈ Sn

∨ (∃p (n = 2p + 1) ∧ φ(n) = ∀̇x B(x) ∧ A = (B(xp+1) ⇒̇ ∀̇x B(x))
∨ (∃p (n = 2p) ∧ (Sn, A ` ⊥̇ ⇒ T ` ⊥̇) ∧ A = φ(n))

Note however that Sn is used in negative position of an implication in the definition of Sn+1. Hence, the complexity
of the formula A ∈ Sn seen as a type of functions is a type of higher-order functions of depth n.

We will represent proofs in this language using a λ-calculus with pairs. In particular, we use the same notation
for the construction of proofs of universally quantified formulae and for the construction of proofs of implicative
formulae, as it is done in type theory where both are a particular case of building an object in a dependent product: our
notation is x 7→ p. We also identify the construction of existentially quantified formulae and the construction of proofs
of conjunctive formulae as both are a particular case of dependent sums (also known as Σ-types). For the proofs in a
n-ary combined existential and conjunction connective, our notation is (p1, ..., pn).

13Interestingly enough, since T0 ` A indeed holds a proof of validity of A being given, the model we built is then the degenerate one in which all
formulae are true.
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Modus Ponens and universal quantification elimination are written as a concatenation while elimination from n-ary
combined existential and conjunction is written dest p as (x1, ..., xn) in q.

2.3 The computational content of the proof of completeness
We are now ready to formulate the proof as a program. We shall place ourselves in an axiom-free second-order
intuitionistic arithmetic equipped with a proof-as-program interpretation14, as already considered in Section 1.6. Ad-
ditionally, we shall identify the construction of existentially quantified formulae and the construction of proofs of
conjunctive formulae. For instance, we shall use the (p1, ..., pn) for the proof of a n-ary combined existential and con-
junction connective. We shall also write dest p as (x1, ..., xn) in q for a proof obtained by decomposition of the proof p
of n-ary combined existential and conjunction. We shall write efq p for a proof of A from a proof of p of ⊥ (ex falso
quodlibet).

We shall use the letters n, A, Γ, m, p, h, g, f , k and their variants to refer to natural numbers, formulae, contexts of
formulae, proofs of truth, proofs of derivability in the object language, proofs of inclusion in T0, proofs of belonging
to T0, proofs of inclusion in extensions of T0, proofs of relative consistency, respectively.

The key property is A ∈ Sω which unfolds as ∃n∃Γ (Γ ⊂ Sn ∧ Γ ` A). Rather than defining Γ ⊂ Sn from A ∈ Sn

and the latter by cases, we directly define Γ ⊂ Sn by cases as our primitive concept. Now, for the formula φ(n) to be
in Sn+1, a proof that the possible inconsistency of Sn+1 reduces to the inconsistency already of T0 ∪ ¬̇A0 is required.
Otherwise said, the property Γ ⊂ Sn is a collection of proofs expressing, for each B ∈ Γ, that either B ∈ T0 (clause
Jcons), or B is ¬̇A0, or B is an Henkin axiom (clause I∀), or B is an implication together with a proof of relative
consistency of Γ with respect to T0 ∪ ¬̇A0 (clause I⇒).

We first define by cases the predicate Γ ⊂ T0:

ε ⊂ T0
Jbase

Γ ⊂ T0 A ∈ T0

Γ, A ⊂ T0
Jcons

Defining ¬̇A0,T0 ` ⊥̇ to be ∃Γ (Γ ⊂ T0 ∧ ¬A0,Γ
′ ` ⊥̇), we shall now define by cases Γ ⊂ Sn:

Γ ⊂ T0

¬̇A0,Γ ⊂ S0
I0

Γ ⊂ Sn

Γ ⊂ Sn+1
IS

Γ ⊂ S2n

Γ, A(xn) ⇒̇ ∀̇x A(x) ⊂ S2n+1
I∀

Γ ⊂ S2n+1 ∃Γ′ (Γ′ ⊂ S2n+1 ∧ Γ′, A⇒̇B ` ⊥̇)⇒ ¬̇A0,T0 ` ⊥̇

Γ, A ⇒̇ B ⊂ S2n+2
I⇒

where φ(2n) is ∀̇x A(x) in I∀ and φ(2n + 1) is A⇒̇B in I⇒.
We now write as a program the proof that Sω is consistent relative to T0 ∪ ¬̇A0, i.e. that for all n and Γ such that

Γ ⊂ S n and Γ ` ⊥̇, then already ¬̇A0,T0 ` ⊥̇.
Computationally, it happens to work, for n odd, by calling the continuation justifying that adding the formula

φ(2p + 1) preserves consistency, and, for n even, to compose the resulting proof of inconsistency with a proof of the
Drinker’s paradox ( ˙drinkery is the proof which builds a proof of Γ ` ⊥̇ from a proof of Γ, A(y)⇒̇∀̇x A(x) ` ⊥̇, knowing
that y does not occur in Γ, ∀̇x A(x), see Figure 2).

flushΓ
n : Γ ⊂ Sn ∧ Γ ` ⊥̇ ⇒ ¬̇A0,T0 ` ⊥̇

flush¬̇A0,Γ
0 ( I0 g , p ) , (Γ, g, p)

flushΓ
n+1 ( IS f , p ) , flushΓ

n( f , p)
flushΓ,A

2n+1 ( I∀ f , p ) , flushΓ
2n( f , ˙drinkerxn p)

flushΓ,A
2n+2 ( I⇒ ( f , k) , p ) , k (Γ, f , p)

14A typical effective framework for that purpose would be a fragment of the Calculus of Inductive Constructions such as it is implemented in the
Coq proof assistant [12], or Matita [4]. The Calculus of Inductive Constructions is an impredicative extension of Martin-Löf’s type theory [50].
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A boring lemma which is implicit in the proof of completeness in natural language is that Γ ⊂ Sn and Γ′ ⊂ Sn′

imply Γ ∪ Γ′ ⊂ Smax(n,n′). It looks obvious because one tends to think of Γ ⊂ Sn as denoting the inclusion of Γ

within a uniquely defined relatively consistent set Sn. However, the computational approach to the proof shows that
Sn has no computational content: only proofs of Γ ⊂ Sn have, and such proofs are collections of proofs of relative
consistency for only those implicative formulae which are in Γ. These formulae are those inspected by the lemma
A ∈ Sω ⇔M0 �

e
σ A, which in practice are subformulae of the formulae in T0.

Contexts being defined as sequences of formulae, we first need to define Γ∪Γ′ so that it yields a context of formulae
ordered in a way compatible with the enumeration:

ε ∪ ε ::= ε
ε ∪ (Γ′, A) ::= Γ′, A
(Γ, A) ∪ ε ::= Γ, A
(Γ, A) ∪ (Γ′, A) ::= (Γ ∪ Γ′), A
(Γ, A) ∪ (Γ′, B) ::= (Γ, A ∪ Γ′), B if dBe > dAe
(Γ, A) ∪ (Γ′, B) ::= (Γ ∪ Γ′, B), A if dAe > dBe

We can then define straightforwardly the merge of two proofs of Γ ⊂ Sn:

joinΓ1Γ2
⊂ : Γ1 ⊂ T0 ∧ Γ2 ⊂ T0 ⇒ Γ1 ∪ Γ2 ⊂ T0

joinεε⊂ ( Jbase , Jbase ) , Jbase

join(Γ1,A)(ε)
⊂ ( Jcons(g1, h1) , Jbase ) , Jcons(g1, h1)

join(ε)(Γ2,A)
⊂ ( Jbase , Jcons(g2, h2) ) , Jcons(g2, h2)

join(Γ1,A)(Γ2,A)
⊂ ( Jcons(g1, h1) , Jcons(g2, h2) ) , Jcons(joinΓ1Γ2

⊂ (g1, g2), h1)
join(Γ1,A1)(Γ2,A2)

⊂ ( f1 , Jcons( f2, h2) ) , Jcons(join(Γ1,A1)(Γ2)
⊂ ( f1, f2), h2) if dA2e > dA1e

join(Γ1,A1)(Γ2,A2)
⊂ ( Jcons( f1, h1) , f2 ) , Jcons(join(Γ1)(Γ2,A2)

⊂ ( f1, f2), h1) if dA2e < dA1e

joinΓ1Γ2
n : Γ1 ⊂ Sn ∧ Γ2 ⊂ Sn ⇒ Γ1 ∪ Γ2 ⊂ Sn

join(¬̇A0,Γ1)(¬̇A0,Γ2)
0 ( I0( f1) , I0( f2) ) , I0(joinΓ1Γ2

⊂ ( f1, f2)
join(Γ1A)(Γ2A)

2n+1 ( I∀( f1) , I∀( f2) ) , I∀(joinΓ1Γ2
2n ( f1, f2))

join(Γ1A)(Γ2A)
2n+2 ( I⇒( f1, k1) , I⇒( f2, k2) ) , I⇒(joinΓ1Γ2

2n+1( f1, f2), k1)
join(Γ1A)Γ2

2n+1 ( I∀( f1) , IS( f2) ) , I∀(joinΓ1Γ2
2n ( f1, f2))

join(Γ1A)Γ2
2n+2 ( I⇒( f1, k1) , IS( f2) ) , I⇒(joinΓ1Γ2

2n+1( f1, f2), k1)
joinΓ1(Γ2A)

2n+1 ( IS( f1) , I∀( f2) ) , I∀(joinΓ1Γ2
2n ( f1, f2))

joinΓ1(Γ2A)
2n+2 ( IS( f1) , I⇒( f2, k2) ) , I⇒(joinΓ1Γ2

2n+1( f1, f2), k2)
joinΓ1Γ2

n+1 ( IS( f1) , IS( f2) ) , IS(joinΓ1Γ2
n ( f1, f2))

mergeΓ1Γ2
n1n2 : Γ1 ⊂ Sn1 ∧ Γ2 ⊂ Sn2 ⇒ Γ1 ∪ Γ2 ⊂ Smax(n1,n2)

mergeΓ1Γ2
n1n2 ( f1 , f2 ) , joinΓ1Γ2

n ( f1, f2) if n = n1 = n2

mergeΓ1Γ2
n1n2 ( IS( f1) , f2 ) , IS(mergeΓ1Γ2

n′1n2
( f1, f2)) if n1 = n′1 + 1 > n2

merge(Γ1A1)Γ2
n1n2 ( I∀( f1, k1) , f2 ) , I∀(mergeΓ1Γ2

n′1n2
( f1, f2), k1) if n1 = n′1 + 1 > n2

merge(Γ1A1)Γ2
n1n2 ( I⇒( f1, k1) , f2 ) , I⇒(mergeΓ1Γ2

n′1n2
( f1, f2), k1) if n1 = n′1 + 1 > n2

mergeΓ1Γ2
n1n2 ( f1 , IS( f2) ) , IS(mergeΓ1Γ2

n1n′2
( f1, f2)) if n1 < n′2 + 1 = n2

mergeΓ1(Γ2A2)
n1n2 ( f1 , I∀( f2) ) , I∀(mergeΓ1Γ2

n1n′2
( f1, f2)) if n1 < n′2 + 1 = n2

mergeΓ1(Γ2A2)
n1n2 ( f1 , I⇒( f2, k2) ) , I⇒(mergeΓ1Γ2

n1n′2
( f1, f2), k2) if n1 < n′2 + 1 = n2

In particular, it has to be noticed that the merge possibly does arbitrary choices: when the same formula occurs in
both contexts, i.e. when the same formula occurs in both contexts with a constructor of object proofs telling how to
reduce Γ, A ` ⊥̇ to ∃Γ(Γ ⊂ T0 ∧ ¬̇A0,Γ ` ⊥̇) (third clause of joinn), only one of these two constructors of object proofs
is (arbitrarily) kept.
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Primitive rules

|Γ′| = i

Γ, A,Γ′ ` A
ȧxi

Γ ` ¬̇¬̇A

Γ ` A
ḋn

Γ ` A⇒̇B Γ′ ` A

Γ ∪ Γ′ ` B
˙app⇒̇

Γ ` ∀̇x A(x)

Γ ` A(t)
˙app∀̇t

Γ, A ` B

Γ ` A⇒̇B
˙abs⇒

Γ ` A(y) y not in ∀̇x A(x),Γ

Γ ` ∀̇x A(x)
˙abs∀

Admissible rules

Γ, A(y)⇒̇∀̇x A(x) ` ⊥̇ y not in ∀̇x A(x),Γ

Γ ` ⊥̇

˙drinkery

Γ, A⇒̇B ` ⊥̇

Γ ` A
π⇒̇1

Γ, A⇒̇B ` ⊥̇

Γ ` ¬̇B
π⇒̇2

Γ ` ⊥̇

Γ ` A
efq

Figure 2: Inference rules characterising classical first-order predicate calculus

Another lemma is also implicit in the proof of completeness in natural language: it simply says that ¬̇A0 ⊂ Sn and
it is proved by induction on n:

injn : ¬̇A0 ⊂ Sn

inj0 , I0(Jbase)
injn+1 , IS(injn)

We are now ready to present the main computational piece of the completeness proof and we shall use for that
notations reminiscent from semantic normalisation [13], or type-directed partial evaluation [15], as considered when
proving completeness of intuitionistic logic with respect to models such a Kripke or Beth models.

We have to proveM0 �
e
id A ⇔ A ∈ Sω, which means provingM0 �

e
id A ⇒ A ∈ Sω and A ∈ Sω ⇒ M0 �

e
id A.

As in semantic normalisation (see Section 1.6), we shall call reification and write ↓A the proof mapping a semantic
formula (i.e. M0 �

e
id A) to a syntactic formula, i.e. A ∈ Sω. We shall call reflection and write ↑A for the way up going

from the syntactic view to the semantic view.
Our object logic is defined by the rules on Figure 2. Note that we shall use non standard derived rules. For instance,

we shall not use the rule ˙abs⇒ and ˙abs∀ but instead the derived rules π⇒̇1 , π⇒̇2 and ˙drinkery.
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↓A : M0 �
e
id A → A ∈ Sω

↓P(~t) m , m
↓⊥̇ m , efq m
↓A⇒̇B m , ( 2n + 1, (¬̇A0, A⇒̇B),

I⇒(inj2n+1, (Γ, f , p) 7→
dest ↓B (m(↑A (2n + 1,Γ, f , π⇒̇1 p))) as (n′,Γ′, f ′, p′)
in flushΓ∪Γ′

max(2n+1,n′)(mergeΓΓ′

(2n+1)n′ ( f , f ′), ˙app⇒̇(π⇒̇2 p, p′)) ),

ȧx0) where 2n + 1 = dA⇒̇Be
↓∀̇x A(x) m , dest ↓A(xn) (m xn) as (n′,Γ′, f ′, p′)

in (max(2n + 1, n′),Γ′,merge(¬̇A0)Γ′

(2n+1)n′ (I∀(inj2n), f ′), ˙app⇒̇(ȧx0, p′))
where 2n = d∀̇x Ae

↑A : A ∈ Sω → M0 �
e
id A

↑P(~t) (n,Γ, f , p) , (n,Γ, f , p)
↑⊥̇ (n,Γ, f , p) , flushΓ

n( f , p)

↑A⇒̇B (n,Γ, f , p) , m 7→
dest ↓A m as (n′,Γ′, f ′, p′)
in ↑B (max(n, n′),Γ ∪ Γ′,mergeΓΓ′

nn′ ( f , f ′), ˙app⇒̇(p, p′))
↑∀̇x A(x) (n,Γ, f , p) , t 7→ ↑A(t) (n,Γ, f , ˙app∀̇(p, t))

We still have to prove that the model is classical:

classicA
0 : M0 �

e
id (¬̇¬̇A) ⇒ M0 �

e
id A

classicA
0 m , ↑A (dest ↓¬̇¬̇A m as (n,Γ, f , p) in (n,Γ, f , ḋnp))

and we write classic0 , A 7→ classicA
0 .

It still remains to show that every formula of T0 is true inM0:

initB : B ∈ T0 ⇒ M0 �
e
id B

initB h , ↑B (I0(Jcons(Jbase, h))))

and we then write init , B 7→ initB. Finally, we get the completeness result stated as S2 by:

completeness : ∀M∀σ (M �eσ Classic⇒M �eσ T0 ⇒M �
e
σ A0) ⇒ T0 ` A0

completeness ψ ,
dest ↓A0 (ψM0 id classic0 init) as (n,Γ, f , p)
in dest flushΓ

n( f , ˙app⇒̇(ȧx|Γ|−1, p)) as (Γ′, g, p′) in (Γ′, g, ḋn( ˙abs⇒̇(p′)))

where |Γ| is the length of Γ which necessarily contains ¬̇A0 in first position. Notice that the result is a triple (Γ′, g, q)
such that q is a proof of Γ′ ` A and g is a proof of Γ ⊂ T0.

2.4 The computational content on examples
To illustrate the behaviour of the completeness proofs, we look at its behaviour on two examples. We use notations of
λ-calculus to represent proofs in the meta-logic and constructors from Figure 2 for proofs in the object logic.

Let us consider A0 , X ⇒ Y ⇒ X with X and Y propositional atoms. There is a canonical proof of �e A0, which,
as a λ-term, is the K combinator.

The expansion of �e A0 is ∀M ∀σ (σ �e
M
Classic⇒M �e X ⇒M �e Y ⇒M �e X) and its canonical proof is:

m , (D,F ,P, B) 7→ σ 7→ c 7→ (x : P(X)) 7→ (y : P(Y)) 7→ x

Applying completeness means instantiating the model by the syntactic model and the empty substitution so as to
obtain from m the proof m0 , (x : X ∈ Sω) 7→ (y : Y ∈ Sω) 7→ x.

Our object proof is then the result of evaluating

ḋn( ˙abs⇒̇(dest ↓A0 m0 as (n,Γ, f , p) in flushΓ
n( f , ˙app⇒̇(ȧx|Γ|−1, p))))
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Evaluating ↓A0 m0 gives a tuple v0 , (2n0 + 1, (¬̇A0, A0), I⇒(inj2n0+1, k0), ȧx0) where 2n0 + 1 is dA0e and k0 the
following continuation mapping a proof of Γ′, ¬̇A0 ` ⊥̇ for some Γ′ ⊂ S 2n0+1 to a proof of ∃Γ ⊂ (¬̇A0) (Γ ` ⊥̇), as
given in clause⇒ of ↓:

k0(Γ, f , p) , φ(2n0 + 1,Γ, f , π⇒̇2 p, ↓Y⇒̇X (m0(↑X (2n0 + 1,Γ, f , π⇒̇1 p))))

where
φ(n,Γ, f , p,m) , dest m as (n′,Γ′, f ′, p′) in flushΓ∪Γ′

max(n,n′)(mergeΓΓ′

nn′ ( f , f ′), ˙app⇒̇(p, p′))

Our object proof is then now the result of evaluating

ḋn( ˙abs⇒̇(flush¬̇A0,A0
2n0+1 (I⇒(inj2n0+1, k0), p0)))

where p0 , ˙app⇒̇(ȧx1, ȧx0) is a proof of ¬̇A0, A0 ` ⊥̇ obtained by application of the two axiom rules proving ¬̇A0, A0 `

¬̇A0 and ¬̇A0, A0 ` A0.
Evaluating flush forces the continuation k0 to be applied to p0 resulting in:

ḋn( ˙abs⇒̇(k0(I⇒(inj2n0+1, k0), p0)))

The proof ↑X (2n0 + 1, (¬̇A0), inj2n0+1, p0) reflects the object proof π⇒1 (p0) of ¬̇A0 ` X into a proof of X ∈ Sω
which is then given as argument to m0, giving a proof m1 , (y : Y ∈ Sω) 7→ (2n0 + 1, (¬̇A0), inj2n0+1, π

⇒
1 (p0)). Now,

m1 is turned using ↓Y⇒̇X into a proof of Y⇒̇X ∈ Sω. The proof m1 drops its argument, so that ↓Y⇒̇X returns the tuple
(2n1 + 1, (¬̇A0,Y⇒̇X), I⇒(inj2n1+1, k1), ȧx0) where 2n1 + 1 is dY⇒̇Xe and k1 is the continuation

k1(Γ, f , p) , φ(2n1 + 1,Γ, f , π⇒̇2 p, (2n0 + 1, (¬̇A0), inj2n0+1, π
⇒̇
1 p0))

We are then evaluating the following:

ḋn( ˙abs⇒̇(φ(2n0 + 1, (¬̇A0), inj2n0+1, π
⇒̇
2 p0, (2n1 + 1, (¬̇A0,Y⇒̇X), I⇒(inj2n1+1, k1), ȧx0))))

which is the same as

ḋn( ˙abs⇒̇(flush(¬̇A0)∪(¬̇A0,Y⇒̇X)
max(2n0+1,2n1+1) (merge(¬̇A0)(¬̇A0,Y⇒̇X)

(2n0+1)(2n1+1) (inj2n0+1, I⇒(inj2n1+1, k1)), p1))

where p1 , ˙app⇒̇(π⇒̇2 p0, ȧx0) is a proof of ¬̇A0,Y⇒̇X ` ⊥̇ obtained as the application of the proof π⇒2 (p0) of ¬̇A0 `

¬̇(Y⇒̇X) to the proof ȧx0 of ¬̇A0,Y⇒̇X ` Y⇒̇X coming from calling ↓Y⇒̇X .
The merge is direct even if its result depends on whether n1 ≥ n0 or n1 < n0. In both cases, it results in making

flush applying k1 so as to remove the hypothesis Y⇒̇X from p1. We are now at evaluating the following:

ḋn( ˙abs⇒̇(k1((¬̇A0), inj2n1+1, p1)))

which gives:

ḋn( ˙abs⇒̇(flush(¬̇A0)∪(¬̇A0)
max(2n1+1,2n0+1)(merge(¬̇A0)(¬̇A0)

(2n1+1)(2n0+1)(inj2n1+1, inj2n0+1), ˙app⇒̇(π⇒2 (p1), π⇒1 (p0)))))

The merge and flush are now trivial and we obtain

ḋn( ˙abs⇒̇(p2))

where p2 , ˙app⇒̇(π⇒2 (p1), π⇒1 (p0)) combines a proof of ¬̇A0 ` ¬̇X with a proof of ¬̇A0 ` X to get a proof of ¬̇A0 ` ⊥̇.
To summarise, the object proof produced is:

¬̇A0 ` ¬̇A0
ȧx A0 ` A0

ȧx

¬̇A0, A0 ` ⊥̇
˙app⇒̇

¬̇A0 ` ¬̇(Y⇒̇X)
π⇒2 ¬̇A0,Y⇒̇X ` Y⇒̇X ȧx

¬̇A0,Y⇒̇X ` ⊥̇
˙app⇒̇

¬̇A0 ` ¬̇X
π⇒2

¬̇A0 ` ¬̇A0
ȧx A0 ` A0

ȧx

¬̇A0, A0 ` ⊥̇
˙app⇒̇

¬̇A0 ` X
π⇒1

¬̇A0 ` ⊥̇
˙app⇒̇

` ¬̇¬̇A0
˙abs⇒̇

` A0
ḋn
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As a matter of comparison, for the canonical proof of the validity of A1 , X⇒̇Y⇒̇Y , one would have obtained
instead:

¬̇A1 ` ¬̇A1
ȧx A1 ` A1

ȧx

¬̇A1, A1 ` ⊥̇
˙app⇒̇

¬̇A1 ` ¬̇(Y⇒̇Y)
π⇒2 ¬̇A1,Y⇒̇Y ` Y⇒̇Y ȧx

¬̇A1,Y⇒̇Y ` ⊥̇
˙app⇒̇

¬̇A1 ` ¬̇Y
π⇒2

¬̇A1 ` ¬̇A1
ȧx A1 ` A1

ȧx

¬̇A1, A1 ` ⊥̇
˙app⇒̇

¬̇A1 ` ¬̇(Y⇒̇Y)
π⇒2 ¬̇A1,Y⇒̇Y ` Y⇒̇Y ȧx

¬̇A1,Y⇒̇Y ` ⊥̇
¬̇A1 ` Y

π⇒1

¬̇A1 ` ⊥̇
˙app⇒̇

` ¬̇¬̇A1
˙abs⇒̇

` A1
ḋn

In particular, this means that the two canonical proofs of validity of X⇒̇X⇒̇X would not produce the same object
language proofs.

2.5 Discussion on positive connectives
We suspect that our presentation of Henkin’s proof can be extended into a computational proof of completeness (with
respect to possibly-exploding models) in the presence of disjunction by adapting Veldman’s intuitionistic proof of
completeness for intuitionistic logic with disjunction [61] to the case of Gödel’s completeness. One would then need
the Fan theorem.

To support existential quantification, it is enough to consider an enumeration of formulae which take existential
formulae into account and then to add a clause to the definition of Γ ⊂ Sn similar to the one for universal quantification,
but using instead Henkin’s axiom ∃̇y A(y)⇒̇A(x) for x taken fresh in the finite set of formulas coming before ∃̇y A(y)
in the enumeration15.
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