
On the logical structure of some maximality and1

well-foundedness principles equivalent to choice2

principles (includes errata – February 2025)3

Hugo Herbelin4

Université de Paris Cité, Inria, CNRS, IRIF5

Jad Koleilat6

Université Paris Cité7

Abstract8

We study the logical structure of Teichmüller-Tukey lemma, a maximality principle equivalent to the9

axiom of choice and show that it corresponds to the generalisation to arbitrary cardinals of update10

induction, a well-foundedness principle from constructive mathematics classically equivalent to the11

axiom of dependent choice.12

From there, we state general forms of maximality and well-foundedness principles equivalent to13

the axiom of choice, including a variant of Zorn’s lemma. A comparison with the general class of14

choice and bar induction principles given by Brede and the first author is initiated.15

2012 ACM Subject Classification Theory of computation → Proof theory16

Keywords and phrases axiom of choice, Teichmüller-Tukey lemma, update induction, constructive17

reverse mathematics18

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.2319

1 Introduction20

1.1 Context21

The axiom of choice is independent of Zermelo-Fraenkel set theory and equivalent to many22

other formulations [4, 5, 6], the most famous ones being Zorn’s lemma, a maximality23

statement, and Zermelo’s theorem, a well-ordering thus also well-foundedness theorem, since24

well-foundedness and well-ordering are logically dual notions.25

In the family of maximality theorems equivalent to the axiom of choice one statement26

happens to be particularly concise and general, it is Teichmüller-Tukey lemma, that states27

that every non-empty collection of finite character, that is, characterised only by its finite28

sets, has a maximal element with respect to inclusion.29

The axiom of dependent choice is a strict consequence of the axiom of choice. In the30

context of constructive mathematics, various statements classically but non intuitionistically31

equivalent to the axiom of dependent choice are considered, such as bar induction, open32

induction [3], or, more recently, update induction [1], the last two relying on a notion of open33

predicate over functions of countable support expressing that the predicate depends only on34

finite approximations of the function.35

In a first part of the paper, we reason intuitionistically and show that the notion of finite36

character, when specialised to countable sets, is dual to the notion of open predicate, or,37

alternatively, that the notion of open predicate, when generalised to arbitrary cardinals is dual38

to the notion of finite character. As a consequence, we establish that update induction and39

the specialisation of Teichmüller-Tukey lemma to countable sets are logically dual statements,40

or, alternatively, that Teichmüller-Tukey lemma and the generalisation of update induction41

to arbitrary cardinals are logically dual.42

© H. Herbelin, J. Koleilat;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2024.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 On the logical structure of some maximality and well-foundedness principles

In a second part of the paper, we show how Teichmüller-Tukey lemma and Zorn’s lemma43

can be seen as mutual instances the one of the other.44

Finally, in a third part, we introduce a slight variant of Teichmüller-Tukey lemma referring45

to functions rather than sets and make some connections with the classification of choice46

and bar induction principles studied by Brede and the first author in [2].47

The ideas of Section 2 have been developed during an undergraduate internship of the48

second author under the supervision of the first author in 2022, leading to the idea in Section49

4.1 of introducing ∃MPCF by the second author. Section 3 contains extra investigations50

made in 2023 by the second author. Section 4.2 contains investigations made jointly in 202451

by the authors.52

1.2 The logical system53

In this section we describe the logical setting and give definitions that are used throughout54

the article. The results we prove do not depend greatly on its structure as they require only55

basic constructions, we shall make precise exactly was is necessary and what is left to the56

preferences of the reader.57

58

We work in an intuitionistic higher order arithmetic equipped with inductive types like59

the type with one element (1, 0 : 1), the type of Boolean values (B, 0B, 1B : B), the type of60

natural numbers (N), the product type (A×B), or the coproduct type (A+B). In particular,61

we write B⊥ for the coproduct of B and of 1, identifying b : B with inl(b) : B⊥ and ⊥ with62

inr(0) where inl and inr are the two injections of the coproduct.63

We write Prop for the type of propositions. For all types A, the type P(A) denotes the64

type A → Prop, we shall sometimes refer to it as “subsets of A”. We also use the type65

N → A⊥, shortly AN
⊥, to represent the countable subsets of A, implicitly referring to the66

non-⊥ elements of the image of the function1.67

We also require a type for lists: for all types A we denote by A∗ the type of lists of terms68

of type A defined as follows:69

ε : A∗
u : A∗ a : A

u@a : A∗
70

We inductively define ⋆ : A∗ → A∗ → A∗, the concatenation of two lists:71

u : A∗

u ⋆ ε := u

u : A∗ v : A∗ a : A

u ⋆ (v@a) := (u ⋆ v)@a72

We denote by [a1, . . . , an] the list (. . . (ε@a1)@ . . .)@an), since ⋆ is associative we drop73

the parentheses. If n ∈ N and α : AN, we write α|n for the recursively defined list74

[α(0), . . . , α(n − 1)]. We define ∈ : A → A∗ → Prop as: a ∈ u := ∃v, wA∗
, v ⋆ [a] ⋆ w = u.75

76

The symbol ∈ will be used as defined above and also as a notation for P (a). To be77

more precise, for all types A, P : P(A) and a : A we will write a ∈ P for P (a) and a /∈ P78

for P (a) → ⊥. Continuing with the set-like notations, for P, Q : P(A) we write P ⊆ Q for79

∀aA, a ∈ P → a ∈ Q. We require extensional equality for predicates: for all P, Q : P(A),80

P = Q ↔ P ⊆ Q ∧ Q ⊆ P 2. The symbol ⊆ will also be used for lists: for all u, v : A∗,81

1 For inhabited A, this is intuitionistically equivalent to considering N → A.
2 Extensionality for predicates is assumed for convenience, it is not fundamentally needed

H. Herbelin, J. Koleilat 23:3

u ⊆ v := ∀aA, a ∈ u → a ∈ v. Note that equipped with this relation, lists behave more like82

finite sets than lists. Nevertheless the list structure is not superfluous as will be shown later.83

As a convention, we let the scope of quantifiers spans until the end of the sentence, so,84

for instance, ∀n, P → Q reads as ∀n, (P → Q) and similarly for ∃.85

1.3 Closure operators and partial functions86

Let us now define some closure operators and relations on subsets and lists:87

▶ Definition 1. Let A be a type, u : A∗, α : P(A), T : P(A∗), P : P(P(A))88

u ⊂ α : Prop ⟨T ⟩ : P(P(A))89

u ⊂ α := ∀aA, a ∈ u → a ∈ α ⟨T ⟩ := λαP(A).∀uA∗
, u ⊂ α → u ∈ T90

⟨T ⟩◦ : P(P(A))91

⟨T ⟩◦ := λαP(A).∃uA∗
, u ⊂ α ∧ u ∈ T92

⟨u⟩ : P(A) ⌊P ⌋ : P(A∗)93

⟨u⟩ := λxA. x ∈ u ⌊P ⌋ := λuA∗
. ⟨u⟩ ∈ P94

95

The symbol ⟨ ⟩ is the translation from “the list world” to “the predicate world”. More96

precisely, ⟨u⟩ is the canonical way to see a list as a predicate (u ⊂ α ↔ ⟨u⟩ ⊆ α) and ⟨T ⟩97

is an extension of T as a predicate on subsets, α : P(A) is in ⟨T ⟩ if and only if it can be98

arbitrarily approximated by lists of T . Dually, ⌊ ⌋ is the translation from predicate to list,99

taking predicate of finite domain to all lists of elements in the domain. Note that ⟨T ⟩ is100

downward closed, that is, α ⊂ β and β ∈ ⟨T ⟩ implies α ∈ ⟨T ⟩. Note also that ⟨⌊P ⌋⟩ is a101

downward closure operator, defining the largest downward closed subset of P . On its side,102

⌊⟨T ⟩⌋ builds the downward closure up to permutation and replication of the elements of the103

lists of T . Also, symmetrical properties applies to ⟨ ⟩◦ exchanging downward with upward104

and largest subset with smallest superset. Finally, notice that ⟨T ⟩ may be empty, in fact ⟨T ⟩105

is inhabited if and only if ε ∈ T , and the same for ⟨T ⟩◦.106

Examples:107

Consider T : P(B∗), for simplicity let us use set-like notations when defining T . If T :=108

{[1B, 0B], [1B], [0B], ϵ} then ⟨T ⟩ will contain all subsets of B. Now, if T := {[1B, 0B], [1B], [0B]},109

⟨T ⟩ will be empty since for all α : P(B), ϵ ⊂ α but ϵ /∈ T . If T := {ϵ, [1B], [1B, 0B]} then110

⟨T ⟩ will contain only the empty subset and the singleton containing 1B. Now consider111

T ′ := {ϵ, [1B], [1B, 1B], [0B, 1B], [1B, 0B, 1B, 1B]}, notice that ⟨T ⟩ = ⟨T ′⟩. The ⟨ ⟩ operation does112

not care for duplications or permutations.113

For T := {ϵ, [1B], [1B, 0B]}, ⌊⟨T ⟩⌋ is {ϵ, [1B], [1B, 1B], [1B, 1B, 1B], . . . }. Similarly, for T :=114

{ϵ, [1B], [0B], [1B, 0B]}, ⌊⟨T ⟩⌋ is the set of all lists on B.115

The ⟨ ⟩◦ operator has the dual behaviour. Consider T : P(N∗), T := {[1]} then, ⟨T ⟩◦ contains116

exactly all subsets of N containing 1. Similarly if ϵ ∈ T , then ⟨T ⟩◦ contains all subsets of N.117

For T := {[1]},
⌊
⟨T ⟩◦⌋

will contain every list on N that contains at least one 1.118

119

We also give similar definitions relatively to countable subsets, abbreviating (A⊥)∗
120

into A∗
⊥:121

FSCD 2024

23:4 On the logical structure of some maximality and well-foundedness principles

▶ Definition 2. Let A be a type, u : A∗
⊥, α : AN

⊥ and T : P(A∗
⊥)122

u ⊂N α : Prop ⟨T ⟩N : P(AN
⊥)123

u ⊂N α := ∃nN, u = α|n ⟨T ⟩N := λαAN
⊥ .∀uA∗

, u ⊂N α → u ∈ T124

⟨T ⟩◦
N : P(AN

⊥)125

⟨T ⟩◦
N := λαAN

⊥ .∃uA∗
, u ⊂N α ∧ u ∈ T126

127

We conclude this section defining two different notions of partial functions:128

▶ Definition 3 (Relational partial function). Let A, B be types, a relational partial function f129

from A to B is a relational functional relation of P(A × B). Formally, a relational partial130

function from A to B is a term f : P(A × B) such that ∀aA, ∀b, b′B , ((a, b) ∈ f ∧ (a, b′) ∈131

f) → b = b′. Its domain is defined by:132

dom(f) : P(A)133

dom(f) := λaA.∃bB , (a, b) ∈ f134
135

For all a′ : A, we denote by dom(f) ∪ a′ the predicate λaA.(∃bB , (a, b) ∈ f) ∨ a = a′.136

▶ Definition 4 (Decidable partial function). Let A, B be types, a decidable partial function f137

from A to B is a total function f : A → B⊥. Its domain and graph are defined by:138

dom(f) : P(A) G(f) : P(A × B)139

dom(f) := λaA.f(a) ̸= ⊥ G(f) := λ(a, b)A×B .f(a) = inl(b)140
141

For all a′ : A, we denote by dom(f) ∪ a′ the predicate λaA. f(a) ̸= ⊥ ∨ a = a′.142

Notation:143

We write f ∈ A →p B to denote that f is a relational partial function from A to B and144

f : A → B⊥ for the type of decidable partial functions from A to B. We will also write145

ΘfA→pB , P for ΘfP(A×B), (f ∈ A →p B) → P for Θ ∈ {λ, ∀, ∃}.146

147

The difference between these two definitions is in the decidability of the domain: decidable148

partial functions have a decidable domain while it’s not the case of relational partial functions.149

The graph operation G allows us to recover a relational partial function from a decidable150

partial function. One needs excluded middle to recover a decidable partial function from a151

relation partial function, hence decidable partial functions are stronger axiomatically. Notice152

that we used the same notation dom in both definitions. Since they both have the same153

semantic meaning and we will make clear whether we are using relation partial function or154

decidable partial function, it should not cause any confusion.155

2 TTL and UI156

In this section, we define Teichmüller-Tukey lemma and update induction and emphasise157

that they are logically dual, up to the difference that the former is relative to predicates over158

subsets of arbitrary cardinals while update induction is relative to predicates over countable159

subsets. Underneath, they rely on the dual notions of predicate of finite character and of160

open predicate.161

H. Herbelin, J. Koleilat 23:5

2.1 Predicates of finite character162

A set is of finite character if all its information is contained in its finite elements. In our163

setting, a predicate P : P(P(A)) is of finite character if all its information is contained in a164

predicate over lists. There are two canonical ways to express this:165

▶ Definition 5 (Finite character). Let A be a type and P : P(P(A)). We propose two166

definitions of finite character:167

P ∈ FC1 := ∀αP(A), α ∈ P ↔ ∀uA∗
, u ⊂ α → u ∈ ⌊P ⌋168

169

P ∈ FC2 := ∃T P(A∗), ⟨T ⟩ = P170
171

172

Rewriting FC1 using the terms just defined:173

P ∈ FC1 := P = ⟨⌊P ⌋⟩174

FC1 and FC2 are, in essence, paraphrases of one an other, thus there is no reason not to175

expect them to be equivalent. First we will need a lemma:176

▶ Lemma 6. Let A be a type and T : P(A∗) then ⟨T ⟩ ∈ FC1.177

Proof. Let α : P(A). Suppose α ∈ ⟨T ⟩, our goal is to show that α ∈ ⟨⌊⟨T ⟩⌋⟩. Let u : A∗ such178

that u ⊂ α, we will show that u ∈ ⌊⟨T ⟩⌋. By definition u ∈ ⌊⟨T ⟩⌋ if and only if ⟨u⟩ ∈ ⟨T ⟩ if179

and only if every sublist of u is in T . Since α can be arbitrarily approximated by terms of T180

and u ⊂ α, so can u. Hence, u ∈ ⌊⟨T ⟩⌋ thus, α ∈ ⟨⌊⟨T ⟩⌋⟩.181

Suppose α ∈ ⟨⌊⟨T ⟩⌋⟩, then for all u : A∗ such that u ⊂ α, u ∈ ⌊⟨T ⟩⌋ which we can rewrite as182

⟨u⟩ ∈ ⟨T ⟩. We easily show that ⟨u⟩ ∈ ⟨T ⟩ → u ∈ T thus α ∈ ⟨T ⟩. ◀183

We have shown that ⟨T ⟩ = ⟨⌊⟨T ⟩⌋⟩. This means that without loss of generality, we can184

require in FC2 that the witness T be of the form ⌊⟨T ′⟩⌋ for some T ′. This is a way to express185

that T can be chosen to be minimal. In fact if we are given P and T such as in FC2, it may186

happen that T contains a list u that is not closed under ⊆ (i.e.. v ⊆ u ̸→ v ∈ T). Such an u187

will be invisible when looking at ⟨T ⟩, hence we can consider u as a superfluous term. The188

⌊⟨ ⟩⌋ operation allows us, without loss of generality, to remove those terms, thus making T189

minimal.190

▶ Theorem 7. FC1 ↔ FC2191

Proof. Let A be a type and P : P(P(A)). From left to right: suppose P ∈ FC1. ⌊P ⌋ is a192

witness of P ∈ FC2.193

From right to left: suppose P ∈ FC2, let T be the witness of P ∈ FC2. By lemma 6194

⟨⌊⟨T ⟩⌋⟩ = ⟨T ⟩ and by hypothesis P = ⟨T ⟩, we can rewrite the first equality as ⟨⌊P ⌋⟩ = P . ◀195

Since FC1 and FC2 are equivalent, we will from now on write FC without the indices.196

2.2 Open predicates197

A notion of open predicates over functions of countable domain was defined in Coquand [3]198

and generalised by Berger [1]. Using the definitions of Section 1.3, a predicate over α : AN is199

open in the sense of Berger if it has the form α ∈ ⟨T ⟩N → α ∈ ⟨U⟩◦
N for some T, U : P(A∗).200

In order to get a closer correspondence with the notion of finite character, we will however201

stick to Coquand’s definition. Additionally, to get a closer correspondence with the case of202

open predicates used in update induction, we consider open predicates for functions to A⊥.203

FSCD 2024

23:6 On the logical structure of some maximality and well-foundedness principles

▶ Definition 8 (Countably-open predicate, in Coquand’s sense, with partiality). Let A be a type204

and P : P(AN
⊥). We define:205

P ∈ OPENN := ∃T P(A∗
⊥), ⟨T ⟩◦

N = P206
207

The observations made on predicates of finite character apply to countably-open predicates,208

namely that ⟨T ⟩◦
N =

〈⌊
⟨T ⟩◦

N
⌋〉◦

N. Obviously, we can also move from AN
⊥ to P(A) and introduce209

a general notion of open predicates which again, will satisfy ⟨T ⟩◦ =
〈⌊

⟨T ⟩◦⌋〉◦:210

▶ Definition 9 (Open predicate). Let A be a type and P : P(P(A)). We define:211

P ∈ OPEN := ∃T P(A∗), ⟨T ⟩◦ = P212
213

Conversely, we can define a notion of predicate of countably-finite character dual the214

notion of countably-open predicate:215

▶ Definition 10 (Predicate of countably-finite character). Let A be a type and P : P(AN
⊥). We216

define:217

P ∈ FCN := ∃T P(A∗
⊥), ⟨T ⟩N = P218

219

This finally results in the following dualities:220

Table 1 Predicates of finite character VS Open predicate

Universal notion Existential notion

Arbitrary subsets Finite character Open

Countable subsets Countably-finite character Countably-open

2.3 Teichmüller-Tukey lemma and Update induction221

Before defining Teichmüller-Tukey lemma we need a few definitions:222

▶ Definition 11. Let A be a type, P : P(P(A)) and α, β : P(A). We define:223

β ≺ α : Prop224

β ≺ α := ∃aA, a /∈ α ∧ β = (λxA. x ∈ α ∨ x = a)225

α ∈ Max≺(P) : Prop226

α ∈ Max≺(P) := α ∈ P ∧ ∀βP(A), β ≺ α → β /∈ P227
228

Thus, β ≺ α stands for β extends α (if β is an update of α) while Max≺(P) is the229

predicate of maximal elements of (P, ≻) (≻ is the reverse of ≺).230

231

What we are interested in are predicates of finite character but Theorem 7 allows us to232

consider only predicates on lists since there is a correspondence between them. Hence, we233

will quantify or instantiate schemas on predicate on lists.234

▶ Definition 12 (Teichmüller-Tukey lemma). Let A be a type and T : P(A∗), we define the235

Teichmüller-Tukey lemma, TTLAT :236

(∃αP(A), α ∈ ⟨T ⟩) → ∃αP(A), α ∈ Max≺(⟨T ⟩)237

H. Herbelin, J. Koleilat 23:7

Notations:238

TTL denotes the full schema: for all types A and all T : P(A∗), ∃αP(A), α ∈ ⟨T ⟩ →239

∃αP(A), α ∈ Max≺(⟨T ⟩).240

TTLAT denotes the schema specialised in this A and this T .241

TTLAT denotes the restriction of the full schema TTL to A and T of a particular shape.242

For example: TTLNT is the schema: for all T : P(N∗), ∃αP(N), α ∈ ⟨T ⟩ → ∃αP(N), α ∈243

Max≺(⟨T ⟩). Moreover, if CA denotes a particular collection of predicates over lists of A (A244

is a parameter), then TTLACA
denotes the restrictions of the schema TTL to any A type245

and T : P(A∗) that is in CA.246

247

Following an earlier remark, we impose that the finite character predicate we are248

considering must be inhabited, without this TTL becomes trivially inconsistent. Having249

defined TTL we now show that we can recover an induction principle by using contraposition250

and Morgan’s rules:251

252

Unfolding some definitions, TTLAT is253

(∃αP(A), α ∈ ⟨T ⟩) → ∃αP(A), α ∈ ⟨T ⟩ ∧ (∀βP(A), β ≺ α → β /∈ ⟨T ⟩)254

Contraposing and pushing some negations:255

∀αP(A), [¬(α ∈ ⟨T ⟩) ∨ ¬∀βP(A), β ≺ α → β /∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩256

We have a sub-formula of the form ¬A ∨ ¬B, we have the choice of writing it as A → ¬B or257

B → ¬A. The first choice leads to a principle we will call TTLco
AT :258

∀αP(A), [α ∈ ⟨T ⟩ → ∃βP(A), β ≺ α ∧ β ∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩259

And the second choice leads to an induction principle:260

∀αP(A), [(∀βP(A), β ≺ α → β /∈ ⟨T ⟩) → α /∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩261

TTLco is intuitively an opposite formulation of TTL. The induction principle we obtain262

seems to express something different. We can push further the negations in order to obtain a263

positive formulation of it:264

∀αP(A), [(∀βP(A), β ≺ α → β ∈ ⟨T ⟩◦) → α ∈ ⟨T ⟩◦] → ∀αP(A), α ∈ ⟨T ⟩◦
265

And this can be seen as as a generalisation of Berger’s update induction [1] going from266

countably-open predicates to arbitrary open predicates.267

To state update induction, we need to focus on partial functions from N to A which we268

equip with an order:269

▶ Definition 13. Let A be a type, P : P(AN
⊥) and α, β : AN

⊥. We define:270

β ≺N α : Prop271

β ≺N α := ∃mN, ∃aA, α(m) = ⊥ ∧ β(m) = a ∧ ∀nN, n ̸= m → α(n) = β(n)272
273

Like TTL, update induction is originally defined on open predicates but since any open274

predicate comes from a predicate on lists, we can more primitively state it as follows:275

FSCD 2024

23:8 On the logical structure of some maximality and well-foundedness principles

▶ Definition 14 (Update induction). Let A be a type and T : P(A∗
⊥), we define Update276

induction, UIAT :277

∀αAN
⊥ , [(∀βAN

⊥ , β ≺N α → β ∈ ⟨T ⟩◦
N) → α ∈ ⟨T ⟩◦

N] → ∀αAN
⊥ , α ∈ ⟨T ⟩◦

N278

Contrastingly, we now formally state the dual of TTL that we obtained above:279

▶ Definition 15 (Generalised update induction). Let A be a type and T : P(A∗), we define280

Generalised update induction, GUIAT :281

∀αP(A), [(∀βP(A), β ≺ α → β ∈ ⟨T ⟩◦) → α ∈ ⟨T ⟩◦] → ∀αP(A), α ∈ ⟨T ⟩◦
282

Also, we introduce a countable version of TTL, logically dual to UI:283

▶ Definition 16 (Countable Teichmüller-Tukey lemma). Let A be a type and T : P(A∗
⊥), we284

define the countable Teichmüller-Tukey lemma, TTLN
AT :285

(∃αAN
⊥ , α ∈ ⟨T ⟩N) → ∃αAN

⊥ , α ∈ Max≺N(⟨T ⟩N)286

We thus obtain the following table:287

Table 2 Maximality principles VS Induction principles

Finite character Open

Arbitrary subsets TTLAT GUIAT

Countable subsets TTLN
AT UIAT

In particular, since TTL is classically equivalent to the full axiom of choice, GUI is also288

classically equivalent to the full axiom of choice.289

3 TTL and Zorn’s lemma290

In this section we analyse precisely the relationships of TTL with Zorn’s lemma. We go291

further than showing their equivalence, we look at which part of TTL (as a schema) is292

necessary to prove Zorn’s lemma and reciprocally. This equivalence result is also a proof293

that the version of Teichmüller-Tukey lemma we defined captures the full choice.294

▶ Definition 17. Let A be a type, < a strict order on A, a : A and E, F : P(A). Define:295

E ∈ Ch(A) : Prop296

E ∈ Ch(A) := ∀a, bA, a, b ∈ E → (a < b ∨ b < a ∨ a = b)297

298

F ∈ SCh(E) : Prop299

F ∈ SCh(E) : F ⊆ E ∧ F ∈ Ch(A)300

301

E ∈ Ind(A) : Prop302

E ∈ Ind(A) := (∀F P(A), F ∈ SCh(E) → ∃aA, a ∈ E ∧ ∀bA, b ∈ F → b ≤ a)303

304

a ∈ Max<(E) : Prop305

a ∈ Max<(E) := a ∈ E ∧ ∀bA, a < b → b /∈ E306
307

H. Herbelin, J. Koleilat 23:9

Where ≤ is the reflexive closure of <.308

Ch is the chain predicate, SCh is the subchain predicate, Ind is the inductive “subset”309

predicate and Max< is simply the maximal element predicate. We choose to express these310

definitions in terms of predicates over types rather than directly in terms of types, to avoid311

discussions on proof relevance and stay in a more general setting. If we were proof-irrelevant,312

instantiating our schemas on predicates over types would be identical to doing it directly on313

types which would simplify notations and yield the same results.314

We can now define concisely Zorn’s lemma:315

▶ Definition 18 (Zorn lemma). Let A be a type, < a strict order on A, and E a predicate on316

A. ZornA<E is the following statement317

E ∈ Ind → ∃aA, a ∈ Max<(E)318

▶ Theorem 19. TTL ↔ Zorn319

The following is an adaptation of a usual set-theoretic proof in our setting.320

Proof. From left to right: fix A a type, < a strict order on A and E : P(A) such that321

E ∈ Ind(A). We first show that SCh(E) is of finite character:322

323

Let F : P(A) such that F ∈ SCh(E), we show F ∈ ⟨⌊SCh(E)⌋⟩: let u : A∗ such that u ⊂ F ,324

⟨u⟩ is thus a chain of E therefore u ∈ ⌊Ch(E)⌋. Let F : P(A) such that F ∈ ⟨⌊SCh(E)⌋⟩,325

by choosing lists of length 2 we can show that F is a subchain of E. Hence SCh(E) ∈ FC.326

327

Using TTLA⌊SCh(E)⌋, we get G : P(A) such that G ∈ Max(SCh(E)). G is a subchain of328

E, since E is inductive we get g : A such that g ∈ E and ∀aA, a ∈ G → a < g. Suppose we329

have h : A such that g < h and h ∈ E . Let G′ := λaA.a ∈ G ∨ a = h, then we have G′ ≺ G,330

since G ∈ Max(SCh(E)), G′ /∈ SCh(E). On the other side, G′ is obviously a chain and331

G′ ⊆ E, therefore G′ ∈ SCh(E). This is a contradiction, hence g ∈ Max<(E).332

333

From right to left: let T : P(A∗). ⊂ is a strict order on P(A). Since ⟨T ⟩ is of finite334

character, a maximal element for ⊂ is also a maximal element for ≻. Hence, what is left335

to show is that ⟨T ⟩ is inductive and use ZornP(A)⊂⟨T ⟩ to produce a maximal term. Let336

Q : P(P(A)) such that Q ∈ SCh(⟨T ⟩). Let α := λaA.∃βP(A), β ∈ Q∧a ∈ β. By construction,337

α is an upper bound of Q, let’s show that it is indeed in ⟨T ⟩. Since ⟨T ⟩ is of finite character338

it suffices to show that for all u : A∗, u ⊂ α → u ∈ T . Let u : A∗ such that u ⊂ α. Since339

u is a finite list, we can enumerate its elements a0, . . . , an. For all 0 ≤ i ≤ n, let βi : P(A)340

be such that ai ∈ βi and βi ∈ Q. Since Q is chain, there exists 0 ≤ i0 ≤ n such that for all341

0 ≤ i ≤ n, βi ⊆ βi0 . Thus, u ⊂ βi0 , βi0 ∈ ⟨T ⟩ and so u ∈ ⟨T ⟩. ◀342

Looking more closely at this proof we notice that we have proved a finer result than simply343

the equivalence. We have shown TTLA⌊SCh(E)⌋ → ZornA<E and ZornP(A)⊂⟨T ⟩ → TTLAT .344

We can express for a predicate over lists to be of the form ⌊SCh(E)⌋ in a more syntactic345

way.346

▶ Definition 20. Let A be a type and T : P(A∗), we say that T is a list of chains, if there347

exists T ′ such that:348

ϵ ∈ T ′
349

u@a ∈ T ′ and [a] ⋆ v ∈ T ′ if and only if u ⋆ [a] ⋆ v ∈ T ′
350

u ⋆ [a] ⋆ v ∈ T ′ implies u ⋆ v ∈ T ′
351

FSCD 2024

23:10 On the logical structure of some maximality and well-foundedness principles

if a ̸= b and u ⋆ [a] ⋆ v ⋆ [b] ⋆ w ∈ T ′ then for all u′, v′, w′ : A∗, u′ ⋆ [b] ⋆ v′ ⋆ [a] ⋆ w′ /∈ T ′
352

and T is the downward closure of T ′ by ⊆. We denote by CA the collection of lists of chains353

of A.354

▶ Lemma 21. Let A be a type, < a strict order on A and E : P(A), then there exists T ∈ CA355

such that SCh(E) = ⟨T ⟩. Reciprocally, let A be a type, then for every T ∈ CA there exist a356

strict order < on A and E : P(A) such that SCh(E) = ⟨T ⟩.357

Proof. Proof of the first statement: we inductively define a T ′ : P(A∗).358

ε ∈ T ′
a ∈ E

[a] ∈ T ′
b ∈ E a < b u@a ∈ T ′

u@a@b ∈ T ′
359

We easily show that T ′ satisfies the conditions of the above definition. Let T be the downward360

closure of T ′. Let F ∈ SCh(E) and u : A∗ such that u ⊂ F . Since F is a chain we can361

construct a list u′ of all elements of u such that u′ does not contain twice the same element362

and is ordered increasingly relative to <. u′ is thus in T ′ hence u is in T . Let F ∈ ⟨T ⟩ and363

a, b : A such that a, b ∈ F . By hypothesis the list [a, b] is in T . There exists u ∈ T ′ such that364

[a, b] ⊂ u. Hence a, b ∈ ⟨u⟩ which is a chain. In conclusion F is a subchain of E.365

366

Proof of the reciprocal: suppose given a type A with decidable equality and T ∈ CA.367

There exists a T ′ satisfying the aforementioned conditions. Let E := λaA.∃uA∗
, u ∈ T ′ ∧ a ∈368

u. We now must define an ordering on A. Define < a binary relation on A such that369

a < b := [a, b] ∈ T ′. Using last "axiom" of the definition of T ′ we easily show that it is370

irreflexive. For transitivity notice that if [a, b], [b, c] ∈ T ′ then [a, b, c] ∈ T ′ then [a, c] ∈ T ′.371

Thus, it is a strict ordering on A. Let F ∈ SCh(E) and u : A∗ such that u ⊂ F . We can372

assume that u is sorted increasingly relatively to <. Using the same trick used for proving373

transitivity show that u ∈ T . Let F ∈ ⟨T ⟩ and a, b : A such that a, b ∈ F . By hypothesis the374

list [a, b] is in T therefore, a < b which means that F is indeed a chain. ◀375

▶ Corollary 22. TTLACA
→ Zorn and ZornP(A)⊂⟨T ⟩ → TTL. Hence we deduce the376

somewhat surprising results TTL ↔ TTLACA
and Zorn ↔ ZornP(A)⊂⟨T ⟩.377

Looking back at the path we took to arrive at this conclusion, the results are quite378

expected, but looking only at the definition of a list of chains it is quite surprising that379

restricting TTL this much does not change its power.380

4 ∃MPCF381

In this section we define a choice principle ∃MPCF which stands for “Exists a Maximal382

Partial Choice Function” and a weaker version ∃MPCF−. It is weaker in the sense that383

∃MPCF implies ∃MPCF− but the equivalence is true if we allow excluded middle. We384

show that ∃MPCF− is equivalent in its general form to TTL and link ∃MPCF to the385

general class of dependent choice GDC, given by Brede and the first author in [2]. In386

particular, ∃MPCF and ∃MPCF− can be seen as refinements of TTL whose strength is387

more explicitly controlled.388

H. Herbelin, J. Koleilat 23:11

▶ Definition 23. Let A, B be types, f, g ∈ A →p B and P : P(P(A × B)), define:389

g ≺ f : Prop390

g ≺ f : ∃aA, a /∈ dom(f) ∧ (dom(g) = dom(f) ∪ a) ∧391

(∀xA, x ∈ dom(f) → ∃bB , (x, b) ∈ f ∧ (x, b) ∈ g)392

f ∈ Maxrpf (P) : Prop393

f ∈ Maxrpf (P) := f ∈ P ∧ ∀gA→pB , g ≺ f → g /∈ P394
395

▶ Definition 24 (∃MPCF−). Let A, B be types and T : P((A × B)∗), ∃MPCF−
ABT is the396

statement:397

(∃αP(A×B), α ∈ ⟨T ⟩) → ∃fA→pB , f ∈ Maxrpf (⟨T ⟩)398

▶ Definition 25. Let A, B be types, f, g : A → B⊥ and P : P(P(A × B)), define:399

g ≺ f : Prop400

g ≺ f : ∃aA, a /∈ dom(f) ∧ (dom(g) = dom(f) ∪ a) ∧401

(∀xA, x ∈ dom(f) → f(x) = g(x))402

f ∈ Maxdpf (P) : Prop403

f ∈ Maxdpf (P) := G(f) ∈ P ∧ ∀gA→B⊥ , g ≺ f → G(g) /∈ P404
405

Since the intuitive meaning is the same we use the symbol ≺ for predicate, for relational406

partial functions and decidable partial function.407

▶ Definition 26 (∃MPCF). Let A, B be types and T : P((A×B)∗), the theorem of existence408

of a maximal partial choice function ∃MPCFABT is the statement:409

(∃αP(A×B), α ∈ ⟨T ⟩) → ∃fA→B⊥ , f ∈ Maxdpf (⟨T ⟩)410

The difference between ∃MPCF and ∃MPCF− lies solely in the "kind" of partial function411

that is used. Hence, as per the above remark on the differences between relation partial412

function and decidable partial function, ∃MPCF → ∃MPCF− and assuming excluded413

middle ∃MPCF− → ∃MPCF which we denote by ∃MPCF− →cl ∃MPCF.414

4.1 ∃MPCF and TTL415

Now that we have defined ∃MPCF−, we show that it is equivalent to TTL hence, ∃MPCF →416

TTL and TTL →cl ∃MPCF.417

▶ Theorem 27. Let A be a type, T : P(A∗) and π∗T the operation that maps T to418

λu(A×1)∗
. π(u) ∈ T where π is the canonical projection of (A × 1)∗ on A∗. Then,419

∃MPCF−
A1π∗T → TTLAT . Let A, B be types and T : P((A × B)∗) then, TTL(A×B)T →420

∃MPCF−
ABT .421

Proof. ∃MPCF−
A1π∗T → TTLAT : let A a type, T : P(A∗) and π∗T := λu(A×1)∗

. π(u) ∈ T .422

From ∃MPCF−
A1π∗T we obtain f ∈ A →p 1 such that f ∈ Maxrpf (⟨π∗T ⟩). Define423

α := dom(f) and let’s show that α ∈ Max(⟨T ⟩). By construction, α is in ⟨T ⟩. Suppose424

β : P(A × B) such that β ≺ α. We can construct a relational partial function g : A →p 1425

such that β = dom(g). Since g ≺ f , g is not in ⟨U⟩ hence β is not in ⟨T ⟩.426

FSCD 2024

23:12 On the logical structure of some maximality and well-foundedness principles

427

TTL(A×B)T → ∃MPCF−
ABT : let A, B types and T : P((A × B)∗). Define428

Q := λu(A×B)∗
. (∀aA, ∀b, b′B , (a, b) ∈ u ∧ (a, b′) ∈ u → b = b′) ∧ u ∈ T429

Notice that ⟨Q⟩ is not empty, since ⟨T ⟩ is inhabited, ϵ ∈ T . From this, we deduce that ϵ ∈ Q430

hence, the empty predicate is in ⟨Q⟩. We can now apply TTL(A×B)Q and get α such that431

α ∈ Max(⟨Q⟩). By construction α is a relational partial function. It follows that it’s a432

maximal relational partial function, thus proving ∃MPCF−
ABT . ◀433

TTL can be seen as a projection of ∃MPCF. The fact that they are so tightly linked434

is not surprising as “being a partial function” for a subset of A × B is a property of finite435

character.436

4.2 ∃MPCF and GDC437

Introduced in [2], Generalised Dependent Choice (GDCABT) is a common generalisation of438

the axiom of dependent choice and of the Boolean prime ideal theorem. Parameterised by a439

domain A, a codomain B and a predicate T : P((A × B)∗), it yields dependent choice when440

A is countable, the Boolean prime ideal theorem when B is two-valued, and the full axiom441

of choice when T comes as the “alignment” of some relation (see below). To the difference442

of ∃MPCF, GDC asserts the existence of a total choice function, but this to the extra443

condition of a property of “approximability” of T by arbitrary long finite approximations.444

To the difference of ∃MPCF whose strength is the one of the full axiom of choice, expecting445

a total choice function makes GDC inconsistent in its full generality.446

In this section we investigate how restricting ∃MPCF to countable A or two-valued B447

impacts its strength to exactly the same extent as it restricts the strength of GDC. Two448

such preliminary results are given, but first, let’s translate GDC in our setting:449

▶ Definition 28 (A-B-approximable). Let A, B be types and T : P((A × B)∗). For all450

X : P((A × B)∗) define451

ϕ(X) := λu(A×B)∗
. (u ∈ ⌊⟨T ⟩⌋ ∧ ∀aA, ¬(∃bB , (a, b) ∈ u) → ∃bB , u@(a, b) ∈ X)452

The A-B-approximation of T denoted TABap is the greatest fixed point of ϕ. We say that T453

is A-B-approximable if ε ∈ TABap.454

▶ Definition 29 (A-B-choice function). Let A, B be types and T : P((A × B)∗). T has an455

A-B-choice function if:456

∃fA→B , ∀u(A×B)∗
, u ⊂ G(f) → u ∈ T457

▶ Definition 30 (GDC). Let A, B be types and T : P((A×B)∗), GDCABT is the statement:458

if T is A-B-approximable then T has an A-B-choice function.459

▶ Theorem 31. GDCNBT →cl ∃MPCFNBT460

Proof. Let B be a type and T : P((N × B)∗). In order to use GDC, T must be N-B-461

approximable but the T we are given might not be. Thus, we are going to construct462

T⊥ : P((N × B⊥)∗) that is N-B⊥-approximable and use GDC to obtain a function that we463

will prove maximal.464

H. Herbelin, J. Koleilat 23:13

465

For all u : P((A × B⊥)∗) define u inductively:466

ε := ε

a : A b : B

u@(a, b) := u@(a, b)
a : A

u@(a, ⊥) := u467

By induction define T n
⊥ : P((N × B⊥)∗):468

T 0
⊥ := λu(N×B⊥)∗

. u = ε469

Let T n+1
⊥ be defined inductively470

u ∈ Tn b : B u@(n + 1, b) ∈ T

u@(n + 1, b) ∈ T n+1
⊥

u ∈ Tn ∀bB , u@(n + 1, b) /∈ T

u@(n + 1, ⊥) ∈ T n+1
⊥471

Now define T⊥ as the ⊆-downward closure of the union of the T n
⊥. We must show that T⊥ is472

N-B⊥-approximable. By definition T⊥ = ⌊⟨T⊥⟩⌋. Let n : N, v : (N × B⊥)∗ such that v ∈ T⊥473

and ¬(∃cB⊥ , (n, c) ∈ v). By definition, there exists m : N and u ∈ T m
⊥ such that v ⊆ u. If474

n ≤ m then there exists c : B⊥ such that (n, c) ∈ u, thus v@(n, c) ⊆ u and v@(n, c) ∈ T⊥.475

If n > m then there exists u′ ∈ T n
⊥ such that u ⊆ u′. It is in the proof of this statement476

that we need excluded middle to show that we always satisfy the hypothesis of one of the477

induction steps. Hence, v ⊆ u′ and we now repeat the same argument. T⊥ satisfies ϕ and478

contains ε, thus we can apply GDCNB⊥T⊥ and get f : N → B⊥ a choice function.479

480

What is left to show is that f is a maximal partial function. Let n : N such that n /∈ dom(f)481

and let g : N → B⊥ extending f with dom(g) = dom(f) ∪ n. Let us write f<n for the list482

[(0, f(0)), . . . , (n − 1, f(n − 1))]. f<n ∈ T n
⊥ and since f<n+1 is of the form f<n@(n, ⊥) by483

case analysis we deduce that ∀bB , f<n@(n, b) /∈ T . If G(g) ∈ ⟨T⊥⟩ then g<n+1 ∈ T⊥ and484

g<n+1 = f<n@(n, g(n)) with g(n) : B. f<n@(n, g(n)) is thus in T , contradiction. Hence, f485

is maximal. ◀486

Let’s write DC for the axiom of dependent choice. We have:487

▶ Corollary 32. Since GDCNBT is equivalent to DC [2] we deduce: DC →cl TTL(N×B)T488

▶ Theorem 33. For A a type with decidable equality, ∃MPCFABT → GDCABT489

Proof. Let A be a type and T : P((A × B)∗) A-B-approximable. Define U := ⌊⟨TABap⟩⌋,490

the A-B-approximable hypothesis guarantees that ⟨U⟩ is inhabited. Using ∃MPCFABU we491

get f : A → B⊥ a maximal partial choice function. We show that f must be total, that492

is that it is impossible that it takes the value ⊥. Indeed assume f(a) = ⊥ for some a : A493

and consider g : A → B⊥ that extends f with g0(a) = 0B. We have g ≺ f , thus G(g) /∈ ⟨U⟩.494

Then, there exists u : (A × B)∗ such that u ⊂ G(g) and u /∈ U . Using the decidability of495

equality in A, we can find u′ such that u = u′@(a, 0B) where u′ ⊂ G(f). Symmetrically,496

by considering the extension g of f obtained by setting g(a) = 1B, there exists v′ ⊂ G(f)497

such that v′@(a, 1B) /∈ U . Since u′ ⋆ v′ ⊂ G(f), u′ ⋆ v′ ∈ U . There must be b : B such498

that (u′ ⋆ v′)@(a, b) ∈ U . But in both cases (b = 0B or 1B) there is a sublist (u′@(a, 0B) or499

v′@(a, 1B)) that is not in U , contradiction. Hence, f is total. ◀500

The following definition, taken from [2], describes how to turn a relation on A and B as501

a predicate over (A × B)∗ that filters approximations.502

▶ Definition 34 (Positive alignment). Let A and B be types and R a relation on A and B.
The positive alignment R⊤ of R is the predicate on (A × B)∗ defined by:

R⊤ := λu.∀(a, b) ∈ u, R(a, b)

FSCD 2024

23:14 On the logical structure of some maximality and well-foundedness principles

Positive alignments can be characterised by the following property.503

▶ Definition 35 (Downward prime). Let A and B be types. We say that T : P((A × B)∗) is504

downward prime when u ∈ T and v ∈ T implies u ⋆ v ∈ T . We denote by DAB the collection505

of downward prime T : P((A × B)∗).506

▶ Theorem 36. If R is a relation on A and B, its positive alignment is downward prime.
Conversely, if T is downward prime, it is the positive alignment of the relation |T | defined by

|T |(a, b) := [(a, b)] ∈ T

Proof. This is because u ⋆ v ∈ R⊤, that is ∀(a, b) ∈ u ⋆ v, R(a, b) is equivalent to (∀(a, b) ∈507

u, R(a, b)) ∧ (∀(a, b) ∈ v, R(a, b)), that is to u ∈ R⊤ ∧ v ∈ R⊤, and, conversely, because508

u ∈ |T |⊤, that is ∀(a, b) ∈ u, [(a, b)] ∈ T , is equivalent, by induction on u, using downward509

primality at each step, to u ∈ T . ◀510

Based on the equivalence between ACABR and GDCABR⊤ in [2, Thm 7], we obtain:511

▶ Corollary 37. GDCABT for T downward prime characterises the full axiom of choice512

ACABR, that is ∀xA, ∃yB , R(a, b) → ∃fA→B , ∀xA, R(a, f(a)).513

We now show that GDCABT is also equivalent to ∃MPCFABT for T downward prime.514

▶ Theorem 38. For T : P((A × B)∗) downward prime for A with decidable equality,515

∃MPCFABT → GDCABT .516

Proof. Since T is A-B-approximable, it contains ε, so that ⟨T ⟩ is non-empty. Thus, by517

∃MPCFABT , we get f : A → B⊥ a maximal partial choice function. We show that f must518

be total. Indeed, assume a : A such that f(a) = ⊥. By A-B-approximability, we can obtain519

a b such that [(a, b)] ∈ ⌊⟨T ⟩⌋. Let’s now consider the function g : A → B⊥ defined by setting520

g(a′) = b if a = a′ and g(a′) = f(a′) otherwise. We have g ≺ f , thus G(g) /∈ ⟨T ⟩. But this521

contradicts that we can also prove that any u ⊂ G(g) is in T , that is G(g) ∈ ⟨T ⟩. Indeed, by522

decidability of equality on A, either u has an element of the form (a, b′) or not. In the second523

case, u ⊂ G(f) and thus u ∈ T . In the first case, u has the form u′ ⋆ (a, b′) ⋆ u′′ with u′ ∈ G(f)524

and u′′ ∈ G(f), thus u′ ∈ T and u′′ ∈ T . Since u ⊂ G(g), we also have b′ = g(a) = b. Then,525

by downward primality, we get u′ ⋆ [(a, b)] ⋆ u′′ ∈ T . ◀526

▶ Theorem 39. For T : P((A × B)∗) downward prime, GDCABDAB
→ ∃MPCF−

ABDAB
.527

Proof. There are two ways to embed a partial function from A to B into a total function:528

either restrict A to the domain of the function, or extend B into B⊥, as in Theorem 31. We529

give a proof using the first approach.530

Let A′ be the subset of A such that ∃bB , [(a, b)] ∈ T . We show coinductively that if A′ is531

infinite, the restriction of T on A′ is A′-B-approximable. First, we do have ε ∈ T because532

⟨T ⟩ is non empty. Then, assume u ∈ T and a : A′ such that ¬(∃bB , (a, b) ∈ u) (which is533

possible since A′ is supposed infinite). Since a is in A′, there is b such that [(a, b)] ∈ T , and534

by downward primality, u ⋆ (a, b) ∈ T , hence A′-B-approximable by coinduction.535

Thus, there is a total function f : A′ → B such that G(f) ∈ ⟨T ⟩, which induces a partial536

function f ′ from A →p B⊥. It remains to show that f ′ is maximal. Let a /∈ dom(f), that is537

such that ∀bB , ¬[(a, b)] ∈ T . Then, there is obviously no extension of f ′ on a that would be538

in ⟨T ⟩.539

It remains to treat the case of A′ finite, which can be obtained by (artificially) reasoning540

on the disjoint sum of A′ and N, and setting T [(n, p)] := (n = p) on N. ◀541

H. Herbelin, J. Koleilat 23:15

5 Conclusion542

While Brede and the first author [2] investigated the general form of a variety of choice and543

bar induction principles seen as contrapositive principles, this paper initiated the investigation544

of a general form of maximality and well-foundedness principles equivalent to the axiom of545

choice. One of the surprise was that, up to logical duality, two principles such as Teichmüller-546

Tukey lemma and Berger’s update induction were actually of the very same nature. By547

seeing all these principles as schemes, we could also investigate how to express Zorn’s lemma548

and Teichmüller-Tukey lemma as mutual instances the one of the other. Finally, by starting549

investigating how maximality, when applied to functions, relates to totality in the presence550

of either a countable domain or a finite codomain, we initiated a bridge between maximality551

and well-foundedness principles and the general family of choice and bar induction principles552

from [2].553

The investigation could be continued in at least five directions:554

In the articulation between TTL and ∃MPCF: assuming an alternative definition of555

TTL, say TTL+, where P(A) is represented as a characteristic function from A to B, that556

is, equivalently, as a function from A to 1⊥, one would get the following identifications:557

TTL+
AT = ∃MPCFA1π∗T TTL+

(A×B)T = ∃MPCFABT

TTLAT = ∃MPCF−
A1π∗T TTL(A×B)T = ∃MPCF−

ABT

In the articulation between a sequential definition of countably-finite character and558

countably-open predicate, as in TTLN
BT and UIBT , and a non-sequential definition,559

as in ∃MPCFNBT and ∃MPCF−
NBT , similar to the connection between DCprod.

BT and560

GDCNBT in [2].561

In the relation between ∃MPCFABT and ∃MPCF−
ABT on one side and GDCABT on562

the other side, verifying that the correspondences between ∃MPCFNBT and GDCNBT ,563

and between ∃MPCFABT and GDCABT hold, at least classically, in both directions, the564

same way as they do in the case T downward prime.565

In the articulation between TTL and GUI, formulating statements dual to ∃MPCF566

and ∃MPCF− and connecting them to the dual of GDC, that is GBI [2], analysing567

the role of classical reasoning and decidability of the equality on the domain in the568

correspondences.569

In the relation between TTL, ∃MPCF, ∃MPCF− and other maximality principles than570

Zorn’s lemma, also studying other well-foundedness principles than UI.571

In particular, an advantage of ∃MPCF and ∃MPCF− over GDC is that their more572

general form is classically equivalent to the axiom of choice while the most general form of573

GDC is inconsistent.574

References575

1 Ulrich Berger. A computational interpretation of open induction. In Proceedings of the 19th576

Annual IEEE Symposium on Logic in Computer Science, LICS ’04, page 326, USA, 2004.577

IEEE Computer Society.578

2 Nuria Brede and Hugo Herbelin. On the logical structure of choice and bar induction principles.579

36th Annual Symposium on Logic in Computer Science, 2021.580

3 Thierry Coquand. Constructive topology and combinatorics. In J. Paul Myers and Michael J.581

O’Donnell, editors, Constructivity in Computer Science, pages 159–164, Berlin, Heidelberg,582

1992. Springer Berlin Heidelberg.583

4 Horst Herrlich. Axiom of Choice. Lecture Notes in Mathematics. Springer, 2006.584

FSCD 2024

23:16 On the logical structure of some maximality and well-foundedness principles

5 Thomas J. Jech. The Axiom of Choice. Dover Books on Mathematics Series. Courier585

corporation, 1973.586

6 Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of Choice. North-Holland587

Publishing Company, 1970.588

	1 Introduction
	1.1 Context
	1.2 The logical system
	1.3 Closure operators and partial functions

	2 TTL and UI
	2.1 Predicates of finite character
	2.2 Open predicates
	2.3 Teichmüller-Tukey lemma and Update induction

	3 TTL and Zorn's lemma
	4 MPCF
	4.1 MPCF and TTL
	4.2 MPCF and GDC

	5 Conclusion

