GNU PROLOG RH

A Native Prolog Compiler with Attributed Variables, Coroutinings and
Constraint Solving

Edition 1.7.rh, for GNU Prolog version 1.2.16.rh
June 23, 2003

by Daniel Diaz and Remy Haemmerk

Copyright (C) 1999-2002 Daniel Diaz ; Copyright (C) 2001-2002 INRIA, Remy Haemmerle

All chapters excejt|9 arjd [LO by Daniel Diaz.
Chapter$ 9 arjd 10 byé&rny Haemmed.

Original version of this document can be downloaded from the GNU Prolog wéb site

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions, except that this permission notice may be stated in a translation approved by the
Free Software Foundatién59 Temple Place - Suite 330, Boston, MA 02111, USA.

Ihttp://gnu-prolog.inria.fr
http://www.fsf.org/

CONTENTS 1
Contents
11 Acknowledgementps 9
2 Introduction| 11
[3__Using GNU Prolog 13
3.1 Infroductioh e e 13
[3.2 The GNU Prolog interactive interprgter 13
[3.21Starting/exiting the interactive interpréter 13
[3.2.2 The interacftive interpreter read-execute-writelloop 14
3.2.3 ConsultingaProlog program e 16
nterrupting a qUEKY o o e e e e e 17
BZ5 __TheliNe editdr o o o o e e e e e e e e 18
[3.3 Adjusting the size of Prolog sta¢ks L. 19
3.4 The GNU Prologcompiler e 20
3.4.1 Differentkindsofcodés e 20
3.4.2 Compllation sSCheme e e e 20
[B:43 Usingthecompiler 22
[B44 Runninganexecutable 25
[3.45 Generafing a new interactive interprieter 26
[3- 476 The hexadecimal predicate name encading 26
4_Debugging 29
A1 Tnfroductioh 29
[2 Theprocedureboxmodlel 29
[4.3 Debuggingpredicates 31
4371 Running and stoppingthedebugger 31
MS .. 31
SPOINAS . . L e e e e 31
FM_ EDUgOINg MESSAGES o v o e e e e 32
45 Debuggercommands 32
e ebUgger. e 33
l[o__Format of definitions 35
b1 Generalformat e e e e 35
0.2 Typesandmodes e 35
5.3 EITOrS . . . o e e 37
E3.1 Generalformatanderrorcontext e 37
B3.Z2 TInstanfiationerrbr e 37
5.3.3 TYPEEITAr o o e e e e 38
B34 __DOMAMEITOr . . . o o o oottt e e e e e 38
B.3.5 EXistenceertbr. e e 39
©.3.6 Permission error e e e 39
5.3.7 Representation erfor e e e e e 39
5,38 Evalualion errdr e e e e e 40
B.3.9 Resource erfior e 40
[0.3.10 Syntaxerrpr 40
B3I Systemerrbr e 40
|6__Prolog directives and control constructs 41
[Prolog direClives 41
6.1.1 Infroductioh e e e e 41
6.1.2 dynamiC/l | e e e e e e e e 41
6.1.3 public/l | . .. e e e e 41
6.1.4 multifile/1 Lo e 42
6.1.5 discontiguous/1 . e e 42
[6.1.6 ensure dinked/T | e 43

2 CONTENTS

6.1.7 bullt _in/O ,bullt _in/1 ,bult _in td/0 ,bult _in td/1 |........... 43
B.1.8 includell 1 e 44
6.1.9 ensure loaded/1 | 44
o U 02 44
6.1.11 char __conversion/2 | 45
0.1.12 set _prolog _flag/2 |. e 45
[6.1.13 initialization/1 e 45
6.1.14 foreign/2 ,toreign/l |. 45
[6.2 Prolog control construdts 46
6.2 true/0 ,fail/l0O O] e 46
0.22 ()2 - conjunction,(;)/2 - disjunction,(->)/2 -ii-then 46
623 calll 1. @ . . . 47
6.2.4 catch/3 ,throw/l |. e 47
|7 Prolog built-in predicateq 49
[7.1 Typetesting e 49
[7T1 var/T ,nonvar/l ,atom/1 ,integer/T __,float/T _, number/I , atomic/I |
[compound/1 , callable/1 ist/T [partial — ist/1 [Tist — _or _partial — _list/T] 49
[[.2 _Termunification e e e e e 50
/.2.1 =)/2 - Prologunification 50
uni _with _occurs _check/2 |. 50
/.2.3 \=)/2 -notPrologunifiable 50
[73Termcomparnsdn o it e e e e 51
[/.3.1 Standardtotalorderingoftelms oo 51
[7372 (==)2 -termidentical(\==)/2___- term not identical, |
(@<)72_-termIess than@=<)/2 - term less than or equal to, |
(@>)/2 - term greater thar{@>=)/2 - term greaterthanorequalto 51
[733 comparel3 | e 52
[7.4 Termprocessifg 52
[7ATTunclorf3 | e 52
[7.4.2 arg/3 . . . e e e 53
[7.4.3 (=02 SUNIM . . . e e e e e 53
I7.4.4 copy _term/2 | e e e e e 54
I7.4.5 setargld ,setarg/3 | e e 54
[/.5 Variable naming/numbering 55
[75:1 namesingleton varsSIT | 55
I7.5.2 name.query vars/2 |. e e 55
[7.5.3 bind _variables/2 ,humbervars/3 _,numbervars/1 _|. 56
/5.4 term ref/2 | e e 57
7.6 _Arithmetic e 57
/.6.1 Evaluation of an arithmetic expression 57
.0. IS - evaluate expressiOn L. L L e e e 59
[7.63 (=52 - arithmetic equal(=\=)/2 - arithmefic not equal,
[(2 -arithmetic less thar=<)/2 - arithmefic less than or equal to,
>)/2 - arithmetic greater than>=)/2 - arithmetic greater than orequajto 60
[77 Dynamicclause management e 60
7. 7.1 Introductioh e e e e 60
|/.7.2 —asserta/l ,assertz/1 |. 61
[77.3 retract7l 1 e 62
I/.7.4 retractall/1 | e e 62
[7.75 clausel2] e 62
I7.7.6 __abolish/1T | e 63
[7.8 Predicate information L e 64
I7.8.1 current _predicate/l |. 64
[7.8.2 predicate _property/2] 64
[[.9 AlSOIULioONS e 65

CONTENTS 3

[7.9.2 Tfindall/3 | e e e 65
17.9.3 bagof/3 ,setof/3 |. 66
[[IO SWEAMS . .« o o v o e e e e e e e e e e 67
/101 INtrodUucClion o e e e e e e 67
17.10.2 current _input/l | 68
17.10.3 current _output/l | e e 68
I7.10.4 set _input/l | e e 69
[7.10.5 set output/l | e 69
[7.10.6 open/d ,open/3 | e e e e 69
I7.10.7 close/2 ,close/l |. 71
17.10.8 flush _output/l ,flush _output/O |, 72
[710.9 current _stream/T | e e e 72
17.10.10 stream _property/2 | e e e e e e e e e e 73
[7.10.11 at _end_of stream/1 ,at end_of stream/O | 74
17.10.12 stream _position/2 | e e e e e e e 74
17.10.13 set _stream _position/2 S 74
0. 14 seekld | e e 75
[710.15character __count/2Z | e 76
7.10.161Tine __count/Z 1 e 76
[7.10.17Tine _position/2 e 76
I7.10.18 stream _line __column/3 | 77
[7.10.19 set__stream _line _column/3 | 77
[7.10.20 add stream __aliaS/Z | e e e 78
7.10.2T current __alias/2 | e e 78
[7.10.22 add _stream _mirror/2__] e e e e 79
[7.10.23remove stream _mirror/2 1. 79
[7.10.24 current __mirror/2 | 80
17.10.25 set _stream _typel2 |. e 80
[7.10.26 set_stream _eof _action/Z | e 81
[7.10.27 set _stream _buffering/2 . e 81
[11 Constantterm streams e 82
[T Introduction o e e e e e e 82
[7.11.2 open _input _atom _stream/2 , open _input _chars _stream/2 |
| open_input _codes _stream/2 |. e 82
[7.11.3 close _input _atom _stream/1 |, close _input _chars _stream/1 |
[close _input _codes stream/1 |. 83
|7.11.4 open_output _atom _stream/1 , open _output _chars _stream/1l |
| open_output _codes stream/1 |. 83
[7.11.5 close _output _atom _stream/2 , close _output _chars _stream/2 |
[close _oufput _codes sftream/2 | 84
[7.12 Character input/outgut e e 84
I7.12.1 qget _char/2 ,get char/l ,get code/l ,get code/2 |. 84
17.12.2 qget key/2 ,get key/lget _key _no_echo/2 ,get key _no_echo/l1|.... ... 85
17.12.3 peek _char/2 , peek _char/l ,peek _code/l ,peek code/2 |. 86
I7.12.4 unget _char/2 ,unget _char/l ,unget _code/2 ,unget code/1 |. 87
[7.12.5 put _char/2 , put _char/1 ,put _code/1 | put _code/2 ,nl/T ,nl/0O] 87
[/.13 Byteinput/outplit 88
[7I37T1 get bytelZ ,get bytell |. e 88
17.13.2 peek_byte/2 ,peek_byte/l | 89
17.13.3 unget _byte/2 ,unget byte/1 | o 89
[7.13.4 put _byte/2 ,put byte/l |. 90
[7.14 Terminputfoutplit 91
.1 read _term ,read _term , rea Jread/l | ..o o oo 91
I7.14.2 read _atom/2 ,read _atom/1 ,read _integer/2 ,read _integer/l |
| read _number/2 ,read _number/1 |.o 92
[7.14.3 read token/2 ,read foken/l | 93

I/.14.4 syntax __error _INTO/4 | e e e e 94

CONTENTS

[/.14.5 last read start _line column/2 |. 94
I7.14.6 write _term/3 ,write _term/2 ,write/2 ,write/1 ,writeq/2 , writeq/1 |
write __canonical/l2 —,write _canonicalll — ,display/2 ,display/I — ,print/2,]

print/L | . . . e e e 95

I7.14.7 tormat/3 ,tormat/2 | e e e 97
|7.14.8 portray _clause/2 ,portray _clause/l | 98

I7.14.9 qget _print _stream/1 | e e e e 99

A.T00P/3] e e e 99

[7 1411 current 0p/3] e e 101

[7.14.12 char__conversion/2 | 101
[7.14.13 current __char__conversion/2 | e 102

[7.15 Input/output from/to constantterqms L 103

.1 read _term _from _atom/3 , read _from _atom/2 |, read _token _from _atom .. 103
[7.15.2 read _term _from _chars/3 ,read _from _chars/2 ,read _token _from _chars/2 103
[7.15.3 read _term _from _codes/3 ,read _from _codes/2 ,read _token _from _codes/2 |104

17.15.4 write _term _to _atom/3 , write _to _atom/2 , writeq _to _atom/2 , |
write _canonical _fo _atom/Z , display _fto _atom/Z | prini _fo _afom/Z2 |
format _to atom/3 | e 104
[7.15.5 write _term _to _chars/3 ,write _to _chars/2 ,writeq _to _chars/2 | |
write _canonical _to _chars/2 , display _to _chars/2 , print _fo _chars/2 |
format _to chars/3 |. 105
I7.15.6 write _term _to _codes/3 ,write _to _codes/2 ,writeq _to _codes/Z |
write _canonical o _codes/Z , display _fo _codes/Z , print o _codes/Z |
format _to codes/3 |. e 105
[7.16 DEC-10 compalibility input/outgut 106
[716.1 1Infroduction e e e e 106
I7.16.2 see/l ,tell/l Jappend/l | e 106
17.16.3 seeing/l |, telling/1 S 107
I7.16.4 seen/O ,told/O | e 107
I7.16.5 getO/1 ,get/l ,skip/l |. e 107
[7.76.6 put/T tab/l | e 108
[/ 17 Termexpansion e 108
7.17.1 DefiniteclausegrammBrs e 108
.2 expand _term ,term _expansion/2 | o o o o 110
[7.17.3 phrase/3 ,phrase/2 | e 110
[7.18 Logic, controland exceptians 111
[7I81 abort/0 , stop/0 ,top Jlevell0 ,break/0 ,hal/T _ halt/0 | 111
[7.18.2 once/l ,(\+)/1 -notprovablecall _with _args/1-11 ,cal/i2 |......... 111
[7I83 repeallil | o o o o e e e 112
8.4 Tor/3]. . . . e e 112
[7.19 AtOMICTerm ProCesSINg o o o e e e e e e e e e 113
17.19.1 atom_length/2 |. 113
[7.19.2 atom _concat/3 _|. e 113
[7719.3 sub_atom/5] e 114
[7.19.4 char_code/Z | e e 114
[7.19.5 lower _upper/2 |. e e e e e e 115
17.19.6 atom _chars/2 ,atom._codes/2 | e 115
17.19.7 number _atom/2 , number _chars/2 ,number _codes/2 | 116
I7.19.8 name/2| e e e e 117
[7.19.9 atom_hash/Z | e 118
17.19.10 new_atom/3 , new_atom/2 ,newatom/1 | 118
7.19. 1T current __atom/1 |. e 119
17.19.12 atom _property/2 | 119
[/.20 LISLProCessINg o o o e 120
[720.1 appendl3] o o o e 120
[7.20.2 member/2 , memberchk/2 |. 120

[7.20.3 reversel2 1 e 121

CONTENTS 5

17.20.4 delete/3 ,select/3 | 121
17.20.5 permutation/2 | e e e e 121
[7.20.6 prefix/Z2 — suffix/2] e 122
[7.20.7 sublist/2 | e e e 122
[720.8 TastiZ_ 1. e 123
[720.0 TengthiZ | o o o e 123
7.20.10 nth/3 |. e e e 123
72011 maxlist2 min_list2 ,sumlhist/2 | 124
[7.20.12 sort/2_, sort0/2 , keysort/2 sort/1 ,sort0/T keysort/1] 124
[£.21 Globalvariables e e e e 125
[[.21.1 Introduction e e e e e e e e 125
I7.21.2 qg_assign/2 ,g_assignb/2 ,g.link/2 | 126
I7.21.3 g_read/2 |. 127
[7.21.4 garray Sizel2Z | e e e e e e e 127

[7.21.5 qg_.inc/3 ,qg.inc/2 ,g_.inco/2 ,qg.inc/1 ,qg_dec/3 ,g_dec/2 ,g_deco/2 ,qg_dec/1 |128
I7.21.6 g.set bit/2 ,g_reset _bit/2 ,g._test _set _bit/2 ,g_test _reset _bit/2 | .. 128

21, xamples e e 129
w‘e .. 132
[7221 set prolog TadlZ i e e e e 132
[7.22.2 current prolog flag/l2 |o 133
I7.22.3 set _DbIp _name/2| e e e 134
I7.22.4 current _bip _name/2| e e e e e e e 134
17.22.5 write _pl _state _file/1 ,read pl state nle/1 | 135
[7.23 Programstdate e 135
[/.23.1 consult/1 ,"./2 -programconsult L. 135
[7232 Toadll | o o e e 136
|7.23.3 listing/1 , listing/0 | e e e e e 136
[7.24 Systemstatistics 137
[72241 statistics/O |, StaliSticS/Z | . . o v o o o e e e e 137
[7.24.2 user _time/l | system _time/l ,cpu_time/l1 ,real ftime/l |........... 138
[/.25 Random numbergenerator e 138
[7251 set seed/T ,randomizel0 | v o v i 138
17.20.2 get _seed/l | e e e e e e e 139
[7.25.3 random/T] e 139
[7.25.4 random/3] e e 139
/.26 Flle name processing e e e e e 140

.1 _absolute _file __name/2| 140
|7.20.2 decompose _file _name/d| e e 140
I7.26.3 prolog _file _name/2| e e e 141

[7.27 Operating systeminterface o 141

[72Z71 argument _counterfl _ |. e e e e 141
I7.27.2 argument _value/2 | e 142
I7.27.3 argument _list/1 | 142
[7.27.4 environ/Z 1 e e e e 143
I7.27.5 make_directory/1 , delete _directory/1 , change _directory/1 | 143
|7.27.6 _working _directory/1 | e 143
I7.27.7 directory _THeS/2 | e e e e e e e e e e e e e 144
I7.27.8 rename file/2 1. e 144
17.27.9 delete _file/l ,unlink/Ll | 145
I7.27.10 file _permission/2 ,file _exists/1 |. 145
[7.27. 11 File _property/2 | e 146
|/.27. 12 temporary _name/2| e e e e e 147
I7.27.13temporary _Tle/3 | e e 148
/.27 14 date _time/l | e 148
[7.27.35host _namell] e e e e 149
[7.27.16 0s_version/I | e e e 149

[7.27.17 architecture/l | e e 150

CONTENTS

[7.27.18shell/l2 ", shellll1 ,shelll0 | i .. 150
I7.27.19 system/2 ,system/1 | e 151
[7.27.20 spawn/3 ,spawn/2 | e e 151
[72721TPOPRENI3 | . . . o o e e 152
[1.27.22 eXeclo ,exXeCld | e e e e e 152
I7.27.231ork _prolog/l |. 153
[7.27.24 create _pIPEI2 |. . . . o e 153
... 154
I71.270.20prolog _pid/l | e e e e e e e e e 154
I7.27.27send _signali2 |, e 155
[72728SIeepll | o o o e 155
[72Z729SelectyS | o o o e e e e 155
[7.28 Sockets INput/outgut L e e e e e 156
[7281 Tnfroduction e 156
I/.28.2 SOCKEU2 | e e e e e 157
[7.28.3 socket close/l |. e 157
[7.28.4 socket __bind/2 e 158
[7.285 socket __connect/d | e 158
[7.28.6 _socket _listen/2] e 159
|I7.28.7/ socket _accept/4 ,socket _accept/3 |. 159
[7.28.8 _hostname _address/2 _|. 160
/.29 Lineditmanagemgnt 161
[7.29.1 get inedit _prompt/T | o o o e 161
17.29.2 set _inedit _prompt/l | 161
17.29.3 add_linedit _completion/1 | 161
17.29.4 1find _linedit ~ _completion/2 | 162
[7.30 Sourcereaderfacility 162
7.30. 1 TInfroduction e e 162
17.30.2 St _0open/3 | e e e e e e e e e e 163
[7.30.3 sr _change _options/2 | e 163
[7.30.4 sr_closell] e 163
I7.30.5 sr read term/4 | e 163
17.30.6 sr _current _descriptor/1 | 163
I7.30.7 sr _get stream/2 | 163
17.30.8 sr _get _module/3 | 163
17.30.9 sr _get _file _name/2| e e e e 163
17.30.10 sr _get _position/3 PSS 163
17.30.11sr _get _include _list/2 | 163
17.30.12 sr _get _include _stream _list/2 |. 163
17.30.13 sr _get _size _counters/3 | e e e e 163
17.30.14 sr _get _error _counters/3 | 163
I7.30.15sr _set__error___counters/3 | e e e e 163
17.30.16 sr _error _from _exception/2 |. 163
17.30.17 sr _write _message/8 , sr _write _message/6 , sr _write _message/4 | 163
17.30.18 sr _write _error/6__,sr write _error/4 __,sr write _error/l2_|. 163
|8 Finite domain solver and built-in predicates 165
B.1 Introduction e e e e e e 165
[BI11 FiniteDomainvariables 165
[B.2 "FDvariable parametérs 166
8.2.1 1d _maxiunteger/l | L e e e 166
B.2.2 1d vector _max/1| e 166
B.2.3 Td set vector _max/I] e 167
B3 TInifialvalueconstraints e e e 167
B8.3.1 1d domain/3 ,fd .domain bool/l | 167
8.3.2 1d _domaln/2 | e e e e e e e e 168

8.4 Typetesting e 168

CONTENTS 7

B8.41 1d _var/l ,non_td _var/l1 ,generic _var/l ,non_generic var/l |........ 168
8.5 FEDvariable informatidn. e 169
B5.1 fd _min/2 [fd _-max/2 ,fd size/2 ,fd dom/2]. 169
8.5.2 1d _has _extra _cstr/l ,fd _has vector/l ,1d _use vector/l | 170
[B6 __ArithmeficconstrainkS o o e 170
[8.6.1 FDarithmeticexpressiqns e 170
artia = - constraint equal#\=)/2 - constraint not equal,
[# - constraint less tharf#=< - constraint less than or equal,
| (#>)[2 - constraint greater tha(#>=)/2 - constraint greaterthanorequal 171
8.6.3 Full AC:(#=#)/2 - constraint equa(,#\:#)lz - constraint not equal,
(#<#) - constraint less thar=< - constraint less than or equal,
‘ (#>#) - constraint greater t a >= - constraint greaterthanorequal 172
[B6.4 Td prime/Tl ,Td _not prime/l | e 172
B.7 Boodleanandreifiedconstraints L 173
[8.7.1 BooleanFDexpressigns 173
[B72 @)1 -constraint NOT[#<=>)/2 - constraint equivalent,
[(#<=>)[2__- constraint different(#H/2__- constraint XOR,
(#==>)/2__- constraint imply[fA==>)/2 - constraint not imply,
(#NY2Z - constraint AND,(F/N)/2 - constraint NAND,
| (#V)/2 - constraint OR(#\V)/2 -constraintNOR 174
8.7.3 1d _cardinality/2 ,1d _cardinality/3 ,fd _at least _one/l ,fd _at _most _one/1],
| 1d_only _one/l | 175
8.8 Symbolicconstraints e e 175
BBI Td all_differentl/l o o e e e e e e e 175
8.8.2 Td element/3 1 e e 176
B.8.3 fd element var/3 1 e 176
8.8.4 1d _atmost/3 , fd _atleast/3 ,id _exactly/3 | 177
8.8.5 1d _relation/2 , 1d _relationc/2 S 177
[8.9 Labelingconstraints 178
[B9.1 Td Jabeling/Z __,fd Jabeling/T __ ,fd Jabelingff™ | 178
[8.10 Optimization constraifts 179
[BI0.T Td _minimize/2 ,Td _maxXimizelZ | o v v v o e 179
19 Coroutining and attributes| 181
9.1 Coroutining 181
BTT reezelZ | o o e 181
[B.1.2 frozen/2] e e e e 181
9.1.3 portray/2 [user-definefll oo 181
9.2 Attributed variablgs e 182
2.1 Intr 10N . . . e e e e e e e 182
9.2.2 Attribute declarationattribute/1 S 182
| 2.3 Attrioutes manipulationget _atts/2 _, put _atts/2 182
. e testing attribute eneric _var/l ,non_generic wvar/l | 183
. nification extensionveri _attrl utes _predicate/T 184
9.2.6 Attributed variables portrayingportray _attributes _predicate/1 |. 184
P27 TAsimpleexample e 184
110 Constraint logic programming over reals 187
[10.1 Introductioh o e e e e 187
[10.2 Solverpredicates 187
10.2.1 {H1|. . . o 187
N LSUP/2 | e e e e e e 188
[10.2.3 clpr _get store/2 | e 188
[10.3 Realand Herbrand domains combinafions 189
10.3.1 nification 189
[10.3.2 Implicitequalitigs 189

10.3.3 Nonlinearconstraimts 189

8 CONTENTS
|11 Interfacing Prolog and 191
[11.1 CalingCfromProlog 191
11.1.7 Tnfroduction e e e 191
111.1.2 foreign/2 AIreCtiVe e e e e e e e e 191
11.1. Th unctidn 192
11.1.4 Inputargumernts e e 192
ts 193
[IT.T6 Tnputfoutputarguments i i i it e e e e e e 193
[II.1.7 Writing non-deterministicCcdde 194
[11.1.8 Example: inputand outputarguments. 194
. xample: non-deterministiccpde e 195
nts 197
anipulating Prologterms L 198
MIZT Tnfroduction e 198
11.2.2 Managing Prologatoms o 198
S e e e 199
s 200
S e e e e 201
[IT.26 Testingthetype of Prologteims. 202
[11.2.7 Comparing Prologterins 203
S e e e 203
@mions 203
11.3 Raising Prolog errars e e e e 204
M1.3.1 Managing the erfor CONTEXE v v v oo o e e e e e e e e e e e 204
11.3.2 In 10N BITDr . . o o o e e e e e e e e e e e 204
11.3.3 Typeerrgr 204
II3Z2 Domainerrdr o o o o e e e e e e 204
II35 EXISIENCE IMOr. o o e e e e e e e 205
[II13.6 Permission ermor i i e e e e e e e 205
[I1.3.7 Representalion €rfor i e e e 205
[11.3.8 Evaluation errbr e e 205
111.3.9 Resource erfior e e e e e e e e e e e e e 206
[11.3.10 Syntax errpr e 206
11.3.11 Systemermor e e e 206
T4 CallingPrologfrom[C 206
11.41 Intr 0] 206
11.4.2 Examplemycall/l -acall/l <clone 208
@mors 209
11.5 Defininganew @ain() function 210
0. xample: askingforanceslors 211
[Referencek 215

| Index

1 Acknowledgements

| would like to thank the department of computing sciehaethe university of Paris 1 for allowing me the time
and freedom necessary to achieve this project.

| am grateful to the members of the Loco profeat INRIA Rocquencourtfor their encouragement. Their in-
volvement in this work led to useful feedback and exchange.

| would particularly like to thank Jonathan Hodg&dor the time and effort he put into the proofreading of this
manual. His suggestions, both regarding ISO technical aspects as well as the language in which it was expressed,
proved invaluable.

The on-line HTML version of this document was created usiagsd developed by Luc Maranget who kindly
devoted so much of his time extending the capabilitiesegfAdin order to handle such a sizeable manual.

Jean-Christophe Aude kindly improved the visual aspect of both the illustrations and the GNU Prolog web pages.

Thanks to Richard A. O’Keefe for his advice regarding the implementation of some Prolog built-in predicates and
for suggesting me the in-place installation feature.

Many thanks to the following contributors:

¢ Alexander Diemanftifor his initial port to alpha/linux and more generally for his personal involvement in
the development of GNU Prolog.

¢ Clive Cox¥ and Edmund Grimley Eva#for their port to ix86/SCO.
e Nicolas Ollinget* to for his port to ix86/FreeBSD.
e Brook Milligan*? for his port to ix86/NetBSD and for general configuration improvements.
e Andreas Stolck® for his port to ix86/Solaris.
e Lindsey Spratt* for his port to powerpc/Darwin (MacOS X).
Many thanks to all those people at GRuvho helped me to finalize the GNU Prolog project.

Finally, | would like to thank everybody who tested preliminary releases and helped me to put the finishing touches
to this system.

Shttp://panoramix.univ-paris1.fr/CRINFO/
4http://loco.inria.fr/
Shittp:/iwww.inria.fr/UnitessROCQUENCOURT-eng.html
Bhttp://www.sju.edu/jhodgson

"http://pauillac.inria.fr/ ~maranget/hevea/
8ax@apax.net

Sclive@laluna.demon.co.uk

Lonttp://www.rano.org/

nollinge@ens-lyon.fr

prook@nmsu.edu
L3http:/iwww.speech.sri.com/people/stolcke/
Hspratt@alum.mit.edu

Lshttp:/iwww.gnu.org

10

1 ACKNOWLEDGEMENTS

11

2 Introduction

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by Dani¥. Fiaz
recent information about GNU Prolog please consult the GNU Prolog‘page

GNU Prolog is a Prolog compiler based on the Warren Abstract Machine (WAM) [8, 1]. It first compiles a Prolog
program to a WAM file which is then translated to a low-level machine independent language called mini-assembly
specifically designed for GNU Prolog. The resulting file is then translated to the assembly language of the target
machine (from which an object is obtained). This allows GNU Prolog to produce a native stand alone executable
from a Prolog source (similarly to what does a C compiler from a C program). The main advantage of this
compilation scheme is to produce native code and to be fast. Another interesting feature is that executables are
small. Indeed, the code of most unused built-in predicates is not included in the executables at link-time.

A lot of work has been devoted to the ISO compatibility. Indeed, GNU Prolog is very close to the ISO standard for
Prolog'® [5].

GNU Prolog also offers various extensions very useful in practice (global variables, OS interface, sockets,...). In
particular, GNU Prolog contains an efficient constraint solver over Finite Domains (FD). This opens contraint logic
pogramming to the user combining the power of constraint programming to the declarativity of logic programming.
The key feature of the GNU Prolog solver is the use of a single (low-level) primitive to define all (high-level) FD
constraints. There are many advantages of this approach: constraints can be compiled, the user can define his
own constraints (in terms of the primitive), the solver is open and extensible (as opposed to black-box solvers like
CHIP),...Moreover, the GNU Prolog solver is rather efficient, often more than commercial solvers.

GNU Prolog is inspired from two systems developed by the same author:

e wamcc: a Prolog to C compiler |3]. the key point @famcc was its ability to produce stand alone exe-
cutables using an original compilation scheme: the translation of Prolog to C via the WAM. Its drawback
was the time needed lyce to compile the produced sources. GNU Prolog can also produce stand alone
executables but using a faster compilation scheme.

e clp(FD) :aconstraint programming language over ED [4]. Its key feature was the use of a single primitive
to define FD constraints. GNU Prolog is based on the same idea but offers an extended constraint definition
language. In comparison tp(FD) , GNU Prolog offers new predefined constraints, new predefined
heuristics, reified constraints,. ..

Here are some features of GNU Prolog:
e Prolog system:
— conforms to the ISO standard for Prolog (floating point numbers, streams, dynamic code,...).

— a lot of extensions: global variables, definite clause grammars (DCG), sockets interface, operating
system interface,.. .

— more than 300 Prolog built-in predicates.
— Prolog debugger and a low-level WAM debugger.
— line editing facility under the interactive interpreter with completion on atoms.
— powerful bidirectional interface between Prolog and C.
e Compiler:
— native-code compiler producing stand alone executables.
— simple command-line compiler accepting a wide variety of files: Prolog files, C files, WAM files,. ..
— direct generation of assembly code 15 times faster Wemncc + gcc .
— most of unused built-in predicates are not linked (to reduce the size of the executables).

8nttp://pauillac.inria.fr/ diaz
Lhttp:/iwww.gnu.org/software/prolog
8nttp://www.logic-programming.org/prolog _std.html

12

2 INTRODUCTION

— compiled predicates (native-code) as fasivasncmccon average.
— consulted predicates (byte-code) 5 times faster tamcc.
e Constraint solver:

— FD variables well integrated into the Prolog environment (full compatibility with Prolog variables and
integers). No need for explicit FD declarations.

very efficient FD solver (comparable to commercial solvers).

high-level constraints can be described in terms of simple primitives.

a lot of predefined constraints: arithmetic constraints, boolean constraints, symbolic constraints, reified
constraints,. ..

several predefined enumeration heuristics.
the user can define his own new constraints.

more than 50 FD built-in constraints/predicates.

13

3 Using GNU Prolog

3.1 Introduction

GNU Prolog offers two ways to execute a Prolog program:
e interpreting it using the GNU Prolog interactive interpreter.
e compiling it to a (machine-dependent) executable using the GNU Prolog native-code compiler.

Running a program under the interactive interpreter allows the user to list it and to make full use of the debugger
on it (sectiorf 4, pade 29). Compiling a program to native code makes it possible to obtain a stand alone executable,
with a reduced size and optimized for speed. Running a Prolog program compiled to native-code is around 3-5
times faster than running it under the interpreter. However, it is not possible to make full use of the debugger on a
program compiled to native-code. Nor is it possible to list the program. In general, it is preferable to run a program
under the interpreter for debugging and then use the native-code compiler to produce an autonomous executable.
Itis also possible to combine these two modes by producing an executable that contains some parts of the program
(e.g. already debugged predicates whose execution-time speed is crucial) and interpreting the other parts under this
executable. In that case, the executable has the same facilities as the GNU Prolog interpreter but also integrates the
native-code predicates. This way to define a new enriched interpreter is detailed later [Secfion 3.f.5, page 26).

3.2 The GNU Prolog interactive interpreter
3.2.1 Starting/exiting the interactive interpreter

GNU Prolog offers a classical Prolog interactive interpreter also catlpdevel It allows the user to execute
queries, to consult Prolog programs, to list them, to execute them and to debug them. The top-level can be invoked
using the following command:

% gprolog [OPTION]... (the%symbol is the operating system shell prompt)
Options:
--init-goal GOAL executeGOALbefore toplevel/O
--entry-goal GOAL executeGOALinside toplevel/0
--query-goal GOAL executeGOALas a query for topevel/O
--help print a help and exit
--version print version number and exit

-- do not parse the rest of the command-line

The main role of thegprolog command is to execute the top-level itself, i.e. to execute the built-in predicate
top _level/0 (sectior] 7.18]1, page T111) which will produce something like:

GNU Prolog 1.2.9
By Daniel Diaz
Copyright (C) 1999-2001 Daniel Diaz

| >

The top-level is ready to execute your queries as explained in the next section.

To quit the top-level type the end-of-file key sequencé-D) or its term representatiorend _of _file. Itis
also possible to use the built-in predichtdt/0 (sectior] 7.18]1, page 1111).

However, before entering the top-level itself, the command-line is processed to treat all known options (those listed
above). All unrecognized arguments are collected together to form the argument list which will be available using

14 3 USING GNU PROLOG

argument _value/2 (section[7.27]2, pade 142) argument _list1 (section 7.27]3, pade 142). The

option stops the parsing of the command-line, all remainding options are collected into the argument list.

Several options are provided to execute a goal before entering the interaction with the user:

e The --init-goal option executes th&OALas soon as it is encountered (while the commnad-line is
processed)GOALis thus executed before enteritap _level/O

e The --entry-goal option executes th&OALat the entry oftop _level/0O just after the banner is
displayed.

e The--query-goal option executes th&OALas if the user has typed in.

The above order is thus the order in which each kind of goal (init, entry, query) is executed. If there are several
goals of a same kind they are executed in the oder of appearance. Thus, all init goals are executed (in the order of
appearance) before all entry goals and all entry goals are executed before all query goals.

EachGOALis passed as a shell argument (i.e. one shell string) and should not contain a terminal dot. Exam-
ple: --init-goal 'write(hello), nI’ under a sh-like. To be executedG®ALis transformed into a

term usingread _term _from _atom(Goal, Term, [end _of _term(eof)]) . Respecting both the syntax

of shell strings and of Prolog can be heavy. For instance, passing a backslash chacactdre difficult since

it introduces an escape sequence both in sh and inside Prolog quoted atoms. The use of back quotes can then be
useful since, by default, no escape sequence is processed inside back quotes (this behavior can be controlled using

theback _quotes Prolog flag (sectiop 7.22.1, page 132)).

Since the Prolog argument list is created when the whole command-line is parseeinit-goal option
usesargument _value/2 or argument _list/1 it will obtained the original command-line arguments (i.e.
including all recognized arguments).

Here is an example of using execution goal options:

% gprolog --init-goal 'write(before), nlI' --entry-goal ’write(inside), nl’
--query-goal 'append([a,b],[c,d],X)’

will produce the following:

before

GNU Prolog 1.2.9

By Daniel Diaz

Copyright (C) 1999-2001 Daniel Diaz
inside

| ?- append([a,b],[c,d],X).

X = [a,b,c,d]

yes
| ?-

3.2.2 The interactive interpreter read-execute-write loop

The GNU Prolog top-level is built on a classical read-execute-write loop that also allows for re-executions (when
the query is not deterministic) as follows:

o display the prompt, i.e|’ ?- ’
e read a query (i.e. a goal).

e execute the query.

3.2 The GNU Prolog interactive interpreter 15

e in case of success display the values of the variables of the query.

o if there are remaining alternatives (i.e. the query is not deterministic), disjtagral ask the user who can
use one of the following commandR®ETURNo stop the execution, to compute the next solution arto
compute all remaining solution.

Here is an example of execution of a query (“find the IXtand Y such that the concatenation ¥fandY is
[a,b] ™):

| ?- append(X,Y,[a,b,c]).

X =1

Y = [a,b,c] ? ; (here the user presspdo compute another solution)

X = [a]

Y =[bc] ? a (here the user pressado compute all remaining solutions)

X = [a,b]

Y = [c] (here the user is not asked and the next solution is computed)
X = [a,b,c]

Y =] (here the user is not asked and the next solution is computed)
no (no more solution)

In some cases the top-level can detect that the current solution is the last one (no more alternatives remaining). In
such a case it does not display theymbol (and does not ask the user). Example:

| 7- (X=1 ; X=2).

X=1? ; (here the user presspdo compute another solution)
X =2 (here the user is not prompted since there are no more alternatives)
yes

The user can stop the execution even if there are more alternatives by RBTdRN
| ?- (X=1 ; X=2).

X=17? (here the user pressBE TURNo stop the execution)

yes

The top-level tries to display the values of the variables of the query in a readable manner. For instance, when
a variable is bound to a query variable, the name of this variable appears. When a variable is a singleton an
underscore symbal is displayed (is a generic name for a singleton variable, it is also called an anonymous
variable). Other variables are bound to new brand variable names. When a query variabl¢ aygmears as the

value of another query variab¥it is becauseX is itself not instantiated otherwise the valueXois displayed. In

such a case, nothing is output fitself (since it is a variable). Example:

| 2- X=f(AB, _A), A=k.

=k (the value ofA is displayed also i3 for X)
X = f(k,B, _Kk) (sinceB is a variable which is also a part ¥f B is not displayed)

| ?- functor(T,f,3), arg(1,T,X), arg(3,T,X).

T = f(X, _X) (the ! and 3¢ args are equal t¥, the 2*¢ is an anonymous variable)

| ?- read _from _atom(k(X,Y,X).",T).

T = k(A, _A) (the ! and 3¢ args are unified, a new variable namés introduced)

16 3 USING GNU PROLOG

The top-level uses variable binding predicates (sedtioh 7.5, [pdge 55). To display the value of a variable, the
top-level callswrite _term/3 with the following option list: [quoted(true),numbervars(false),

namevars(true)] (sectiorn[7.14)6, pade P5). A term of the fol®VARNAME'(Name) whereNameis an

atom is displayed as a variable name while a term of the f8kAR’(N) whereNis an integer is displayed as a
normal compound term (such a term could be output as a variable nametey _term/3). Example:

| 2- X="$VARNAME'(Y"), Y="$VAR'(1).

=Y (the term'$VARNAME'(Y’) is displayed a¥)
Y = '$VAR'(1) (the term’'$VAR’(1) s displayed as is)

| 2- X=Y, Y='$VAR'(1).

'$SVAR'(1)
'$SVAR'(1)

<
1 n

In the first exampleX is explicitly bound td$VARNAME'('Y’) by the query so the top-level displaysas the
value ofX. Y is unified with’$VAR’(1) so the top-level displays it as a normal compound term. It should be
clear thaiX is not bound tdr (whereas it is in the second query). This behavior should be kept in mind when doing
variable binding operations.

Finally, the top-level computes the user-time (sedtion 7]24.2,[pade 138) taken by a query and displays it when it is
significant. Example:

| ?- retractall(p(), assertz(p(0)),
repeat,
retract(p(X)),
Y is X + 1,
assertz(p(Y)),
X = 1000, !.

(180 ms) yes (the query took 180ms of user time)

3.2.3 Consulting a Prolog program

The top-level allows the user to consult Prolog source files. Consulted predicates can be listed, executed and
debugged (while predicates compiled to native-code cannot). For more information about the difference between
a native-code predicate and a consulted predicate refer to the introduction of this section[(sgction B.1, page 13) and
to the part devoted to the compiler (secfion 3.4.1, page 20).

To consult a program use the built-in predicatnsult/l (section 7.23]1, pade 135). The argument of this
predicate is a Prolog file nameaser to specify the terminal. This allows the user to directly input the predicates
from the terminal. In that case the input shall be terminated by the end-of-file key seq@#RDe § or its term
representationend _of _file. A shorthand foconsult(FILE) is[FILE] . Example:

3.2 The GNU Prolog interactive interpreter 17

| ?- [user].
{compiling user for byte code...}
even(0).
even(s(s(X))):-
even(X).
(here the user press€sl-D to end the input)
{user compiled, 3 lines read - 350 bytes written, 1180 ms}

| ?- even(X).
X=07? ; (here the user presspdo compute another solution)

X

s(s(0)) ? ; (here the user presspdo compute another solution)

X = s(s(s(s(0)))) (here the user pressBE TURNo stop the execution)
2

yes
| ?- listing.

even(0).
even(s(s(A))) :-
even(A).

Whenconsult/l (sectiorf 7.23]1, page 135) is invoked on a Prolog file it first runs the GNU Prolog compiler
(sectiorf 3.4, pade 20) as a child process to generate a temporary WAM file for byte-code. If the compilation fails a
message is displayed and nothing is loaded. If the compilation succeeds, the produced file is loaded into memory
usingload/1 (sectior] 7.23]2, page 136). Namely, the byte-code of each predicate is loaded. When a gpedicate

is loaded if there is a previous definition fBiit is removed (i.e. all clauses definifgare erased). We say thais
redefined. Note that only consulted predicates can be redefin@ds & native-code predicate, trying to redefine it

will produce an error at load-time: the predicate redefinition will be ignored and the following message displayed:

native code procedure P cannot be redefined

Finally, an existing predicate will not be removed if it is not re-loaded. This means that if a preldisateaded
when consulting the fil&, and if later the definition oP is removed from the filé, consultingF again will not
remove the previously loaded definition®from the memory.

Consulted predicates can be debugged using the Prolog debugger. Use the debugger machdate or
debug/0 (sectiorf 4.3]1, pade B1) to activate the debugger.

3.2.4 Interrupting a query

Under the top-level it is possible to interrupt the execution of a query by typing the interruptioG#ey (). This

can be used to abort a query, to stop an infinite loop, to activate the debugger,... When an interruption occurs the
top-level displays the following messagerolog interruption (h for help) ? The user can then

type one of the following commands:

| Command| Name | Description \

a abort | abort the current execution. Samead®rt/0 (sectior] 7.18]1, page 1/11)
e exit quit the current Prolog process. Saménali/0 (sectior] 7.181, page 1[11)
b break | invoke a recursive top-level. Samelaeak/0 (sectior| 7.181, page 111)
c continue | resume the execution
t trace | startthe debugger usiritace/0 (section 4.3 .1, page B1)
d debug | start the debugger usirgbug/0 (sectiorn 4.3.[1, page B1)

h or? help display a summary of available commands

18

3 USING GNU PROLOG

3.2.5 The line editor

The line editor [inedit
This facility is available if thdinedit
by any built-in predicate reading from a terminal (eget _char/1

top-level reads a query.

Bindings: each command dinedit

part of GNU Prolog has been installelihedit is

) allows the user to build/update the current input line using a variety of commands.

implicitly called

, read/1 ,...). This is the case when the

is activated using a key. For some commands another key is also available

to invoke the command (on some terminals this other key may not work properly while the primary key always
works). Here is the list of available commands:

] Key | Alternate key| Description \
Ctl-B — go to the previous character
Ctl-F — go to the next character
Esc-B Ctl- « go to the previous word
Esc-F Ctl- — go to the next word
Ctl-A Home go to the beginning of the line
Ctl-E End go to the end of the line
Ctl-H Backspace | delete the previous character
Ctl-D Delete delete the current character
Ctl-u Ctl-Home delete from beginning of the line to the current character
Ctl-K Ctl-End delete from the current character to the end of the line
Esc-L lower case the next word
Esc-U upper case the next word
Esc-C capitalize the next word
Ct-T exchange last two characters
Ctl-v Insert switch on/off the insert/replace mode
Ctl-I Tab complete word (twice displays all possible completions)

Esc-Ctl-I Esc-Tab insert spaces to emulate a tabulation
Ctl-space mark beginning of the selection

Esc-W copy (from the begin selection mark to the current charag
Ctl-w cut (from the begin selection mark to the current characte
Ctl-y paste
Ctl-P 1 recall previous history line
Ctl-N 1 recall next history line
Esc-P recall previous history line beginning with the current pref
Esc-N recall next history line beginning with the current prefix
Esc-< Page Up | recall first history line
Esc-> Page Down | recall last history line
Ctl-C generate an interrupt signal (section 3.2.4, page 17)
Ctl-D generate an end-of-file character (at the begin of the line
RETURN validate a line
Esc-? display a summary of available commands

History: when aline is entered (i.e. terminatedRETURI linedit
It is later possible to recall history lines using appropriate commandsQd-§.

ter)
r

iX

records it in an internal list called history.
recall the last entered line) and

to modify them as needed. It is also possible to recall a history line beginning with a given prefix. For instance

to recall the previous line beginning withrite

simply typewrite

recall an earlier line beginning withrite ...

Completion: another important feature tihedit

is its completion facility. Indeedinedit

followed by Esc-P . AnotherEsc-P will

maintains a list

of known words and uses it to complete the prefix of a word. Initially this list contains all predefined atoms and
the atoms corresponding to available predicates. This list is dynamically updated when a new atom appears in the
system (whether read at the top-level, created with a built-in predicate, associated to a new consulted predicate,. . .).

When the completion keyT@b) is pressedinedit

acts as follows:

3.3 Adjusting the size of Prolog stacks 19

e use the current word as a prefix.
e collect all words of the list that begin with this prefix.
e complete the current word with the longest common part of all matching words.

o if more than one word matches emit a beep (a sed@aidwill display all possibilities).

Example:

| ?- argu (here the user press@ab to complete the word)

| ?- argument _ (linedit completesargu with argument _and emits a beep)
(the user presses agdiab to see all possible completions)

argument _counter (linedit shows 3 possible completions)

argument _list

argument _value

| ?- argument _ (linedit redisplays the input line)

| ?- argument _c (to selectargument _counter the user pressaesandTab)

| ?- (linedit completes wittargument _counter)

argument _counter

Finally, linedit allows the user to check that (square/curly) brackets are well balanced. For this, when a close
bracket symbol, i.e),] or}, is typed,linedit determines the associated open bracket,(i,g. or{, and
temporarily repositions the cursor on it to show the match.

3.3 Adjusting the size of Prolog stacks

GNU Prolog uses several stacks to execute a Prolog program. Each stack has a static size and cannot be dynam-
ically increased during the execution. For each stack there is a default size but the user can define a new size by
setting an environment variable. When a GNU Prolog program is run it first consults these variables and if they
are not defined uses the default sizes. The following table presents each stack of GNU Prolog with its default size
and the name of its associated environment variable:

Stack Default | Environment| Description
name | size (Kb) variable
local 4096 LOCALSZ | control stack (environments and choice-points)
global 8192 GLOBALSZ | heap (compound terms)
trail 3072 TRAILSZ conditional bindings (bindings to undo at backtracking)
cstr 3072 CSTRSZ | finite domain constraint stack (FD variables and constraints)

If the size of a stack is too small an overflow will occur during the execution. In that case GNU Prolog emits the
following error message before stopping:

S stack overflow (size: N Kb, environment variable used: E)

whereS is the name of the stach is the current stack size in Kb aitithe name of the associated environment
variable. When such a message occurs it is possible to (re)define the variatitethe new size. For instance to
allocate 8192 Kb to the local stack under a Unix shell use:

LOCALSZ=8192; export LOCALS (undersh orbash)
setenv LOCALSZ 8192 (undercsh ortcsh)

This method allows the user to adjust the size of Prolog stacks. However, in some cases it is preferable not to
allow the user to modify these sizes. For instance, when providing a stand alone executable whose behavior should
be independent of the environment in which it is run. In that case the program should not consult environment
variables and the programmer should be able to define new default stack sizes. The GNU Prolog compiler offers
this facilities via several command-line options such-fscal-size or --fixed-sizes (section 3.43,

pagd 2P).

20 3 USING GNU PROLOG

Finally note that GNU Prolog stacks are virtually allocated (i.e. use virtual memory). This means that a physical
memory page is allocated only when needed (i.e. when an attempt to read/write it occurs). Thus it is possible to
define very large stacks. At the execution, only the needed amount of space will be physically allocated.

3.4 The GNU Prolog compiler
3.4.1 Different kinds of codes

One of the main advantages of GNU Prolog is its ability to produce stand alone executables. A Prolog program can
be compiled to native code to give rise to a machine-dependent executable using the GNU Prolog compiler. How-
ever native-code predicates cannot be listed nor fully debugged. So there is an alternative to native-code compila-
tion: byte-code compilation. By default the GNU Prolog compiler produces native-code but via a command-line
option it can produce a file ready for byte-code loading. This is exactly edrault/l does as was explained

above (sectiof 3.2.3, pafje]16). GNU Prolog also manages interpreted code using a Prolog interpreter written in
Prolog. Obviously interpreted code is slower than byte-code but does not require the invocation of the GNU Prolog
compiler. This interpreter is used each time a meta-call is needed ealllly (sectior[6.2.3, pade #7). This

also the case of dynamically asserted clauses. The following table summarizes these three kinds of codes:

[Type | Speed | Debug ?| For what
interpreted-code slow yes meta-call and dynamically asserted clauses
byte-code medium yes consulted predicates
native-code fast no compiled predicates

3.4.2 Compilation scheme

Native-code compilation a Prolog source is compiled in several stages to produce an object file that is linked

to the GNU Prolog libraries to produce an executable. The Prolog source is first compiled to obtain a WAM [8]
file. For a detailed study of the WAM the interested reader can refer to “Warren’s Abstract Machine: A Tutorial
Reconstruction®® [1]. The WAM file is translated to a machine-independent language specifically designed for
GNU Prolog. This language is close to a (universal) assembly language and is based on a very reduced instruction
set. For this reason this language is called mini-assembly (MA). The mini-assembly file is then mapped to the
assembly language of the target machine. This assembly file is assembled to give rise to an object file which is
then linked with the GNU Prolog libraries to provide an executable. The compiler also takes into account Finite
Domain constraint definition files. It translates them to C and invoke the C compiler to obtain object files. The
following figure presents this compilation scheme:

Lnttp:/www.isg.sfu.cal"hak/documents/wam.html

3.4 The GNU Prolog compiler

21

Prolog
files

A\

pl 2wam

WAM
files

A\

wanna

mini—assembly
files

A\

ma2asm

=

assembly
files

A\

fd2c

FD constraint
definition files

assenbl er

.

object
files

C conpi l er

C files

1@ - =

I i nker

executable

!
e

Prolog/FD libraries

and 1icar lihrarice

22 3 USING GNU PROLOG

Obviously all intermediate stages are hidden to the user who simply invokes the compiler on his Prolog file(s)
(plus other files: C,...) and obtains an executable. However, it is also possible to stop the compiler at any given
stage. This can be useful, for instance, to see the WAM code produced (perhaps when learning the WAM). Finally
it is possible to give any kind of file to the compiler which will insert it in the compilation chain at the stage
corresponding to its type. The type of a file is determined using the suffix of its file name. The following table
presents all recognized types/suffixes:

| Suffix of the file | Type of the file | Handled by: \
.pl ,.pro Prolog source file pl2wam
wam WAM source file wamz2ma
.ma Mini-assembly source file ma2asm
.S Assembly source file the assembler
.c,.C,.CC,.cc ,.cxx ,.c+t+ ,.cpp | Cor C++ source file the C compiler
fd Finite Domain constraint source filefd2c
any other suffix o ,.a ,...) any other type (object, library,...) | the linker (C linker)

Byte-code compilation the same compiler can be used to compile a source Prolog file for byte-code. In that case
the Prolog to WAM compiler is invoked using a specific option and produces a WAM for byte-code source file
(suffixed.wbc) that can be later loaded usit@pd/1 (sectior] 7.23]2, page 1136). Note that this is exactly what

consult/l (sectior 7.23]1, page 135) does as explained above (sgctioh 3.2.8, page 16).

3.4.3 Using the compiler

The GNU Prolog compiler is a command-line compiler similar in spirit to a Unix C compilegitke. To invoke
the compiler use thgplc command as follows:

% gplc [OPTION]... FILE ... (the%symbol is the operating system shell prompt)

The arguments ofjplc are file names that are dispatched in the compilation scheme depending on the type

determined from their suffix as was explained previously (se€tion]|3.4.2[page 20). All object files are then linked

to produce an executable. Note however that GNU Prolog has no module facility (since there is not yet an 1ISO
reference for Prolog modules) thus a predicate defined in a Prolog file is visible from any other predicate defined
in any other file. GNU Prolog allows the user to split a big Prolog source into several files but does not offer any

way to hide a predicate from others.

The simplest way to obtain an executable from a Prolog sourcprbig.pl is to use:
% gplc prog.pl

This will produce an native executable call@tbg which can be executed as follows:
% prog

However, there are several options that can be used to control the compilation:

General options

3.4 The GNU Prolog compiler

23

-0 FILE ,--output FILE
-W, --wam-for-native
-W,
--wam-for-byte-code
-M, --mini-assembly
-S, --assembly

-F , --fd-to-c

-Cc , --Object
--temp-dir PATH
--no-del-temp
--no-decode-hexa
-v , --verbose

-h , --help

--version

Prolog to WAM compiler options:

--pl-state FILE
--no-susp-warn
--no-singl-warn
--no-redef-error
--foreign-only
--no-call-c
--no-inline
--no-reorder
--no-reg-opt
--min-reg-opt
--no-opt-last-subterm
--fast-math
--keep-void-inst
--compile-msg
--statistics

useFILE as the name of the output file
stop after producing WAM files(s)
stop after producing WAM for byte-code file(s) (foremo-call-c)

stop after producing mini-assembly files(s)

stop after producing assembly files (s)

stop after producing C files(s) from FD constraint definition file(s)
stop after producing object files(s)

usePATHas directory for temporary files

do not delete temporary files

do not decode hexadecimal predicate names

print executed commands

print a help and exit

print version number and exit

readFILE to set the initial Prolog state

do not show warnings for suspicious predicates

do not show warnings for named singleton variables
no not show errors for built-in predicate redefinitions
only compileforeign/1-2 directives

do not allow the use dfl _tell ,’'$call c’,...

do not inline predicates

do not reorder predicate arguments

do not optimize registers

minimally optimize registers

do not optimize last subterm compilation

use fast mathematical mode (assume integer arithmetics)
keep void WAM instructions in the output file

print a compile message

print statistics information

WAM to mini-assembly translator options:

--comment

include comments in the output file

Mini-assembly to assembly translator options

--comment
C compiler options:

--c-compiler FILE
-C OPTION

Assembler options
-A OPTION

Linker options:

include comments in the output file

useFILE as C compiler
passOPTIONto the C compiler

passOPTIONto the assembler

24 3 USING GNU PROLOG

--local-size N set default local stack size Kb

--global-size N set default global stack size Kb

--trail-size N set default trail stack size 8 Kb

--cstr-size N set default constraint stack sizeNdKb

--fixed-sizes do not consult environment variables at run-time (use default sizes)
--no-top-level do not link the top-level (force-no-debugger)
--no-debugger do not link the Prolog/WAM debugger

--min-pl-bips link only used Prolog built-in predicates

--min-fd-bips link only used FD solver built-in predicates

--min-bips shorthand for=-no-top-level --min-pl-bips --min-fd-bips
--min-size shorthand for=-min-bips --strip

--no-fd-lib do not look for the FD library (maintenance only)

-s , --strip strip the executable

-L OPTION PassOPTIONto the linker

Itis possible to only give the prefix of an option if there is no ambiguity.

The name of the output file is controlled via t#te FILE option. If present the output file produced will be named
FILE . If not specified, the output file name depends on the last stage reached by the compiler. If the link is not
done the output file name(s) is the input file name(s) with the suffix associated to the last stage. If the link is done,
the name of the executable is the name (without suffix) of the first file name encountered in the command-line.
Note that if the link is not doneo has no sense in the presence of multiple input file names. For this reason,
several meta characters are available for substitutiéillif :

e %f is substitued by the whole input file name.

e %Fis similar to%f but the directory part is omitted.

e %pis substitued by the whole prefix file name (omitting the suffix).

e %Pis similar to%pbut the directory part is omitted.

e %sis substitued by the file suffix (including the dot).

e %dis substitued by the directory part (empty if no directory is specified).

e %cis substitued by the value of an internal counter starting from 1 and auto-incremented.

By default the compiler runs in the native-code compilation scheme. To generate a WAM file for byte-code use
the --wam-for-byte-code option. The resulting file can then be loaded usiogd/1 (section[7.23]2,

pagd 13p).

To execute the Prolog to WAM compiler in a givesad environmenfoperator definitions, character conversion
table,...) use-pl-state FILE . The state file should be produced twyite _pl _state _file/1 (sec-

tion[7-2Z%, page 135).

By default the Prolog to WAM compiler inlines calls to some deterministic built-in predicatesdegéd and
functor/3). Namely a call to such a predicate will not yield a classical predicate call but a simple C function
call (which is obviously faster). It is possible to avoid this usingp-inline

Another optimization performed by the Prolog to WAM compiler is unification reordering. The arguments of

a predicate are reordered to optimize unification. This can be deactivated-usAgorder . The compiler

also optimizes the unification/loading of nested compound terms. More precisely, the compiler emits optimized in-
structions when the last subterm of a compound term is itself a compound term (e.g. lists). This can be deactivated
using--no-opt-last-subterm

By default the Prolog to WAM compiler fully optimizes the allocation of registers to decrease both the number of
instruction produced and the number of used registers. A good allocation will generat@oihimstructionghat

are removed from the produced file exceptifeep-void-inst is specified. To prevent any optimization use
--no-reg-opt while --min-reg-opt forces the compiler to only perform simple register optimizations.

3.4 The GNU Prolog compiler 25

The Prolog to WAM compiler emits an error when a control construct or a built-in predicate is redefined. This can
be avoided using-no-redef-error . The compiler also emits warnings for suspicious predicate definitions
like -/2 since this often corresponds to an earlier syntax error (e.igstead of_.. This can be deactivated by
specifying--no-susp-warn . Finally, the compiler warns when a singleton variable has a name (i.e. not the
generic anonymous namg This can be deactivated specifyinrgo-singl-warn

Predicate names are encoded with an hexadecimal representation. This is explained in more detail later (sec-
tion[3.4.6, pagf 26). By default the error messages from the linker (e.g. multiple definitions for a given predicate,
reference to an undefined predicate,. . .) are filtered to replace any hexadecimal representation by the real predicate
name. Specifying theno-decode-hexa preventgplc from filtering linker output messages and hexadeci-

mal representations are then shown.

When producing an executable it is possible to specify default stack sizes {(usBIACKNAMEsize) and to
prevent it from consulting environment variables (usiffixed-sizes) as was explained above (sectjon| 3.3,
pagg 1P). By default the produced executable will include the top-level, the Prolog/WAM debugger and all Pro-
log and FD built-in predicates. It is possible to avoid linking the top-level (seftidn 3.2,[page 13) by specifying

--no-top-level . In this case, at least orieitialization/1 directive (sectioh 6.1.13, pafe|45) should
be defined. The optionno-debugger does not link the debugger. To include only used built-in predicates that
are actually used the optiorsio-pl-bips and/or--no-fd-bips can be specified. For the smallest exe-

cutable all these options should be specified. This can be abbreviated by using the shorthanehtiptioips

By default, executables are nstripped i.e. their symbol table is not removed. This table is only useful for the

C debugger (e.g. when interfacing Prolog and C). To remove the symbol table (and then to reduce the size of the
final executable) usestrip . Finally --min-size is a shortcut for-min-bips and--strip , i.e. the
produced executable is as small as possible.

Example: compile and link two Prolog sourgeogl.pl andprog2.pl . The resulting executable will be
namedprogl (since-o is not specified):

% gplc progl.pl prog2.pl
Example: compile the Prolog fifgrog.pl to study basic WAM code. The resulting file will be nanprdg.wam :
% gplc -W --no-inline --no-reorder --keep-void-inst prog.pl

Example: compile the Prolog fifgrog.pl and its C interface filatils.c to provide an autonomous executable
calledmycommand The executable is not stripped to allow the use of the C debugger:

% gplc -0 mycommand prog.pl utils.c

Example: detail all steps to compile the Prolog fileg.pl (the resulting executable is stripped). All interme-
diate files are producegiog.wam , prog.ma , prog.s ,prog.0 and the executablgrog):

% gplc -W prog.pl

% gplc -M --comment prog.wam
% gplc -S --comment prog.ma
% gplc -c prog.s

% gplc -0 prog -s prog.o

3.4.4 Running an executable

In this section we explain what happens when running an executable produced by the GNU Prolog native-code
compiler. The default main function first starts the Prolog engine. This function collects all linked objects (issued
from the compilation of Prolog files) and initializes them. The initialization of a Prolog object file consists in
adding to appropriate tables new atoms, new predicates and executing its system directives. A system directive is
generated by the Prolog to WAM compiler to reflect a (user) directive executed at compile-time spéd gsec-
tion[6.1.10, page 44). Indeed, when the compiler encounters such a directive it immediately executes it and also
generates a system directive to execute it at the start of the executable. When all system directives have been exe-
cuted the Prolog engine executes all initialization directives definedimitthlization/1 (sectior{ 6.1.73,

26 3 USING GNU PROLOG

pagq 4b). If several initialization directives appear in the same file they are executed in the order of appearance. If
several initialization directives appear in different files the order in which they are executed is machine-dependant.
However, on most machines the order will be the reverse order in which the associated files have been linked (this
is not true under native win32). When all initialization directives have been executed the default main function
looks for the GNU Prolog top-level. If present (i.e. it has been linked) it is called otherwise the program simply
ends. Note that if the top-level is not linked and if there is no initialization directive the program is useless since
it simply ends without doing any work. The default main function detects such a behavior and emits a warning
message.

Example: compile an empty filgrog.pl without linking the top-level and execute it:

% gplc --no-top-level prog.pl
% prog
Warning: no initial goal executed
use a directive :- initialization(Goal)
or remove the link option --no-top-level (or --min-bips or --min-size)

3.4.5 Generating a new interactive interpreter

In this section we show how to define a new top-level extending the GNU Prolog interactive interpreter with new
predicate definitions. The obtained top-level can then be considered as an enriched version of the basic GNU
Prolog top-level (section 3.2, page] 13). Indeed, each added predicate can be viewed as a predefined predicate just
like any other built-in predicate. This can be achieved by compiling these predicates and including the top-level at
link-time.

The real question is: why would we include some predicates in a new top-level instead of simply consulting them
under the GNU Prolog top-level ? There are two reasons for this:

e the predicate cannot be consulted. This is the case of a predicate calling foreign code, like a predicate
interfacing with C (sectiop 11, page 191) or a predicate defining a new FD constraint.

o the performance of the predicate is crucial. Since it is compiled to native-code such a predicate will be
executed very quickly. Consulting will load it as byte-code. The gain is much more noticeable if the program
is run under the debugger. The included version will not be affected by the debugger while the consulted
version will be several times slower. Obviously, a predicate should be included in a new top-level only when
it is itself debugged since it is difficult to debug native-code.

To define a new top-level simply compile the set of desired predicates and linking them with the GNU Prolog
top-level (this is the default) usirgplc (sectior] 3.4.3, page P2).
Example: let us define a new top-level calleg.top _level including all predicates defined prog.pl

% gplc -0 my _top _level prog.pl
By the way, note that iprog.pl is an empty Prolog file the previous command will simply create a new interac-
tive interpreter similar to the GNU Prolog top-level.
Example: as before where some predicatgzof.pl call C functions defined intils.c

% gplc -0 my _top _level prog.pl utils.c

In conclusion, defining a particular top-level is nothing else but a particular case of the native-code compilation. It
is simple to do and very useful in practice.

3.4.6 The hexadecimal predicate name encoding

When the GNU Prolog compiler compiles a Prolog source to an object file it has to associate a symbol to each
predicate name. However, the syntax of symbols is restricted to identifiers: string containing only letters, digits or

3.4 The GNU Prolog compiler 27

underscore characters. On the other hand, predicate names (i.e. atoms) can contain any character with quotes if
necessary (e.gx+y=z" is a valid predicate name). The compiler has then to encode predicate names respecting
the syntax of identifiers. To achieve this, GNU Prolog uses an hexadecimal representation where each predicate
name is translated to a symbol beginning with>afollowed by the hexadecimal notation of the code of each
character of the name.

Example:’x+y=z" will be encoded aX782B793D7A since78 is the hexadecimal representation of the code
of x, 2B of the code oft, etc.

Since Prolog allows the user to define several predicates with the same name but with a different arity GNU Prolog
encodes predicate indicators (predicate name followed by the arity). The symbol associated to the predicate name
is then followed by an underscore and by the decimal notation of the arity.

Example:'x+y=z'/3 will be encoded aX782B793D7A_3.

So, from the mini-assembly stage, each predicate indicator is replaced by its hexadecimal encoding. The knowl-
edge of this encoding is normally not of interest for the user, i.e. the Prolog programmer. For this reason the
GNU Prolog compiler hides this encoding. When an error occurs on a predicate (undefined predicate, predicate
with multiple definitions,. . .) the compiler has to decode the symbol associated to the predicate indicator. For this
gplc filters each message emitted by the linker to locate and decode eventual predicate indicators. This filtering
can be deactivated specifyirgno-decode-hexa when invokinggplc (sectior] 3.4.3, pade P2).

This filter is provided as an utility that can be invoked usingtibggplc command as follows:

% hexgplc (the%symbol is the operating system shell prompt)
[OPTION... FILE ...
Options:
--encode encoding mode (default mode is decoding)
--relax decode also predicate names (not only predicate indicators)
--printf FORMAT pass encoded/decoded string tp1@tf(3) with FORMAT
--aux-father decode an auxiliary predicate as its father
--aux-father2 decode an auxiliary predicate as its father + auxiliary number
--cmd-line encode/decode each argument of the command-line
-H same as:-cmd-line --encode
-P same as:-cmd-line --relax
--help print a help and exit
--version print version number and exit

Itis possible to give a prefix of an option if there is no ambiguity.

Without argumentéiexgplc runs in decoding mode reading its standard input and decoding each symbol cor-
responding to a predicate indicator. To usexgplc in the encoding mode theencode option must be
specified. By defaulhexgplc only decodes predicate indicators, this can be relaxed usiaax to also

take into account simple predicate names (the arity can be omitted). It is possible to format the output of an
encoded/decoded string usingrintf FORMATIn that case each string is passed to the @rintf(3)

function agprintf(FORMATS) .

Auxiliary predicates are generated by the Prolog to WAM compiler when simplifying some control constructs like
[2 present in the body of a clause. They are of the f{@MNAME ARITY _$aux N’ whereNAME ARITY

is the predicate indicator of the simplified (i.e. father) predicateNireda sequential number (a predicate can give
rise to several auxiliary predicates). It is possible to fdreggplc to decode an auxiliary predicate as its father
predicate indicator usingaux-father or as its father predicate indicator followed by the sequential number
using--aux-father2

If no file is specifiedhexgplc processes its standard input otherwise each file is treated sequentially. Specifying
the --cmd-line option informshexgplc that each argument is not a file name but a string that must be

28 3 USING GNU PROLOG

encoded (or decoded). This is useful to encode/decode a particular string. For this reason theélqtimode to
hexadecimal) aneP (decode to Prolog) are provided as shorthand. Then, to obtain the hexadecimal representation
of a predicaté® use:

% hexgplc -H P
Example:

% hexgplc -H 'x+y=z'
X782B793D7A

29

4 Debugging

4.1 Introduction

The GNU Prolog debugger provides information concerning the control flow of the program. The debugger can
be fully used on consulted predicates (i.e. byte-code). For native compiled code only the calls/exits are traced, no
internal behavior is shown. Under the debugger it is possible to exhaustively trace the execution or to set spy-points
to only debug a specific part of the program. Spy-points allow the user to indicate on which predicates the debugger
has to stop to allow the user to interact with it. The debugger uses the “procedure box control flow model”, also
called the Byrd Box model since it is due to Lawrence Byrd.

4.2 The procedure box model

The procedure box model of Prolog execution provides a simple way to show the control flow. This model is
very popular and has been adopted in many Prolog systems (e.g. SICStus Prolog, Quintus Prolog,...). A good
introduction is the chapter 8 of “Programming in Prolog” of Clocksin & Mellish [2]. The debugger executes a
program step by step tracing an invocation to a predicztk () and the return from this predicate due to either a
successdxit) or a failure fail). When a failure occurs the execution backtracks to the last predicate with an
alternative clause. The predicate is then re-invokedd). Another source of change of the control flow is due

to exceptions. When an exception is raised from a prediextseption) by throw/1 (sectior] 6.2/, pade }7)

the control is given back to the most recent predicate that has defined a handler to recover this exception using
catch/3 (sectior] 6.2, page }#7). The procedure box model shows these different changes in the control flow, as
illustrated here:

30

4 DEBUGGING

cal ———

faill «——

predicate

——— exit

l«—— redo

4.3 Debugging predicates 31

Each arrow corresponds tgart. An arrow to the box indicates that the control is given to this predicate while an
arrow from the box indicates that the control is given back from the procedure. This model visualizes the control
flow through these five ports and the connections between the boxes associated to subgoals. Finally, it should be
clear that a box is associated to one invocation of a given predicate. In particular, a recursive predicate will give
raise to a box for each invocation of the predicate with different entries/exits in the control flow. Since this might
get confusing for the user, the debugger associates to each box a unique identifier (i.e. the invocation number).

4.3 Debugging predicates
4.3.1 Running and stopping the debugger

trace/0 activates the debugger. The next invocation of a predicate will be traced.

debug/0 activates the debugger. The next invocation of a predicate on which a spy-point has been set will be
traced.

Itis important to understand that the information associated to the control flow is only available when the debugger
is on. For efficiency reasons, when the debugger is off the information concerning the control flow (i.e. the boxes)
is not retained. So, if the debugger is activated in the middle of a computation (by adeliug/0 ortrace/0

in the program or after the interrupt key sequer€d-C) by choosingrace or debug), information prior to

this point is not available.

debugging/0 : prints onto the terminal information about the current debugging state (whether the debugger is
switched on, what are the leashed ports, spy-points defined,...).

notrace/0 ornodebug/0 switches the debugger off.

wamdebug/0 invokes the sub-debugger devoted to the WAM data structures (sgction 4.6, page 33). It can be
also invoked using the/debugger command (sectiopn 4.5, page 32).

4.3.2 Leashing ports

leash(Ports) requests the debugger to prompt the user, as he creeps through the program, for every port
defined in thePorts list. Each element oPorts is an atom incall , exit , redo , fail , exception
Ports can also be an atom defining a shorthand:

e full :equivalenttdcall, exit, redo, fail, exception]
e half : equivalenttdcall, redo]

e loose : equivalent tdcall]

e none: equivalent td]

e tight : equivalenttdcall, redo, fail, exception]

When an unleashed port is encountered the debugger continues to show the associated goal but does not stop the
execution to prompt the user.

4.3.3 Spy-points

When dealing with big sources it is not very practical to creep through the entire program. It is preferable to define
a set of spy-points on interesting predicates to be prompted when the debugger reaches one of these predicates.

32 4 DEBUGGING

Spy-points can be added either usamy/1 (orspypoint _condition/3) or dynamically when prompted by
the debugger using the(or *) debugger command (sectiopn 4.5, page 32). The current mode of leashing does not
affect spy-points in the sense that user interaction is requested on every port.

spy(PredSpec) sets a spy-point on all the predicates giverPogdSpec . PredSpec defines one or several
predicates and has one of the following forms:

e [PredSpecl, PredSpec2,...] . set a spy-point for each element of the list.

e Name set a spy-point for any predicate whose namidasne(whatever the arity).

e Name/Arity : set a spy-point for the predicate whose namdasneand arity isArity

e Name/Al-A2 : set a spy-point for the each predicate whose namaieeand arity is betweeAl andA2.

It is not possible to set a spy-point on an undefined predicate.

The following predicate is used to remove one or several spy-points:
nospy(PredSpec) removes the spy-points from the specified predicates.
nospyall/0 removes all spy-points:

It is also possible to define conditional spy-points.

spypoint _condition(Goal, Port, Test) sets a conditional spy-point on the predicateGoal . When
the debugger reaches a conditional spy-point it only shows the associated goal if the following conditions are ver-
ified:

¢ the actual goal unifies witoal .
o the actual port unifies witRort .

¢ the Prolog goaTlest succeeds.

4.4 Debugging messages

We here described which information is displayed by the debugger when it shows a goal. The basic format is as
follows:

S N M Port: Goal ?

S is a spy-point indicator: if there is a spy-point on the current goakttsymbol is displayed else a space is
displayed.N is the invocation number. This uniqgue number can be used to correlate the trace messages for the
various ports, since it is unique for every invocatidhis an index number which represents the number of direct
ancestors of the goal (i.e. the current depth of the géaljt specifies the particular portdll , exit , fail

redo , exception). Goal is the current goal (it is then possible to inspect its current instantiation) which is
displayed usingvrite _term/3 with quoted(true) andmax.depth(D) options (sectiop 7.14.6, pape]95).
Initially D (the print depth) is set to 10 but can be redefined using thebugger command (section 4.5, page 32).
The? symbol is displayed when the debugger is waiting a command from the usePdite.is a leashed port).

If the port is unleashed, this symbol is not displayed and the debugger continues the execution displaying the next
goal.

4.5 Debugger commands

When the debugger reaches a leashed port it shows the current goal followed?ogytimdol. At this point there
are many commands available. TypiRETURNwvill creep into the program. Continuing to creep will show all the

4.6 The WAM debugger

33

control flow. The debugger shows every port for every predicate encountered during the execution. It is possible
to select the ports at which the debugger will prompt the user using the built-in preldiasibél

pagq 3]l). Each command is only one character long:

(sectiof 4.3 P,

| Command] Name | Description \
RETorc creep single-step to the next port

I leap continue the execution only stopping when a goal with a spy-point is
reached

S skip skip over the entire execution of the current goal. No message wil|l be
shown until control returns

G goto ask for an invocation number and continue the execution until a part is
reached for that invocation number

r retry try to restart the invocation of the current goal by failing until reachingthe
invocation of the goal. The state of execution is the same as when the goal
was initially invoked (except when using side-effect predicates)

f fail force the current goal to fail immediately

w write show the current goal usingrite/2 (sectior] 7.14J6, page P5)

d display show the current goal usirdjsplay/2 (sectior] 7.146, page 95)

p print show the current goal usimint/2 (sectior] 7.14)6, page 95)

e exception show the pending exception. Only applicable teeaneption port

g ancestors show the list of ancestors of the current goal

A alternatives show the list of ancestors of the current goal combined with choice-points

u unify ask for a term and unify the current goal with this term. This is convenient
for getting a specific solution. Only available atal port

father file show the Prolog file name and the line number where the current predicate
is defined

n no debug switch the debugger off. Same msdebug/0 (sectior] 4.3 /1, page B1)

= debugging show debugger information. Same dsbugging/0 (section| 4.3.11,
pagg 3[L)

+ spy this set a spy-point on the current goal. Usgy/1 (sectiod 4.3.|3, pagj?Bl)

- nospy this remove a spy-point on the current goal. Usespy/1 (section 4.3.8,
pagd 31)

* spy conditionally| ask for aternmGoal, Port, Test (terminated by a dot) and set a cop-
ditional spy-point on the current predicat@oal and the current goal must
have the same predicate indicator. Usgypoint _condition/3
(sectior{ 4.3.3, pade B1)

L listing list the clauses associated to the current predicate. lidtiag/1 (sec-
tion[7.23.3, page 136)

a abort abort the current execution. Samead®rt/0 (sectior) 7.18/(1, page 111)

b break invoke a recursive top-level. Samelagak/0 (section 7.18/1, page 1/11)

@ execute goal | ask for a goal and execute it

< set print depth | ask for an integer and set the print depth to this valle for no depth
limit)

hor? help display a summary of available commands
W WAM debugger | invoke the low-level WAM debugger (sectipn 4.6, page 33)

4.6 The WAM debugger

In some cases it is interesting to have access to the WAM data structures. This sub-debugger allows the user to
inspect/modify the contents of any stack or register of the WAM. The WAM debugger is invoked using the built-

in predicatewamdebug/0 (section4.3]1, pade B1) or tWdebugger command (sectipn 4.5, page 32). The
following table presents the specific commands of the WAM debugger:

34 4 DEBUGGING

| Command | Description \
write A[N] write N terms starting at the addre&sisingwrite/1 (sectior] 7.14.6, page 95)
data A[N] displayN words starting at the addres
modify A[N] display and modifyN words starting at the addreAs
where A display the real address corresponding\to
what RA display what corresponds to the real addiRés
deref A display the dereferenced word starting at the addéess
envir [SA display the contents of the environment locate8a{or the current one)
backtrack [SA] | display the contents of the choice-point locate&Af(or the current one)
backtrack all display all choice-points
quit quit the WAM debugger
help display a summary of available commands

In the above table the following conventions apply:
e elements between [and] are optional.
e Nis an optional integer (defaults to 1).

e Ais a WAM address, its syntax i@ANKNAME [N]], i.e. a bank name possibly followed by an index
(defaults to 0)BANKNAMEs either:
— reg : WAM general register (stack pointers, continuation, ...).

— x: WAM X register (temporary variables, i.e. arguments).
— y: WAM Y register (permanent variables).

ab: WAM X register saved in the current choice-point.
— STACKNAMEWAM stack (STACKNAMEN local |, global , trail , cstr).

e SAis a WAM stack address, i. & TACKNAME [N]] (special case of WAM addresses).
e RAis areal address, its syntax is the syntax of C integers (in particular the ndation is recognized).

It is possible to only use the first letters of a commands and bank names when there is no ambiguity. Also the
square bracketg] enclosing the index of a bank name can be omitted. For instance the following command
(showing the contents of 25 consecutive words of the global stack from the indeéat8):global[3] 25 can

be abbreviated agt g 3 25.

35

5 Format of definitions

5.1 General format

The definition of control constructs, directives and built-in predicates is presented as follows:
Templates

Specifies the types of the arguments and which of them shall be instantiated (mode). Types and modes are described

later (sectiof 5]2, page 35).
Description

Describes the behavior (in the absence of any error conditions). It is explicitly mentioned when a built-in predicate
is re-executable on backtracking. Predefined operators involved in the definition are also mentioned.

Errors

Details the error conditions. Possible errors are detailed later (séction 5.3, page 37). For directives, this part is
omitted.

Portability

Specifies whether the definition conforms to the 1ISO standard or is a GNU Prolog extension.

5.2 Types and modes

The templates part defines, for each argument of the concerned built-in predicate, its mode and type. The mode
specifies whether or not the argument must be instantiated when the built-in predicate is called. The mode is
encoded with a symbol just before the type. Possible modes are:

e +: the argument must be instantiated.
e -: the argument must be a variable (will be instantiated if the built-in predicate succeeds).
e ?: the argument can be instantiated or a variable.

The type of an argument is defined by the following table:

36

5 FORMAT OF DEFINITIONS

Type

Description \

TYPE.list

a list whose the type of each elemenTiPE

TYPELlor _TYPE2

a term whose type is eith@YPElor TYPE2

atom

an atom

atom _property

an atom property (sectipn 7.19{12, page|119)

boolean the atomtrue or false

byte an integer> 0 and< 255
callable _term an atom or a compound term
character a single character atom
character _code an integer> 1 and< 255
clause a clause (fact or rule)

close _option

a close option (sectidn 7.10.7, page 71)

compound _term

a compound term

evaluable an arithmetic expression (sectjon 7/6.1, jade 57)

fd _bool _evaluable a boolean FD expression (sectjon 8,7.1, ag¢ 173)

fd _labeling _option an FD labeling option (sectign 8.9.1, page [L78)

fd _evaluable an arithmetic FD expression (sect|on 8(6.1, 170)

fd _variable an FD variable

flag a Prolog flag (section 7.22.1, pdge [L32)

float a floating point number

head a head of a clause (atom or compound term)

integer an integer

in _byte an integer> 0 and< 255 or-1 (for the end-of-file)

in _character a single character atom or the atemd _of _file (for the end-of-file)

in _character _code an integer> 1 and< 255 or-1 (for the end-of-file)

io _-mode an atom iniread , write or append

list the empty lisf] or a non-empty lisf _|]

nonvar any term that is not a variable

number an integer or a floating point number

operator _specifier an operator specifier (sectipn 7.14.10, @e 99)

os file _property an operating system file property (secfion 7.27.11, pagg 146)

predicate _indicator a termName/Arity whereNameis an atom andArity an integer> 0. A
callable term can be given if therict _iso Prolog flag is switched off (sec
tion[7.22.1, page 132)

predicate _property a predicate property (sectipn 7.B.2, p 64)

read _option a read option (sectign 7.14.1, pgge 91)

socket _address

a term of the formAF _UNIX'(A) whereA is an atom

andN an integer

or 'AF _INET'(A,N)

socket _domain an atom in’AF _UNIX' or’AF _INET’

source _sink an atom identifying a source or a sink

stream a stream-term: a term of the fori$stream’(N) whereNis an integee> 0

stream _option a stream option (secti¢n 7.10.6, page 69)

stream _or _alias a stream-term or an alias (atom)

stream _position a stream position: a tern'$stream _position’(11, 12, 13, 14)
wherell 12 ,13 andl4 are integers

stream _property a stream property (sectipn 7.10|.10, p 73)

stream _seek _method an atom in:bof , current or eof

term any term

var _binding _option a variable binding option (secti¢n 7.5.3, p 56)

write _option a write option (sectioh 7.14.6, page{ 95)

5.3 Errors 37

5.3 Errors
5.3.1 General format and error context

When an error occurs an exception of the foremror(ErrorTerm , Caller) is raised.ErrorTerm is

a term specifying the error (detailed in next sections) @atler is a term specifying the context of the error.

The context is either the predicate indicator of the last invoked built-in predicate or an atom giving general context
information.

Using exceptions allows the user both to recover an error wsitah/3 (sectior] 6.2.4, pade A7) and to raise an

error usinghrow/1 (sectior] 6.2.4, pade ¥7).

To illustrate how to write error cases, let us write a predicayepred(X) whereX must be an integer:

my_pred(X) :-
(nonvar(X) ->
true
; throw(error(instantiation_error), my_pred/1)),
),
(integer(X) ->
true
; throw(error(type_error(integer, X), my_pred/1))
),

To help the user to write these error cases, a set of system predicates is provided to raise errors. These predicates are
of the form’$pl _err _..." and they all refer to the implicit error context. The predicates _bip _name/2

(sectior] 7.22]3, page 134) aodrrent _bip _-name/2 (sectiorf 7.22J4, page 134) are provided to set and recover

the name and the arity associated to this context (anarftyneans that only the atom corresponding to the functor

is significant). Using these system predicates the user could define the above predicate as follow:

my_pred(X) :-
set_bip_name(my_pred,1),
(nonvar(X) ->
true
; '$pl_err_instantiation’

(integer(X) ->
true
; '$pl_err_type’'(integer, X)

The following sections detail each kind of errors (and associated system predicates).

5.3.2 Instantiation error

An instantiation error occurs when an argument or one of its components is variable while an instantiated argument

was expectederrorTerm has the following forminstantiation _error
The system predicat&pl _err _instantiation’ raises this error in the current error context (sedtion 5.3.1,

pagg 3Y).

38 5 FORMAT OF DEFINITIONS

5.3.3 Type error

A type error occurs when the type of an argument or one of its components is not the expected type (but not a
variable).ErrorTerm has the following formtype _error(Type, Culprit) whereType is the expected
type andCulprit the argument which caused the erfbype is one of:

e atom e evaluable e integer
e atomic e fd _bool _evaluable o list
e boolean o fd _evaluable e number
e byte e fd _variable e predicate _indicator
e callable o float o variable
e character e in _byte
e compound e in _character
The system predicat&pl _err _type'(Type, Culprit) raises this error in the current error context (sec-

tion[5.3.1, pagp 37).

5.3.4 Domain error

A domain error occurs when the type of an argument is correct but its value is outside the expected domain.
ErrorTerm has the following formdomain _error(Domain, Culprit) whereDomain is the expected
domain ancCulprit the argument which caused the erfdomain is one of:

e atom _property e operator _priority e statistics _value

e buffering _mode e operator _specifier e stream

e character _code _list e 0s_file _permission e stream _option

e close _option e os file _property e stream _or _alias

e date _time e 0s_path e stream _position

e eof _action e predicate _property e stream _property

e fd _labeling _option e prolog _flag e stream _seek _method
e flag _value e read _option e stream _type

e selectable _item .
e format _control _sequence e term _stream _or alias

i socket _address o .
* g-amay index * e var _binding _option
e i0 _mode e socket _domain) ,
e write _option
e non _empty _list e source _sink
e not _less _than _zero e statistics key
The system predicat®pl _err _domain’(Domain, Culprit) raises this error in the current error context

(sectiof 5.3]1, pade B7).

5.3 Errors 39

5.3.5 Existence error

an existence error occurs when an object on which an operation is to be performed does n&txiBerm
has the following form:existence _error(Object , Culprit) whereObject is the type of the object
andCulprit the argument which caused the er®bject is one of:

e procedure e source _sink e Stream

The system predicat@pl _err _existence’(Object, Culprit) raises this error in the current error
context (sectiof 5.3/1, pape|37).

5.3.6 Permission error

A permission error occurs when an attempt to perform a prohibited operation is Eadelerm has the fol-
lowing form: permission _error(Operation , Permission , Culprit) whereOperation is the

operation which caused the errétermission the type of the tried permission ar@ulprit the argument
which caused the erroDperation is one of:

e access e Create e Open
e add _alias e input e output
e close e modify e reposition
andPermission is one of:
e binary _stream e past _end_of _stream e static _procedure
o flag e private _procedure e stream
e operator e source _sink e text _stream
The system predicat®pl _err _permission’(Operation, Permission, Culprit) raises this error

in the current error context (sectipn 5]3.1, page 37).

5.3.7 Representation error

A representation error occurs when an implementation limit has been bredelredTerm has the following

form: representation _error(Limit) whereLimit is the name of the reached limitimit is one of:
e character e max.arity e to0 _many_variables
e character _code e max.integer
e in _character _code e min _integer

The erroramax.integer andmin _integer are not currently implemented.

The system predicat@pl _err _representation’(Limit) raises this error in the current error context

(sectiof 5.3]1, pade B7).

40 5 FORMAT OF DEFINITIONS

5.3.8 Evaluation error

An evaluation error occurs when an arithmetic expression gives rise to an exceptionaBratu€erm has the
following form: evaluation _error(Error) whereError is the name of the erroError is one of:

o float _overflow e undefined e zero _divisor

e int _overflow e underflow
The errordloat _overflow ,int _overflow ,undefined andunderflow are notcurrently implemented.
The system predicat&pl _err _evaluation'(Error) raises this error in the current error context (sec-

tion[5.3.1, pagp 37).

5.3.9 Resource error

A resource error occurs when GNU Prolog does not have enough resdine@3.erm has the following form:
resource _error(Resource) whereResource is the name of the resourcResource is one of:

e print _object _not _linked e too _big _fd _constraint e t00 _many_open _streams
The system predicat®pl _err _resource’(Resource) raises this error in the current error context (sec-

tion[5.3.1, pagg 37).

5.3.10 Syntax error

A syntax error occurs when a sequence of character does not conform to the syntax otteoni®rm has the
following form: syntax _error(Error) whereError is an atom explaining the error.

The system predicat8pl _err _syntax'(Error) raises this error in the current error context (sedtion 5.3.1,
page 37).

5.3.11 System error

A system error can occur at any stage. A system error is generally associated to an external component (e.g.
operating system)ErrorTerm has the following form:system _error(Error) whereError is an atom
explaining the error. This is an extension to ISO which only defsyssem _error without arguments.

The system predicat®pl _err _system’(Error) raises this error in the current error context (sedtion 5.3.1,

pagg 3Y).

41

6 Prolog directives and control constructs

6.1 Prolog directives
6.1.1 Introduction

Prolog directives are annotations inserted in Prolog source files for the compiler. A Prolog directive is used to
specify:

o the properties of some procedures defined in the source file.
¢ the format and the syntax for read-terms in the source file (using changeable Prolog flags).
¢ included source files.

e agoal to be executed at run-time.

6.1.2 dynamic/l

Templates
dynamic(+predicate _indicator)
dynamic(+predicate _indicator _list)
dynamic(+predicate _indicator _sequence)
Description

dynamic(Pred) specifies that the procedure whose predicate indicateréd is a dynamic procedure. This
directive makes it possible to alter the definitionRsed by adding or removing clauses. For more information
refer to the section about dynamic clause management (sgctioh 7.7.[[, page 60).

This directive shall precede the definitionfrfed in the source file.

If there is no clause foPred in the source filePred exists however as an empty predicate (this means that
current _predicate(Pred) succeeds).

In order to allow multiple definitionsPred can also be a list of predicate indicators or a sequence of predicate
indicators using,’/2 as separator.

Portability

ISO directive.

6.1.3 public/1

Templates

public(+predicate _indicator)
public(+predicate _indicator _list)
public(+predicate _indicator _sequence)

Description

42 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

public(Pred) specifies that the procedure whose predicate indicat®rasl is a public procedure. This
directive makes it possible to inspect the clausdrefl . For more information refer to the section about dynamic
clause management (sectjon 7,7.1, gage 60).

This directive shall precede the definitionffed in the source file. Since a dynamic procedure is also public. It
is useless (but correct) to define a public directive for a predicate already declared as dynamic.

In order to allow multiple definitionsPred can also be a list of predicate indicators or a sequence of predicate
indicators using,’/2 as separator.

Portability

GNU Prolog directive. The ISO reference does not define any directive to declare a predicate public but it does
distinguish public predicates. It is worth noting that in most Prolog systemgubkc/1 directive is as a
visibility declaration. Indeed, declaring a predicate as public makes it visible from any predicate defined in any
other file (otherwise the predicate is only visible from predicates defined in the same source file as itself). When a
module system is incorporated in GNU Prolog a more general visibility declaration shall be provided conforming
to the ISO reference.

6.1.4 multifile/1

Templates
multifile(+predicate _indicator)
multifile(+predicate _indicator _list)
multifile(+predicate _indicator _sequence)
Description
multifile(Pred) is not supported by GNU Prolog. When such a directive is encountered it is simply ignored.

All clauses for a given predicate must reside in a single file.
Portability

ISO directive. Not supported.

6.1.5 discontiguous/1

Templates
discontiguous(+predicate _indicator)
discontiguous(+predicate _indicator _list)
discontiguous(+predicate _indicator _sequence)
Description
discontiguous(Pred) specifies that the procedure whose predicate indicatBres is a discontiguous

procedure. Namely, the clauses definifrgd are not restricted to be consecutive but can appear anywhere in the
source file.

This directive shall precede the definitionfrfed in the source file.

In order to allow multiple definitionsPred can also be a list of predicate indicators or a sequence of predicate
indicators using,’/2 as separator.

6.1 Prolog directives 43

Portability

ISO directive. The ISO reference document states that if there is no claletbrin the source filePred exists
however as an empty predicate (icerrent _predicate(Pred) will succeed). This is not the case for GNU
Prolog.

6.1.6 ensure _linked/1

Templates
ensure _linked(+predicate _indicator)
ensure _linked(+predicate _indicator _list)
ensure _linked(+predicate _indicator _sequence)
Description

ensure _linked(Pred) specifies that the procedure whose predicate indicatBred must be included by

the linker. This directive is useful when compiling to native code to force the linker to include the code of a
given predicate. Indeed, if thgplc is invoked with an option to reduce the size of the executable (sdction 3.4.3,
pagd 2P), the linker only includes the code of predicates that are statically referenced. However, the linker cannot
detect dynamically referenced predicates (used as data passed to a meta-call predicate). The use of this directive
prevents it to exclude the code of such predicates.

In order to allow multiple definitionsPred can also be a list of predicate indicators or a sequence of predicate
indicators using,’/2 as separator.

Portability

GNU Prolog directive.

6.1.7 built _n/0 ,built _in/1 ,built _in _fd/0 ,built _in _fd/1

Templates

built _in

built _in(+predicate _indicator)

built _in(+predicate _indicator _list)

built _in(+predicate _indicator ~ _sequence)

built _in _fd

built _in _fd(+predicate _indicator)

built _in _fd(+predicate _indicator _list)

built _in _fd(+predicate _indicator _sequence)
Description

built _in specifies that the procedures defined from now havétiile _in property (sectioh 7.8]2, page|64).
built _in(Pred) is similartobuilt _in/0 but only affects the procedure whose predicate indicatBresl .
This directive shall precede the definition®rfed in the source file.

In order to allow multiple definitionsPred can also be a list of predicate indicators or a sequence of predicate
indicators using,’/2 as separator.

built _in fd (resp.built _in _fd(Pred)) is similartobuilt _in (resp.built _in(Pred)) but sets the
built _in _fd predicate property (sectipn 7.B.2, pagé 64).

44 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

Portability

GNU Prolog directives.

6.1.8 include/1

Templates
include(+atom)

Description

include(File) specifies that the content of the Prolog soufde shall be inserted. The resulting Prolog
text is identical to the Prolog text obtained by replacing the directive by the content of the PrologBiéeirce

Seeabsolute _file _name/2 for information about the syntax &ile (sectiorf 7.26]1, page T40).
Portability

ISO directive.

6.1.9 ensure _loaded/1

Templates
ensure _loaded(+atom)

Description

ensure _loaded(File) is not supported by GNU Prolog. When such a directive is encountered it is simply
ignored.

Portability

ISO directive. Not supported.

6.1.10 op/3
Templates
op(+integer, +operator _specifier, +atom _or _atom _list)
Description
op(Priority, OpSpecifier, Operator) alters the operator table. This directive is executed as soon

as it is encountered by calling the built-in predica¥3 (sectior] 7.14.10, page 99). A system directive is also
generated to reflect the effect of this directive at run-time (seffion|3.4.4[phge 25).

Portability

ISO directive.

6.1 Prolog directives 45

6.1.11 char _conversion/2

Templates
char _conversion(+character, +character)

Description

char _conversion(InChar, OutChar) alters the character-conversion mapping. This directive is executed
as soon as it is encountered by a call to the built-in predicizae _conversion/2 (sectior] 7.14.72, page 1j01).

A system directive is also generated to reflect the effect of this directive at run-time ($ectign 3.4[4,|page 25).
Portability

ISO directive.

6.1.12 set _prolog _flag/2

Templates
set _prolog _flag(+flag, +term)

Description
set _prolog _flag(Flag, Value) sets the value of the Prolog fldlag to Value . This directive is ex-

ecuted as soon as it is encountered by a call to the built-in predseateprolog _flag/i2 (section[7.22]1,
page 13P). A system directive is also generated to reflect the effect of this directive at run-time (sectjon 3.4.4,

pagd 2b).
Portability

ISO directive.

6.1.13 initialization/1

Templates
initialization(+callable _term)
Description
initialization(Goal) addsGoal to the set of goal which shall be executed at run-time. A user directive is

generated to execu@oal at run-time. If several initialization directives appear in the same file they are executed
in the order of appearance (section 3.4.4, page 25).

Portability

ISO directive.

6.1.14 foreign/2 ,foreign/l1

Templates

46 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

foreign(+callable _term, +foreign _option _list)
foreign(+callable _term)
Description
foreign(Template, Options) defines an interface predicate whose prototypeeisplate according to

the options given byptions . Refer to the foreign code interface for more information (se¢tion 11.1,[page 191).
foreign(Template) is equivalent tdoreign(Template, [])
Portability

GNU Prolog directive.

6.2 Prolog control constructs
6.2.1 true/0 ,fail/lO Y0

Templates

true
fail
!
Description
true always succeeds.

fail always fails (enforces backtracking).

I always succeeds and the for side-effect of removing all choice-points created since the invocation of the predicate
activating it.

Errors
None.
Portability

ISO control constructs.

6.2.2 ()2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then
Templates

', (+callable _term, +callable _term)

;(+callable _term, +callable _term)

->(+callable _term, +callable _term)
Description

Goall , Goal2 executessoall and, in case of success, executeml?2 .

Goall ; Goal2 first creates a choice-point and execuBamll . On backtrackingsoal2 is executed.

6.2 Prolog control constructs a7

Goall -> Goal2 first executessoall and, in case of success, removes all choice-points creat€ball

and execute&oal2 . This control construct acts like an if-the@@all is the test part anGoal2 the then part).

Note that ifGoall fails->/2 fails also.->/2 is often combined with/2 to define an if-then-else as follows:

Goall -> Goal2 ; Goal3 . NotethatGoall -> Goal2 is the first argument of th€)/2 andGoal3

(the else part) is the second argument. Such an if-then-else control construct first creates a choice-point for the
else-part (intuitively associated #2) and then executeSoall . In case of success, all choice-points created by
Goall together with the choice-point for the else-part are removedaual2 is executed. [fGoall fails then

Goal3 is executed.

"’ ,; and-> are predefined infix operators (sectjon 7.14.10, page 99).

Errors
Goall orGoal? is avariable instantiation _error
Goall is neither a variable nor a callable term type _error(callable, Goall)
Goal2 is neither a variable nor a callable term type _error(callable, Goal2)
The predicate indicatdPred of Goall or Goal2 existence _error(procedure, Pred)

does not correspond to an existing procedure and the
value of theunknown Prolog flag iserror

(sectior] 7.22]1, page 132)

Portability

ISO control constructs.

6.2.3 call/l

Templates
call(+callable _term)

Description

call(Goal) executessoal . call/l succeeds iGoal represents a goal which is true. Wh@pal contains
acut symbol (sectior] 6.2[1, page 6) as a subgoal, the effett@bes not extend outsidgoal .

Errors
Goal is avariable instantiation _error
Goal is neither a variable nor a callable term type _error(callable, Goal)
The predicate indicatdPred of Goal does not existence _error(procedure, Pred)

correspond to an existing procedure and the value|of
theunknown Prolog flag iserror (sectior] 7.22]1,

pagd 13p)

Portability

ISO control construct.

6.2.4 catch/3 ,throw/1

Templates

catch(?callable _term, ?term, ?term)
throw(+nonvar)

48 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

Description

catch(Goal, Catcher, Recovery) is similar tocall(Goal) (sectior] 6.2.3, pade }7). If this succeeds
or fails, so does the call watch/3 . If however, during the execution &oal , there is a call téhrow(Ball) ,

the current flow of control is interrupted, and control returns to a calbtdh/3 that is being executed. This can
happen in one of two ways:

o implicitly, when an error condition for a built-in predicate is satisfied.

o explicitly, when the program executes a caltlmfow/1 because the program wishes to abandon the current
processing, and instead to take an alternative action.

throw(Ball) causes the normal flow of control to be transferred back to an existing aatdi/3 . When a
call tothrow(Ball) happensBall is copied and the stack is unwound back to the catlatch/3 , where-
upon the copy oBall is unified withCatcher . If this unification succeeds, thematch/3 executes the goal
Recovery usingcall/l (section 6.2.3, page A7) in order to determine the success or failwataf/3
Otherwise, in case the unification fails, the stack keeps unwinding, looking for an earlier invocatatoloB

Ball may be any non-variable term.

Errors
Goal is avariable instantiation _error
Goal is neither a variable nor a callable term type _error(callable, Goal)
The predicate indicatdPred of Goal does not existence _error(procedure, Pred)

correspond to an existing procedure and the value|of
theunknown Prolog flag iserror (sectior] 7.22]1,

pagd 13p)

Ball is a variable instantiation _error

If Ball does not unify with th&€atcher argument of any call ofatch/3 , a system error message is displayed
andthrow/1 fails.

Whencatch/3 calls Recovery it usescall/l (section 6.2.3, page }7), anstantiation _error , a
type _error oranexistence _error canthen occur depending &ecovery .

Portability

ISO control constructs.

49

7 Prolog built-in predicates

7.1 Type testing

7.1.1 var/l ,nonvar/l ,atom/l ,integer/l ,float/1 ,number/l ,atomic/l |,

compound/1 , callable/1 ,list/1 ,partial _list/1 ,list _or _partial _list/1
Templates

var(?term) atomic(?term)

nonvar(?term) compound(?term)

atom(?term) callable(?term)

integer(?term) list(?term)

float(?term) partial _list(?term)

number(?term) list _or _partial _list(?term)
Description

var(Term) succeeds iTerm is currently uninstantiated (which therefore has not been bound to anything, except
possibly another uninstantiated variable).

nonvar(Term) succeeds ifferm is currently instantiated (opposite wdir/1).

atom(Term) succeeds iferm is currently instantiated to an atom.

integer(Term) succeeds iTerm is currently instantiated to an integer.

float(Term) succeeds iTerm is currently instantiated to a floating point number.

number(Term) succeeds iTerm is currently instantiated to an integer or a floating point number.
atomic(Term) succeeds iTerm is currently instantiated to an atom, an integer or a floating point number.

compound(Term) succeeds iTerm is currently instantiated to a compound term, i.e. a term of arity(a list
or a structure).

callable(Term) succeeds ifferm is currently instantiated to a callable term, i.e. an atom or a compound
term.

list(Term) succeeds ifTerm is currently instantiated to a list, i.e. the atgn (empty list) or a term with
principal functor.’/2 and with second argument (the tail) a list.

partial _list(Term) succeeds iTerm is currently instantiated to a partial list, i.e. a variable or a term whose
the main functor is.’/2 and the second argument (the tail) is a partial list.

list _or _partial _list(Term) succeeds iTerm is currently instantiated to a list or a partial list.
Errors

None.

Portability

var/l ,nonvar/l ,atom/l ,integer/l ,float/1 ,number/l ,atomic/l ,compound/l andcallable/1
are ISO predicates.

50 7 PROLOG BUILT-IN PREDICATES

list/1 ,partial _list/1 andlist _or _partial _list/1 are GNU Prolog predicates.

7.2 Term unification
7.2.1 (=)/I2 - Prolog unification

Templates
=(?term, ?term)

Description

Terml = Term2 unifiesTerml andTerm2. No occurs check is done, i.e. this predicate does not check if a
variable is unified with a compound term containing this variable (this can lead to an infinite loop).

= is a predefined infix operator (sectjon 7.14.10, dage 99).
Errors

None.

Portability

ISO predicate.

7.2.2 unify _with _occurs _check/2

Templates
unify _with _occurs _check(?term, ?term)

Description

unify _with _occurs _check(Terml, Term2) unifiesTerml andTerm2. The occurs check test is done
(i.e. the unification fails if a variable is unified with a compound term containing this variable).

Errors
None.
Portability

ISO predicate.

7.2.3 (\=)/2 - not Prolog unifiable

Templates
\=(?term, ?term)

Description

Terml \= Term2 succeeds iferml andTerm2 are not unifiable (no occurs check is done).

7.3 Term comparison 51

\= is a predefined infix operator (sectjon 7.14.10, dage 99).

Errors
None.
Portability

ISO predicate.

7.3 Term comparison
7.3.1 Standard total ordering of terms

The built-in predicates described in this section allows the user to compare Prolog terms. Prolog terms are totally
ordered according to the standard total ordering of terms which is as follows (from the smallest term to the greatest):

e variables, oldest first.

e finite domain variables (secti¢n 8.]..1, page|165), oldest first.
¢ floating point numbers, in numeric order.

e integers, in numeric order.

e atoms, in alphabetical (i.e. character code) order.

e compound terms, ordered first by arity, then by the name of the principal functor and by the arguments in
left-to-right order.

A listis treated as a compound term (whose principal functol/s).

The portability of the order of variables is not guaranteed (in the ISO reference the oder of variables is system
dependent).

7.3.2 (==)/2 -termidentical, \==)/2 -term notidentical,
(@<)/2 -term less than,(@=<)/2 -term less than or equal to,
(@>)/2 -term greater than, (@>=)/2 - term greater than or equal to

Templates
==(?term, ?term) @=<(?term, ?term)
\==(?term, ?term) @>(?term, ?term)
@<(?term, ?term) @>=(?term, ?term)
Description

These predicates compare two terms according to the standard total ordering of terms[(section 7[3.1L, page 51).
Terml == Term2 succeeds iTerm1 andTerm2 are equal.
Terml \== Term2 succeeds iTerml andTerm2 are different.

Terml @< Term2succeeds iTerml is less thamerm?2.

52 7 PROLOG BUILT-IN PREDICATES

Terml @=< Term2succeeds iTerml is less than or equal fberm2.

Terml @> Term2succeeds iferml is greater thaferm?2.

Terml @>= Term2succeeds iTerml is greater than or equal Term2.

==,\== , @5 @=5 @>and@>=are predefined infix operators (section 7.1%.10, pae 99).
Errors

None.

Portability

ISO predicates.

7.3.3 compare/3

Templates
compare(?atom, +term, +term)

Description
compare(Result, Terml, Termz2) compare§erml andTerm2 according to the standard (section 7]3.1,
pagq 5]1) and unifieResult with:

e the atonx if Term1 is less tharTerm?2.

e the atom= if Term1l andTerm2 are equal.

e the aton> if Terml is greater thafferm2.

Errors

] Result is neither a variable nor an atom \ type _error(atom, Result)

Portability

GNU Prolog predicate.

7.4 Term processing
7.4.1 functor/3

Templates

functor(+nonvar, ?atomic, ?integer)
functor(-nonvar, +atomic, +integer)

Description
functor(Term, Name, Arity) succeeds if the principal functor d@erm is Nameand its arity isArity
This predicate can be used in two ways:

e Term is not a variable: extract the name (an atom or a numbBeiiim is a number) and the arity dferm
(if Term is atomicArity = 0).

7.4 Term processing 53

e Term is a variable: unifyTerm with a general term whose principal functor is givenNgmeand arity is
given byArity

Errors
Term andNameare both variables instantiation _error
Term andArity are both variables instantiation _error

Term is a variable andNameis neither a variable nor type _error(atomic, Name)
an atomic term
Term is a variable and\rity is neither a variable | type _error(integer, Arity)
nor an integer
Term is a variableNameis a constant but not an type _error(atom, Name)
atom andArity is an integer> O

Term is a variable and\rity is an integer> representation _error(max _arity)
maxarity flag (sectiof 7.22]1, page 132)
Term is a variable and\rity is an integex 0 domain _error(not _less _than _zero,
Arity)
Portability

ISO predicate.

7.4.2 arg/3

Templates
arg(+integer, +compound _term, ?term)

Description

arg(N, Term, Arg) succeeds if thélth argument ofTerm is Arg .

Errors

Nis a variable instantiation _error

Term is a variable instantiation _error

Nis neither a variable nor an integer type _error(integer, N)

Term is neither a variable nor a compound term type _error(compound, Term)

Nis an integex: 0 domain _error(not _less _than _zero, N)
Portability

ISO predicate.

743 (=.)2 - univ

Templates

=..(+nonvar, ?list)
=..(-nonvar, +list)

Description

Term =.. List succeedsitist is a list whose head is the atom corresponding to the principal functor of
Term and whose tail is a list of the argumentsTafrm.

54 7 PROLOG BUILT-IN PREDICATES

=.. isapredefined infix operator (sectjon 7.14.10, gage 99).

Errors
Term is a variable andlist is a partial list instantiation _error
List is neither a partial list nor a list type _error(list, List)
Term is a variable andlist is a list whose head is a instantiation _error
variable

List is a list whose heaHlis neither an atom nor a| type _error(atom, H)
variable and whose tail is not the empty list
List is a list whose heaHlis a compound term and type _error(atomic, H)
whose tail is the empty list

Term is a variable andlist is the empty list domain _error(non _empty _list, [])
Term is a variable and the tail dfist has a length | representation _error(max _arity)
> maxarity flag (sectionf 7.22]1, page 132)

Portability

ISO predicate.

7.4.4 copy _term/2

Templates
copy _term(?term, ?term)

Description

copy _term(Terml, Term2) succeeds iferm2 unifies with a ternil which is a renamed copy dferml.
Errors

None.

Portability

ISO predicate.

7.4.5 setarg/4 |, setarg/3

Templates
setarg(+integer, +compound _term, +term, +boolean)
setarg(+integer, +compound _term, +term)
Description
setarg(N, Term, NewValue, Undo) replaces destructively théth argument offerm with NewValue .

This assignment is undone on backtrackinglifdo = true . This should only used if there is no further use of
the old value of the replaced argumentUlido =false thenNewValue must be either an atom or an integer.

setarg(N, Term, NewValue) is equivalent tsetarg(N, Term, NewValue, true)

Errors

7.5 Variable naming/numbering 55

Nis a variable instantiation _error
Nis neither a variable nor an integer type _error(integer, N)
Nis an integex 0 domain _error(not _less _than _zero, N)
Term is a variable instantiation _error

Term is neither a variable nor a compound term type _error(compound, Term)
NewValue is neither an atom nor an integer and | type _error(atomic, NewValue)

Undo = false

Undo is a variable instantiation _error

Undo is neither a variable nor a boolean type _error(boolean, Undo)
Portability

GNU Prolog predicate.

7.5 Variable naming/numbering
7.5.1 namesingleton _vars/1

Templates
name.singleton _vars(?term)

Description

name.singleton _vars(Term) binds each singleton variable appearingTierm with a term of the form
'$VARNAME’(" ') . Such aterm can be outputbyite _term/3 as a variable name (section 7.74.6, dade 95).

Errors
None.
Portability

GNU Prolog predicates.

7.5.2 name_query _vars/2

Templates
name_query _vars(+list, ?list)
Description
name_query _vars(List, Rest) for each element oList of the form Name = Var where Nameis
an atom and/ar a variable, bind$/ar with the term’$VARNAME'(Name) . Such a term can be output by

write _term/3 as a variable name (sectipn 7.14.6, gade B®)st is unified with the list of elements dfist
that have not given rise to a binding. This predicate is provided as a way to name the variable lists obtained re-

turned byread _term/3 with variable _names(List) or singletons(List) options (sectiof 7.14.1,
pagg 9.
Errors

List is a partial list instantiation _error

List is neither a partial list nor a list type _error(list, List)

Rest is neither a partial list nor a list type _error(list, Rest)

56

7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicate.

7.5.3 bind _variables/2 ,numbervars/3 , numbervars/1
Templates
bind _variables(?term, +var _binding _option _list)
numbervars(?term, +integer, ?integer)
numbervars(?term)
Description
bind _variables(Term, Options) binds each variable appearingTierm according to the options given
by Options .

Variable binding options: Options is a list of variable binding options. If this list contains contradictory
options, the rightmost option is the one which applies. Possible options are:

numbervars : specifies that each variable appearingTgrm should be bound to a term of the form
'$VAR'(N) whereNis an integer. Such a term can be outputvinyte _term/3 as a variable name

(sectior] 7.14J6, page 5). This is the default.

namevars : specifies that each variables appearingenm shall be bound to a term of the for8VARNAME'(Name)
whereNameis the atom that would be output lyrite _term/3 seeing a term of th&VAR'(N) where

Nis an integer. Such a term can be outputite _term/3 as a variable name (section 7.14.6, gade 95).

This is the alternative taoumbervars .

from(From) : the first integeN to use for number/name variablesT@rm is From. The default value is
0.

next(Next) : whenbind _variables/2 succeedd\ext is unified with the (last intege¥)+1 used to
bind the variables oferm.

exclude(List) : collects all variable names appearind.ist to avoid a clash when binding a variable
of Term. Precisely a numbe¥ > From will not be used to bind a variable derm if:
— there is a sub-term dfist of the form’$VAR’(N) or '$VARNAME’(Name) whereNameis the
constant that would be output byrite _term/3 seeing a term of th&VAR'(N)

— an element otist is of the formName = Var whereNameis an atom that would be output by
write _term/3 on seeing a term of the fror$VAR’(N) . This case allows for lists returned by
read _term/3 (withvariable _names(List) orsingletons(List) options) (sectiop 7.14.1,

pagd 91) and bpame_query _vars/2 (sectior] 7.5.2, pade b5).

numbervars(Term, From, Next) is equivalent tdind _variables(Term, [from(From), next(Next)]
i.e. each variable oferm is bound td$VAR'(N) whereFrom < N< Next .

numbervars(Term) is equivalent tamumbervars(Term, 0,).

Errors

7.6 Arithmetic 57

Options is a partial list or a list with an elemeBt | instantiation _error
which is a variable
Options is neither a partial list nor a list type _error(list, Options)
an elemenk of theOptions list is neither a domain _error(var _binding _option, E)
variable nor a variable binding option
From is a variable instantiation _error
From is neither a variable nor an integer type _error(integer, From)
Next is neither a variable nor an integer type _error(integer, Next)
List is a partial list instantiation _error
List is neither a partial list nor a list type _error(list, List)
Portability

GNU Prolog predicates.

7.5.4 term _ref/2

Templates

term _ref(+term, ?integer)
term _ref(?term, +integer)

Description

term _ref(Term, Ref) succeeds if the internal referencel@rm is Ref . This predicate can be used either to
obtain the internal reference of a term or to obtain the term associated to a given reference. Note that two identical
terms can have different internal references. A good way to use this predicate is to first record the internal reference
of a given term and to later re-obtain the term via this reference.

Errors

Term andRef are both variables instantiation _error

Ref is neither a variable nor an integer type _error(integer, Ref)

Ref is an integex 0 domain _error(not _less _than _zero, Ref)
Portability

GNU Prolog predicate.

7.6 Arithmetic

7.6.1 Evaluation of an arithmetic expression

An arithmetic expression is a Prolog term built from numbers, variables, and functors (or operators) that represent
arithmetic functions. When an expression is evaluated each variable must be bound to a non-variable expression.
An expression evaluates to a number, which may be an integer or a floating point number. The following table
details the components of an arithmetic expression, how they are evaluated, the types expected/returned and if they
are I1SO or an extension:

58 7 PROLOG BUILT-IN PREDICATES
| Expression | Result =evalExpression) | Signature | 1SO |
Variable must be bound to a non-variable expresdion IF —IF Y

The result isevalE)
integer number this number | —1 Y
floating point number this number F—F Y
+ E evalE) IF—IF N
- E - evalE) IF—IF Y
inc(E) evalE) + 1 IF—IF N
dec(E) evalE) - 1 IF—IF N
El + E2 evalE1) + evalE2) IFIF—=IF | Y
El - E2 evalE1l) - evalE2) IFIF—=IF | Y
E1l * E2 evalEl) * evalE2) IFIF—=IF | Y
El / E2 evalE1l) / evalE2) IFIF—-F | Y
El /| E2 rnd(evalEl) / evalE2)) p— Y
El rem E2 evalE1l) - (rnd(evalEl) / evalE2))*evalE2)) L1 —1 Y
E1 mod E2 evalE1l) - (|evalEl) / evalE2)| *evalE2)) L1 —1 Y
E1 N E2 evalE1l) bitwise.andevalE2) T —1 Y
E1 V E2 evalE1) bitwise or evalE2) p— Y
El "~ E2 evalE1) bitwise xor evalE2) L1 —1 N
\ E bitwise notevalE) | — 1 Y
El << E2 evalE1l) integershift_left evalE2) 1 —1 Y
El >> E2 evalE1l) integershift_right evalE2) p— Y
abs(E) absolute value oévalE) IF—IF Y
sign(E) sign ofevalE) (-1if < 0,0if=0, +1if > 0) IF —IF Y
min(E1,E2) minimal value betweervalE1) andevalE2) IF,IF—? N
max(E1,E2) maximal value betweeavalE1) andevalE2) IF, IF—? N
E1l ** E2 evalE1) raised to the power afvalE2) IFIF-F | Y
sqrt(E) square root oévalE) IF—F Y
atan(E) arc tangent oévalE) IF—F Y
cos(E) cosine ofevalE) IF—F Y
acos(E) arc cosine oévalE) IF—F N
sin(E) sine ofevalE) IF—F Y
asin(E) arc sine ofevalE) IF—F N
exp(E) e raised to the power advalE) IF—F Y
log(E) natural logarithms oévalE) IF—F Y
float(E) the floating point number equal &wvalE) IF—F Y
ceiling(E) roundsevalE) upward to the nearest integer F—1 Y
floor(E) roundsevalE) downward to the nearest integer F—1 Y
round(E) roundsevalE) to the nearest integer F—I Y
truncate(E) the integer value oévalE) F—1 Y
float _fractional _part(E) the float equal to the fractional part efalE) F—F Y
float _integer _part(E) the float equal to the integer part@falE) F—-F Y

The meaning of the signature field is as follows:
e | — I: unary function, the operand must be an integer and the result is an integer.
e F — F:unary function, the operand must be a floating point number and the result is a floating point number.
e F— I: unary function, the operand must be a floating point number and the result is an integer.

e IF — F: unary function, the operand can be an integer or a floating point number and the result is a floating
point number.

e IF — IF: unary function, the operand can be an integer or a floating point number and the result has the same
type as the operand.

e |, 1 — I: binary function: each operand must be an integer and the result is an integer.

7.6 Arithmetic 59

e IF, IF — IF: binary function: each operand can be an integer or a floating point number and the result is a
floating point number if at least one operand is a floating point number, an integer otherwise.

e IF, IF — ?: binary function: each operand can be an integer or a floating point number and the result has the
same type as the selected operand. This is usediforandmax. Note that in case of equality between an
integer and a floating point number the result is an integer.

is,+, -,*, 1/l ,/,rem, andmod are predefined infix operators. and- are predefined prefix operators (sec-

tion[7.14.10, pagle 99).

Integer division rounding function: the integer division rounding functiomd (X) rounds the floating point
numberX to an integer. There are two possible definitions (depending on the target machine) for this function
which differ on negative numbers:

e rnd (X) =integer part o, e.g.rnd (-1.5) =-1 (round toward 0)
e rnd (X) =|X|,e.g.rnd (-1.5) =-2 (round toward—oo)

The definition of this function determines the precise definition of the integer divi§)déd and of the integer
remainderrem)/2 . Rounding toward zero is the most common case. In any case it is possible to test the value
(toward _zero or down) of theinteger _rounding _function Prolog flag to determine which function

being used (sectidgn 7.22.1, page[132).

Fast mathematical mode in order to speed-up integer computations, the GNU Prolog compiler can generate
faster code when invoked with thefast-math option (sectioj 3.4]3, page|22). In this mode only integer
operations are allowed and a variable in an expression must be bound at evaluation time to an integer. No type
checking is done.

Errors
a sub-expressioR is a variable instantiation _error
a sub-expressioR is neither a number nor an type _error(evaluable, E)

evaluable functor
a sub-expressioR is a floating point number while | type _error(integer, E)
an integer is expected
a sub-expressioR is an integer while a floating point type _error(float, E)
number is expected
a division by zero occurs evaluation _error(zero _divisor)

Portability
Refer to the above table to determine which evaluable functors are ISO and which are GNU Prolog extensions.

For efficiency reasons, GNU Prolog does not detect the following ISO arithmetic eftoas: _overflow
int _overflow, int _underflow , andundefined

7.6.2 (is)/2 - evaluate expression

Templates
is(?nonvar, +evaluable)

Description

Result is Expression succeeds iResult can be unified witkevalExpression). Refer to the evalua-
tion of an arithmetic expression for the definition of thealfunction (sectiofl 7.6]1, pa§e|57).

is is a predefined infix operator (section 7.14.10, gage 99).

60 7 PROLOG BUILT-IN PREDICATES

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section 7.6.[, page 57).
Portability

ISO predicate.

7.6.3 (==)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,

(<)/2 - arithmetic less than,(=<)/2 - arithmetic less than or equal to,
(®»)/2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to

Templates
=:=(+evaluable, +evaluable) =<(+evaluable, +evaluable)
=\=(+evaluable, +evaluable) >(+evaluable, +evaluable)
<(+evaluable, +evaluable) >=(+evaluable, +evaluable)
Description

Exprl == Expr2 succeeds iévalExprl) =evalExpr2).

Exprl =\= Expr2 succeeds iévalExprl) # evalExpr2).

Exprl < Expr2 succeeds ievalExprl) < evalExpr2).

Exprl =< Expr2 succeeds iévalExprl) < evalExpr2).

Exprl > Expr2 succeeds iévalExprl) > evalExpr2).

Exprl >= Expr2 succeeds ievalExprl) > evalExpr2).

Refer to the evaluation of an arithmetic expression for the definition aétaéunction (sectiof 7.6]1, page]57).
=:=,=\=, <, =<, > and>= are predefined infix operators (section 7.14.10, pape 99).

Errors

Refer to the evaluation of an arithmetic expression for possible errors (sgction 7.6.[L, page 57).
Portability

ISO predicates.

7.7 Dynamic clause management
7.7.1 Introduction

Static and dynamic procedures a procedure is either dynamic or static. All built-in predicates are static. A
user-defined procedure is static by default unledgrsamic/1 directive precedes its definition (sectjon 6]1.2,

pagg 4]l). Adding a clause to a non-existent procedure creates a dynamic procedure. The clauses of a dynamic
procedure can be altered (e.g. usasgerta/l), the clauses of a static procedure cannot be altered.

7.7 Dynamic clause management 61

Private and public procedures each procedure is either public or private. A dynamic procedure is always public.
Each built-in predicate is private, and a static user-defined procedure is private by default ynbdis/a

directive precedes its definition (sectjon 6]1.3, gade 41). If a dynamic declaration exists it is unnecessary to add a
public declaration since a dynamic procedure is also public. A clause of a public procedure can be inspected (e.g.
usingclause/2), a clause of a private procedure cannot be inspected.

A logical database update view any change in the database that occurs as the result of executing a goal (e.g.
when a sub-goal is a call afssertz/1 orretract/1) only affects subsequent activations. The change does
not affect any activation that is currently being executed. Thus the database is frozen during the execution of a
goal, and the list of clauses defining a predication is fixed at the moment of its execution.

7.7.2 asserta/l ,assertz/1

Templates

asserta(+clause)
assertz(+clause)

Description

asserta(Clause) first converts the terrClause to a clause and then adds it to the current internal database.
The predicate concerned must be dynamic (setion|7.7.1[péage 60) or undefined and the clause is inserted before
the first clause of the predicate. If the predicated is undefined it is created as a dynamic procedure.

assertz(Clause) acts likeasserta/l except that the clause is added at the end of all existing clauses of
the concerned predicate.

Converting a term Clause to a clauseClausel :

e extract the head and the body®fause : eitherClause =(Head :- Body) orClause =Head and
Body =true .

e Head must be a callable term (or else the conversion fails).

e convertBody to a body clause (i.e. a godpdyl.

¢ the converted clauselausel =(Head :- Bodyl)
Converting aterm T to a goal:

e if Tis avariable it is replaced by the tewall(T)

e if T is a control construct,’)/2 , ()2 or(->)/2 each argument of the control construct is recur-
sively converted to a goal.

o if T is a callable term it remains unchanged.

e otherwise the conversion fail3 {s neither a variable nor a callable term).

Errors
Head is a variable instantiation _error
Head is neither a variable nor a callable term type _error(callable, Head)
Body cannot be converted to a goal type _error(callable, Body)
The predicate indicatdPred of Head is that of a permission _error(modify,
static procedure static _procedure, Pred)
Portability

ISO predicates.

62 7 PROLOG BUILT-IN PREDICATES

7.7.3 retract/1

Templates
retract(+clause)

Description

retract(Clause) erases the first clause of the database that unifies@lithise . The concerned predicate

must be a dynamic procedure (section 7.7.1, page 60). Removing all clauses of a procedure does not erase the
procedure definition. To achieve this useolish/1 (sectior] 7.7J6, page p3jetract/1 s re-executable on
backtracking.

Errors
Head is a variable instantiation _error
Head is neither a variable nor a callable term type _error(callable, Head)
The predicate indicatdPred of Head is that of a permission _error(modify,
static procedure static _procedure, Pred)
Portability

ISO predicate. In the ISO reference, the operation associated petimession _error isaccess whileitis
modify in GNU Prolog. This seems to be an error of the ISO reference sinas$erta/l (which is similar
in spirittoretract/1) the operation is alsmodify .

7.7.4 retractall/1

Templates
retractall(+head)

Description

retractall(Head) erases all clauses whose head unifies Wigad. The concerned predicate must be a
dynamic procedure (sectign 7.J7.1, pagé 60). The procedure definition is not removed so that it is found by
current _predicate/l (sectiori 7.8]1, pade p4abolish/1 should be used to remove the procedure (sec-

tion[7.7.6, pagp §3).

Errors
Head is a variable instantiation _error
Head is not a callable term type _error(callable, Head)
The predicate indicatdPred of Head is that of a permission _error(modify,
static procedure static _procedure, Pred)
Portability

GNU Prolog predicate.

7.7.5 clause/2

Templates

clause(+head, ~?callable _term)

7.7 Dynamic clause management 63

Description

clause(Head, Body) succeeds if there exists a clause in the database that unifie$le4ith ;- Body .
The predicate in question must be a public procedure (s€ctiorj 7.7.1, gage 60). Clauses are delivered from the first
to the last. This predicate is re-executable on backtracking.

Errors
Head is a variable instantiation _error
Head is neither a variable nor a callable term type _error(callable, Head)
The predicate indicatdPred of Head is that of a permission _error(access,
private procedure private _procedure, Pred)
Body is neither a variable nor a callable term type _error(callable, Body)
Portability

ISO predicate.

7.7.6 abolish/1

Templates
abolish(+predicate _indicator)

Description

abolish(Pred) removes from the database the procedure whose predicate indicBtedis The concerned
predicate must be a dynamic procedure (se¢tion]7.7.1[page 60).

Errors
Pred is a variable instantiation _error
Pred is a termName/Arity and eitheNameor instantiation _error
Arity is a variable
Pred is neither a variable nor a predicate indicaton type _error(predicate _indicator,

Pred)

Pred is atermName/Arity andArity is neither | type _error(integer, Arity)
a variable nor an integer
Pred is atermName/Arity andNameis neither a | type _error(atom, Name)
variable nor an atom

Pred is atermName/Arity andArity isan domain _error(not _less _than _zero,
integer< 0 Avrity)

Pred is atermName/Arity andArity is an representation _error(max _arity)
integer> maxarity flag (section 7.22]1, page 132)

The predicate indicatdPred is that of a static permission _error(modify,

procedure static _procedure, Pred)

Portability

ISO predicate.

64 7 PROLOG BUILT-IN PREDICATES

7.8 Predicate information

7.8.1 current _predicate/l

Templates
current _predicate(?predicate _indicator)
Description
current _predicate(Pred) succeeds if there exists a predicate indicator of a defined procedure that unifies

with Pred . All user defined procedures are found, whether static or dynamic. Internal system procedures whose
name begins with$’ are not found. A user-defined procedure is found even when it has no clauses. A user-
defined procedure is not found if it has been abolished. To conform to the ISO reference, built-in predicates are
not found except if thestrict ~ _iso Prolog flag is switched off (sectidn 7.2P.1, page]132). This predicate is
re-executable on backtracking.

Errors

Pred is neither a variable nor a predicate indicaton type _error(predicate _indicator,
Pred)

Pred is atermName/Arity andArity is neither | type _error(integer, Arity)

a variable nor an integer
Pred is atermName/Arity andNameis neither a | type _error(atom, Name)
variable nor an atom

Pred is atermName/Arity andArity is an domain _error(not _less _than _zero,
integer< 0 Arity)
Pred is atermName/Arity andArity is an representation _error(max _arity)
integer> maxarity flag (section 7.22]1, page 132)

Portability

ISO predicate.

7.8.2 predicate _property/2

Templates
predicate _property(?predicate _indicator, ?predicate _property)
Description
predicate _property(Pred, Property) succeeds if there exists a predicate indicator of a defined proce-

dure that unifies withPred and ifProperty unifies with one of the properties of the procedure. All user defined
procedures and built-in predicates are found. Internal system procedures whose name bed#is \aith not
found. This predicate is re-executable on backtracking.

Predicate properties
e static : if the procedure is static.
e dynamic : if the procedure is dynamic.

e private : if the procedure is private.

public : if the procedure is public.

user : if the procedure is a user-defined procedure.

7.9 All solutions 65

built _in : if the procedure is a Prolog built-in predicate.

built _in _fd : if the procedure is an FD built-in predicate.

e native _code : if the procedure is compiled in native code.

e prolog file(File) : source file from which the predicate has been read.
e prolog _line(Line) : line number of the source file.
Errors
Pred is neither a variable nor a predicate indicator| type _error(predicate _indicator,
Pred)

Pred is atermName/Arity andArity is neither | type _error(integer, Arity)
a variable nor an integer
Pred is atermName/Arity andNameis neither a| type _error(atom, Name)
variable nor an atom

Pred is atermName/Arity andArity is an domain _error(not _less _than _zero,
integer< 0 Arity)

Pred is atermName/Arity andArity is an representation _error(max _arity)
integer> maxarity flag (sectiof 7.22]1, page 132)

Property is neither a variable nor a predicate domain _error(predicate _property,
property term Property)

Property =prolog _file(File) andFile is | type _error(atom, File)

neither a variable nor an atom
Property =prolog _line(Line) andLine is | type _error(integer, Line)
neither a variable nor an integer

Portability

GNU Prolog predicate.

7.9 All solutions
7.9.1 Introduction

It is sometimes useful to collect all solutions for a goal. This can be done by repeatedly backtracking and gradually
building the list of solutions. The following built-in predicates are provided to automate this process.

The built-in predicates described in this section invok#/1 (sectior] 6.2.3, pade A7) on the argum&ual .
When efficiency is crucial an@oal is complex it is better to define an auxiliary predicate which can then be
compiled, and hav&oal call this predicate.

7.9.2 findall/3
Templates
findall(?term, +callable _term, ?list)
Description
findall(Template, Goal, Instances) succeeds ifnstances unifies with the list of values to which

avariableXnot occurring infTemplate or Goal would be instantiated by successive re-executiomalfGoal),

66 7 PROLOG BUILT-IN PREDICATES

X = Template after systematic replacement of all variables<iby new variables. Thus, the order of the list
Instances corresponds to the order in which the proofs are found.

Errors
Goal is avariable instantiation _error
Goal is neither a variable nor a callable term type _error(callable, Goal)
The predicate indicatdPred of Goal does not existence _error(procedure, Pred)

correspond to an existing procedure and the value|of
theunknown Prolog flag iserror (sectior] 7.22]1,

pagd 13P)

Instances is neither a partial list nor a list type _error(list, Instances)

Portability

ISO predicate.

7.9.3 bagof/3 , setof/3

Templates
bagof(?term, +callable _term, ?list)
setof(?term, +callable _term, ?list)
Description
bagof(Template, Goal, Instances) assembles as a list the set of solution§ofl for each different

instantiation of the free variables @oal . The elements of each list are in order of solution, but the order in which
each listis found is undefined. This predicate is re-executable on backtracking.

Free variable set bagof/3 groups the solutions dboal according to the free variables (Boal . This set
corresponds to all variables occurring@oal but not inTemplate . It is sometimes useful to exclude some
additional variables oGoal . For thatbagof/3 recognizes a goal of the forfiGoal and exclude all variables
occuring inT from the free variable set(")/2 can be viewed as aexistential quantifie(the logical reading
of X"Goal being “there exists aX such thatGoal is true”). The use of this existential qualifier is superfluous
outsidebagof/3 (andsetof/3) and then is not recognized.

()2 is a predefined infix operator (section 7.14.10, gage 99).

setof(Template, Goal, Instances) is equivalent tdbagof(Template,Goal,l), sort(l,Instances)
Each list is then a sorted list (duplicate elements are removed).

From the implementation point of viesetof/3 is as fast abagof/3 . Both predicates use an in-place (i.e.
destructive) sort (sectign 7.20|12, page|124) and require the same amount of memory.

Errors
Goal is a variable instantiation _error
Goal is neither a variable nor a callable term type _error(callable, Goal)
The predicate indicatdPred of Goal does not existence _error(procedure, Pred)

correspond to an existing procedure and the value|of
theunknown Prolog flag iserror (sectior] 7.22]1,

pagd 13P)

Instances is neither a partial list nor a list type _error(list, Instances)

Portability

7.10 Streams 67

ISO predicates.

7.10 Streams
7.10.1 Introduction

A stream provides a logical view of a source/sink.

Sources and sinksa program can output results to a sink or input data from a source. A source/sink may be a file
(regular file, terminal, device,...), a constant term, a pipe, a socket,.. .

Associating a stream to a source/sinkio manipulate a source/sink it must be associated to a stream. This provides

a logical and uniform view of the source/sink whatever its type. Once this association has been established, i.e. a
stream has been created, all subsequent references to the source/sink are made by referring the stream. A stream is
unidirectional: itis either an input stream or an output stream. For a classical file, the association is done by opening
the file (whose name is specified as an atom) withappen/4 (sectior] 7.10J6, page $9). GNU Prolog makes it
possible to treat a Prolog constant term as a source/sink and provides built-in predicates to associate a stream to
such a term (sectidn 7.]11, pggg 82). GNU Prolog provides operating system interface predicates defining pipes
between GNU Prolog and child processes with streams associated to these pigepend3 (sectior] 7.27.71,

page I5P). Similarly, socket interface predicates associate streams to a socket to allow the communication, e.g.

socket _connect/4 (sectior] 7.28]5, page 158).

Stream-term: a stream-term identifies a stream during a call of an input/output built-in predicate. It is created as
a result of associating a stream to a source/sink (section above). A stream-term is a compound term of the form
‘$stream’(l) wherel is an integer.

Stream aliases any stream may be associated with a stream alias which is an atom which may be used to refer
to that stream. The association can be done at open time or adihgtream _alias/2 (section 7.10.20,

page[78). Such an association automatically ends when the stream is closed. A particular alias only refers to
at most one stream at any one time. However, more than one alias can be associated to a stream. Most built-in
predicates which have a stream-term as an input argument also accept a stream alias as that argument. However,
built-in predicates which return a stream-term do not accept a stream alias.

Standard streams two streams are predefined and open during the execution of every goal: the standard input
stream which has the aliaser _input and the standard output stream which has the akas _output . A
goal which attempts to close either standard stream succeeds, but does not close the stream.

Current streams: during execution there is a current input stream and a current output stream. By default, the cur-
rent input and output streams are the standard input and output streams, but the built-in preslicaigpait/1

(sectior] 7.104, page b9) asét _output/1 (sectior] 7.10J5, page [59) can be used to change them. When the
currentinput stream is closed, the standard input stream becomes the current input stream. When the current output
stream is closed, the standard output stream becomes the current output stream.

Text streams and binary streams a text stream is a sequence of characters. A text stream is also regarded as

a sequence of lines where each line is a possibly empty sequence of characters followed by a new line character.
GNU Prolog may add or remove space characters at the ends of lines in order to conform to the conventions for

representing text streams in the operating system. A binary stream is a sequence of bytes. Only a few built-in

predicates can deal with binary streams, ga. _byte/2 (sectior] 7.1, pade B8).

Stream positions the stream position of a stream identifies an absolute position of the source/sink to which the
stream is connected and defines where in the source/sink the next input or output will take place. A stream position
is a ground term of the fori$stream _position’(11, 12, 13, 14) wherell ,12 ,13 andl4 are inte-

gers. Stream positions are used to reposition a stream (when possible) using for isstarsteeam _position/2

(sectior] 7.10.113, page[74).

68 7 PROLOG BUILT-IN PREDICATES

The position end of stream when all data of a streai® has been inpuf has a stream position end-of-stream.

At this stream position a goal to input more data will return a specific value to indicate that end of stream has been
reached (e.g-1 for get _code/2 orend_of file for get char/2 ,...). When this terminating value has

been input, the stream has a stream position past-end-of-stream.

Buffering mode: input/output on a stream can be buffered (line-buffered or block-buffered) or not buffered at
all. The buffering mode can be specified at open time or usaig stream _buffering/2 (sectior] 7.10.27,
page[8lL). Line buffering is used on output streams, output data are only written to the sink when a new-line
character is output (or at the close time). Block buffering is used on input or output. On input streams, when
an input is requested on the source, if the buffer is empty, all available characters are read (within the limits of
the size of the buffer), subsequent reads will first use the characters in the buffer. On output streams, output data
are stored in the buffer and only when the buffer is full is it physically written on the sink. Thus, an output to

a buffered stream may not be sent immediately to the sink connected to that stream. When it is necessary to be
certain that output has been delivered, the built-in preditasé _output/l (sectior{ 7.10J8, page [/2) should

be used. Finally, it is also possible to use non-buffered streams, in that case input/output are directly done on the
connected source/sink. This can be useful for communication purposes (e.g. sockets) or when a precise control is

needed, e.gselect/5 (sectior] 7.27.25, page 1154).
Stream mirrors : any stream may be associated with mirror streams specified at open time addistream _mirror/2
(sectior] 7.10.22, pae[79). Then, all characters/bytes read from/written to the stream are also written on each mir-

ror stream. The association automatically ends when either the stream or the mirror stream is closed. It is also
possible to explicitely remove a mirror stream usiegiove _stream _mirror/2 (sectior] 7.10.23, page[79).

7.10.2 current _input/1

Templates
current _input(?stream)

Description
current _input(Stream) unifiesStream with the stream-term identifying the current input stream.

Errors

] Stream is neither a variable nor a stream \ domain _error(stream, Stream)

Portability

ISO predicate.

7.10.3 current _output/l

Templates
current _output(?stream)

Description
current _output(Stream) unifiesStream with the stream-term identifying the current output stream.

Errors

Stream is neither a variable nor a stream \ domain _error(stream, Stream)

7.10 Streams 69

Portability

ISO predicate.

7.10.4 set _input/1

Templates
set _input(+stream _or _alias)

Description

set _input(SorA) sets the current input stream to be the stream associated with the stream-termS3woraélias

Errors
SorA is a variable instantiation _error
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(input, stream,
SorA)
Portability

ISO predicate.

7.10.5 set _output/1

Templates
set _output(+stream _or _alias)

Description

set _output(SorA) sets the current output stream to be the stream associated with the stream-term or alias
SorA.

Errors
SorA is a variable instantiation _error
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an input stream permission _error(output, stream,
SorA)
Portability

ISO predicate.

7.10.6 open/4 ,open/3

Templates

70 7 PROLOG BUILT-IN PREDICATES

open(+source _sink, +io _mode, -stream, +stream _option _list)
open(+source _sink, +io0 _mode, -stream)

Description

open(SourceSink, Mode, Stream, Options) opens the source/sirtkourceSink for input or out-
put as indicated biylode and the list of stream-optior@3ptions and unifiesStream with the stream-term which
is associated to this stream. Sdwsolute _file _name/2 for information about the syntax &ourceSink

(sectior] 7.26]1, page T40).

Input/output modes: Mode is an atom which defines the input/output operations that may be performed the
stream. Possible modes are:

e read : the source/sink is a source and must already exist. Input starts at the beginning of the source.

e write : the source/sink is a sink. If the sink already exists then it is emptied else an empty sink is created.
Output starts at the beginning of that sink.

e append : the source/sink is a sink. If the sink does not exist it is created. Output starts at the end of that
sink.

Stream options Options is a list of stream options. If this list contains contradictory options, the rightmost
option is the one which applies. Possible options are:

e type(text /binary) : specifies whether the stream is a text stream or a binary stream. The default value
is text

e reposition(true [false) : specifies whether it is possible to reposition the stream. The default value
istrue except if the stream cannot be repositioned (e.g. a terminal).

e eof _action(error leof _code /reset) : specifies the effect of attempting to input from a stream whose
stream position is past-end-of-stream:
— error :apermission _error is raised signifying that no more input exists in this stream.
— eof _code : the result of input is as if the stream position is end-of-stream.

— reset : the stream position is reset so that it is not past-end-of-stream, and another attempt is made to

input from it (this is useful when inputting from a terminal).
The default value igof _code .

o alias(Alias) . specifies that the atorlias is to be an alias for the stream. By default no alias is
attached to the stream. Several aliases can be defined for a same stream.

e mirror(Mirror) . specifies the stream associated with the stream-term orMifasr is a mirror for
the stream. By default no mirro is attached to the stream. Several mirrors can be defined for a same stream.

¢ buffering(none lline /block) : specifies which type of buffering is used by input/output operations
on this stream:
— none: no buffering.

— line : output operations buffer data emitted until a new-line occurs

— block : input/output operations buffer data until a given number (implementation dependant) of char-

acters/bytes have been treated.)
The default value ifine for a terminal (TTY),block otherwise.

open(SourceSink, Mode, Stream, Options) is equivalent tmpen(SourceSink, Mode, Stream,

1)

Errors

7.10 Streams 71

SourceSink is a variable instantiation _error

Mode is a variable instantiation _error

Options is a partial list or a list with an elemeBt | instantiation _error

which is a variable

Mode s neither a variable nor an atom type _error(atom, Mode)

Options is neither a partial list nor a list type _error(list, Options)

Stream is not a variable type _error(variable, Stream)

SourceSink is neither a variable nor a source/sinkdomain _error(source _sink,
SourceSink)

Mode s an atom but not an input/output mode domain _error(io _mode, Mode)

an elemenE of the Options list is neither a domain _error(stream _option, E)

variable nor a stream-option
the source/sink specified I8ourceSink does not | existence _error(source _sink,

exist SourceSink)

the source/sink specified I8ourceSink cannot be| permission _error(open, source _sink,
opened SourceSink)

an elemenE of theOptions listisalias(A) and | permission _error(open, source _sink,
Alis already associated with an open stream alias(A))

an elemenk of theOptions list is mirror(M) existence _error(stream, M)

andMis not associated with an open stream

an elemenk of theOptions list is mirror(M) permission _error(output, stream, M)
andMiis an input stream

an elemenE of the Options listis permission _error(open, source _sink,
reposition(true) and it is not possible to reposition(true))

reposition this stream

Portability

ISO predicates. Thmirror/1 andbuffering/1 stream options are GNU Prolog extensions.

7.10.7 close/2 ,close/l

Templates
close(+stream _or _alias, +close _option _list)
close(+stream _or _alias)
Description
close(SorA, Options) closes the stream associated with the stream-term or &tie& . If SorA is the

standard input stream or the standard output strelase/2 simply succeeds else the associated source/sink is
physically closed. ISorA is the current input stream the current input stream becomes the standard input stream
user _input . If SorA is the current output stream the current output stream becomes the standard output stream
user _output

Close options Options is a list of close options. For the moment only one option is available:

o force(true ffalse) : withfalse |, if an error occurs when trying to close the source/sink, the stream is
not closed and an errosystem _error orresource _error)israised (butlose/2 succeeds). With
true , if an error occurs it is ignored and the stream is closed. The purpdeecefl option is to allow
an error handling routine to do its best to reclaim resources. The default véilsss .

close(SorA) is equivalent talose(SorA, [])

Errors

72 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation _error

Options is a partial list or a list with an elemeRt | instantiation _error

which is a variable

Options is neither a partial list nor a list type _error(list, Options)

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
an elemenk of theOptions list is neither a domain _error(close _option, E)
variable nor a close-option

SorA is not associated with an open stream existence _error(stream, SorA)

SorA needs a special close (sectjon T.ll, e 82) system _error(needs _special _close)

Portability

ISO predicates. Theystem _error(needs _special _close) isa GNU Prolog extension.

7.10.8 flush _output/l ,flush _output/O

Templates

flush _output(+stream _or _alias)
flush _output

Description
flush _output(SorA) sends any buffered output characters/bytes to the stream.

flush _output/O applies to the current output stream.

Errors
SorA is a variable instantiation _error
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an input stream permission _error(output, stream,
SorA)
Portability

ISO predicates.

7.10.9 current _stream/1

Templates
current _stream(?stream)

Description

current _stream(Stream) succeeds if there exists a stream-term that unifies 8fiteam . This predicate
is re-executable on backtracking.

Errors

] Stream is neither a variable nor a stream-term \ domain _error(stream, Stream)

Portability

7.10 Streams 73

GNU Prolog predicate.

7.10.10 stream _property/2

Templates
stream _property(?stream, ?stream _property)
Description
stream _property(Stream, Property) succeedsifurrent _stream(Stream) succeeds (sectipn 7.1D.9,

pagd 7R) and iProperty unifies with one of the properties of the stream. This predicate is re-executable on
backtracking.

Stream properties
e file _name(F) : the name of the connected source/sink.
e mode(M) : Mis the open modea¢ad , write , append).
e input :ifitis an input stream.
e output : ifitis an output stream.
e alias(A) :Ais an alias of the stream.
e mirror(M) : Mis a mirror stream of the stream.
e type(T) :Tisthe type of the streantext , binary).
e reposition(R) : Ris the reposition boolearrge , false).
e eof _action(A) :Aisthe end-of-file actiongrror , eof _code,reset).
o buffering(B) : Bis the buffering modenpone, line , block).

e end _of _stream(E) : E is the current end-of-stream statum{ , at , past). If the stream position is
end-of-stream thek is unified withat else if the stream position is past-end-of-stream tBeés unified
with past elseE is unified withnot .

e position(P) : P is the stream-position term associated to the current position.

Errors

Stream is a variable instantiation _error

Stream is neither a variable nor a stream-term domain _error(stream, Stream)

Property is neither a variable nor a stream domain _error(stream _property,

property Property)

Property =file _name(E), mode(E) , type _error(atom, E)

alias(E) ,end_of _stream(E) |,

eof _action(E) , reposition(E) , type(E)

or buffering(E) andE is neither a variable nor

an atom
Portability

ISO predicate. Theuffering/1 property is a GNU Prolog extension.

74 7 PROLOG BUILT-IN PREDICATES

7.10.11 at _end_of _stream/1 , at _end_of _stream/0O

Templates

at _end _of _stream(+stream _or _alias)
at _end _of _stream

Description

at _end _of _stream(SorA) succeeds if the stream associated with stream-term or &8 has a stream
position end-of-stream or past-end-of-stream. This predicate can be definedtuearg _property/2 (sec-

tion[7.10.10, page 73).

at _end _of _stream/0 applies to the current input stream.

Errors

SorA is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an output stream permission _error(input, stream,

SorA)
Portability
ISO predicates. Thpermission _error(input, stream, SorA) is a GNU Prolog extension.
7.10.12 stream _position/2
Templates
stream _position(+stream _or _alias, ?stream _position)

Description
stream _position(SorA, Position) succeeds unifyinfosition with the stream-position term associ-

ated to the current position of the stream-term or &iaA . This predicate can be defined ussigeam _property/2

(sectior] 7.10.70, page[73).

Errors
SorA is a variable instantiation _error
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
Position is neither a variable nor a domain _error(stream _position,
stream-position term Position)
SorA is not associated with an open stream existence _error(stream, SorA)
Portability

GNU Prolog predicate.

7.10.13 set _stream _position/2

Templates

7.10 Streams 75

set _stream _position(+stream _or _alias, +stream _position)

Description
set _stream _position(SorA, Position) sets the position of the stream associated with the stream-term
or aliasSorA to Position . Position should have previously been returned siyeam _property/2
(sectior] 7.10.7|0, page[73) or byream _position/2 (sectior] 7.10.12, page[74).
Errors

SorA is a variable instantiation _error

Position is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

Position is neither a variable nor a domain _error(stream _position,

stream-position term Position)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA has stream propertgposition(false) permission _error(reposition, stream,

SorA)

Portability

ISO predicate.

7.10.14 seek/4

Templates
seek(+stream _or _alias, +stream _seek _method, +integer, ?integer)
Description
seek(SorA, Whence, Offset, NewOffset) sets the position of the stream associated with the stream-

term or aliasSorA to Offset according toWwhence and unifiesNewOffset with the new offset from the
beginning of the fileseek/4 can only be used on binary streariighence is an atom from:

e bof : the position is set relatively to the begin of the filaffset should be> 0).
e current : the position is set relatively to the current positi@ffset can be> 0 or < 0).

e eof : the position is set relatively to the end of the fileffset should be< 0).
This predicate is an interface to the C Unix functleeek(2)

Errors

SorA is a variable instantiation _error

Whence is a variable instantiation _error

Offset is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

Whence is neither a variable nor an atom type _error(atom, Whence)

Whence is an atom but not a valid stream seek domain _error(stream _seek _method,

method Whence)

Offset is neither a variable nor an integer type _error(integer, Offset)

NewOffset is neither a variable nor an integer type _error(integer, NewOffset)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA has stream propertgposition(false) permission _error(reposition, stream,
SorA)

SorA is associated with a text stream permission _error(reposition,
text _stream, SorA)

76 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicate.

7.10.15 character _count/2

Templates
character _count(+stream _or _alias, ?integer)

Description

character _count(SorA, Count) unifiesCount with the number of characters/bytes read/written on the
stream associated with stream-term or aBasA .

Errors
SorA is a variable instantiation _error
Count is neither a variable nor an integer type _error(integer, Count)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
Portability

GNU Prolog predicate.

7.10.16 line _count/2

Templates
line _count(+stream _or _alias, ?integer)

Description

line _count(SorA, Count) unifiesCount with the number of lines read/written on the stream associated
with the stream-term or alig@orA . This predicate can only be used on text streams.

Errors
SorA is a variable instantiation _error
Count is neither a variable nor an integer type _error(integer, Count)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is associated with a binary stream permission _error(access,
binary _stream, SorA)
Portability

GNU Prolog predicate.

7.10.17 line _position/2

Templates

7.10 Streams 77

line _position(+stream _or _alias, ?integer)
Description
line _position(SorA, Count) unifiesCount with the number of characters read/written on the current

line of the stream associated with the stream-term or 8lgaé . This predicate can only be used on text streams.

Errors
SorA is a variable instantiation _error
Count is neither a variable nor an integer type _error(integer, Count)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is associated with a binary stream permission _error(access,
binary _stream, SorA)
Portability

GNU Prolog predicate.

7.10.18 stream _line _column/3

Templates
stream _line _column(+stream _or _alias, ?integer, ?integer)

Description

stream _line _column(SorA, Line, Column) unifiesLine (resp.Column) with the current line num-
ber (resp. column number) of the stream associated with the stream-term &akasThis predicate can only be
used on text streams. Note thame corresponds to the value returnedlime _count/2 + 1 (sectiorj 7.10.16,
pagq 7p) an€olumn to the value returned bjne _position/2 + 1 (sectiorj 7.10.17, pa§e]76).

Errors
SorA is a variable instantiation _error
Line is neither a variable nor an integer type _error(integer, Line)
Column is neither a variable nor an integer type _error(integer, Column)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is associated with a binary stream permission _error(access,
binary _stream, SorA)
Portability

GNU Prolog predicate.

7.10.19 set _stream _line _column/3

Templates
set _stream _line _column(+stream _or _alias, +integer, +integer)

Description

78 7 PROLOG BUILT-IN PREDICATES

set _stream _line _column(SorA, Line, Column) sets the stream position of the stream associated with

the stream-term or alig®orA according to the line numbére and the column numb&olumn. This predicate

can only be used on text streams. It first repositions the stream to the beginning of the file and then reads character
by character until the required position is reached.

Errors
SorA is a variable instantiation _error
Line is a variable instantiation _error
Column is a variable instantiation _error
Line is neither a variable nor an integer type _error(integer, Line)
Column is neither a variable nor an integer type _error(integer, Column)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is associated with a binary stream permission _error(reposition,
binary _stream, SorA)
SorA has stream propertgposition(false) permission _error(reposition, stream,
SorA)
Portability
GNU Prolog predicate.
7.10.20 add _stream _alias/2
Templates
add _stream _alias(+stream _or _alias, +atom)
Description
add _stream _alias(SorA, Alias) addsAlias as a new alias to the stream associated with the stream-
term or aliasSorA.
Errors
SorA is a variable instantiation _error
Alias is a variable instantiation _error
Alias is neither a variable nor an atom type _error(atom, Alias)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
Alias is already associated with an open stream | permission _error(add _alias,
source _sink, alias(Alias))

Portability

GNU Prolog predicate.

7.10.21 current _alias/2

Templates
current _alias(?stream, ?atom)

Description

7.10 Streams 79

current _alias(Stream, Alias) succeeds ifcurrent _stream(Stream) succeeds (sectidn 7.1p.9,
pagd 7R) and iAlias unifies with one of the aliases of the stream. It can be defined asie@m _property/2
(sectior] 7.10.7|0, page[73). This predicate is re-executable on backtracking.

Errors
Stream is neither a variable nor a stream-term domain _error(stream, Stream)
Alias is neither a variable nor an atom type _error(atom, Alias)
Portability

GNU Prolog predicate.

7.10.22 add_stream _mirror/2

Templates
add _stream _mirror(+stream _or _alias, +stream _or _alias)
Description
add _stream _mirror(SorA, Mirror) adds the stream associated with the stream-term orMliasr as

a new mirror to the stream associated with the stream-term or@dias. After this, all characters (or bytes) read
from (or written to)SorA are also written td/irror . This mirroring occurs untiMirror is explicitely removed
usingremove _stream _mirror/2 (sectior] 7.10.23, page[79) or implicitely whitirror is closed. Several
mirror streams can be associated to a same streavticrlir represents the same streanBasA or if Mirror

is already a mirror foSorA, no mirror is added.

Errors
SorA is a variable instantiation _error
Mirror is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
Mirror is neither a variable nor a stream-term or | domain _error(stream _or _alias, Mirror)
alias

SorA is not associated with an open stream existence _error(stream, SorA)
Mirror is not associated with an open stream existence _error(stream, Mirror)
Mirror is an input stream permission _error(output, stream,
Mirror)
Portability

GNU Prolog predicate.

7.10.23 remove _stream _mirror/2

Templates
remove _stream _mirror(+stream _or _alias, +stream _or _alias)
Description
remove _stream _mirror(SorA, Mirror) removes the stream associated with the stream-term or alias

Mirror from the list of mirrors of the stream associated with the stream-term or @tie& . This predicate
fails if Mirror is not a mirror stream foBorA .

80 7 PROLOG BUILT-IN PREDICATES

Errors
SorA is a variable instantiation _error
Mirror is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
Mirror s neither a variable nor a stream-term or | domain _error(stream _or _alias, Mirror)
alias

SorA is not associated with an open stream existence _error(stream, SorA)
Mirror is not associated with an open stream existence _error(stream, Mirror)
Portability

GNU Prolog predicate.

7.10.24 current _mirror/2

Templates
current _mirror(?stream, ?stream)
Description
current _mirror(Stream, M) succeeds iurrent _stream(Stream) succeeds (sectipn 7.1D.9, pagk 72)

and if Munifies with one of the mirrors of the stream. It can be defined usiream _property/2 (sec-
tion[7.10.10, page T3). This predicate is re-executable on backtracking.

Errors
Stream is neither a variable nor a stream-term domain _error(stream, Stream)
Mis neither a variable nor a stream-term domain _error(stream, M)
Portability

GNU Prolog predicate.

7.10.25 set _stream _type/2

Templates
set _stream _type(+stream _or _alias, +atom)
Description
set _stream _type(SorA, Type) updates the type associated with stream-term or Sload . The value of

Type is an atom irtext orbinary as foropen/4 (sectior] 7.10J6, page 69). The type of a stream can only be
changed before any input/output operation is executed.

Errors
SorA is a variable instantiation _error
Type is a variable instantiation _error
Type is neither a variable nor a valid type domain _error(stream _type, Type)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
An I/O operation has already been executedonA | permission _error(modify, stream,

SorA)

7.10 Streams 81

Portability

GNU Prolog predicate.

7.10.26 set _stream _eof _action/2

Templates
set _stream _eof _action(+stream _or _alias, +atom)

Description

set _stream _eof _action(SorA, Action) updates theof _action option associated with the stream-
term or aliasSorA. The value ofAction is one of the atomerror , eof _code, reset as foropen/4

(sectior{ 7.10J6, page b9).

Errors
SorA is a variable instantiation _error
Action is a variable instantiation _error

Action is neither a variable nor a valid eof action | domain _error(eof _action, Action)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(modify, stream,
SorA)
Portability

GNU Prolog predicate.

7.10.27 set _stream _buffering/2

Templates
set _stream _buffering(+stream _or _alias, +atom)
Description
set _stream _buffering(SorA, Buffering) updates the buffering mode associated with the stream-term

or aliasSorA. The value ofBuffering is one of the atomsione, line or block as foropen/4 (sec-
tion[7.10.6, page 69). This predicate may only be used after opening a stream and before any other operations have
been performed on it.

Errors
SorA is a variable instantiation _error
Buffering is a variable instantiation _error
Buffering is neither a variable nor a valid domain _error(buffering _mode,
buffering mode Buffering)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
Portability

GNU Prolog predicate.

82 7 PROLOG BUILT-IN PREDICATES

7.11 Constant term streams
7.11.1 Introduction

Constant term streams allow the user to consider a constant term (atom, character list or character code list) as a
source/sink by associating to them a stream. Reading from a constant term stream will deliver the characters of the
constant term as if they had been read from a standard file. Characters written on a constant term stream are stored
to form the final constant term when the stream is closed. The built-in predicates described in this section allow the
user to open and close a constant term stream for input or output. However, very often, a constant term stream is
created to be only read or written once and then closed. To avoid the creation and the destruction of such a stream,
GNU Prolog offers several built-in predicates to perform single input/output from/to constant terms (secfion 7.15,

page 10B).

7.11.2 open _input _atom _stream/2 ,open_input _chars _stream/2 ,
open _input _codes _stream/2

Templates
open _input _atom _stream(+atom, -stream)
open _input _chars _stream(+character _ist, -stream)
open _input _codes _stream(+character _code _list, -stream)
Description
open _input _atom _stream(Atom, Stream) unifiesStream with the stream-term which is associated to

a new input text-stream whose data are the charactexoat.

open _input _chars _stream(Chars, Stream) is similar toopen _input _atom _stream/2 except that
data are the content of the character@siars .

open _input _codes _stream(Codes, Stream) is similar toopen _input _atom _stream/2 except that
data are the content of the character codedistes.

Errors
Stream is not a variable type _error(variable, Stream)
Atom is a variable instantiation _error
Chars is a partial list or a list with an elemekt instantiation _error
which is a variable
Codes is a partial list or a list with an elemekt instantiation _error
which is a variable
Atom is neither a variable nor a an atom type _error(atom, Atom)
Chars is neither a partial list nor a list type _error(list, Chars)
Codes is neither a partial list nor a list type _error(list, Codes)

an elemenE of theChars list is neither a variable | type _error(character, E)
nor a character
an elemenk of theCodes list is neither a variable | type _error(integer, E)
nor an integer
an elemenk of theCodes list is an integer but not 8 representation _error(character _code)
character code

Portability

GNU Prolog predicates.

7.11 Constant term streams 83

7.11.3 close _input _atom _stream/1 ,close _input _chars _stream/1 ,
close _input _codes _stream/1

Templates

close _input _atom _stream(+stream _or _alias)
close _input _chars _stream(+stream _or _alias)
close _input _codes _stream(+stream _or _alias)

Description

close _input _atom _stream(SorA) closes the constant term stream associated with the stream-term or alias
SorA. SorA must a stream open withpen _input _atom _stream/2 (sectior] 7.11]1, page B2).

close _input _chars _stream(SorA) acts similarly for a character list stream.

close _input _codes _stream(SorA) acts similarly for a character code list stream.

Errors
SorA is a variable instantiation _error
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(close, stream,
SorA)
SorA is a stream-term or alias but does not refer to @omain _error(term _stream _or _alias,
constant term stream. SorA)
Portability

GNU Prolog predicates.

7.11.4 open _output _atom _stream/l ,open _output _chars _stream/1
open _output _codes _stream/1

Templates

open _output _atom _stream(-stream)
open _output _chars _stream(-stream)
open _output _codes _stream(-stream)

Description

open _output _atom _stream(Stream) unifiesStream with the stream-term which is associated to a new
output text-stream. All characters written to this stream are collected and will be returned as an atom when the
stream is closed bglose _ouput _atom _stream/2 (sectior] 7.11]5, page B4).

open _output _chars _stream(Stream) is similar toopen _output _atom _stream/1 except that the re-
sult will be a character list.

open _output _codes _stream(Stream) s similar toopen _output _atom _stream/1 except that the re-
sult will be a character code list.

Errors

| Stream is not a variable | type _error(variable, Stream)

84 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicates.

7.11.5 close _output _atom _stream/2 ,close _output _chars _stream/2
close _output _codes _stream/2

Templates
close _output _atom _stream(+stream _or _alias, ?atom)
close _output _chars _stream(+stream _or _alias, ?character _list)
close _output _codes _stream(+stream _or _alias, ?character _code _list)
Description

close _output _atom _stream(SorA, Atom) closes the constant term stream associated with the stream-
term or aliasSorA. SorA must be associated to a stream open witlen _output _atom _stream/1 (sec-
tion[7.11.4, page 83Atom is unified with an atom formed with all characters written on the stream.

close _output _chars _stream(SorA, Chars) acts similarly for a character list stream.

close _output _codes _stream(SorA, Codes) acts similarly for a character code list stream.

Errors
SorA is a variable instantiation _error
Atom is neither a variable nor an atom type _error(atom, Atom)
Chars is neither a partial list nor a list type _error(list, Chars)
Codes is neither a partial list nor a list type _error(list, Codes)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an input stream permission _error(close, stream,
SorA)
SorA is a stream-term or alias but does not refer to @omain _error(term _stream _or _alias,
constant term stream SorA)
Portability

GNU Prolog predicates.

7.12 Character input/output

These built-in predicates enable a single character or character code to be input from and output to a text stream.
The atomend _of _file is returned as character to indicate the end-of-file.is returned as character code to
indicate the end-of-file.

7.12.1 get char/2 ,get char/l ,get _code/l ,get _code/2

Templates

get _char(+stream _or _alias, ?in _character)
get _char(?in _character)

7.12 Character input/output 85

get _code(+stream _or _alias, ?in _character _code)
get _code(?in _character _code)

Description

get _char(SorA, Char) succeeds iChar unifies with the next character read from the stream associated
with the stream-term or aligSorA .

get _code/2 is similar toget _char/2 but deals with character codes.

get char/l andget _code/l apply to the current input stream.

Errors
SorA is a variable instantiation _error
Char is neither a variable nor an in-character type _error(in _character, Char)
Code is neither a variable nor an integer type _error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(input, stream,
SorA)
SorA is associated with a binary stream permission _error(input,
binary _stream, SorA)
SorA has stream properties permission _error(input,
end _of _stream(past) and past _end _of _stream, SorA)
eof _action(error)
The entity input from the stream is not a character | representation _error(character)
Code is an integer but not an in-character code
representation _error(in _character _code

Portability

ISO predicates.

7.12.2 get key/2 ,get key/lget _key no_echo/2 ,get key no_echo/l

Templates

get _key(+stream _or _alias, ?integer)

get _key(?integer)

get key _no_echo(+stream _or _alias, ?integer)
get _key _no_echo(?integer)

Description

get key(Code, SorA) succeeds iCode unifies with the character code of the next key read from the stream
associated with the stream-term or al&sA . It is intended to read a single key from the keyboard (tBasA

should refer to current input stream). No buffering is performed (a character is read as soon as available) and
function keys can also be read (in that caSede is an integer> 255). The read character is echoed if it is
printable.

This facility is only possible if théinedit facility has been installed (sectipn 3.2.5, page 18) othergesekey/2
behaves similarly tget _code/2 (sectio 7.12]1, page B4) (the code of the first character is returned) but also
pumps remaining characters until a charaetespace (0x20) is read (in particular RETURN). The same behavior
occurs ifSorA does not refer to the current input stream or if this stream is not attached to a terminal.

get _key no_echo/2 behaves similarly tget _key/2 except that the read character is not echoed.

86 7 PROLOG BUILT-IN PREDICATES

get key/1 andget _key _no_echo/1 apply to the current input stream.

Errors

SorA is a variable instantiation _error

Code is neither a variable nor an integer type _error(integer, Code)

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an output stream permission _error(input, stream,
SorA)

SorA is associated with a binary stream permission _error(input,
binary _stream, SorA)

SorA has stream properties permission _error(input,

end _of _stream(past) and past _end _of _stream, SorA)

eof _action(error)

Portability

GNU Prolog predicates.

7.12.3 peek char/2 ,peek char/l ,peek _code/l ,peek _code/2

Templates

peek _char(+stream _or _alias, ?in _character)

peek _char(?in _character)

peek _code(+stream _or _alias, ?in _character _code)
peek _code(?in _character _code)

Description

peek _char(SorA, Char) succeeds iChar unifies with the next character that will be read from the stream
associated with the stream-term or al&®A . The character is not read.

peek _code/2 is similar topeek _char/2 but deals with character codes.

peek char/l andpeek _code/l apply to the current input stream.

Errors
SorA is a variable instantiation _error
Char is neither a variable nor an in-character type _error(in _character, Char)
Code is neither a variable nor an integer type _error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(input, stream,
SorA)
SorA is associated with a binary stream permission _error(input,
binary _stream, SorA)
SorA has stream properties permission _error(input,
end _of _stream(past) and past _end _of _stream, SorA)
eof _action(error)
The entity input from the stream is not a character | representation _error(character)
Code is an integer but not an in-character code
representation _error(in _character _code

7.12 Character input/output 87

Portability

ISO predicates.

7.12.4 unget _char/2 ,unget _char/1 ,unget _code/2 ,unget _code/l

Templates

unget _char(+stream _or _alias, +character)

unget _char(+character)

unget _code(+stream _or _alias, +character _code)
unget _code(+character _code)

Description

unget _char(SorA, Char) pushes backhar onto the stream associated with the stream-term or 8ba& .
Char will be the next character read It _char/2 . The maximum number of characters that can be cumula-
tively pushed back is given by teax unget Prolog flag (sectiop 7.22.1, page 132).

unget _code/2 is similar tounget _char/2 but deals with character codes.

unget _char/l andunget _code/l apply to the current input stream.

Errors
SorA is a variable instantiation _error
Char is a variable instantiation _error
Code is a variable instantiation _error
Char is neither a variable nor a character type _error(character, Char)
Code is neither a variable nor an integer type _error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(input, stream,
SorA)
SorA is associated with a binary stream permission _error(input,
binary _stream, SorA)
Code is an integer but not a character code representation _error(character _code)
Portability

GNU Prolog predicates.

7.12.5 put char/2 ,put char/l ,put _code/l ,put _code/2 ,nl/1 ,nl/O

Templates

put _char(+stream _or _alias, +character)

put _char(+character)

put _code(+stream _or _alias, +character _code)
put _code(+character _code)

nl(+stream _or _alias)

nl

Description

88 7 PROLOG BUILT-IN PREDICATES

put _char(SorA, Char) writesChar onto the stream associated with the stream-term or a4 .
put _code/2 is similar toput _char/2 but deals with character codes.

nl(SorA) writes a new-line character onto the stream associated with the stream-term @ahasThis is
equivalent tqput _char(SorA, '\n’)

put char/l ,put _code/l andnl/0 apply to the current output stream.

Errors
SorA is a variable instantiation _error
Char is a variable instantiation _error
Code is a variable instantiation _error
Char is neither a variable nor a character type _error(character, Char)
Code is neither a variable nor an integer type _error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an input stream permission _error(output, stream,
SorA)
SorA is associated with a binary stream permission _error(output,
binary _stream, SorA)
Code is an integer but not a character code representation _error(character _code)
Portability

ISO predicates.

7.13 Byte input/output

These built-in predicates enable a single byte to be input from and output to a binary stieasreturned to
indicate the end-of-file.

7.13.1 get _byte/2 ,get _byte/l

Templates

get _byte(+stream _or _alias, ?in _byte)
get _byte(?in _byte)

Description

get _byte(SorA, Byte) succeeds iByte unifies with the next byte read from the stream associated with the
stream-term or aliaSorA .

get _byte/1 applies to the current input stream.

Errors

7.13 Byte input/output 89

SorA is a variable instantiation _error

Byte is neither a variable nor an in-byte type _error(in _byte, Byte)

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an output stream permission _error(input, stream,
SorA)

SorA is associated with a text stream permission _error(input, text _Stream,
SorA)

SorA has stream properties permission _error(input,

end _of _stream(past) and past _end _of _stream, SorA)

eof _action(error)

Portability

ISO predicates.

7.13.2 peek _byte/2 , peek _byte/l

Templates

peek _byte(+stream _or _alias, ?in _byte)
peek _byte(?in _byte)

Description

peek _byte(SorA, Byte) succeeds iByte unifies with the next byte that will be read from the stream
associated with the stream-term or al&®A . The byte is not read.

peek _byte/1 applies to the current input stream.

Errors

SorA is a variable instantiation _error

Byte is neither a variable nor an in-byte type _error(in _byte, Byte)

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an output stream permission _error(input, stream,
SorA)

SorA is associated with a text stream permission _error(input, text _stream,
SorA)

SorA has stream properties permission _error(input,

end _of _stream(past) and past _end _of _stream, SorA)

eof _action(error)

Portability

ISO predicates.

7.13.3 unget _byte/2 ,unget _byte/l

Templates

unget _byte(+stream _or _alias, +byte)
unget _byte(+byte)

90 7 PROLOG BUILT-IN PREDICATES

Description

unget _byte(SorA, Byte) pushes bacByte onto the stream associated with the stream-term or 8ba& .

Byte will be the next byte read byet _byte/2 . The maximum number of bytes that can be successively pushed
back is given by thenax.unget Prolog flag (sectiop 7.22.1, page 132).

unget _byte/l applies to the current input stream.

Errors
SorA is a variable instantiation _error
Byte is a variable instantiation _error
Byte is neither a variable nor a byte type _error(byte, Byte)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(input, stream,
SorA)
SorA is associated with a text stream permission _error(input, text _Stream,
SorA)
Portability

GNU Prolog predicates.

7.13.4 put _byte/2 , put _byte/1

Templates

put _byte(+stream _or _alias, +byte)
put _byte(+byte)

Description
put _byte(SorA, Byte) writesByte onto the stream associated with the stream-term or a4 .

put _byte/1 applies to the current output stream.

Errors
SorA is a variable instantiation _error
Byte is a variable instantiation _error
Byte is neither a variable nor a byte type _error(byte, Byte)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(output, stream,
SorA)
SorA is associated with a text stream permission _error(output,
text _stream, SorA)
Portability

GNU Prolog predicates.

7.14 Term input/output 91

7.14 Term input/output

These built-in predicates enable a Prolog term to be input from or output to a text stream. Teadtad_file

is returned as term to indicate the end-of-file. The syntax of such terms can also be altered by changing the opera-
tors (sectiof 7.14.10, pape]|99), and making some characters equivalent to others|(section 7.14.17, page 101) if the
char _conversion Prolog flag ison (sectior{ 7.22]1, page 1132). Double quoted tokens will be returned as an
atom or a character list or a character code list depending on the valueddub&e _quotes Prolog flag (sec-
tion[7.22.], pagpk 132). Similarly, back quoted tokens are returned depending on the valukawkthguotes

Prolog flag.

7.14.1 read _term/3 ,read _term/2 ,read/2 ,read/l

Templates
read _term(+stream _or _alias, ?term, +read _option _list)
read _term(?term, +read _option _list)
read(+stream _or _alias, ?term)
read(?term)
Description
read _term(SorA, Term, Options) is true if Term unifies with the next term read from the stream asso-

ciated with the stream-term or ali&®rA according to the options given [ptions .

Read options Options is a list of read options. If this list contains contradictory options, the rightmost option
is the one which applies. Possible options are:

e variables(VL) : VL is unified with the list of all variables of the input term, in left-to-right traversal
order. Anonymous variables are included in the\ikt

e variable _names(VNL) : VNL is unified with the list of pairdfName = Var whereVar is a named
variable of the term antilameis the atom associated to the namevafr . Anonymous variables are not
included in the listVNL

e singletons(SL) : SL is unified with the list of pairdfName = Var whereVar is a named variable
which occurs only once in the term atfdhmeis the atom associated to the naméeMafr . Anonymous
variables are not included in the IiSt..

e syntax _error(error /warning /fail) : specifies the effect of a syntax error:
— error : asyntax _error israised.
— warning : awarning message is displayed and the predicate fails.

— fail : the predicate quietly fails.)
The default value is the value of tisgntax _error Prolog flag (sectiop 7.22.1, page 132).

e end _of _term(dot /eof) : specifies the end-of-term delimitedlot is the classical full-stop delimiter (a
dot followed with a layout charactepf is the end-of-file delimiter. This option is useful for predicates
like read _term _from _atom/3 (sectior] 7.1I5]1, page T03) to avoid to add a terminal dot at the end of the
atom. The default value idot .

read(SorA, Term) isequivalent toead _term(SorA, Term, [])
read _term/2 andread/1 apply to the current input stream.

Errors

92 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation _error
Options is a partial list or a list with an elemeRt | instantiation _error
which is a variable
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
Options is neither a partial list nor a list type _error(list, Options)
an elemenk of theOptions list is neither a domain _error(read _option, E)
variable nor a valid read option
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an output stream permission _error(input, stream,

SorA)
SorA is associated with a binary stream permission _error(input,

binary _stream, SorA)
SorA has stream properties permission _error(input,
end _of _stream(past) and past _end _of _stream, SorA)
eof _action(error)
a syntax error occurs and the value of the syntax _error(atom explaining the
syntax _error Prolog flag iserror error)
(sectior] 7.22]1, page 132)

Portability
ISO predicates. The ISO reference raisag@esentation _error(Flag) whereFlag is maxarity

max.integer , or min _integer when the read term breaches an implementation defined limit specified by
Flag . GNU Prolog detects neithenin _integer normax.integer violation and treats enax arity ~ viola-
tion as a syntax error. The read opti@ysnitax _error/l andend _of _term/1 are GNU Prolog extensions.

7.14.2 read _atom/2 ,read _atom/l1 ,read _integer/2 ,read _integer/l
read _-number/2 ,read _number/1

Templates

read _atom(+stream _or _alias, ?atom)
read _atom(?atom)

read _integer(+stream _or _alias, ?integer)
read _integer(?integer)

read _number(+stream _or _alias, ?number)
read _number(?number)

Description

read _atom(SorA, Atom) succeeds iAtom unifies with the next atom read from the stream associated with
the stream-term or aligBorA .

read _integer(SorA, Integer) succeeds ifnteger unifies with the next integer read from the stream
associated with the stream-term or al@&®A .

read _number(SorA, Number) succeeds iNumber unifies with the next number (integer or floating point
number) read from the stream associated with the stream-term oBaliAs

read _atom/1 , read _integer/1 andread _number/1 apply to the current input stream.

Errors

7.14 Term input/output 93

SorA is a variable instantiation _error

Atom is neither a variable nor an atom type _error(atom, Atom)

Integer s neither a variable nor an integer type _error(integer, Integer)

Number is neither a variable nor a number type _error(number, Number)

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an output stream permission _error(input, stream,
SorA)

SorA is associated with a binary stream permission _error(input,
binary _stream, SorA)

SorA has stream properties permission _error(input,

end _of _stream(past) and past _end _of _stream, SorA)

eof _action(error)

a syntax error occurs and the value of the syntax _error(atom explaining the

syntax _error Prolog flag iserror error)

(sectior] 7.22]1, page 132)

Portability

GNU Prolog predicates.

7.14.3 read _token/2 ,read _token/1

Templates

read _token(+stream _or _alias, ?nonvar)
read _token(?nonvar)

Description

read _token(SorA, Token) succeeds iToken unifies with the encoding of the next Prolog token read from
the stream associated with stream-term or ebiasA .

Token encoding
e var(A) :avariable is read whose name is the atbm
e an atomA: an atomA is read.
e integerN: an integeNis read.
¢ floating point numbeN: a floating point numbeN is read.
e string(A) :astring (double quoted item) is read whose characters forms thefatom

e punct(P) :apunctuation charact®ris read Pis a one-character atom(l{|} , the atonfull _stop
or the atomend _of _file).

e back _quotes(A) :aback quoted item is read whose characters forms the Atom
e extended(A) :an extended charact@r(an atom) is read.

As for read _term/3 , the behavior ofead _token/2 can be affected by some Prolog flags (secfion]7.14,

pagg 9.
read _token/1 applies to the current input stream.

Errors

94 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an output stream permission _error(input, stream,
SorA)

SorA is associated with a binary stream permission _error(input,
binary _stream, SorA)

SorA has stream properties permission _error(input,

end _of _stream(past) and past _end _of _stream, SorA)

eof _action(error)

a syntax error occurs and the value of the syntax _error(atom explaining the

syntax _error Prolog flag iserror error)

(sectior] 7.22]1, page 132)

Portability

GNU Prolog predicates.

7.14.4 syntax _error _info/4

Templates
syntax _error _info(?atom, ?integer, ?integer, ?atom)

Description

syntax _error _info(FileName, Line, Column, Error) returns the information associated to the
last syntax errorLine is the line number of the erroGolumn is the column number of the error aalror is
an atom explaining the error.

Errors
FileName is neither a variable nor an atom type _error(atom, FileName)
Line is neither a variable nor an integer type _error(integer, Line)
Column is neither a variable nor an integer type _error(integer, Column)
Error is neither a variable nor an atom type _error(atom, Error)
Portability

GNU Prolog predicate.

7.145 last _read _start _line _column/2

Templates
last _read _start _line _column(?integer, ?integer)

Description

last _read _start _line _column(Line, Column) unifiesLine andColumn with the line number and

the column number associated to the start of the last read predicate. This predicate can be used after calling
one of the following predicatesead _term/3 , read _term/2 ,read/2 ,read/l (sectior{7.14]1, pade P1),

read _atom/2 ,read _atom/l ,read _integer/2 ,read _integer/l1 ,read _number/2 ,read _number/1

(sectior] 7.14]2, page P2) ead _token/2 ,read _token/1 (sectiorf 7.14]3, page P3).

7.14 Term input/output 95

Errors
Line is neither a variable nor an integer type _error(integer, Line)
Column is neither a variable nor an integer type _error(integer, Column)
Portability

GNU Prolog predicate.

7.14.6 write _term/3 ,write _term/2 ,write/2 ,write/l ,writeq/2 ,writeg/l
write _canonical/2 ,write _canonical/l ,display/2 ,display/l ,print/2

print/1

Templates
write _term(+stream _or _alias, ?term, +write _option _list)
write _term(?term, +write _option _list)
write(+stream _or _alias, ?term)
write(?term)
writeq(+stream _or _alias, ?term)
writeq(?term)
write _canonical(+stream _or _alias, ?term)
write _canonical(?term)
display(+stream _or _alias, ?term)
display(?term)
print(+stream _or _alias, ?term)

print(?term)

Description

write _term(SorA, Term, Options) writes Term to the stream associated with the stream-term or alias
SorA according to the options given [&yptions

Write options: Options is a list of write options. If this list contains contradictory options, the rightmost option
is the one which applies. Possible options are:

e quoted(true /false) :if true each atom and functor is quoted if this would be necessary for the term
to be input byread _term/3 . If false no extra quotes are written. The default valutaise

e ignore _ops(true /false) :if true each compound term is output in functional notation (neither op-
erator notation nor list notation is used) fddlse operator and list notations are used. The default value is
false

e numbervars(true /false) :if true aterm of the formi$VAR'(N) , whereNis an integer, is output
as a variable name (see below)fdfse such a term is output normally (according to the other options).
The default value isrue .

e namevars(true /false) :if true aterm of the formi$VARNAME’(Name) , whereNameis an atom,
is output as a variable name (see below)alée such a term is output normally (according to the other
options). The default value tsue .

e space _args(true /false) : if true an extra space character is emitted after each comma separating
the arguments of a compound term in functional notation or of a liflalse no extra space is emitted.
The default value ifalse

e portrayed(true [false) : if true and if there exists a predicaportray/l , write _term/3
acts as follows: ifTerm is a variable it is simply written. IfTerm is non-variable then it is passed to
portray/1l . If this succeeds then it is assumed thatm has been output. Otherwiseite _term/3

96 7 PROLOG BUILT-IN PREDICATES

outputs the principal functor &ferm (Term itself if it is atomic) according to other options and recursively
callsportray/l on the components dferm (if it is a compound term). Witlignore _ops(false) a
listis first passed tportray/1l ~ and only if this call fails each element of the list is passepdudray/1

(thus every sub-list is not passed). The default valdelse

e max.depth(N) : controls the depth of output for compound ternisis an integer specifying the depth.
The output of a term whose depth is greater tNajives rise to the output of. (3 dots). By default there
is no depth limit.

e priority(N) : specifies the starting priority to output the term. This option control®in should be
enclosed in bracket® is a positive integex 1200. By defaultN= 1200.

Variable numbering: when thenumbervars(true) option is passed tarite _term/3 any term of the form
'$VAR'(N) whereNis an integer is output as a variable name consisting of a capital letter possibly followed by
an integer. The capital letter is tlfie-1) th letter of the alphabet and the integerdiswherel = N mod 26

andJ = N // 26 . Theinteged is omitted if it is zero. For example:

'SVAR'(0) is written asA
'$VAR’(1) is written asB

'$VAR’(25) is written asZ
'$VAR’(26) is written asAl
'$VAR'(27) is written asB1

Variable naming: when thenamevars(true) option is passed tarite _term/3 any term of the form
'$VARNAME'(Name) whereNameis an atom is output as a variable name consisting of the charataene
For example!$VARNAME’('A’) is written asA (even in the presence of tigeioted(true) option).

write(SorA, Term) is equivalent tovrite _term(SorA, Term, [])
writeq(SorA, Term) is equivalent towrite _term(SorA, Term, [quoted(true)])
write _canonical(SorA, Term) is equivalent tavrite _term(SorA, Term, [quoted(true),

ignore _ops(true), numbervars(false)])

display(SorA, Term) is equivalent tavrite _term(SorA, Term, [ignore _ops(true),
numbervars(false)])

print(SorA, Term) is equivalent tavrite _term(SorA, Term, [numbervars(false),
portrayed(true)])

write _term/2 , write/1 , writeq/1 , write _canonical/l , display/1 andprint/1 apply to the
current output stream.

Errors
SorA is a variable instantiation _error
Options is a partial list or a list with an elemeBRt | instantiation _error
which is a variable
Options s neither a partial list nor a list type _error(list, Options)
SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)
an elemenk of theOptions listis neither a domain _error(write _option, E)
variable nor a valid write-option
SorA is not associated with an open stream existence _error(stream, SorA)
SorA is an input stream permission _error(output, stream,
SorA)
SorA is associated with a binary stream permission _error(output,
binary _stream, SorA)

7.14 Term input/output

97

Portability

ISO predicates exceftsplay/1-2

portrayed/1

andprint/1-2 that are GNU Prolog predicatasamevars/1l |, space _args/1

, max.depth/1 andpriority/1 options are GNU Prolog extensions.

7.14.7 format/3 ,format/2

Templates

format(+stream
format(+character

Description

format(SorA, Format, Arguments)

stream-term or aliaSorA .

Format control sequences the general format of a control sequencéMC’ . The characte€ determines the

_or _alias, +character _code _list _or _atom, +list)
_code _list _or _atom, +list)

type of the control sequencélis an optional numeric argument. An alternative forrNags '** . ™ implies

that the next argumemtrg in Arguments should be used as a humeric argument in the control sequence. The

use of Cprintf() formatting sequence (beginning by the charaéfeis also allowed. The following control

sequences are available:

float expression

Format type of the Description
sequence argument
"Na atom print the atom without quoting\ is minimal number of characters to print
using spaces on the rigth if needed (default: the length of the atom)
"Nc character code | print the character associated to the cddés the number of times to print
the character (default: 1)
"Nf float expression | pass the argumenfrg and N to the C printf() function as:
"Ne if N is not specified printf("%f",Arg) else
"NE printf("%.Nf",Arg) .
"Ng Similarly for"Ne , "NE, "Ng and"NG
"NG
"Nd integer expression| print the argumentN is the number of digits after the decimal point.Nf
is 0 no decimal point is printed (default: 0)
"ND integer expression| identical to'Nd exceptthat’ separates groups of three digits to the left
of the decimal point
“Nr integer expression| print the argument according to the radix2 < N < 36 (default: 8). The
lettersa-z denote digits> 9
"NR integer expression| identical to"Nr except that the lette’s-Z denote digits> 9
"Ns character code list| print exactlyN characters (default: the length of the list)
"NS character list print exactlyN characters (default: the length of the list)
T term ignore the current argument
"k term pass the argument terite _canonical/l (sectior] 7.14J6, page 95)
p term pass the argument fwint/1 (sectior} 7.14.6, page P5)
q term pass the argument teriteq/1 (sectior 7.14.|6, page 95)
“w term pass the argument terite/1 (sectiorj 7.14.6, page 95)
- none print the charactef”
"Nn none print N new-line characters (default: 1)
"N none print a new-line character if not at the beginning of a line
? atom use the argument as a nested format string
%F atom, integer or | interface to the C functioprintf(3) for outputting atoms (C string),

integers and floating point numbetfsare also allowed.

writes theFormat string replacing each format control sequence
F by the corresponding element 8fguments (formatted according t&) to the stream associated with the

98 7 PROLOG BUILT-IN PREDICATES

format/2 applies to the current output stream.

Errors
SorA is a variable instantiation _error
Format is a partial list or a list with an elemekt instantiation _error
which is a variable
Arguments is a partial list instantiation _error
Format is neither a partial list nor a list or an atom| type _error(list, Format)
Arguments is neither a partial list nor a list type _error(list, Arguments)
an elemenk of theFormat list is neither a variable| representation _error(character _code,
nor a character code E)
SorA is neither a variable nor a stream-term or aliagsdomain _error(stream _or _alias, SorA)
an elemenk of Format is not a valid format control | domain _error(format _control _sequence,
sequence E)
theArguments list does not contain sufficient domain _error(non _empty _list, [])
elements
an elemenk of the Arguments list is a variable instantiation _error
while a non-variable term was expected
an elemenE of the Arguments list is neither type _error(atom, E)

variable nor an atom while an atom was expected
an elemenE of the Arguments cannot be evaluated an arithmetic error (sectiQn 7.§5.1, p 57)
as an arithmetic expression while an integer or a
floating point number was expected

an elemenk of the Arguments list is neither representation _error(character _code,
variable nor character code while a character code E)

was expected

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an input stream permission _error(output, stream,
SorA)

SorA is associated with a binary stream permission _error(output,

binary _stream, SorA)

Portability

GNU Prolog predicates.

7.14.8 portray _clause/2 ,portray _clause/l

Templates

portray _clause(+stream _or _alias, +clause)
portray _clause(+clause)

Description

portray _clause(SorA, Clause) pretty printsClause to the stream associated with the stream-term
or aliasSorA. portray _clause/2 uses the variable binding predicate@me_singleton _vars/1 (sec-
tion[7.5.], pagg §5) andumbervars/1 (sectior] 7.5.3, pade F6). This predicate is usetisting/1 (sec-

tion[7.23.3, page 136).
portray _clause/l applies to the current output stream.

Errors

7.14 Term input/output 99

Clause is a variable instantiation _error

Clause is neither a variable nor a callable term type _error(callable, Clause)

SorA is a variable instantiation _error

SorA is neither a variable nor a stream-term or aliasdomain _error(stream _or _alias, SorA)

SorA is not associated with an open stream existence _error(stream, SorA)

SorA is an input stream permission _error(output, stream,
SorA)

SorA is associated with a binary stream permission _error(output,
binary _stream, SorA)

Portability

GNU Prolog predicates.

7.14.9 get _print _stream/1

Templates
get _print _stream(?stream)

Description

get _print _stream(Stream) unifiesStream with the stream-term associated to the output stream used by
print/2 (sectiory 7.14]6, page P5). The purpose of this predicate is to allow a user-qeii@y/1 predicate

to identify the output stream in use.

Errors

] Stream is neither a variable nor a stream-term \ domain _error(stream, Stream)

Portability

GNU Prolog predicate.

7.14.10 op/3
Templates
op(+integer, +operator _specifier, +atom _or _atom _list)
Description
op(Priority, OpSpecifier, Operator) alters the operator tabl@perator is declared as an opera-

tor with properties defined by specifi@pSpecifier andPriority . Priority must be an integer 0 and

< 1200. If Priority is 0 then the operator properties ©perator (if any) are canceledOperator may

also be a list of atoms in which case all of them are declared to be operators. In general, operators can be removed
from the operator table and their priority or specifier can be changed. However, it is an error to attempt to change
the’,’ operator from its initial status. An atom can have multiple operator definitions (e.g. prefix and infix like

+) however an atom cannot have both an infix and a postfix operator definitions.

Operator specifiers the following specifiers are available:

100

7 PROLOG BUILT-IN PREDICATES

| Specifier] Type | Associativity |

fx prefix no
fy prefix yes
xf postfix no
yf postfix yes
xfx infix no
yfx infix left
xfy infix right

Prolog predefined operators

| Priority | Specifier| Operators

1200 xfx -

1200 fx -

1100 xfy ;

1050 xfy ->

1000 xfy ,

900 fy \+

700 NOY = = = == == @< @=< @> @>= is == =\=
< =< > >=

600 xfy :

500 yfx + - NV

400 yfx * [/ rem mod << >>

200 xfy w7

200 fy + -\

FD predefined operators
| Priority [Specifier] Operators

750 xfy #<=> #i<=>

740 xfy #==> #==>

730 xfy # o # #WV

720 yfx #N\ #N\

710 fy #\

700 xfx #= = #< #=< #> H>= f#=H H\=H H<H H#He<# #>#
#>=#

500 yfx + -

400 yfx * [/I rem

200 xfy *k

200 fy + -

Errors

7.14 Term input/output

101

Priority is a variable instantiation _error
OpSpecifier is a variable instantiation _error
Operator is a partial list or a list with an elemeft | instantiation _error

which is a variable

Priority is neither a variable nor an integer type _error(integer, Priority)
OpSpecifier is neither a variable nor an atom | type _error(atom, OpSpecifier)
Operator is neither a partial list nor a list nor an | type _error(list, Operator)
atom

an elemenk of theOperator list is neither a

variable nor an atom

type _error(atom, E)

Priority is an integer not 0 and< 1200 domain _error(operator _priority,
Priority)

OpSpecifier is not a valid operator specifier domain _error(operator _specifier,
OpSpecifier)

Operator is’,) oran element of th®perator permission _error(modify, operator,

listis’,’ V)

OpSpecifier is a specifier such th@perator permission _error(create, operator,

would have a postfix and an infix definition. Operator)

Portability
ISO predicate.
The ISO reference implies that if a program callsrent _op/3 , then modifies an operator definition by call-

ing op/3 and backtracks into the call tourrent _op/3 , then the changes are guaranteed not to affect that
current _op/3 goal. This is not guaranteed by GNU Prolog.

7.14.11 current _op/3
Templates
current _op(?integer, ?operator _specifier, ?atom)

Description
current _op(Priority, OpSpecifier, Operator) succeeds iDperator is an operator with prop-
erties defined by specifi@pSpecifier andPriority . This predicate is re-executable on backtracking.
Errors

Priority is neither a variable nor an operator domain _error(operator _priority,

priority Priority)

OpSpecifier s neither a variable nor an operator domain _error(operator _specifier,

specifier OpSpecifier)

Operator is neither a variable nor an atom type _error(atom, Operator)
Portability

ISO predicate.

7.14.12 char _conversion/2

Templates

char _conversion(+character, +character)

102 7 PROLOG BUILT-IN PREDICATES

Description

char _conversion(InChar, OutChar) alters the character-conversion mapping. This mapping is used by
the following read predicatesead _term/3 (section 7.14]1, pade Pljead _atom/2 , read _integer/2

read _number/2 (sectior] 7.14]2, page P2) anehd _token/2 (sectior] 7.14]3, page P3) to replace any occur-
rence of a charactdnChar by OutChar . However the conversion mechanism should have been previously
activated by switching on thehar _conversion Prolog flag (sectiof 7.23.1, page 132). Whe@har and
OutChar are the same, the effect is to remove any conversion of a chamaCtear .

Note that the single character read predicates (gg.char/2) never do character conversion. If such behavior
is required, it must be explicitly done usiegrrent _char _conversion/2 (sectior] 7.14.113, page 1102).

Errors
InChar is a variable instantiation _error
OutChar is a variable instantiation _error
InChar is neither a variable nor a character type _error(character, InChar)
OutChar is neither a variable nor a character type _error(character, OutChar)
Portability
ISO predicate. Theéype _error(character,...) is a GNU Prolog behavior, the ISO reference instead
defines arepresentation _error(character) in this case. This seems to be an error of the 1SO ref-

erence since, for many other built-in predicates accepting a charactercfgag._code/2 , put _char/2), a
type _error is raised.

The ISO reference implies that if a program callsrent _char _conversion/2 , then modifies the character
mapping by callingchar _conversion/2 , and backtracks into the call tmrrent _char _conversion/2

then the changes are guaranteed not to affecttiraént _char _conversion/2 goal. This is not guaranteed
by GNU Prolog.

7.14.13 current _char _conversion/2

Templates
current _char _conversion(?character, ?character)

Description

current _char _conversion(InChar, OutChar) succeeds if the conversion aiChar is OutChar
according to the character-conversion mapping. In that ¢taS&ar andOutChar are different. This predicate
is re-executable on backtracking.

Errors
InChar is neither a variable nor a character type _error(character, InChar)
OutChar is neither a variable nor a character type _error(character, OutChar)
Portability

ISO predicate. Same remark as for cleanversion/2 (sectidn 7.14]12, page]101).

7.15 Input/output from/to constant terms 103

7.15 Input/output from/to constant terms

These built-in predicates enable a Prolog term to be input from or output to a Prolog constant term (atom, character
list or character code list). All these predicates can be defined using constant term streamg (seftion T.1]1, page 82).
They are however simpler to use.

7.15.1 read _term _from _atom/3 ,read _from _atom/2 ,read _token _from _atom/2

Templates

read _term _from _atom(+atom ?term, +read _option _list)
read _from _atom(+atom, ?term)
read _token _from _atom(+atom, ?nonvar)

Description

Like read _term/3 , read/2 (sectior{7.14]1, pade P1) aneéad _token/2 (sectior] 7.14]3, pade P3) except
that characters are not read from a text-stream but fktwm; the atom given as first argument.

Errors
Atom is a variable instantiation _error
Atom is neither a variable nor an atom type _error(atom, Atom)
see associated predicate errors (sectior] 7.14]1, page P1) and (section 7.14.3,
pagq 9B)
Portability

GNU Prolog predicates.

7.15.2 read _term _from _chars/3 ,read _from _chars/2 ,read _token _from _chars/2

Templates
read _term _from _chars(+character _list ?term, +read _option _list)
read _from _chars(+character _list, ?term)
read _token _from _chars(+character _list, ?nonvar)

Description

Like read _term/3 , read/2 (sectior{ 7.14]1, pade P1) anélad _token/2 (sectior] 7.14]3, pade P3) except
that characters are not read from a text-stream but fétiars ; the character list given as first argument.

Errors
Chars is a partial list or a list with an elemekt instantiation _error
which is a variable
Chars is neither a partial list nor a list type _error(list, Chars)

an elemenE of theChars list is neither a variable | type _error(character, E)
nor a character
see associated predicate errors (sectior] 7.14)1, page P1) and (section 7./14.3,

page 9B)

Portability

104

7 PROLOG BUILT-IN PREDICATES

GNU Prolog predicates.

7.15.3 read _term _from _codes/3 ,read _from _codes/2 ,read _token _from _codes/2

Templates

read _term _from _codes(+character
read _from _codes(+character
read _token _from _codes(+character

Description

Like read _term/3 , read/2 (sectior{7.14]1, pade P1) anelad _token/2
that characters are not read from a text-stream but fLoates ; the character code list given as first argument.

Errors

_code _list ?term, +read
_code _list, ?term)
_code _list, ?nonvar)

_option _list)

Codes is a partial list or a list with an elemekt
which is a variable

instantiation _error

Codes is neither a partial list nor a list

type _error(list, Codes)

an elemenk of the Codes list is neither a variable
nor an integer

type _error(integer, E)

an elemenk of theCodes list is an integer but not a
character code

representation _error(character _code,

E)

see associated predicate errors

(sectior] 7.14]1, page P1) and (section 7.14.3,
pagq 9B)

Portability
GNU Prolog predicates.
7.15.4 write _term _to _atom/3 , write

write _canonical _to _atom/2 , display
format _to _atom/3

_to _atom/2 , writeq
_to _atom/2 , print

_to _atom/2
_to _atom/2

Templates
write _term _to _atom(?atom, ?term, +write _option _list)
write _to _atom(?atom, ?term)
writeq _to _atom(?atom, ?term)
write _canonical _to _atom(?atom, ?term)
display _to _atom(?atom, ?term)
print _to _atom(?atom, ?term)
format _to _atom(?atom, +character _code _list _or _atom, +list)

Description

Similar towrite _term/3 , write/2 , writeq/2

tion[7.14.%, pagk 95) arfdrmat/3

, Write
(sectior{ 7.14]7, page P7) except that characters are not written onto a text-

_canonical/l2 , display/2 , print/2

stream but are collected as an atom which is then unified with the first argémnt

Errors

Atom is neither a variable nor an atom

type _error(atom, Atom)

see associated predicate errors

(sectior] 7.14)6, page P5) and (section 7./14.7,
pagq 9Y)

(sectior{ 7.14]3, page P3) except

(sec-

7.15 Input/output from/to constant terms 105

Portability
GNU Prolog predicates.
7.15.5 write _term _to _chars/3 ,write _to _chars/2 ,writeq _to _chars/2 |,

write _canonical _to _chars/2 ,display _to _chars/2 ,print _to _chars/2
format _to _chars/3

Templates

write _term _to _chars(?character _list, ?term, +write _option _list)

write _to _chars(?character _list, ?term)

writeq _to _chars(?character _list, ?term)

write _canonical _to _chars(?character _ist, ?term)

display _to _chars(?character _list, ?term)

print _to _chars(?character _list, ?term)

format _to _chars(?character _list, +character _code _list _or _atom, +list)
Description

Similar towrite _term/3 , write/2 , writeq/2 , write _canonical/2 , display/2 , print/2 (sec-
tion[7.14.6, pagg 95) arfdrmat/3 (sectior] 7.14]7, page P7) except that characters are not written onto a text-
stream but are collected as a character list which is then unified with the first argGinanst .

Errors
Chars is neither a partial list nor a list type _error(list, Chars)
see associated predicate errors (sectior] 7.14)6, page P5) and (section 7./14.7,
pagq 9Y)
Portability

GNU Prolog predicates.

7.15.6 write _term _to _codes/3 ,write _to _codes/2 ,writeq _to _codes/2 ,
write _canonical _to _codes/2 ,display _to _codes/2 ,print _to _codes/2 ,
format _to _codes/3

Templates
write _term _to _codes(?character _code _list, ?term, +write _option _list)
write _to _codes(?character _code _list, ?term)
writeq _to _codes(?character _code _list, ?term)

write _canonical _to _codes(?character _code _list, ?term)

display _to _codes(?character _code _list, ?term)

print _to _codes(?character _code _list, ?term)

format _to _codes(?character _code _list, +character _code _list _or _atom, +list)

Description

Similar towrite _term/3 , write/2 , writeq/2 , write _canonical/l2 , display/2 , print/2 (sec-
tion[7.14.%, pagk 95) arfdrmat/3 (sectior{ 7.14]7, page P7) except that characters are not written onto a text-
stream but are collected as a character code list which is then unified with the first arglodest

Errors

106 7 PROLOG BUILT-IN PREDICATES

Codes is neither a partial list nor a list type _error(list, Codes)
see associated predicate errors (sectior] 7.14)6, page P5) and (section 7./14.7,
pagq 9Y)
Portability

GNU Prolog predicates.

7.16 DEC-10 compatibility input/output
7.16.1 Introduction

The DEC-10 Prolog I/O predicates manipulate streams implicitly since they only refer to current input/output
streams (section 7.10.1, pdgg 67). The current input and output streams are initiallyuset tinput and

user _output respectively. The predicateee/l (resp. tell/l , append/1l) can be used for setting the
current input (resp. output) stream to newly opened streams for particular files. The predieat@ (resp.

told/0) close the current input (resp. output) stream, and resets it to the standard input (resp. output). The pred-
icateseeing/l (resp.telling/1) is used for retrieving the file name associated with the current input (resp.
output) stream. The file nameser stands for the standard input or output, depending on coniegt (_input

anduser _output can also be used). The DEC-10 Prolog I/O predicates are only provided for compatibility,
they are now obsolete and their use is discouraged. The predicates for explicit stream manipulation should be used

instead (sectiop 7.10, palge| 67).

7.16.2 see/l ,tel/l ,append/l

Templates
see(+source _sink)
see(+stream)
tell(+source _sink)

tell(+stream)
append(+source _sink)
append(+stream)

Description

see(FileName) sets the current input streamRdeName . If there is a stream opened bge/l associated
with the samd-ileName already, then it becomes the current input stream. OtherwileName is opened for
reading and becomes the current input stream.

tell(FileName) sets the current output streamRideName . If there is a stream opened B8ll/1 asso-
ciated with the sam€&ileName already, then it becomes the current output stream. Otherike®ame is
opened for writing and becomes the current output stream.

append(FileName) liketell/l butFileName is opened for writing + append.

A stream-term (obtained with any other built-in predicate) can also be provideétedsame to these predicates.
Errors

See errors associateddpen/4 (sectior] 7.10J6, page b9).

Portability

7.16 DEC-10 compatibility input/output 107

GNU Prolog predicates.

7.16.3 seeing/l ,telling/1

Templates
seeing(?source _sink)
telling(?source _sink)
Description

seeing(FileName) succeeds iFileName unifies with the name of the current input file, if it was opened by
see/l ; else with the current input stream-term, if this is neer _input , otherwise withuser .

telling(FileName) succeeds iFileName unifies with the name of the current output file, if it was opened
bytell/l orappend/l ;else with the current output stream-term, if this isas¢r _output , otherwise with
user .

Errors

None.

Portability

GNU Prolog predicates.

7.16.4 seen/O ,told/O

Templates

seen
told

Description

seen closes the current input, and resets itis®er _input
told closes the current output, and resets iiser _output
Errors

None.

Portability

GNU Prolog predicates.

7.16.5 get0/1 ,get/1 ,skip/1

Templates

getO(?in _character _code)
get(?in _character _code)
skip(+character _code)

108 7 PROLOG BUILT-IN PREDICATES

Description

get0(Code) succeeds iCode unifies with the next character code read from the current input stream. Thus it
is equivalent tayet _code(Code) (sectior] 7.12]1, page B4).

get(Code) succeeds iCode unifies with the next character code read from the current input stream that is not
a layout character.

skip(Code) skips just past the next character c@iede from the current input stream.
Errors

See errors foget _code/2 (sectior] 7.12]1, page B4).

Portability

GNU Prolog predicates.

7.16.6 put/l ,tab/l

Templates

put(+character _code)
tab(+evaluable)

Description

put(Code) writes the character whose cod€igde onto the current output stream. Itis equivalenttd _code(Code)

(sectior] 7.12]5, page B7).

tab(N) writesN spaces onto the current output stredhmay be an arithmetic expression.

Errors

See errors foput _code/2 (sectior] 7.12]5, page B7) and for arithmetic expressions (séctioh 7.6.1, page 57).
Portability

GNU Prolog predicates.

7.17 Term expansion
7.17.1 Definite clause grammars

Definite clause grammars are a useful notation to express grammar rules. However the 1SO reference does not
include them, so they should be considered as a system dependent feature. Definite clause grammars are an
extension of context-free grammars. A grammar rule is of the form:

head --> body.
--> is a predefined infix operator (sectjon 7.14.10, gage 99).

Here are some features of definite clause grammars:

e anon-terminal symbol may be any callable term.

7.17 Term expansion 109

a terminal symbol may be any Prolog term and is written as a list. The empty list represents an empty
sequence of terminals.

e asequence is expressed using the Prolog conjunction op&(atisR).

¢ the head of a grammar rule consists of a non-terminal optionally followed by a sequence of terminals (i.e. a
Prolog list).

e the body of a grammar rule consists of a sequence of non-terminals, terminals, predicate call, disjunction
(using;/2), if-then (using(->)/2) or cut (using!).

e a predicate call must be enclosed in curly brackets (ugilg). This makes it possible to express an extra
condition.

A grammar rule is nothing but a “syntactic sugar” for a Prolog clause. Each grammar rule accepts as input a list of
terminals (tokens), parses a prefix of this list and gives as output the rest of this list (possibly enlarged). This rest
is generally parsed later. So, each a grammar rule is translated into a Prolog clause that explicitly the manages the
list. Two arguments are then added: the input Bia¢t) and the output list§top). For instance:

p-->4q
is translated into:
p(Start, End) :- q(Start, End).
Extra arguments can be provided and the body of the rule can contain several non-terminals. Example:

p(x, Y) -->
a(x),
r(X, Y),
s(Y).
is translated into:
p(X, Y, Start, End) :-
q(X, Start, A),

rX, Y, A, B),
s(Y, B, End).

Terminals are translated using unification:
assign(X,Y) --> left(X), [:=], right(Y), [;].
is translated into:

assign(X,Y,Start,End) :-
left(X, Start, A),
A=[:=|B],
right(Y, B, C),
C=[;|End].

Terminals appearing on the left-hand side of a rule are connected to the output argument of the head.

It is possible to include a call to a prolog predicate enclosing it in curly brackets (to distinguish them from non-
terminals):

assign(X,Y) --> left(X), [:=], right(Y0), {Y is YO }, [;].
is translated into:

assign(X,Y,Start,End) :-
left(X, Start, A),
A=[:=|B],
right(YO, B, C),
Y is YO,
C=[;|End].

Cut, disjunction and if-then(-else) are translated literally (and do not need to be enclosed in curly brackets).

110 7 PROLOG BUILT-IN PREDICATES

7.17.2 expand _term/2 ,term _expansion/2

Templates

expand _term(?term, ?term)
term _expansion(?term, ?term)

Description

expand _term(Terml, Term2) succeeds ifferm2 is a transformation oferml1. The transformation steps
are as follows:

e if Terml is a variable, it is unified witlTerm2

o if term _expansion(Terml, Term?2) succeed3erm2 is assumed to be the transformatiorfefrm1.

e if Terml is a DCG therTermz2 is its translation (sectidn 7.17.1, pdge [L08).

e otherwiseTerm2 is unified withTerm1.
term _expansion(Terml, Term2) is a hook predicate allowing the user to define a specific transformation.
The GNU Prolog compiler (sectign 3.4, pgge 20) automatically eajmnd _term/2 on eachTerml read in.
However, in the current release, only DCG transformation are done by the compilde(ire._expansion/2
cannot be used). To userm _expansion/2 , itis necessary to calixpand _term/2 explicitly.
Errors
None.

Portability

GNU Prolog predicate.

7.17.3 phrase/3 , phrase/2

Templates

phrase(?term, ?list, ?list)
phrase(?term, ?list)

Description

phrase(Phrase, List, Remainder) succeeds if the lidtist is in the language defined by the grammar
rule bodyPhrase . Remainder is what remains of the list after a phrase has been found.

phrase(Phrase, List) is equivalent tphrase(Phrase, List, [])

Errors

List is neither a list nor a partial list type _error(list, List)
Remainder is neither a list nor a partial list type _error(list, Remainder)
Portability

GNU Prolog predicates.

7.18 Logic, control and exceptions 111

7.18 Logic, control and exceptions
7.18.1 abort/0 ,stop/0 ,top _level/lO ,break/0 ,halt/1 ,halt/0

Templates

abort

stop

top _level
break
halt(+integer)
halt

Description

abort aborts the current execution. If this execution was initiated under a top-level the control is given back to
the top-level and the messafgxecution aborted} is displayed. Otherwise, e.g. execution started by a
initialization/1 directive (sectiof 6.1.13, pafe]48port/0 is equivalent tchalt(1) (see below).

stop stops the current execution. If this execution was initiated under a top-level the control is given back to the
top-level. Otherwisestop/0 is equivalent tchalt(0) (see below).

top _level starts a new recursive top-level (including the banner display). To end this new top-level simply type
the end-of-file key sequenc€-D) or its term representatioend _of _file.

break invokes a recursive top-level (no banner is displayed). To end this new level simply type the end-of-file
key sequenceGtl-D) or its term representatiomnd _of _file.

halt(Status) causes the GNU Prolog process to immediately exit back to the shell with the return code
Status

halt is equivalent tdhalt(0)

Errors
Status is a variable instantiation _error
Status is neither a variable nor an integer type _error(integer, Status)
Portability

halt/1 andhalt/0 are ISO predicatesbort/0 , stop/0 ,top _level/0 andbreak/0 are GNU Prolog
predicates.

7.18.2 once/l ,(\+)/1 - notprovable,call _with _args/1-11 ,call/2

Templates
once(+callable _term)
\+(+callable _term)
call _with _args(+atom, +term,..., +term)
call(+callable _term, ?boolean)
Description

once(Goal) succeeds itall(Goal) succeeds. Howevence/l is not re-executable on backtracking since
all alternatives ofsoal are cut.once(Goal) is equivalent taall(Goal), !

112 7 PROLOG BUILT-IN PREDICATES

\+ Goal succeeds itall(Goal) fails and fails otherwise. This built-in predicate gives negation by failure.

call _with _args(Functor, Argl,..., ArgN) calls the goal whose functor Bunctor and whose
arguments arérgl ,...,ArgN (0 < N < 10).

call(Goal, Deterministic) succeeds itcall(Goal) succeeds and unifid3eterministic with
true if Goal has not created any choice-points, wilse otherwise.

\+ is a predefined prefix operator (sectjon 7.14.10, page 99).

Errors
Goal is a variable instantiation _error
Goal is neither a variable nor a callable term type _error(callable, Goal)
The predicate indicatdPred of Goal does not existence _error(procedure, Pred)

correspond to an existing procedure and the value|of
theunknown Prolog flag iserror (sectior] 7.22]1,

pagq 13p)

Functor is a variable instantiation _error

Functor is neither a variable nor an atom type _error(atom, Functor)

Deterministic is neither a variable nor a booleantype _error(boolean, Deterministic)
Portability

once/l and(\+)/1 are ISO predicatesall _with _args/1-11 andcall/2 are GNU Prolog predicates.

7.18.3 repeat/O

Templates
repeat

Description

repeat generates an infinite sequence of backtracking choices. The purpose is to repeatedly perform some action
on elements which are somehow generated, e.g. by reading them from a stream, until some test becomes true.
Repeat loops cannot contribute to the logic of the program. They are only meaningful if the action involves side-
effects. The only reason for using repeat loops instead of a more natural tail-recursive formulation is efficiency:
when the test fails back, the Prolog engine immediately reclaims any working storage consumed since the call to

repeat/O
Errors
None.
Portability

ISO predicate.

7.18.4 for/3

Templates

for(?integer, +integer, +integer)

7.19 Atomic term processing 113

Description
for(Counter, Lower, Upper) generates an sequence of backtracking choices instant@tingter to
the valued_ower , Lower+1 ,...,Upper .
Errors
Counter is neither a variable nor an integer type _error(integer, Counter)
Lower is a variable instantiation _error
Lower is neither a variable nor an integer type _error(integer, Lower)
Upper is a variable instantiation _error
Upper is neither a variable nor an integer type _error(integer, Upper)
Portability

GNU Prolog predicate.

7.19 Atomic term processing

These built-in predicates enable atomic terms to be processed as a sequence of characters and character codes.
Facilities exist to split and join atoms, to convert a single character to and from the corresponding character code,
and to convert a number to and from a list of characters and character codes.

7.19.1 atom _length/2

Templates

atom _length(+atom, ?integer)

Description
atom _length(Atom, Length) succeeds it.ength unifies with the number of characters of the name of
Atom.
Errors

Atom is a variable instantiation _error

Atom is neither a variable nor an atom type _error(atom, Atom)

Length is neither a variable nor an integer type _error(integer, Length)

Length is anintegex O domain _error(not _less _than _zero,

Length)

Portability

ISO predicate.

7.19.2 atom _concat/3

Templates

atom _concat(+atom, +atom, ?atom)
atom _concat(?atom, ?atom, +atom)

114 7 PROLOG BUILT-IN PREDICATES

Description

atom _concat(Atom1, Atom2, Atom12) succeeds if the name Atom12 is the concatenation of the name
of Atom1 with the name oAtom1. This predicate is re-executable on backtracking (e 4tafm12 is instantiated
and bothAtom1 andAtom2 are variables).

Errors
Atom1 andAtom12 are variables instantiation _error
Atom2 andAtom12 are variables instantiation _error
Atoml1 is neither a variable nor an atom type _error(atom, Atoml)
Atom2 is neither a variable nor an atom type _error(atom, Atom?2)
Atom12 is neither a variable nor an atom type _error(atom, Atom12)
Portability

ISO predicate.

7.19.3 sub _atom/5

Templates
sub _atom(+atom, ?integer, ?integer, ?integer, ?atom)

Description

sub _atom(Atom, Before, Length, After, SubAtom) succeeds if atomAtom can be split into three
atoms,AtomL, SubAtom and AtomR such thatBefore is the number of characters of the namefosdémL,
Length is the number of characters of the nameSofbAtom and After is the number of characters of the
name ofAtomR. This predicate is re-executable on backtracking.

Errors
Atom is a variable instantiation _error
Atom is neither a variable nor an atom type _error(atom, Atom)
SubAtom is neither a variable nor an atom type _error(atom, SubAtom)
Before is neither a variable nor an integer type _error(integer, Before)
Length is neither a variable nor an integer type _error(integer, Length)
After is neither a variable nor an integer type _error(integer, After)
Before is anintegex 0 domain _error(not _less _than _zero,
Before)
Length is anintegex O domain _error(not _less _than _zero,
Length)
After is anintegex O domain _error(not _less _than _zero,
After)
Portability

ISO predicate.

7.19.4 char _code/2

Templates

7.19 Atomic term processing 115

char _code(+character, ?character _code)
char _code(-character, +character _code)
Description

char _code(Char, Code) succeeds if the character code for the one-char &bar is Code.

Errors

Char andCode are variables instantiation _error

Char is neither a variable nor a one-char atom type _error(character, Char)

Code is neither a variable nor an integer type _error(integer, Code)

Code is an integer but not a character code representation _error(character _code)
Portability

ISO predicate.

7.19.5 lower _upper/2

Templates

lower _upper(+character, ?character)
lower _upper(-character, +character)

Description

lower _upper(Charl, Char2) succeeds i€harl andChar2 are one-char atoms anddhar?2 is the upper
conversion ofCharl . If Charl (resp.Char2) is a character that is not a lower (resp. upper) letter Qiear2
is equal toCharl .

Errors

Charl andChar2 are variables instantiation _error
Charl is neither a variable nor a one-char atom | type _error(character, Charl)
Char2 is neither a variable nor a one-char atom | type _error(character, Char2)

Portability

GNU Prolog predicate.

7.19.6 atom _chars/2 , atom _codes/2

Templates
atom _chars(+atom, ?character _list)
atom _chars(-atom, +character _list)
atom _codes(+atom, ?character _code _list)
atom _codes(-atom, +character _code _list)
Description

atom _chars(Atom, Chars) succeeds iChars is the list of one-char atoms whose names are the successive
characters of the name étom.

atom _codes(Atom, Codes) is similar toatom _chars/2 but deals with a list of character codes.

116 7 PROLOG BUILT-IN PREDICATES

Errors
Atom is a variable anc€Chars (or Codes)is a instantiation _error
partial list or a list with an element which is a variahle
Atom is neither a variable nor an atom type _error(atom, Atom)
Chars is neither a list nor a partial list type _error(list, Chars)
Codes is neither a list nor a partial list type _error(list, Codes)
Atom is a variable and an elemetof the list type _error(character, E)
Chars is neither a variable nor a one-char atom
Atom is a variable and an elemetof the list type _error(integer, E)
Codes is neither a variable nor an integer
Atom is a variable and an elemeitof the list representation _error(character _code)
Codes is an integer but not a character code

Portability

ISO predicates. The ISO reference only causé&gpa _error(list, Chars) if Atom is a variable and

Chars is neither a list nor a partial list. GNU Prolog always checkSlifars is a list. Similarly forCodes. The

type _error(integer, E) when an elemerit of the Codes is not an integer is a GNU Prolog extension.

This seems to be an omission in the 1SO reference since this error is detected for many other built-in predicates
accepting a character code (echar _code/2 , put _code/2).

7.19.7 number _atom/2 , number _chars/2 , number _codes/2

Templates

number _atom(+number, ?atom)
number _atom(-number, +atom)

number _chars(+number, ?character _list)

number _chars(-number, +character _list)

number _codes(+number, ?character _code _list)

number _codes(-number, +character _code _list)
Description

number _atom(Number, Atom) succeeds iAtom is an atom whose name corresponds to the characters of
Number.

number _chars(Number, Chars) is similar tonumber _atom/2 but deals with a list of character codes.
number _codes(Number, Codes) is similar tonumber _atom/2 but deals with a list of characters.

Errors

7.19 Atomic term processing 117

Number andAtom are variables instantiation _error

Number is a variable anc€Chars (or Codes)is a instantiation _error

partial list or a list with an element which is a variahle

Number is neither a variable nor an number type _error(number, Number)

Atom is neither a variable nor an atom type _error(atom, Atom)

Number is a variable ancChars is neither a list nor| type _error(list, Chars)

a partial list

Number is a variable an@odes is neither a list nor| type _error(list, Codes)

a partial list

Number is a variable and an elemetof the list type _error(character, E)

Chars is neither a variable nor a one-char atom

Number is a variable and an elemegtof the list type _error(integer, E)

Codes is neither a variable nor an integer

Number is a variable and an elemeabof the list representation _error(character _code)
Codes is an integer but not a character code

Number is a variable Atom (or Chars or Codes) syntax _error(atom explaining the
cannot be parsed as a number and the value of the error)

syntax _error Prolog flag iserror

(sectior] 7.22]1, page 132)

Portability

number _atom/2 is a GNU Prolog predicatewumber _chars/2 andnumber _codes/2 are ISO predicates.
GNU Prolog only raises an error about an elentewtf the Chars (or Codes) list whenNumber is a variable
while the ISO reference always check this. This seems an error since the list itself is only chedledbdr is a
variable.

Thetype _error(integer, E) when an elemert of theCodes is not an integer is a GNU Prolog extension.

This seems to be an omission in the 1SO reference since this error is detected for many other built-in predicates
accepting a character code (echar _code/2 , put _code/2).

7.19.8 name/2

Templates
name(+atomic, ?character _code _list)
name(-atomic, +character _code _list)
Description

name(Constant, Codes) succeeds ifcodes is a list whose elements are the character codes correspond-
ing to the successive characters@dnstant (a number or an atom). However, there atoms are for which
name(Constant, Codes) is true, but which will not be constructedriame/2 is called withConstant
uninstantiated, e.g. the atort024’ . For this reason the use ohme/2 is discouraged and should be lim-
ited to compatibility purposes. It is preferable to use atmdes/2 (section 7.19.6, pgge [115) or numtiears/2

(sectior] 7.19]7, page 1116).

Errors

118 7 PROLOG BUILT-IN PREDICATES

Constant is a variable an€Codes is a partial list | instantiation _error
or a list with an element which is a variable
Constant is neither a variable nor an atomic term| type _error(atomic, Constant)
Constant is a variable an€Codes is neither a list | type _error(list, Codes)

nor a partial list
Constant is a variable and an elemeftof the list | type _error(integer, E)
Codes is neither a variable nor an integer
Constant is a variable and an elemefatof the list | representation _error(character _code)
Codes is an integer but not a character code

Portability

GNU Prolog predicate.

7.19.9 atom _hash/2

Templates

atom _hash(+atom, ?integer)
atom _hash(?atom, +integer)

Description

atom _hash(Atom, Hash) succeeds iHash is the internal key associated &dom (an existing atom). The
internal key of an atom is a unique integei0 and< to themax_atom Prolog flag (sectiop 7.22.1, page 132).

Errors
Atom andHash are both variables instantiation _error
Atom is neither a variable nor an atom type _error(atom, Atom)
Hash is neither a variable nor an integer type _error(integer, Hash)
Hash is an integex 0 domain _error(not _less _than _zero,
Hash)
Portability
GNU Prolog predicate.
7.19.10 new_atom/3 , new_atom/2 , new_atom/1
Templates
new_atom(+atom, +integer, -atom)
new_atom(+atom, -atom)
new_atom(-atom)
Description
new_atom(Prefix, Hash, Atom) unifiesAtom with a new atom whose name begins with the characters of

the name oPrefix and whose internal key idash (sectior] 7.19]9, page 1]18). This predicate is then a symbol
generator. It is guaranteed thatom does not exist before the invocation wéw_atom/3 . The characters
appended t®@refix to form Atom are in: A-Z (capital letter)a-z (small letter),0-9 (digit), #, $, &, _, @

new_atom/2 is similar tonew_atom/3 , but the atom generated can have any (free) internal key.

7.19 Atomic term processing 119

new_atom/1 is similar tonew_atom(atom _, Atom) ,i.e. the generated atom begins wattom _.

Errors
Prefix is avariable instantiation _error
Hash is a variable instantiation _error
Prefix s neither a variable nor an atom type _error(atom, Prefix)
Hash is neither a variable nor an integer type _error(integer, Hash)
Hash is an integex 0 domain _error(not _less _than _zero,
Hash)
Atom is not a variable type _error(variable, Atom)
Portability

GNU Prolog predicate.

7.19.11 current _atom/1

Templates
current _atom(?atom)

Description

current _atom(Atom) succeeds if there exists an atom that unifies witbm. All atoms are found except
those beginning with &' (system atoms). This predicate is re-executable on backtracking.

Errors

] Atom is neither a variable nor an atom \ type _error(atom, Atom)

Portability

GNU Prolog predicate.

7.19.12 atom _property/2

Templates
atom _property(?atom, ?atom _property)
Description
atom _property(Atom, Property) succeeds i€urrent _atom(Atom) succeeds (secti¢n 7.19]11, page]|119)

and if Property unifies with one of the properties of the atom. This predicate is re-executable on backtracking.

Atom properties:
¢ length(Length) : Length is the length of the name of the atom.
hash(Hash) : Hash is the internal key of the atom (section 7.79.9, 118).

prefix _op: if there is a prefix operator currently defined with this name.

infix _op: if there is an infix operator currently defined with this name.

postfix _op: if there is a postfix operator currently defined with this name.

120 7 PROLOG BUILT-IN PREDICATES

e needs _quotes : if the atom must be quoted to be read later.

e needs _scan : if the atom must be scanned when output to be read later (e.g. contains special characters
that must be output with \a escape sequence).

Errors
Atom is neither a variable nor an atom type _error(atom, Atom)
Property is neither a variable nor a n atom domain _error(atom _property,
property term Property)

Property =length(E) orhash(E) andEis type _error(integer, E)
neither a variable nor an integer

Portability

GNU Prolog predicate.

7.20 List processing

These predicates manipulate lists. They are bootstrapped predicates (i.e. written in Prolog) and no error cases are
tested (for the moment). However, since they are written in Prolog using other built-in predicates, some errors can
occur due to those built-in predicates.

7.20.1 append/3

Templates
append(?list, ?list, ?list)
Description
append(Listl, List2, Listl2) succeeds if the concatenation of the lisgtl and the listList2 is
the listList12 . This predicate is re-executable on backtracking (e gisifLl2 is instantiated and bothist1l
andList2 are variable).
Errors
None.

Portability

GNU Prolog predicate.

7.20.2 member/2 , memberchk/2

Templates

member(?term, ?list)
memberchk(?term, ?list)

Description

member(Element, List) succeeds iElement belongs to the.ist . This predicate is re-executable on
backtracking and can be thus used to enumerate the elemdrnigs of

7.20 List processing 121

memberchk/2 is similar tomember/2 but only succeeds once.
Errors

None.

Portability

GNU Prolog predicate.

7.20.3 reverse/2

Templates
reverse(?list, 7?list)

Description

reverse(Listl, List2) succeeds itist2 unifies with the lististl in reverse order.
Errors

None.

Portability

GNU Prolog predicate.

7.20.4 delete/3 , select/3

Templates

delete(?list, ?term, ?list)
select(?term, ?list, ?list)

Description

delete(Listl, Element, List2) removes all occurrences &lement in Listl to provideList2
A strict term equality is required, ct==)/2 (sectior] 7.3, pade b1).

select(Element, Listl, List2) removes one occurrence Bfement in Listl to provideList2
This predicate is re-executable on backtracking.

Errors
None.
Portability

GNU Prolog predicate.

7.20.5 permutation/2

Templates

122 7 PROLOG BUILT-IN PREDICATES

permutation(?list, ?list)

Description

permutation(Listl, List2) succeeds itist2 is a permutation of the elementsldktl . This predi-
cate is re-executable on backtracking.

Errors
None.
Portability

GNU Prolog predicate.

7.20.6 prefix/2 , suffix/2

Templates

prefix(?list, ?list)
suffix(?list, ?list)

Description

prefix(Prefix, List) succeeds iPrefix is a prefix ofList . This predicate is re-executable on back-
tracking.

suffix(Suffix, List) succeeds iBuffix is a suffix ofList . This predicate is re-executable on back-
tracking.

Errors
None.
Portability

GNU Prolog predicate.

7.20.7 sublist/2

Templates
sublist(?list, ?list)

Description

sublist(Listl, List2) succeeds iList2 is a sub-list ofListl . This predicate is re-executable on
backtracking.

Errors
None.
Portability

GNU Prolog predicate.

7.20 List processing 123

7.20.8 last/2

Templates
last(?list, ?term)

Description

last(List, Element) succeeds iElement is the last element dfist
Errors

None.

Portability

GNU Prolog predicate.

7.20.9 length/2

Templates
length(?list, ?integer)

Description

length(List, Length) succeeds itength is the length oList
Errors

None.

Portability

GNU Prolog predicate.

7.20.10 nth/3

Templates
nth(?integer, ?list, ?term)

Description

nth(N, List, Element) succeeds if thdlth argument oList is Element .
Errors

None.

Portability

GNU Prolog predicate.

124 7 PROLOG BUILT-IN PREDICATES

7.20.11 maxlist/2 ,min_list/2 , sum_list/2

Templates

min _list(+list, ?number)
max_list(+list, ?number)
sum_list(+list, ?number)

Description

min _list(List, Min) succeeds iMin is the smallest number inist
max_list(List, Max) succeeds iMaxis the largest number ihist
sum_list(List, Sum) succeeds iSumis the sum of all the elements lrist

List must be a list of arithmetic evaluable terms (sedtion 7.6.1, pdge 57).
Errors

None.

Portability

GNU Prolog predicate.

7.20.12 sort/2 ,sort0/2 , keysort/2 sort/1 ,sort0/1 |, keysort/1

Templates

sort(+list, ?list)
sortO(+list, 7list)
keysort(+list, ?list)
sort(+list)
sortO(+list)
keysort(+list)

Description

sort(Listl, List2) succeeds ikist2 is the sorted list correspondingltéstl where duplicate elements
are merged.

sort0/2 s similar tosort/2 except that duplicate elements are not merged.

keysort(Listl, List2) succeeds iList2 is the sorted list oListl according to the keys. The list
Listl consists of items of the foridey-Value . These items are sorted according to the valu€eyf yielding
theList2 . Duplicate keys are not merged. This predicate is stable, ik-Afoccurs befor&-B in the input,
thenK-A will occur beforeK-B in the output.

sort/1 , sort0O/1 andkeysort/1 are similar tosort/2 , sort0/2 andkeysort/2 but achieve a sort
in-place destructing the originaistl (this in-place assignment is not undone at backtracking). The sorted list
occupies the same memory space as the original list (saving thus memory consumption).

The time complexity of these sorts@& N log N), N being the length of the list to sort.

These predicates refer to the standard ordering of terms (sgctioh 7.3.[[, page 51).

7.21 Global variables 125

Errors
Listl is a partial list instantiation _error
Listl is neither a partial list nor a list type _error(list, Listl)
List2 is neither a partial list nor a list type _error(list, List2)
Portability

GNU Prolog predicates.

7.21 Global variables
7.21.1 Introduction

GNU Prolog provides a simple and powerful way to assign and read global variables. A global variable is associ-
ated to each atom, its initial value is the integer 0. A global variable can store 3 kinds of objects:

e acopy of a term (the assignment can be made backtrackable or not).
¢ alink to a term (the assignment is always backtrackable).
e an array of objects (recursively).

The space necessary for copies and arrays is dynamically allocated and recovered as soon as possible. For instance,
when an atom is associated to a global variable whose current value is an array, the space for this array is recovered
(unless the assignment is to be undone when backtracking occurs).

When a link to a term is associated to a global variable, the reference to this term is stored and thus the original
term is returned when the content of the variable is read.

Global variable naming convention a global variable is referenced by an atom.

If the variable contains an array, an index (ranging from 0) can be provided using a compound term whose principal
functor is the correponding atom and the argument is the index. In case of a multi-dimensional array, each index
is given as the arguments of the compound term.

If the variable contains a term (link or copy), it is possible to only reference a sub-term by giving its argument
number (also called argument selector). Such a sub-term is specified using a compound term whose principal
functor is-/2 and whose first argument is a global variable name and the second argument is the argument
number (from 1). This can be applied recursively to specify a sub-term of any depth. In case of a list, a argument
number | represents the Ith element of the list. In the rest of this section we use the operator notatiorissince
predefined infix operator (sectipn 7.14.10, page 99).

In the following, GVarNamerepresents a reference to a global variable and its syntax is as follows:

GVarName := atom whole content of a variable
atom (Integer , ..., Integer) element of an array
GVarName Integer sub-term selection

Integer = integer immediate value
GVarName indirect value

When aGVarNameis used as an index or an argument number (i.e. indirection), the value of this variable must
be an integer.

Here are some examples of the naming convention:

126 7 PROLOG BUILT-IN PREDICATES

a the content of variable associatedat@any kind)

t(1) the 2nd element of the array associatetl to

t(k) if the value associated tois I, the Ith element of the array associated to
a-1-2 if the value associated tis f(g(a,b,c),2) , the sub-terni

Here are the errors associated to global variable names and common to all predicates.

GVarNameis a variable instantiation _error

GVarNameis neither a variable nor a callable term| type _error(callable, GVarName)
GVarNamecontains an invalid argument number (¢rdomain _error(g _argument _selector,
GVarNameis an array) GVarName)

GVarNamecontains an invalid index (d@&VarName | domain _error(g _array _index, GVarName)
is not an array)
GVarNameis used as an indirect index or argumenttype _error(integer, GVarName)
selector and is not an integer

Arrays: the predicateg_assign/2 , g.assignb/2 andg_link/2 (section 7.21]2, pade 126) can be used
to create an array. They recognize some terms as values. For instance, a compound term with principal functor
g_array is used to define an array of fixed size. There are 3 forms for thegesimay :

e g_array(Size) :if Size isaninteger- 0then defines an array 8ize elements which are all initialized
with the intege0.

e g_array(Size, Initial) . as above but the elements are initialized with the tbritial instead
of 0. Initial can contain other array definitions allowing thus for multi-dimensional arrays.

e g_array(List) . as above ifList is a list of lengthSize except that the elements of the array are
initialized according to the elementslost (which can contain other array definitions).

An array can be extended explicitely using a compound term with principal fugctoray _extend which
accept the same 3 forms detailed above. In that case, the existing elements of the array are not initialized. If
g.array _extend is used with an object which is not an array it is similagtarray .

Finally, an array can bautomaticallyexpanded when needed. The programmer does not need to explicitely control
the expansion of an automatic array. An array is expanded as soon as an index is outside the current size of this
array. Such an array is defined using a compound term with principal fupcaay _auto :

e g_array _auto(Size) : if Size is an integer> 0 then defines an automatic array whose initial size is
Size . All elements are initialized with the integ8r Elements created during implicit expansions will be
initialized with 0.

e g_array _auto(Size, Initial) : as above but the elements are initialized with the ténitial
instead of 0. Initial can contain other array definitions allowing thus for multi-dimensional arrays.
Elements created during implicit expansions will be initialized vititial

e g_array _auto(List) :asaboveitist isalist of lengthSize exceptthatthe elements of the array are
initialized according to the elementslaft (which can contain other array definitions). Elements created
during implicit expansions will be initialized wit@.

In any case, when an array is read, a term of the fgrarray([Elem0,..., ElemSize-1]) is returned.

Some examples using global variables are presented later (dection) 7.21[7, jage 129).

7.21.2 g_assign/2 ,g.assignb/2 , g_link/2

Templates
g_assign(+callable _term, ?term)
g_assignb(+callable _term, ?term)

g_link(+callable _term, ?term)

7.21 Global variables 127

Description

g_assign(GVarName, Value) assigns a copy of the tervialue to GVarName This assignment is not
undone when backtracking occurs.

g_assignb/2 is similar tog_assign/2 but the assignment is undone at backtracking.

g_link(GvVarName, Value) makes a link betwee@VarNameto the termValue . This allows the user to

give a name to any Prolog term (in particular non-ground terms). Such an assignment is always undone when
backtracking occurs (since the term may no longer existValuie is an atom or an integeg_link/2 and
g.assignb/2 have the same behavior. Singdink/2 only handles links to existing terms it does not require
extra memory space and is not expensive in terms of execution time.

NB: argument selectors can only be used witasgign/2 (i.e. when using an argument selector inside an assign-
ment, this one must not be backtrackable).

Errors

See common errors detailed in the introduction (se¢tion 7.21.1[page 125)

GVarNamecontains an argument selector and the| domain _error(g _argument _selector,
assignment is backtrackable GVarName)

Portability

GNU Prolog predicates.

7.21.3 g_read/2

Templates
g_read(+callable _term, ?term)

Description

g_read(GVarName, Value) unifiesValue with the term assigned ©6VarName
Errors

See common errors detailed in the introduction (se¢tion 7.21.1] pabe 125)
Portability

GNU Prolog predicate.

7.21.4 g_array _size/2

Templates
g.array _size(+callable _term, ?integer)

Description

g_array _size(GVarName, Value) unifiesSize with the dimension (an integer 0) of the array assigned
to GVarName Fails if GVarNameis not an array.

128 7 PROLOG BUILT-IN PREDICATES

Errors

See common errors detailed in the introduction (se¢tion 7.21.1[page 125)

] Size is neither a variable nor an integer \ type _error(integer, Size)

Portability

GNU Prolog predicate.

7.21.5 g.inc/3 ,g.nc/2 ,g.inco/2 ,g.inc/l ,g_dec/3 ,g._dec/2 ,g_deco/2 ,g_dec/l

Templates
g-inc(+callable _term, ?integer, ?integer)
g_inc(+callable _term, ?integer)
g-inco(+callable _term, ?integer)
g_inc(+callable _term)

g_dec(+callable _term, ?integer, ?integer)
g_dec(+callable _term, ?integer)
g_deco(+callable _term, ?integer)
g_dec(+callable _term)

Description

g-inc(GVarName, Old, New) unifiesOld with the integer assigned ®VarName increment$VarName
and then unifiedlewwith the incremented value.

g-inc(GVarName, New) is equivalent tgg_.inc(GVarName, _, New) .
g.inco(GVarName, OIld) is equivalent t@_inc(GVarName, Old,).
g.inc(GVarName) is equivalent tag_inc(GVarName, _,).

Predicateg_dec are similar but decrement the content@¥arNameinstead.
Errors

See common errors detailed in the introduction (se¢tion 7.21.1] page 125)

Old is neither a variable nor an integer type _error(integer, Old)

Newis neither a variable nor an integer type _error(integer, New)
GVarNamestores an array type _error(integer, g _array)
GVarNamestores a ternT which is not an integer | type _error(integer, T)

Portability

GNU Prolog predicates.

7.21.6 g._set _bit/l2 ,g._reset _bit/2 ,g_test _set bit/2 ,g_test _reset _bit/2

Templates

g_set _bit(+callable _term, +integer)
g_reset _bit(+callable _term, +integer)

7.21 Global variables 129

g_test _set _bit(+callable _term, +integer)
g_test _reset _bit(+callable _term, +integer)
Description

g_set _bit(GvVarName, Bit) sets to 1 the bit number specified Bif of the integer assigned ®BVarName

to 1. Bit numbers range from 0 to the maximum number allowed for integers (this is architecture dependent). If
Bit is greater than this limit, the modulo with this limit is taken.

g_reset _bit(GVarName, Bit) is similar tog_set _bit/2 but sets the specified bit to 0.

g_test _set _bit/2 succeeds if the specified bit is set to 1.

g_test _reset _bit/2 succeeds if the specified bit is set to 0.

Errors

See common errors detailed in the introduction (se¢tion 7.21.1[pagje 125)

Bit is a variable instantiation _error

Bit is neither a variable nor an integer type _error(integer, Bit)

Bit is anintegex 0 domain _error(not _less _than _zero, Bit)
GVarNamestores an array type _error(integer, g _array)
GVarNamestores a ternT which is not an integer | type _error(integer, T)

Portability

GNU Prolog predicates.

7.21.7 Examples

Simulating g_inc/3 : this predicate behaves like: global variable:

my_g_inc(Var, Old, New) :-
g_read(Var, Old),
N is Value + 1,
g_assign(Var, X),
New = N.

The query:my_g_inc(c, X, _) will succeed unifyingX with 0, another call tany_g_inc(a, Y,) will
then unifyY with 1, and so on.

Difference betweeng_assign/2 and g_assignb/2 : g_assign/2 does not undo its assignment when back-
tracking occurs whereasassignb/2 undoes it.

test(Old) :- testb(Old) :-
g_assign(x,1), g _assign(x,1),
(g _read(x, Old), (g _read(x, Old),
g.assign (x, 2) g.-assignb (x, 2)
; g _read(x, Old), ; g _read(x, Old),
g-assign(x, 3) g _assign(x, 3)
).).

The quenytest(Old) will succeed unifyingOld with 1 and on backtracking witR (i.e. the assignment of the
value2 has not been undone). The quéegtb(Old) will succeed unifyingOld with 1 and on backtracking
with 1 (i.e. the assignment of the val@ehas been undone).

130 7 PROLOG BUILT-IN PREDICATES

Difference betweeng_assign/2 and g_link/2 : g_assign/2 (andg_assignb/2) creates a copy of the
term whereag_link/2 does not.g_link/2 can be used to avoid passing big data structures (e.g. dictionar-
ies,...) as arguments to predicates.

test(B) :- test(B) :-
g-assign (b, f(X)), glink (b, f(X)),
X = 12, X = 12,
g_read(b, B). g _read(b, B).

The querytest(B) will succeed unifyingB with f() (g-assign/2 assigns a copy of the value). The query
testl(B) will succeed unifyingB with f(12) (g_link/2 assigns a pointer to the term).

Simple array definition: here are some queries to show how arrays can be handled:
| ?- g_assign(w, g_array(3)), g_read(w, X).
X = g_array([0,0,0])
| ?- g_assign(w(0), 16), g _assign(w(l), 32), g_assign(w(2), 64), g_read(w, X).

X = g_array([16,32,64])
this is equivalent to:

| ?- g_assign(k, g_array([16,32,64])), g_read(k, X).

X = g_array([16,32,64])

| ?- g_assign(k, g_array(3,null)), g_read(k, X), g_array_size(k, S).
S =3

X = g_array([null,null,null])

2-D array definition:

| ?- g_assign(w, g_array(2, g_array(3))), g_read(w, X).

X g_array([g_array([0,0,0]),g_array([0,0,0])])

| ?- (for(1,0,1), for(J,0,2), K is I*3+J, g_assign(w(l,J), K),
fail

; g_read(w, X)

).

X

g_array([g_array([0,1,2]),g_array([3,4,5])])

| ?

g_read(w(1),X).
X = g_array([3,4,5)
Hybrid array :
| ?- g_assign(w,g_array([1,2,9_array([a,b,c]), g_array(2,z),5])), g_read(w, X).

X = g_array([1,2,9_array([a,b,c]), g_array([z,z]),5])

| ?- g_read(w(1), X), g_read(w(2,1), Y), g_read(w(3,1), Z2).
X =2

Y =b

7.21 Global variables 131

Z =z

| ?- g_read(w(1,2),X).
uncaught exception: error(domain_error(g_array_index,w(1,2)),g_read/2)
Array extension:

| ?- g_assign(a, g_array([10,20,30])), g_read(a, X).

X

g_array([10,20,30])

| ?- g_assign(a, g_array_extend(5,null)), g_read(a, X).

X
1

g_array([10,20,30,null,null])
| ?- g_assign(a, g_array([10,20,30])), g_read(a, X).

X

g_array([10,20,30])
| ?- g_assign(a, g_array_extend([1,2,3,4,5,6])), g_read(a, X).

X

g_array([10,20,30,4,5,6])
Automatic array :

| ?- g_assign(t, g_array_auto(3)), g_assign(t(1), foo), g_read(t,X).

X = g_array([0,fo0,0])

| ?- g_assign(t(5), bar), g_read(t,X).

X = g_array([0,fo0,0,0,0,bar,0,0])

| ?- g_assign(t, g_array_auto(2, g_array(2))), g_assign(t(1,1), foo),
g_read(t,X).

X = g_array([g_array([0,0]),9_array([0,foo])])

| ?- g_assign(t(3,0), bar), g_read(t,X).

X = g_array([g_array([0,0]),g_array([0,foo]),g_array([0,0]).g_array([bar,0])])

| ?- g_assign(t(3,4), bar), g_read(t,X).
uncaught exception: error(domain_error(g_array_index,t(3,4)),g_assign/2)

| ?- g_assign(t, g_array_auto(2, g_array_auto(2))), g_assign(t(1,1), foo),

g_read(t,X).
X = g_array([g_array([0,0]),g_array([0,foo])])
| - g_assign(t(3,3), bar), g_read(tX).
X = g_array([g_array([0,0]),g_array([0,foo]),g_array([0,0]),

g_array([0,0,0,bar])])

| ?- g_assign(t, g_array_auto(2, g_array_auto(2, null))), g_read(t(2,3), U),
g_read(t, X).

U = null

132 7 PROLOG BUILT-IN PREDICATES

X = g_array([g_array([null,null]),g_array([null,null]),
g_array([null,null,null,null]),g_array([null,null])])

7.22 Prolog state
7.22.1 set prolog _flag/2

Templates
set _prolog _flag(+flag, +term)

Description
set _prolog _flag(Flag, Value) sets the value of the Prolog flagag to Value .

Prolog flags a Prolog flag is an atom which is associated with a value that is either implementation defined or
defined by the user. Each flag has a permitted range of values; any other vailoeriaia _error . The following

two tables present available flags, the possible values, a description and if they are ISO or an extension. The first
table presents unchangeable flags while the second one the changeable flags. For flags whose default values is
machine independent, this value is underlined

Unchangeable flags

| Flag \ Values | Description | 1SO |
bounded true /false are integers bounded ? Y
max.integer an integer greatest integer Y
min _integer an integer smallest integer Y
integer _rounding _function| toward _zero | rnd (X) =integer part oiX Y

down rnd (X) = |X] (sectiorf 7.6.1, pade 57)

max_arity an integer maximum arity for compound terms (255) Y
max.atom an integer maximum number of atoms N
max_unget an integer maximum number of successive ungets N
prolog _name an atom name of the Prolog system N
prolog _version an atom version number of the Prolog system N
prolog _date an atom date of the Prolog system N
prolog _copyright an atom copyright message of the Prolog system N

Changeable flags

7.22 Prolog state 133

| Flag \ Values | Description | 1SO |
char _conversion on/off is character conversion activated ? Y
debug on /off is the debugger activated ? Y
singleton _warning on / off warn about named singleton variables ? N
strict _iso on / off strict ISO behavior ? N
a double quoted constant is returned as:
double _quotes atom an atom Y
chars a list of characters
codes a list of character codes
atom _no_escape | asatom butignore escape sequences N

chars _no_escape | aschars butignore escape sequences
codes _no_escape | ascode butignore escape sequences
a back quoted constant is returned as:

back _quotes atom an atom N
chars a list of characters
codes a list of character codes

atom _no_escape | asatom but ignore escape sequences
chars _no_escape | aschars butignore escape sequences
codes _no_escape | ascode but ignore escape sequences

a predicate calls an unknown procedure:

unknown error anexistence _error s raised Y
warning a message is displayed then fails
fall quietly fails
a predicate causes a syntax error:
syntax _error error asyntax _error israised N
warning a message is displayed then fails
fall quietly fails
a predicate causes an O.S. error:
0s _error error asystem _error s raised N
warning a message is displayed then fails
fall quietly fails

Thestrict _iso flag is introduced to allow a compatibility with other Prolog systems. When turned off the
following relaxations apply:

e a callable term can be given as a predicate indicator.

e built-in predicates are found lyurrent _predicate/l (sectior] 7.8]1, page p4).

Errors
Flag is a variable instantiation _error
Value is a variable instantiation _error
Flag is neither a variable nor an atom type _error(atom, Flag)
Flag is an atom but not a valid flag domain _error(prolog flag, Flag)
Value is inappropriate for Flag domain _error(flag _value, Flag+Value)
Value is appropriate foFlag but flagFlag is not | permission _error(modify, flag, Flag)
modifiable

Portability

ISO predicate. All ISO flags are implemented.

7.22.2 current _prolog _flag/2

Templates

134 7 PROLOG BUILT-IN PREDICATES

current _prolog _flag(?flag, ?term)

Description

current _prolog _flag(Flag, Value) succeeds if there exists a Prolog flag that unifies Wwitg and
whose value unifies witialue . This predicate is re-executable on backtracking.

Errors

Flag is neither a variable nor an atom type _error(atom, Flag)

Flag is an atom but not a valid flag domain _error(prolog _flag, Flag)
Portability

ISO predicate.

7.22.3 set _bip _-name/2

Templates

set _bip _name(+atom, +arity)

Description
set _bip _name(Functor, Arity) initializes the context of the error (sectjon 5/3.1, page 37) Withctor
andArity (if Arity < 0 onlyFunctor is significant).
Errors
Functor is a variable instantiation _error
Arity is a variable instantiation _error
Functor is neither a variable nor an atom type _error(atom, Functor)
Arity is neither a variable nor an integer type _error(integer, Arity)
Portability

GNU Prolog predicate.

7.22.4 current _bip _name/2

Templates
current _bip _name(?atom, ?arity)
Description

current _bip _name(Functor, Arity) succeeds iFunctor andArity correspond to the context of the
error (sectiof 5.3]1, page[37) Bfity < 0 only Functor is significant).

Errors
Functor is neither a variable nor an atom type _error(atom, Functor)
Arity is neither a variable nor an integer type _error(integer, Arity)
Portability

GNU Prolog predicate.

7.23 Program state 135

7.22.5 write _pl state file/1 ,read _pl _state file/1

Templates
write _pl _state _file(+source _sink)
read _pl _state _file(+source _sink)
Description
write _pl _state _file(FileName) writes ontoFileName all information that influences the parsing of a
term (sectiofj 7.74, page]91). This allows a sub-process written in Prolog to read this file and then process any
Prolog term as done by the parent process. This file can also be passed as argumenple$tite option

when invokinggplc (sectior] 3.43, pade P2). More precisely the following elements are saved:

o all operator definitions (sectign 7.14]10, pagk 99).
o the character conversion table (secfion 7.14.12, page 101).

e thevalue othar _conversion ,double _quotes ,back _quotes andsingleton _warning Prolog
flags (sectioh 7.22]1, pafe 132).

read _pl _state _file(FileName) reads (restores) frorkileName all information previously saved by
write _pl _state file/1.

Errors
FileName is a variable instantiation _error
FileName is neither a variable nor an atom type _error(atom, FileName)
an operating system error occurs and the value of theystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13p)
Portability

GNU Prolog predicate.

7.23 Program state

7.23.1 consult/1 ,'’/2 - program consult
Templates
consult(+atom _or _atom _list)
"(+atom, +atom _list)
Description
consult(Files) compiles and loads into memory each file of thefisés . Each file is compiled for byte-

code using the GNU Prolog compiler (section] 3.4, gage 20) then loadedlaadl§ (sectiorf 7.23]2, page 136).
It is possible to specifjuser as a file name to directly enter the program from the termidlles can be
also a single file name (i.e. an atom). Refer to the section concerning the consult of a Prolog program for more

information (sectiof 3.2]3, pa@e]16).

The final file name of a file is computed using the predicatetog _file _name/2 (sectior] 7.26]3, page 141)
andabsolute _file _name/2 (sectior]7.26]1, page T40).

[File | Files] ,1.e.”.(File, Files) is equivalent tacconsult([File | Files])

136 7 PROLOG BUILT-IN PREDICATES

Errors

Files is a partial list or a list with an elemekt instantiation _error
which is a variable
Files is neither a partial list nor a list nor an atom| type _error(list, Files)
an elemenk of theFiles listis neither a variable | type _error(atom, E)

nor an atom
an elemenk of theFiles listis an atom but nota | domain _error(os _path, E)
valid pathname
an elemenk of theFiles listis a valid pathname | existence _error(source _sink, E)
but does not correspond to an existing source
an error occurs executing a directive seecall/l errors (sectioh 6.2}3, pa@ﬂ)

Portability

GNU Prolog predicates.

7.23.2 load/1

Templates
load(+atom _or _atom _list)

Description

load(Files) loads into memory each file of the listles . Each file must have been previously compiled for
byte-code using the GNU Prolog compiler (secfior] 3.4, page Riljs can be also a single file name (i.e. an
atom).

The final file name of a file is computed using the predicabesolute _file _name/2 (sectior 7.26]1, page T40).
If no suffix is given’.wbc’ is appended to the file name.

Errors

Files is a partial list or a list with an elemekt instantiation _error
which is a variable
Files is neither a partial list nor a list nor an atom| type _error(list, Files)
an elemenk of theFiles listis neither a variable | type _error(atom, E)

nor an atom
an elemenk of theFiles listis an atom but nota | domain _error(os _path, E)
valid pathname
an elemenk of theFiles listis a valid pathname | existence _error(source _sink, E)
but does not correspond to an existing source
an error occurs executing a directive seecall/l errors (sectioh 6.2}3, pa@ﬂ)

Portability

GNU Prolog predicate.

7.23.3 listing/1 , listing/0
Templates
listing(+predicate _indicator)

listing(+atom)

7.24 System statistics 137

listing
Description

listing(Pred) lists the clauses of the consulted predicate whose predicate indic®@ds Pred can also
be a single atom in which case all predicates whose namecid are listed (of any arity). This predicate uses
portray _clause/2 (sectior] 7.14]8, page P8) to output the clauses.

listing lists all clauses of all consulted predicates.

Errors
Pred is a variable instantiation _error
Pred is neither a variable nor predicate indicator or type _error(predicate _indicator,
an atom Pred)

Portability

GNU Prolog predicate.

7.24 System statistics
7.24.1 statistics/O , Statistics/2
Templates

statistics
statistics(?atom, ?list)

Description
statistics displays statistics about memory usage and run times.
statistics(Key, Value) unifiesValue with the current value of the statistics kgy. Value a list of

two elements. Times are in milliseconds, sizes of areas in bytes.

| Key | Description | Value \
user _time user CPU time [SinceStart, SincelLast]
system _time system CPU time [SinceStart, SinceLast]
cpu _time total CPU time (user + system) [SinceStart, SincelLast]
real _time absolute time [SinceStart, SincelLast]
local _stack local stack sizes (control, environments, choicegysedSize, FreeSize]
global _stack global stack sizes (compound terms) [UsedSize, FreeSize]
trail _stack trail stack sizes (variable bindings to undo) [UsedSize, FreeSize]
cstr _stack constraint trail sizes (finite domain constraints) [UsedSize, FreeSize]

Note that the keyuntime is recognized aaser _time for compatibility purpose.

Errors
Key is neither a variable nor a valid key domain _error(statistics _key, Key)
Value is neither a variable nor a list of two elementslomain _error(statistics _value,

Value)
Value is a list of two elements and an eleménis type _error(integer, E)
neither a variable nor an integer

138 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicates.

7.24.2 user _time/l1 ,system _time/l ,cpu_time/l ,real _time/l

Templates

user _time(?integer)
system _time(?integer)
cpu _time(?integer)
real _time(?integer)

Description

user _time(Time) unifiesTime with the user CPU time elapsed since the start of Prolog.

system _time(Time) unifiesTime with the system CPU time elapsed since the start of Prolog.

cpu _time(Time) unifiesTime with the CPU time (user + system) elapsed since the start of Prolog.
real _time(Time) unifiesTime with the absolute time elapsed since the start of Prolog.

Errors

] Time is neither a variable nor an integer \ type _error(integer, Time)

Portability

GNU Prolog predicates.

7.25 Random number generator
7.25.1 set _seed/l ,randomize/0

Templates

set _seed(+integer)
randomize

Description
set _seed(Seed) reinitializes the random number generator seed ®éhd.

randomize reinitializes the random number generator. This predicatessetlisseed/1 with a random value
depending on the absolute time.

Errors
Seed is a variable instantiation _error
Seed is neither a variable nor an integer type _error(integer, Seed)
Seed is an integex 0 domain _error(not _less _than _zero,
Seed)

Portability

7.25 Random number generator

139

GNU Prolog predicates.

7.25.2 get _seed/1

Templates
get _seed(?integer)

Description

get _seed(Seed) unifiesSeed with the current random number generator seed.

Errors
Seed is neither a variable nor an integer type _error(integer, Seed)
Seed is an integex 0 domain _error(not _less _than _zero,
Seed)
Portability

GNU Prolog predicate.

7.25.3 random/1

Templates
random(-float)

Description

random(Number) unifiesNumber with a random floating point number such that &WNumber < 1.0.

Errors

| Number is not a variable | type _error(variable, Number)

Portability

GNU Prolog predicate.

7.25.4 random/3

Templates
random(+number, +number, -number)

Description

random(Base, Max, Number) unifiesNumber with a random number such thRase < Number < Max.

If both Base andMax are integerdumber will be an integer, otherwisdumber will be a floating point number.

Errors

140

7 PROLOG BUILT-IN PREDICATES

Base is a variable instantiation _error
Base is neither a variable nor a number type _error(number, Base)
Max s a variable instantiation _error

Max is neither a variable nor a number

type _error(number, Max)

Number is not a variable

type _error(variable, Number)

Portability

GNU Prolog predicate.

7.26 File name processing
7.26.1 absolute _file _name/2

Templates
absolute _file _name(+atom, atom)

Description

absolute _file _name(Filel, File2) succeeds iFile2 is the absolute pathname associated to the rel-
ative file namérilel . Filel can contairfVARNAMEsub-strings. When such a sub-string is encountered, it is
expanded with the value of the environment variable whose namieRINAMET exists (otherwise no expansion

is done).Filel can also begin with a sub-strifgJSERNAME , this is expanded as the home directory of the
userUSERNAME If USERNAMEdoes not exisFilel is an invalid pathname. If nOSERNAMES given (i.e.
Filel begins with™/)the™ character is expanded as the value of the environment valk#bMEIf the HOME
variable is not defineflilel is an invalid pathname. Relative references to the current diredtbry gub-string)
and to the parent directoryj.{ sub-strings) are removed and no longer appebkil@?2 . Filel is also invalid

if it contains too many../ consecutive sub-strings (i.e. parent directory relative references). Finkilg1f

is user thenFile2 is also unified withuser to allow this predicate to be called on Prolog file names (since
user in DEC-10 input/output predicates denotes the current input/output stream).

Most predicates using a file name implicitly call this predicate to obtain the desired filepeg4 .

Errors

instantiation _error
type _error(atom, Filel)
type _error(atom, File2)
domain _error(os _path, Filel)

Filel isavariable

Filel is neither a variable nor an atom
File2 is neither a variable nor an atom
Filel isan atom but not a valid pathname

Portability

GNU Prolog predicate.

7.26.2 decompose file _name/4

Templates
decompose file _name(+atom, ?atom, ?atom, ?atom)
Description

decompose file _name(File, Directory, Prefix, Suffix) decomposes the pathnafike and
extracts thdirectory part (characters before the 143t thePrefix part (characters after the ldsand before

7.27 Operating system interface 141

the last. or until the end if there is no suffix) and ti8uffix part (characters from the lastto the end of the
string).

Errors
File is a variable instantiation _error
File is neither a variable nor an atom type _error(atom, File)
Directory s neither a variable nor an atom type _error(atom, Directory)
Prefix s neither a variable nor an atom type _error(atom, Prefix)
Suffix is neither a variable nor an atom type _error(atom, Suffix)
Portability

GNU Prolog predicate.

7.26.3 prolog _file _name/2

Templates
prolog _file _name(+atom, ?atom)

Description

prolog _file _name(Filel, File2) unifiesFile2 with the Prolog file name associatedRitel . More
preciselyFile2 is computed as follows:

o if Filel has a suffix orifitisuser thenFile2 is unified withFilel

e else if the file whose name iElel +'.pI' exists therFile2 is unified with this name.
e else if the file whose name iElel +'.pro’ exists therFile2 is unified with this name.
e elseFile2 is unified with the nam&ilel +’.pl’

This predicate useabsolute _file _name/2 to check the existence of a file (sectjon 7.26.1, 140).

Errors

Filel isavariable instantiation _error

Filel is neither a variable nor an atom type _error(atom, Filel)

File2 is neither a variable nor an atom type _error(atom, File2)

Filel is an atom but not a valid pathname domain _error(os _path, Filel)
Portability

GNU Prolog predicate.

7.27 Operating system interface
7.27.1 argument _counter/1

Templates

argument _counter(?integer)

142 7 PROLOG BUILT-IN PREDICATES

Description

argument _counter(Counter) succeeds ifCounter is the number of arguments of the command-Iline.
Since the first argument is always the name of the running progtammter is always> 1. See (sectioh 3.2,
pagd IB) for more information about command-line arguments retrieved under theéhp

Errors

] Counter is neither a variable nor an integer \ type _error(integer, Counter)

Portability

GNU Prolog predicate.

7.27.2 argument _value/2

Templates
argument _value(+integer, ?atom)

Description

argument _value(N, Arg) succeeds if th<h argument on the command-line unifies witing . The first
argument is always the name of the running program and its number is 0. The number of arguments on the
command-line can be obtained usimgument _counter/1 (sectior] 7.27]1, page TA1).

Errors
Nis a variable instantiation _error
Nis neither a variable nor an integer type _error(integer, N)
Nis an integex: 0 domain _error(not _less _than _zero, N)
Arg is neither a variable nor an atom type _error(atom, Arg)
Portability

GNU Prolog predicate.

7.27.3 argument _list/1

Templates
argument _list(?list)

Description

argument _list(Args) succeeds ifArgs unifies with the list of atoms associated to each argument on the
command-line other than the first argument (the name of the running program).

Errors

| Args is neither a partial list nor a list | type _error(list, Args)

Portability

GNU Prolog predicate.

7.27 Operating system interface 143

7.27.4 environ/2

Templates
environ(?atom, ?atom)

Description

environ(Name, Value) succeeds iNameis the name of an environment variable whose valug¢akie .
This predicate is re-executable on backtracking.

Errors
Nameis neither a variable nor an atom type _error(atom, Name)
Value is neither a variable nor an atom type _error(atom, Value)
Portability

GNU Prolog predicate.

7.27.5 make_directory/1 , delete _directory/1 , change _directory/1

Templates

make_directory(+atom)
delete _directory(+atom)
change _directory(+atom)

Description

make_directory(PathName) creates the directory whose pathnamBashName.

delete _directory(PathName) removes the directory whose pathnamP&hName.

change _directory(PathName) sets the current directory to the directory whose pathnarRatisName.

Seeabsolute _file _name/2 for information about the syntax éfathName (sectior] 7.26/1, page 140).

Errors
PathName is a variable instantiation _error
PathName is neither a variable nor an atom type _error(atom, PathName)

PathName is an atom but not a valid pathname domain _error(os _path, PathName)
an operating system error occurs and the value of thgystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicates.

7.27.6 working _directory/1

Templates

144 7 PROLOG BUILT-IN PREDICATES

working _directory(?atom)

Description

working _directory(PathName) succeeds iPathName is the pathname of the current directory.
Errors

] PathName is neither a variable nor an atom \ type _error(atom, PathName)

Portability

GNU Prolog predicate.

7.27.7 directory files/2

Templates
directory _files(+atom, ?list)

Description

directory _files(PathName, Files) succeeds iFiles isthe list of all entries (files, sub-directories,...)
in the directory whose pathnamedathName. Seeabsolute _file _name/2 for information about the syntax

of PathName (sectior] 7.26]1, page 140).

Errors
PathName is a variable instantiation _error
PathName is neither a variable nor an atom type _error(atom, PathName)
PathName is an atom but not a valid pathname domain _error(os _path, PathName)
Files is neither a partial list nor a list type _error(list, Files)
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior{ 7.22]1, error)
pagq T3p)

Portability

GNU Prolog predicate.

7.27.8 rename _file/2

Templates
rename _file(+atom, +atom)

Description

rename _file(PathNamel, PathName2) renames the file or directory whose pathnantfeathName1l to
PathName2. Seeabsolute _file _name/2 forinformation about the syntax ®athNamel andPathName2

(sectior] 7.26]1, page T40).

Errors

7.27 Operating system interface

145

PathNamel is a variable instantiation _error

PathNamel is neither a variable nor an atom type _error(atom, PathNamel)
PathNamel is an atom but not a valid pathname | domain _error(os _path, PathNamel)
PathName2 is a variable instantiation _error

PathName2 is neither a variable nor an atom type _error(atom, PathName2)

PathName2 is an atom but not a valid pathname | domain _error(os _path, PathName?2)

an operating system error occurs and value of the | system _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicate.

7.27.9 delete _file/l ,unlink/1

Templates

delete _file(PathName)
unlink(PathName)

Description

delete _file(PathName) removes the existing file whose pathnamBé@hName.

unlink/1 is similar todelete _file/1 except that it never causesgstem _error (e.g. if PathName

does not refer to an existing file).

Seeabsolute _file _name/2 for information about the syntax éfathName (sectior{ 7.26]1, page T40).

Errors
PathName is a variable instantiation _error
PathName is neither a variable nor an atom type _error(atom, PathName)

PathName is an atom but not a valid pathname domain _error(os _path, PathName)

an operating system error occurs and the value of theystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicates.

7.27.10 file _permission/2 |, file _exists/1

Templates

file _permission(+atom, +atom)
file _permission(+atom, +atom _list)
file _exists(+atom)

Description

file _permission(PathName, Permission) succeeds iPathName is the pathname of an existing file

(or directory) whose permissions incluBermission

146 7 PROLOG BUILT-IN PREDICATES

File permissions Permission can be a single permission or a list of permissions. A permission is an atom
among:

e read : the file or directory can be read.

e write : the file or directory can be written.
e execute : the file can be executed.

e search : the directory can be searched.

If PathName does not exists or if it its permissions do not incliRErmission this predicate fails.

file _exists(PathName) isequivalenttdile _permission(PathName, []) ,i.e. itsucceeds iPathName
is the pathname of an existing file (or directory).

Seeabsolute _file _name/2 for information about the syntax éfathName (sectior] 7.26/1, page T40).

Errors
PathName is a variable instantiation _error
PathName is neither a variable nor an atom type _error(atom, PathName)
PathName is an atom but not a valid pathname domain _error(os _path, PathName)
Permission is a patrtial list or a list with an instantiation _error

element which is a variable
Permission is neither an atom nor partial list or a4 type _error(list, Permission)
list
an elemenk of thePermission listis neither a type _error(atom, E)
variable nor an atom
an elemenE of thePermission is an atom but notf domain _error(os _file _permission,
a valid permission Permission)

an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicates.

7.27.11 file _property/2

Templates
file _property(+atom, ?0s file _property)
Description
file _property(PathName, Property) succeeds iPathName is the pathname of an existing file (or

directory) and ifProperty unifies with one of the properties of the file. This predicate is re-executable on
backtracking.

File properties:
e absolute _file _name(File) :File isthe absolute file name BathName (sectionl 7.26]1, page T40).
e real _file _name(File) : File is the realfile name dPathName (follows symbolic links).

o type(Type) : Type is the type ofPathName. Possible values areegular , directory | fifo
socket , character _device ,block _device orunknown.

7.27 Operating system interface 147

e size(Size) : Size isthe size (in bytes) dPathName.
e permission(Permission) : Permission is a permission oPathName (sectior} 7.27.7)0, page 145).
e last _modification(DT) : DTis the last modification date and time (secfion 7.27.14, 148).

Seeabsolute _file _name/2 for information about the syntax éfathName (sectior] 7.26]1, page T40).

Errors
PathName is a variable instantiation _error
PathName is neither a variable nor an atom type _error(atom, PathName)

PathName is an atom but not a valid pathname domain _error(os _path, PathName)
Property is neither a variable nor a file property | domain _error(os _file _property,
term Property)

Property =absolute _file _name(E), type _error(atom, E)

real _file _name(E) ,type(E) or
permission(E) andE is neither a variable nor an

atom

Property = type _error(compound, DateTime)
last _modification(DateTime) and

DateTime is neither a variable nor a compound

term

Property = domain _error(date _time, DateTime)
last _modification(DateTime) and

DateTime is a compound term but not a structure

dv/6

Property =size(E) or type _error(integer, E)

last _modification(DateTime) and

DateTime is a structurelt/6 but an element is
neither a variable nor an integer

an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior{ 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicate.

7.27.12 temporary _name/2

Templates
temporary _name(+atom, ?atom)

Description

temporary _name(Template, PathName) creates a unique file nanfathName whose pathname begins

by Template . Template should contain a pathname with six trailiXg. PathName is Template with

the sixXs replaced with a letter and the process identifier. This predicate is an interface to the C Unix function
mktemp(3) .

Seeabsolute _file _name/2 for information about the syntax dfemplate (sectior] 7.26/1, page T40).

Errors

148 7 PROLOG BUILT-IN PREDICATES

Template is a variable instantiation _error
Template is neither a variable nor an atom type _error(atom, Template)
Template is an atom but not a valid pathname domain _error(os _path, Template)
PathName is neither a variable nor an atom type _error(atom, PathName)
an operating system error occurs and the value of theystem _error(atom explaining the
os_error Prolog flag iserror (sectior{ 7.22]1, error)
pagd 13p)

Portability

GNU Prolog predicate.

7.27.13 temporary file/3

Templates

temporary _file(+atom, +atom, ?atom)

Description
temporary _file(Directory, Prefix, PathName) creates a unique file narRathName whose path-
name begins byirectory/Prefix . If Directory is the empty aton? a standard temporary directory

will be used (e.g/tmp). Prefix can be the empty atoih . This predicate is an interface to the C Unix function
tempnam(3) .

Seeabsolute _file _name/2 for information about the syntax @firectory (sectior] 7.26]1, page T40).

Errors
Directory is avariable instantiation _error
Directory is neither a variable nor an atom type _error(atom, Directory)
Directory is an atom but not a valid pathname | domain _error(os _path, Directory)
Prefix is avariable instantiation _error
Prefix s neither a variable nor an atom type _error(atom, Prefix)
PathName is neither a variable nor an atom type _error(atom, PathName)
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13P)

Portability

GNU Prolog predicate.

7.27.14 date _time/l

Templates
date _time(?compound)

Description

date _time(DateTime) unifies DateTime with a compound term containing the current date and time.
DateTime is a structuredt(Year, Month, Day, Hour, Minute, Second) . Each sub-argument of
the termdt/6 is an integer.

7.27 Operating system interface

149

Errors

DateTime is neither a variable nor a compound
term

type _error(compound, DateTime)

DateTime is a compound term but not a structure
dt/6

domain _error(date _time, DateTime)

DateTime is a structurelt/6 and an elemert is
neither a variable nor an integer

type _error(integer, E)

Portability

GNU Prolog predicate.

7.27.15 host _name/1

Templates
host _name(?atom)

Description

host _name(HostName) unifiesHostName with the name of the host machine executing the current GNU
Prolog process. If the sockets are available (seftion 7.28.1[pape 156), the name returned will be fully qualified. In
that casehost _name/1 will also succeed iHostName is instantiated to the unqualified name (or an alias) of

the machine.

Errors

type _error(atom, HostName)
atom explaining the

Hostname is neither a variable nor an atom
an operating system error occurs and the value of theystem _error(
os_error Prolog flag iserror (sectior{ 7.22]1, error)

paged 13p)

Portability

GNU Prolog predicate.

7.27.16 os_version/1

Templates
0s _version(?atom)

Description

0s _version(OSVersion) unifiesOSVersion with the operating system version of the machine executing
the current GNU Prolog process.

Errors

type _error(atom, OSVersion)
atom explaining the

OSVersion is neither a variable nor an atom
an operating system error occurs and the value of theystem _error(
os _error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

150

7 PROLOG BUILT-IN PREDICATES

GNU Prolog predicate.

7.27.17 architecture/l

Templates
architecture(?atom)

Description

architecture(Architecture)
rent GNU Prolog process.

Errors

unifiesArchitecture

Architecture is neither a variable nor an atom

type _error(atom, Architecture)

an operating system error occurs and the value of

theystem _error(atom explaining the

os _error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13p)

Portability

GNU Prolog predicate.

7.27.18 shell/l2 ,shell/1 , shell/0

Templates

shell(+atom, ?integer)
shell(+atom)
shell

Description

shell(Command, Status)

invokes a new shell (hamed by tBélELLenvironment variable) passi@pmmand

for execution and unifieStatus with the result of the execution. @ommands the empty atoni a new in-
teractive shell is executed. The control is returned to Prolog upon termination of the called process.

shell(Command) is equivalent tshell(Command, 0)

shell is equivalent teshell(”, 0)

Errors

Commands a variable instantiation _error

Commands neither a variable nor an atom

type _error(atom, Command)

Status is neither a variable nor an integer

type _error(integer, Status)

Portability

GNU Prolog predicates.

with the name of the machine executing the cur-

7.27 Operating system interface 151

7.27.19 system/2 , system/1

Templates

system(+atom, ?integer)
system(+atom)

Description

system(Command, Status) invokes a new default shell passiGgmmandor execution and unifieStatus

with the result of the execution. The control is returned to Prolog upon termination of the shell process. This pred-
icate is an interface to the C Unix functiegstem(3)

system(Command) is equivalent tesystem(Command, 0)

Errors
Commands a variable instantiation _error
Commands neither a variable nor an atom type _error(atom, Command)
Status is neither a variable nor an integer type _error(integer, Status)
Portability

GNU Prolog predicates.

7.27.20 spawn/3 , spawn/2

Templates

spawn(+atom, +atom _list, ?integer)
spawn(+atom, +atom _list)

Description

spawn(Command, Arguments, Status) executesCommandpassing as arguments of the command-line
each element of the liggrguments and unifiesStatus with the result of the execution. The control is returned
to Prolog upon termination of the command.

spawn(Command, Arguments) is equivalent tspawn(Command, Arguments, 0)

Errors
Commands a variable instantiation _error
Commands neither a variable nor an atom type _error(atom, Command)
Arguments is a partial list or a list with an element instantiation _error
which is a variable
Arguments is neither a partial list nor a list type _error(list, Arguments)
an elemenE of the Arguments list is neither a type _error(atom, E)
variable nor an atom
Status is neither a variable nor an integer type _error(integer, Status)
an operating system error occurs and the value of thgystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13P)

Portability

GNU Prolog predicates.

152 7 PROLOG BUILT-IN PREDICATES

7.27.21 popen/3

Templates
popen(+atom, +i0 _mode, -stream)

Description

popen(Command, Mode, Stream) invokes a new default shell (by creating a pipe) passiogymandfor

execution and associates a stream either to the standard input or the standard output of the created process. if
Modeisread (resp.write) an input (resp. output) stream is created &netam is unified with the stream-

term associated. Writing to the stream writes to the standard input of the command while reading from the stream
reads the command’s standard output. The stream must be closedlose@ (sectior] 7.10]7, page[71). This
predicate is an interface to the C Unix functipopen(3)

Errors
Commands a variable instantiation _error
Commands neither a variable nor an atom type _error(atom, Command)
Mode s a variable instantiation _error
Mode s neither a variable nor an atom type _error(atom, Mode)
Modeis an atom but neitheead norwrite . domain _error(io _mode, Mode)
Stream is not a variable type _error(variable, Stream)
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior{ 7.22]1, error)
pagd 13p)

Portability

GNU Prolog predicate.

7.27.22 exec/5 ,execld

Templates

exec(+atom, -stream, -stream, -stream, -integer)
exec(+atom, -stream, -stream, -stream)

Description

exec(Command, Streamin, StreamOut, StreamErr, Pid) invokes a new default shell passi@gmmand
for execution and associates streams to standard streams of the created [Btreassln is unified with the
stream-term associated to the standard input streddoofmand(it is an output stream)StreamOut is unified

with the stream-term associated to the standard output stre@ommand(it is an input stream)StreamErr

is unified with the stream-term associated to the standard error stre@omohand(it is an input stream)Pid is

unified with the process identifier of the new process. This information is only useful if it is necessary to obtain
the status of the execution usingit/2 (sectior] 7.27.25, pa@e 154). Until a calMait/2 is done the process
remains in the system processes table (as a zombie process if terminated). For this reason, if the status is not
needed it is preferable to uszec/4 .

exec/4 is similar toexec/5 but the process is removed from system processes as soon as it is terminated.

Errors

7.27 Operating system interface 153

Commands a variable instantiation _error
Commands neither a variable nor an atom type _error(atom, Command)
Streamln is not a variable type _error(variable, Streamin)
StreamOut is not a variable type _error(variable, StreamOut)
StreamErr is not a variable type _error(variable, StreamErr)
Pid is not a variable type _error(variable, Pid)
an operating system error occurs and the value of theystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)
pagd 13p)

Portability

GNU Prolog predicates.

7.27.23 fork _prolog/l

Templates
fork _prolog(-integer)

Description

fork _prolog(Pid) creates a child process that differs from the parent process only in its PID. In the parent
processPid is unified with the PID of the child while in the child proceB&l is unified with 0. In the parent
process, the status of the child process can be ontainedwsitilg (sectior{ 7.27.25, page 154). Until a call to

wait/2 is done the child process remains in the system processes table (as a zombie process if terminated). This
predicate is an interface to the C Unix functifamk(2)

Errors
Pid is not a variable type _error(variable, Pid)
an operating system error occurs and the value of theystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13p)
Portability

GNU Prolog predicate.

7.27.24 create _pipe/2

Templates
create _pipe(-stream, -stream)

Description

create _pipe(Streamlin, StreamOut) creates a pair of streams pointing to a pipe inc8eamin is
unified with the stream-term associated to the input side of the pip&aedmOut is unified with the stream-
term associated to output side. This predicate is an interface to the C Unix fupip&(®)

Errors

154 7 PROLOG BUILT-IN PREDICATES

Streamln is not a variable type _error(variable, Streamin)
StreamOut is not a variable type _error(variable, StreamOut)
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior{ 7.22]1, error)
pagd 13p)

Portability

GNU Prolog predicate.

7.27.25 wait/2

Templates
wait(+integer, ?integer)

Description

wait(Pid, Status) waits for the child process whose identifiePi&l to terminate Status is then unified
with the exit status. This predicate is an interface to the C Unix funetiaitpid(2)

Errors
Pid is a variable instantiation _error
Pid is neither a variable nor an integer type _error(integer, Pid)
Status is neither a variable nor an integer type _error(integer, Status)
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior{ 7.22]1, error)
pagq T3p)
Portability

GNU Prolog predicate.

7.27.26 prolog _pid/1

Templates
prolog _pid(?integer)

Description
prolog _pid(Pid) unifiesPid with the process identifier of the current GNU Prolog process.

Errors

] Pid is neither a variable nor an integer \ type _error(integer, Pid)

Portability

GNU Prolog predicate.

7.27 Operating system interface 155

7.27.27 send _signal/2

Templates

send _signal(+integer, +integer)
send _signal(+integer, +atom)

Description

send _signal(Pid, Signal) sendsSignal to the process whose identifier®sd. Signal can be spec-
ified directly as an integer or symbolically as an atom. Allowed atoms depend on the machin8I@INT"
'SIGQUIT’ ,'SIGKILL" ,’SIGUSRY’ ,'SIGUSR2’ ,’SIGALRM’ ,...). This predicate is an interface to the
C Unix functionkill(2)

Errors
Pid is a variable instantiation _error
Pid is neither a variable nor an integer type _error(integer, Pid)
Signal is a variable instantiation _error

Signal is neither a variable nor an integer or an | type _error(integer, Signal)
atom
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicate.

7.27.28 sleep/l

Templates
sleep(+number)
Description
sleep(Seconds) puts the GNU Prolog process to sleep 8#cond s secondsSeconds can be an integer

or a floating point number (in which case it can «iel). This predicate is an interface to the C Unix function
usleep(3)

Errors
Seconds is a variable instantiation _error
Seconds is neither a variable nor a number type _error(number, Seconds)
Seconds is a numbek 0 domain _error(not _less _than _zero,
Seconds)
Portability

GNU Prolog predicate.

7.27.29 select/5

Templates

156 7 PROLOG BUILT-IN PREDICATES

select(+list, ?list, +list, ?list, +number)

Description

select(Reads, ReadyReads, Writes, ReadyWrites, TimeOut) waits for a number of streams

(or file descriptors) to change statuReadyReads is unified with the list of elements listed iReads that

have characters available for reading. SimildRgadyWrites is unified with the list of elements dfrites

that are ok for immediate writing. The elementsRéads andWrites are either stream-terms or aliases or
integers considered as file descriptors, e.g. for sockets (séctign 7.28, page 156). Streams that must be tested with
select/5 should not be buffered. This can be done at the opening wgieg/4 (sectio 7.10J6, pade [9)

or later usingset _stream _buffering/2 (section7.10.27, page B1)limeOut is an upper bound on the

amount of time (in milliseconds) elapsed befemdect/5 returns. IfTimeOut < 0 (no timeout)select/5

waits until something is available (either or reading or for writing) and thus can block indefinitely. This predicate

is an interface to the C Unix functicselect(2)

Errors
Reads (or Writes) is a partial list or a list with an | instantiation _error
elementE which is a variable
Reads is neither a partial list nor a list type _error(list, Reads)
Writes is neither a partial list nor a list type _error(list, Writes)
ReadyReads is neither a partial list nor a list type _error(list, ReadyReads)
ReadyWrites is neither a partial list nor a list type _error(list, ReadyWrites)
an elemenk of theReads (or Writes) listis domain _error(stream _or _alias, E)
neither a stream-term or alias nor an integer
an elemenE of theReads (or Writes) listis nota | domain _error(selectable _item, E)
selectable item
an elemenE of theReads (or Writes) listis an domain _error(not _less _than _zero, E)
integer< 0
an elemenk of theReads (or Writes) listis a existence _error(stream, E)
stream-tern or alias not associated with an open
stream
an elemenk of theReads list is associated to an permission _error(input, stream, E)
output stream
an elemenk of theWrites list is associated to an | permission _error(output, stream, E)
input stream
TimeOut is a variable instantiation _error
TimeOut is neither a variable nor a number type _error(number, TimeOut)
an operating system error occurs and the value of theystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)
pagg 13p)

Portability

GNU Prolog predicate.

7.28 Sockets input/output
7.28.1 Introduction

This set of predicates provides a way to manipulate sockets. The predicates are straightforward interfaces to the
corresponding BSD-type socket functions. This facility is available if the sockets part of GNU Prolog has been
installed. A reader familiar with BSD sockets will understand them immediately otherwise a study of sockets is
needed.

7.28 Sockets input/output 157

The domain is either the atomAF _INET" or 'AF _UNIX' corresponding to the same domains in BSD-type
sockets.

An address is either of the forlAF _INET’'(HostName, Port) or’AF _UNIX'(SocketName) . HostName
is an atom denoting a machine narRest is a port number an8ocketName is an atom denoting a socket.

By default, streams associated to socketsbévek buffered. The predicatget _stream _buffering/2 (sec-
tion[7.10.27, pade $1) can be used to change this mode. They are also text streams by defsefit. $fisam _type/2
(sectior] 7.10.25, pa@e80) to change the type if binary streams are needed.

7.28.2 socket/2

Templates
socket(+socket _domain, -integer)

Description

socket(Domain, Socket) creates a socket whose domainDiemain (section 7.28, page 1p6) and uni-
fies Socket with the descriptor identifying the socket. This predicate is an interface to the C Unix function
socket(2)

Errors
Domain is a variable instantiation _error
Domain is neither a variable nor an atom type _error(atom, Domain)
Domain is an atom but not a valid socket domain | domain _error(socket ~ _domain, Domain)
Socket is not a variable type _error(variable, Socket)
an operating system error occurs and the value of theystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13p)
Portability

GNU Prolog predicate.

7.28.3 socket _close/l

Templates
socket _close(+integer)

Description

socket _close(Socket) closes the socket whose descriptoB@cket . This predicate should not be used if
Socket has given rise to a stream, e.g. $ncket _connect/4 (sectior] 7.28)5, page 1158). In that case simply
useclose/2 (sectior] 7.10J7, page 1) on the associated stream.

Errors
Socket is a variable instantiation _error
Socket is neither a variable nor an integer type _error(integer, Socket)
an operating system error occurs and the value of thgystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)
pagq 13p)

158 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicate.

7.28.4 socket _bind/2

Templates
socket _bind(+integer, +socket _address)
Description
socket _bind(Socket, Address) binds the socket whose descriptorSecket to the address specified

by Address (section 7.2B, pade 1p6). Kddress if of the form ’AF _INET’'(HostName, Port) and if
HostName is uninstantiated then it is unified with the current machine namé2off is uninstantiated, it is
unified to a port number picked by the operating system. This predicate is an interface to the C Unix function
bind(2)

Errors
Socket is a variable instantiation _error
Socket is neither a variable nor an integer type _error(integer, Socket)
Address is a variable instantiation _error
Address is neither a variable nor a valid address | domain _error(socket _address,
Address)
Address ='AF _UNIX'(E) andEis a variable instantiation _error
Address ='AF _UNIX’(E) or’AF _INET'(E, type _error(atom, E)

_) andE is neither a variable nor an atom
Address ='AF _UNIX(E) andEis anatom but | domain _error(os _path, E)
not a valid pathname
Address ='AF INET'(_, E) andEis neithera | type _error(integer, E)
variable nor an integer
an operating system error occurs and the value of thgystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)

pagd 13p)

Portability

GNU Prolog predicate.

7.28.5 socket _connect/4

Templates
socket _connect(+integer, +socket _address, -stream, -stream)
Description
socket _connect(Socket, Address, Streamlin, StreamOut) connects the socket whose descrip-

tor is Socket to the address specified yddress (section 7.2B, page 1p6)Streamin is unified with a
stream-term associated to the input of the connection (it is an input stream). Reading from this stream gets data
from the socketStreamOut is unified with a stream-term associated to the output of the connection (it is an out-
put stream). Writing to this stream sends data to the socket. The ssteof/5 can be useful (sectign 7.27]29,

pagd 15p). This predicate is an interface to the C Unix funatmmect(2)

7.28 Sockets input/output 159

Errors
Socket is a variable instantiation _error
Socket is neither a variable nor an integer type _error(integer, Socket)
Address is a variable instantiation _error
Address is neither a variable nor a valid address | domain _error(socket _address,
Address)
Address ='AF _UNIX’(E) or’AF _INET'(E, instantiation _error
) orAddress ='AF INET'(_, E) andEisa
variable
Address ='AF _UNIX(E) or’AF _INET'(E, type _error(atom, E)

_) andEis neither a variable nor an atom
Address ='AF _UNIX'(E) andEisanatombut | domain _error(os _path, E)
not a valid pathname
Address ='AF _INET'(_, E) andEis neithera | type _error(integer, E)
variable nor an integer

Streamln is not a variable type _error(variable, Streamin)
StreamOut is not a variable type _error(variable, StreamOut)

an operating system error occurs and the value of thgystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)

pagq 13P)
Portability

GNU Prolog predicate.

7.28.6 socket _listen/2

Templates
socket _listen(+integer, +integer)

Description

socket _listen(Socket, Length) defines the socket whose descriptoSiscket to have a maximum
backlog queue dfength pending connections. This predicate is an interface to the C Unix furitten(2)

Errors
Socket is a variable instantiation _error
Socket is neither a variable nor an integer type _error(integer, Socket)
Length is a variable instantiation _error
Length is neither a variable nor an integer type _error(integer, Length)
an operating system error occurs and the value of thgystem _error(atom explaining the
os _error Prolog flag iserror (sectior] 7.22]1, error)
pag{ T3p)
Portability

GNU Prolog predicate.

7.28.7 socket _accept/4 ,socket _accept/3

Templates

160 7 PROLOG BUILT-IN PREDICATES

socket _accept(+integer, -atom, -stream, -stream)
socket _accept(+integer, -stream, -stream)

Description

socket _accept(Socket, Client, Streamln, StreamOut) extracts the first connection to the socket
whose descriptor iSocket . If the domain iSAF _INET’ , Client is unified with an atom whose name is the
Internet host address in numbers-and-dots notation of the connecting ma&imeamin is unified with a
stream-term associated to the input of the connection (it is an input stream). Reading from this stream gets data
from the socketStreamOut is unified with a stream-term associated to the output of the connection (it is an out-
put stream). Writing to this stream sends data to the socket. The ssteof/5 can be useful (sectign 7.27]29,

pagd 15p). This predicate is an interface to the C Unix funcimrept(2)

socket _accept(Socket, Streamin, StreamOut) is equivalent tesocket _accept(Socket, .
StreamlIn, StreamOut)

Errors

Socket is a variable instantiation _error

Socket is neither a variable nor an integer type _error(integer, Socket)

Client is not a variable type _error(variable, Client)
StreamlIn is not a variable type _error(variable, Streamin)
StreamOut is not a variable type _error(variable, StreamOut)

an operating system error occurs and the value of theystem _error(atom explaining the
os_error Prolog flag iserror (sectior] 7.22]1, error)

pagq 13p)

Portability

GNU Prolog predicates.

7.28.8 hostname _address/2

Templates

hostname _address(+atom, ?atom)
hostname _address(?atom, +atom)

Description

hostname _address(HostName, HostAddress) succeeds if the Internet host address in numbers-and-
dots notation oHostName is HostAddress . Hosthame can be given as a fully qualified name, or an unqual-
ified name or an alias of the machine. The predicate will fail if the machine name or address cannot be resolved.

Errors
HostName andHostAddress are variables instantiation _error
HostName is neither a variable nor an atom type _error(atom, HostName)

HostAddress is neither a variable nor an atom | type _error(atom, HostAddress)
Address is neither a variable nor a valid address | domain _error(socket _address,
Address)

Portability

GNU Prolog predicate.

7.29 Linedit management 161

7.29 Linedit management

The following predicates are only available if theedit part of GNU Prolog has been installed.

7.29.1 get inedit _prompt/1

Templates
get _linedit _prompt(?atom)

Description

get _linedit _prompt(Prompt) succeeds iPrompt is the currentinedit prompt, e.g. the top-level

promptis’| ?-° . By default all other reads have an empty prompt.

Errors

] Prompt is neither a variable nor an atom \ type _error(atom, Pred)
Portability

GNU Prolog predicate.

7.29.2 set linedit _prompt/1

Templates
set _linedit _prompt(+atom)

Description

set _linedit _prompt(Prompt) sets the currentinedit prompt toPrompt . This prompt will be dis-
played for reads from a terminal (except for top-level reads).

Errors
Prompt is a variable instantiation _error
Prompt is neither a variable nor an atom type _error(atom, Pred)
Portability

GNU Prolog predicate.

7.29.3 add _linedit _completion/1

Templates
add _linedit _completion(+atom)
Description
add _linedit _completion(Word) addsWord in the list of completion words maintained Wiyedit

(section 3.2, pade [L8). Only words containing letters, digits and the underscore character are dudedi (if
does not respect this restriction the predicate fails).

162 7 PROLOG BUILT-IN PREDICATES

Errors
Word is a variable instantiation _error
Word is neither a variable nor an atom type _error(atom, Word)
Portability

GNU Prolog predicate.

7.29.4 find _linedit _completion/2

Templates
find _linedit _completion(+atom, ?atom)

Description

find _linedit _completion(Prefix, Word) succeeds iWord is a word beginning b¥refix and be-
longs to the list of completion words maintained Iyedit (section3.2.p, pade [18). This predicate is re-
executable on backtracking.

Errors
Prefix is avariable instantiation _error
Prefix s neither a variable nor an atom type _error(atom, Prefix)
Word is neither a variable nor an atom type _error(atom, Word)
Portability

GNU Prolog predicate.

7.30 Source reader facility
7.30.1 Introduction

To be written...

7.30 Source reader facility 163

7.30.2 sr _open/3

7.30.3 sr _change _options/2

7.30.4 sr _close/l

7.30.5 sr _read _term/4

7.30.6 sr _current _descriptor/l

7.30.7 sr _get _stream/2

7.30.8 sr _get _module/3

7.30.9 sr _get file _name/2

7.30.10 sr _get _position/3

7.30.11 sr _get _include _list/2

7.30.12 sr _get _include _stream _list/2

7.30.13 sr _get _size _counters/3

7.30.14 sr _get _error _counters/3

7.30.15 sr _set _error _counters/3

7.30.16 sr _error _from _exception/2

7.30.17 sr _write _message/8 ,sr _write _message/6 ,sr _write _message/4

7.30.18 sr _write _error/6 ,sr _write _error/4 ,sr _write _error/2

164 7 PROLOG BUILT-IN PREDICATES

165

8 Finite domain solver and built-in predicates

8.1 Introduction

The finite domain (FD) constraint solver extends Prolog with constraints over FD. This facility is available if
the FD part of GNU Prolog has been installed. The solver is an instance of the Constraint Logic Programming
scheme introduced by Jaffar and Lassez in 1987 [6]. Constraints on FD are solved using propagation techniques, in
particular arc-consistency (AC). The interested reader can refer to “Constraint Satisfaction in Logic Programming”
of P. Van Hentenryck (1989) [7]. The solver is based ondip¢FD) solver [4]. The GNU Prolog FD solver

offers arithmetic constraints, boolean constraints, reified constraints and symbolic constraints on an new kind of
variables: Finite Domain variables.

8.1.1 Finite Domain variables

A new type of data is introduced: FD variables which can only take values in their domains. The initial domain
of an FD variable i90..fd _max.integer wherefd _-max.integer represents the greatest value that any

FD variable can take. The predicdte _max.integer/1 returns this value which may be different from the
max.integer Prolog flag (sectiop 7.22.1, pajge 132). The domain of an FD varkisieeduced step by step by
constraints in a monotonic way: when a value has been removed from the donxatwalf never reappear in the
domain ofX. An FD variable is fully compatible with both Prolog integers and Prolog variables. Namely, when an
FD variable is expected by an FD constraint it is possible to pass a Prolog integer (considered as an FD variable
whose domain is a singleton) or a Prolog variable (immediately bound to an initial @afdje _max.integer).

This avoids the need for specific type declaration. Although it is not necessary to declare the initial domain of an
FD variable (since it will be boun@..fd _max.integer when appearing for the fist time in a constraint) it is
advantageous to do so and thus reduce as soon as possible the size of its domain: particularly because GNU Prolog,
for efficiency reasons, does not check for overflows. For instance, without any preliminary domain definitions for
X, Y andZ, the non-linear constrair{*Y#=2 will fail due to an overflow when computing the upper bound of

the domain oZ: fd _max.integer x fd _maxiinteger . This overflow causes a negative result for the upper
bound and the constraint then fails.

There are two internal representations for an FD variable:

¢ interval representation: only themin and themaxof the variable are maintained. In this representation it
is possible to store values includeddnfd _max.integer

e sparse representationan additional bit-vector is used to store the set of possible values for the variable (i.e.
the domain). In this representation it is possible to store values includ&dvactor _max. By default
vector _maxis setto 127. This value can be redefined via an environment vaN&fld ORMA(via the
built-in predicatefd _set _vector _max/1 (sectior] 8.23, page 167). The predictevector _max/1
returns the current value @&ctor _max (sectior] 8.2]1, pade 1[6).

The initial representation for an FD variableis always an interval representation and is switched to a sparse
representation when a “hole” appears in the domain (e.g. due to an inequality constraint). Once a variable uses
a sparse representation it will not switch back to an interval representation even if there are no longer holes in
its domain. When this switching occurs some values in the doma¥aain be lost sinceector _max s less

thanfd _-max.integer . We say that X is extra-constrained” sinck¥ is constrained by the solver to the do-
main0..vector _max (via an imaginary constrail¥ #=< vector _max). Anextra _cstr is associated to

each FD variable to indicate that values have been lost due to the switch to a sparse representation. This flag is
updated on every operations. The domain of an extra-constrained FD variable is output followed@sythe

bol. When a constraint fails on a extra-constrained variable a me¥gageng: Vector too small -

maybe lost solutions (FD Var: N) is displayed N is the address of the involved variable).

Example 1 ¢ector _max=127):

166 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

| Constraint orX | Domain ofX | extra _cstr | Lostvalues |
X #=< 512 0..512 off none
X #\= 10 0..9:11..127 on 128..512
X #=< 100 0..9:11..100 off none

In this example, when the constrakt#\= 10 is posted some values are lost, éxra _cstr is then switched
on. However, posting the constraiXt #=< 100 will turn off the flag (no values are lost).

Example 2:

Constraint orX | Domain ofX extra _cstr Lost values
X #=< 512 0..512 off none

X #\= 10 0..9:11..127 on 128..512
X #>= 256 Warning: Vector too small... on 128..512

In this example, the constrait #>= 256 fails due to the lost 0128..512 so a message is displayed onto the
terminal. The solution would consist in increasing the size of the vector either by setting the environment variable
VECTORMAg€.g. to512) or usingfd _set _vector _max(512) .

Finally, bit-vectors are not dynamic, i.e. all vectors have the same Biaee¢tor _max). So the use of
fd _set _vector _max/1 is limited to the initial definition of vector sizes and must occur before any constraint.
As seen before, the solver tries to display a message when a failure occurs due to a teectbort_max. Un-

fortunately, in some cases it cannot detect the lost of values and no message is emitted. So the user should always
take care to this parameter to be sure that it is large to encode any vector.

8.2 FD variable parameters
8.2.1 fd _max.integer/1

Templates
fd _max.integer(?integer)

Description
fd _max.integer(N) succeeds iNis the current value dil _max.integer (sectior] 8.1, pade 1§5).

Errors

| Nis neither a variable nor an integer | type _error(integer, N) \

Portability

GNU Prolog predicate.

8.2.2 fd _vector _max/1

Templates
fd _vector _max(?integer)

Description

fd _vector _max(N) succeeds iNis the current value ofector _max (sectior] 8.]L, pade 1p5).

8.3 Initial value constraints 167

Errors

] Nis neither a variable nor an integer \ type _error(integer, N)

Portability

GNU Prolog predicate.

8.2.3 fd _set _vector _max/1

Templates
fd _set _vector _max(+integer)

Description

fd _set _vector _max(N) initializesvector _maxbased on the valug(sectiorf 8.1, pade 165). More precisely,
on 32 bit machinesjector _maxis set to the smallest value 2*k)- 1 which is> N.

Errors

Nis a variable instantiation _error

Nis neither a variable nor an integer type _error(integer, N)

Nis an integex 0 domain _error(not _less _than _zero, N)
Portability

GNU Prolog predicate.

8.3 Initial value constraints

8.3.1 fd _domain/3 ,fd _domain _bool/1

Templates

fd .domain(+fd _variable _list _or _fd _variable, +integer, +integer)
fd .domain(?fd _variable, +integer, +integer)

fd _domain _bool(+fd _variable _list)

fd _domain _bool(?fd _variable)

Description

fd _domain(Vars, Lower, Upper) constraints each elemexbf Vars to take a value ihower..Upper
This predicate is generally used to set the initial domain of variables to an int¥aal. can be also a single FD
variable (or a single Prolog variable).

fd _.domain _bool(Vars) is equivalent tofd _domain(Vars, 0, 1) and is used to declare boolean FD
variables.

Errors

168 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

Vars is not a variable but is a partial list instantiation _error
Vars is neither a variable nor an FD variable nor antype _error(list, Vars)

integer nor a list
an elemenkE of theVars list is neither a variable nof type _error(fd _variable, E)
an FD variable nor an integer

Lower is a variable instantiation _error

Lower is neither a variable nor an integer type _error(integer, Lower)

Upper is a variable instantiation _error

Upper is neither a variable nor an integer type _error(integer, Upper)
Portability

GNU Prolog predicate.

8.3.2 fd _domain/2

Templates
fd _[domain(+fd _variable _list, +integer _list)
fd .domain(?fd _variable, +integer _list)
Description
fd _domain(Vars, Values) constraints each elemeXtof the listVars to take a value in the lis¥alues .

This predicate is generally used to set the initial domain of variables to a set of values. The domain of each variable
of Vars uses a sparse representatigars can be also a single FD variable (or a single Prolog variable).

Errors

Vars is not a variable but is a partial list instantiation _error
Vars is neither a variable nor an FD variable nor antype _error(list, Vars)

integer nor a list
an elemenE of theVars list is neither a variable nof type _error(fd _variable, E)
an FD variable nor an integer

Values is a partial list or a list with an elemekt instantiation _error
which is a variable
Values is neither a partial list nor a list type _error(list, Values)

an elemenk of theValues list is neither a variable| type _error(integer, E)
nor an integer

Portability

GNU Prolog predicate.

8.4 Type testing
8.4.1 fd _var/l ,non_fd var/l ,generic _var/l ,non_generic _var/l

Templates

fd _var(?term) generic _var(?term)
non _fd _var(?term) non _generic _var(?term)

8.5 FD variable information 169

Description

fd _var(Term) succeeds ifferm is currently an FD variable.

non _fd _var(Term) succeeds ifferm is currently not an FD variable (oppositefdf _var/1).
generic _var(Term) succeeds ifferm is either a Prolog variable or an FD variable.

non _generic _var(Term) succeeds ifTerm is neither a Prolog variable nor an FD variable (opposite of
generic _var/l).

Errors
None.
Portability

GNU Prolog predicate.

8.5 FD variable information

These predicate allow the user to get some information about FD variables. They are not constraints, they only
return the current state of a variable.

8.5.1 fd _-min/2 ,fd -max/2 ,fd _size/2 ,fd _dom/2

Templates

fd _min(+fd _variable, ?integer)
fd _max(+fd _variable, ?integer)
fd _size(+fd _variable, ?integer)
fd .dom(+fd _variable, ?integer _list)

Description

fd _-min(X, N) succeeds iNis the minimal value of the current domain>f

fd _max(X, N) succeeds iNis the maximal value of the current domainXf

fd _size(X, N) succeeds iNis the number of elements of the current domaiiXof

fd _dom(X, Values) succeeds i¥alues is the list of values of the current domainXf

Errors
Xis a variable instantiation _error
Xis neither an FD variable nor an integer type _error(fd _variable, X)
Nis neither a variable nor an integer type _error(integer, N)

an elemenE of theVars list is neither a variable nor type _error(fd _variable, E)
an FD variable nor an integer
Values is neither a partial list nor a list type _error(list, Values)

Portability

170

8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

GNU Prolog predicate.

8.5.2 fd _has _extra

Templates

fd _has _extra _cstr(+fd
fd _has _vector(+fd
fd _use _vector(+fd

Description

fd _has _extra _cstr(X)

fd _has _vector(X)

fd _use _vector(X)

_cstr/l

, fd _has _vector/1 ,fd _use _vector/1

_variable)
_variable)
_variable)

succeeds if thextra _cstr

succeeds if the current domainXuses a sparse representation (se¢fion 8.1,[page 165).

enforces a sparse representation for the domaXi(eéctior] 8.1, pade 155).

Errors
Xis a variable instantiation _error
Xis neither an FD variable nor an integer type _error(fd _variable, X)

Portability

GNU Prolog predicates.

8.6 Arithmetic constraints

8.6.1 FD arithmetic expressions

An FD arithmetic expression is a Prolog term built from integers, variables (Prolog or FD variables), and functors
(or operators) that represent arithmetic functions. The following table details the components of an FD arithmetic

expression:
| FD Expression | Result
Prolog variable domain0..fd _max.integer
FD variableX domain ofX
integer numbeN domainN..N
+ E same ag&
- E opposite ofe
E1l + E2 sum ofE1 andE2
El - E2 subtraction oE2 from E1
El * E2 multiplication of E1 by E2
El / E2 integer division ofE1 by E2 (only succeeds if the remainder is 0)
E1l ** E2 E1 raised to the power &2 (E1 or E2 must be an integer)
min(E1,E2) minimum of E1 andE2
max(E1,E2) maximum ofE1 andE2
dist(E1,E2) distance, i.e|E1 - E2|
El /| E2 guotient of the integer division &1 by E2
El rem E2 remainder of the integer division &1 by E2
quot _rem(E1,E2,R) quotient of the integer division d1 by E2
(Ris the remainder of the integer division Bi by E2)

of Xis currently on (section 8,1, page 165).

8.6 Arithmetic constraints 171

FD expressions are not restricted to be linear. However non-linear constraints usually yield less constraint propa-
gation than linear constraints.

+,-,*,1,/l ,rem and** are predefined infix operators.and- are predefined prefix operators (secfion 7.74.10,

pagd 99).

Errors

a sub-expression is of the form** E andEis a instantiation _error
variable
a sub-expressioR is neither a variable nor an integertype _error(fd _evaluable, E)
nor an FD arithmetic functor
an expression is too complex resource _error(too _big _fd _constraint)

8.6.2 Partial AC: (#=)/2 - constraint equal, (#\=)/2 - constraint not equal,
(#<)/2 - constraint less than,(#=<)/2 - constraint less than or equal,
(#>)/2 - constraint greater than, (#>=)/2 - constraint greater than or equal

Templates

#=(?fd _evaluable, ?fd _evaluable)
#\=(?fd _evaluable, ?fd _evaluable)
#<(?fd _evaluable, ?fd _evaluable)
#=<(?fd _evaluable, ?fd _evaluable)
#>(?fd _evaluable, ?fd _evaluable)
#>=(?fd _evaluable, ?fd _evaluable)

Description

FdExprl #= FdExpr2 constraind=dExprl to be equal td~dExpr2 .

FdExprl #\= FdExpr2 constraind=dExprl to be different fromFdExpr2 .

FdExprl #< FdExpr2 constraing=dExprl to be less thafrdExpr2 .

FdExprl #=< FdExpr2 constraind=dExprl to be less than or equal EdEXxpr2 .

FdExprl #> FdExpr2 constraind=dExprl to be greater thaRdEXxpr2 .

FdExprl #>= FdExpr2 constraind-dExprl to be greater than or equal fF@Expr2 .

FdExprl andFdExpr2 are arithmetic FD expressions (section §.6.1, 170).

#=, #\= , #<, #=<, #> and#>= are predefined infix operators (sectjon 7.14.10, page 99).

These predicates post arithmetic constraints that are managed by the solver using a partial arc-consistency algo-
rithm to reduce the domain of involved variables. In this scheme only the bounds of the domain of variables
are updated. This leads to less propagation than full arc-consistency techniques [seciion 8.6.3,|page 172) but is
generally more efficient for arithmetic. These arithmetic constraints can be reified ($ection 8[7, gage 173).

Errors

Refer to the syntax of arithmetic FD expressions for possible errors (sgctioh 8.6.[, phge 170).

Portability

172 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

GNU Prolog predicates.

8.6.3 Full AC: (#=#)/2 - constraint equal, (#\=#)/2 - constraint not equal,
(#<#)/2 - constraint less than,(#=<#)/2 - constraint less than or equal,
(#>#)/2 - constraint greater than, (#>=#)/2 - constraint greater than or equal

Templates

#=#(?fd _evaluable, ?fd _evaluable)
#\=#(?fd _evaluable, ?fd _evaluable)
#<#(?fd _evaluable, ?fd _evaluable)
#=<#(?fd _evaluable, ?fd _evaluable)
#>#(?fd _evaluable, ?fd _evaluable)
#>=#(?fd _evaluable, ?fd _evaluable)

Description

FdExprl #=# FdExpr2 constraind=dExprl to be equal td~dExpr2 .

FdExprl #\=# FdExpr2 constraind~dExprl to be different fromFdExpr2 .

FdExprl #<# FdExpr2 constraind-dExprl to be less thafrdExpr2 .

FdExprl #=<# FdExpr2 constraind~dExprl to be less than or equal EdExpr2 .

FdExprl #># FdExpr2 constraing=dExprl to be greater thaRdExpr2 .

FdExprl #>=# FdExpr2 constraind~dExprl to be greater than or equal FlExpr2 .

FdExprl andFdExpr2 are arithmetic FD expressions (section §.6.1, 170).

H=#,#\=# | #<#, #=<#,#># and#>=# are predefined infix operators (section 7.1%.10, page 99).

These predicates post arithmetic constraints that are managed by the solver using a full arc-consistency algorithm
to reduce the domain of involved variables. In this scheme the full domain of variables is updated. This leads to
more propagation than partial arc-consistency techniques (sgctioh 8.6.1, page 170) but is generally less efficient
for arithmetic. These arithmetic constraints can be reified (s€ctior] 8.7.1 pgge 173).

Errors

Refer to the syntax of arithmetic FD expressions for possible errors (sgctioh 8.6.[[, page 170).

Portability

GNU Prolog predicates.

8.6.4 fd _prime/l ,fd _not _prime/1

Templates

fd _prime(?fd _variable)
fd _not _prime(?fd _variable)

Description

8.7 Boolean and reified constraints 173

fd _prime(X) constraintsXto be a prime number betwe@nvector = _max. This constraint enforces a sparse
representation for the domain Xf(sectiorf 8.1, pade 1p5).

fd _not _prime(X) constraintsXto be a non prime number betwe@rnvector _max. This constraint enforces
a sparse representation for the domaiX¢$ectiorf 8.1, pade 155).

Errors

] Xis neither an FD variable nor an integer \ type _error(fd _variable, X)

Portability

GNU Prolog predicates.

8.7 Boolean and reified constraints
8.7.1 Boolean FD expressions

An boolean FD expression is a Prolog term built from integers (0 for false, 1 for true), variables (Prolog or FD
variables), partial AC arithmetic constraints (secfion 8.6.2, 171), full AC arithmetic constraints (sectjon 8.6.3,
pagg 17R) and functors (or operators) that represent boolean functions. When a sub-expression of a boolean ex-
pression is an arithmetic constraimtit is reified. Namely, as soon as the solver detectsahstrue (i.e.entaileg

the sub-expression has the value Similarly when the solver detects thatis false (i.e. disentailed the sub-
expression evaluates @s While neither the entailment nor the disentailment can be detected the sub-expression

is evaluated as a domah.1 . The following table details the components of an FD boolean expression:

| FD Expression | Result \

Prolog variable | domain0..1
FD variableX domain ofX, Xis constrained to be ifl..1

0 (integer) 0 (false)
1 (integer) 1 (true)
#\ E notE

El #<=> E2 E1 equivalent tde2

El #\<=> E2 | E1 not equivalent t&2 (i.e. E1 different fromE2)
E1l ## E2 E1 exclusive ORE2 (i.e. E1 not equivalent td2)
El #==> E2 El impliesE2

E1l #\==> E2 | E1 does notimplyE2

E1 #\ E2 E1AND E2
E1 #W E2 E1 NAND E2
E1 #V E2 E1ORE2
E1 #WV E2 E1NORE2

#<=> #\<=> ##, #==> #==> #\ #N\ ,#/ and#\/ are predefined infix operator$\ is a predefined
prefix operator (sectidn 7.14]10, pagé 99).

Errors

a sub-expressioR is neither a variable nor an integertype _error(fd _bool _evaluable, E)
(0 or 1) nor an FD boolean functor nor reified
constraint

an expression is too complex resource _error(too _big _fd _constraint)
a sub-expression is an invalid reified constraint an arithmetic constraint error (section 8|6.1,

pagd 17D)

174 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

8.7.2 (#\)/1 - constraint NOT, (#<=>)/2 - constraint equivalent,
(#\<=>)/2 - constraint different, (##)/2 - constraint XOR,
(#==>)/2 - constraint imply, (#\==>)/2 - constraint not imply,

#/\)/2 - constraint AND, (#\W\)/2 - constraint NAND,
#WN/2 - constraint OR, (#\V)/2 - constraint NOR
Templates
#\(?fd _bool _evaluable)
#<=>(?fd _bool _evaluable, ?fd _bool _evaluable)
#\<=>(?fd _bool _evaluable, ?fd _bool _evaluable)
##(?fd _bool _evaluable, ?fd _bool _evaluable)
==>(?fd _bool _evaluable, ?fd _bool _evaluable)
#\==>(?fd _bool _evaluable, ?fd _bool _evaluable)
#N\(?fd _bool _evaluable, ?fd _bool _evaluable)
#N\(?fd _bool _evaluable, ?fd _bool _evaluable)
#\/(?fd _bool _evaluable, ?fd _bool _evaluable)
#\V(?fd _bool _evaluable, ?fd _bool _evaluable)
Description

#\= FdBoolExprl constraint&=dBoolExprl to be false.

FdBoolExprl #<=> FdBoolExpr2 constraind=dBoolExprl to be equivalent té-dBoolExpr2
FdBoolExprl #\<=> FdBooIExpr2 constraind=dBoolExprl to be equivalent to ndtdBoolExpr2
FdBoolExprl ## FdBooIExpr2 constraind=dBoolExprl XOR FdBoolExpr2 to be true
FdBoolExprl #==> FdBoolExpr2 constraind=dBoolExprl to imply FdBoolExpr2
FdBoolExprl #\==> FdBoOIExpr2 constraind=dBoolExprl to not imply FdBoolExpr2
FdBoolExprl #/\ FdBoolExpr2 constraing-dBoolExprl AND FdBoolExpr2 to be true.
FdBoolExprl #\\ FdBoolExpr2 constraing=dBoolExprl AND FdBoolExpr2 to be false.
FdBoolExprl #\/ FdBoolExpr2 constraing=dBoolExprl OR FdBoolExpr2 to be true.
FdBoolExprl #\V FdBoolExpr2 constraind=dBoolExprl OR FdBoolExpr2 to be false.
FdBoolExprl andFdBoolExpr2 are boolean FD expressions (secfion §.7.1, 173).

Note thatt\<=> (not equivalent) and# (exclusive or) are synonymous.

These predicates post boolean constraints that are managed by the FD solver using a partial arc-consistency algo-
rithm to reduce the domain of involved variables. The (dis)entailment of reified constraints is detected using either

the bounds (for partial AC arithmetic constraints) or the full domain (for full AC arithmetic constraints).

#<=> #\<=> ##, #==> #==> #\ #\\ ,#/ and#\ are predefined infix operator$\ is a predefined

prefix operator (sectidn 7.14]10, pdagé 99).
Errors
Refer to the syntax of boolean FD expressions for possible errors (section 8.7.[, page 173).

Portability

8.8 Symbolic constraints 175

GNU Prolog predicates.

8.7.3 fd _cardinality/2 , fd _cardinality/3 ,fd _at _least _one/l ,fd _at _most _one/l ,
fd _only _one/l1

Templates
fd _cardinality(+fd _bool _evaluable _list, ?fd _variable)
fd _cardinality(+integer, ?fd _variable, +integer)

fd _at least _one(+fd _bool _evaluable _list)
fd _at _most _one(+fd _bool _evaluable _list)
fd _only _one(+fd _bool _evaluable _list)

Description
fd _cardinality(List, Count) unifiesCount with the number of constraints that are truetiat . This

is equivalent to post the constralB®t + B, + ..+ B , #= Count where each variablBi is a new variable
defined by the constrai8; #<=> C; whereC; is thei th constraint ofList . EachC; must be a boolean FD

expression (sectign 8.7.1, pdge [173).

fd _cardinality(Lower, List, Upper) is equivalent tdd _cardinality(List, Count), Lower
#=< Count, Count #=< Upper

fd _at _least _one(List) is equivalenttdd _cardinality(List, Count), Count #>= 1
fd _at _most _one(List) is equivalent tdd _cardinality(List, Count), Count #=< 1

fd _only _one(List) is equivalenttdd _cardinality(List, 1)

Errors
List is a partial list instantiation _error
List is neither a partial list nor a list type _error(list, List)
Count is neither an FD variable nor an integer type _error(fd _variable, Count)
Lower is a variable instantiation _error
Lower is neither a variable nor an integer type _error(integer, Lower)
Upper is a variable instantiation _error
Upper is neither a variable nor an integer type _error(integer, Upper)
an elemenE of theList listis an invalid boolean | an FD boolean constraint (sect@]?.l, 173
expression

Portability

GNU Prolog predicates.

8.8 Symbolic constraints
8.8.1 fd _all _different/1

Templates
fd _all _different(+fd _variable _list)

Description

176 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

fd _all _different(List) constrains all variables ihist to take distinct values. This is equivalent to
posting an inequality constraint for each pair of variables. This constraint is triggered when a variable becomes
ground, removing its value from the domain of the other variables.

Errors
List is a partial list instantiation _error
List is neither a partial list nor a list type _error(list, List)

an elemenE of theList listis neither a variable nor type _error(fd _variable, E)
an integer nor an FD variable

Portability

GNU Prolog predicate.

8.8.2 fd _element/3

Templates
fd _element(?fd _variable, +integer _list, ?fd _variable)
Description
fd _element(l, List, X) constraintsX to be equal to théth integer (from 1) ofList
Errors
| is neither a variable nor an FD variable nor an type _error(fd _variable, 1)
integer
Xis neither a variable nor an FD variable nor an type _error(fd _variable, X)
integer
List is a partial list or a list with an elemeft instantiation _error
which is a variable
List is neither a partial list nor a list type _error(list, List)
an elemenE of thelList listis neither a variable nor type _error(integer, E)
an integer
Portability

GNU Prolog predicate.

8.8.3 fd _element _var/3

Templates
fd _element _var(?fd _variable, +fd _variable _list, ?fd _variable)
Description
fd _element _var(l, List, X) constraintsx to be equal to thé th variable (from 1) ofList . This con-

straint is similar tdd _element/3 (sectior] 8.8.2, page IJ76) bist can also contain FD variables (rather than
just integers).

Errors

8.8 Symbolic constraints 177

| is neither a variable nor an FD variable nor an type _error(fd _variable, 1)

integer

Xis neither a variable nor an FD variable nor an type _error(fd _variable, X)
integer

List is a partial list instantiation _error

List is neither a partial list nor a list type _error(list, List)

an elemenE of thelList listis neither a variable nor type _error(fd _variable, E)
an integer nor an FD variable

Portability

GNU Prolog predicate.

8.8.4 fd _atmost/3 ,fd _atleast/3 ,fd _exactly/3

Templates
fd _atmost(+integer, +fd _variable _list, +integer)
fd _atleast(+integer, +fd _variable _list, +integer)
fd _exactly(+integer, +fd _variable _list, +integer)
Description
fd _atmost(N, List, V) posts the constraint that at mds$variables ofList are equal to the valué.
fd _atleast(N, List, V) posts the constraint that at le&svariables ofList are equal to the valug.
fd _exactly(N, List, V) posts the constraint that at exadiyariables ofList are equal to the valué.
These constraints are special casefslafcardinality/2 (sectior] 8.7 8, page 1]75) but their implementation is
more efficient.
Errors
Nis a variable instantiation _error
Nis neither a variable nor an integer type _error(integer, N)
Vis a variable instantiation _error
Vis neither a variable nor an integer type _error(integer, V)
List is a partial list instantiation _error
List is neither a partial list nor a list type _error(list, List)
an elemenkE of thelList listis neither a variable nor type _error(fd _variable, E)
an FD variable nor an integer

Portability

GNU Prolog predicates.

8.8.5 fd _relation/2 , fd _relationc/2

Templates
fd _relation(+integer list _list, ?fd _variable _list)
fd _relationc(+integer list _list, ?fd _variable _list)

Description

178 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

fd _relation(Relation, Vars) constraints the tuple of variabl&ars to be equal to one tuple of the list
Relation . Atuple is represented by a list.

Example: definition of the boolean AND relation so that X ANDsY Z:

and(X,Y,2):-
fd_relation([[0,0,0],[0,1,0],[1,0,01,[1,1,1]], [X,Y,Z]).

fd _relationc(Columns, Vars) is similar tofd _relation/2 except that the relation is not given as the
list of tuples but as the list of the columns of the relation. A column is represented by a list.

Example:
and(X,Y,Z2):-
fd_relationc([[0,0,1,1],[0,1,0,1],[0,0,0,1]], [X,Y.Z]).
Errors
Relation is a partial list or a list with a sub-terf& | instantiation _error
which is a variable
Relation is neither a partial list nor a list type _error(list, Relation)

an elemenk of theRelation list is neither a

variable nor an integer

type _error(integer, E)

Vars is a partial list

instantiation _error

Vars is neither a partial list nor a list

type _error(list, Vars)

an elemenkE of theVars list is neither a variable nor type _error(fd _variable, E)
an integer nor an FD variable
Portability
GNU Prolog predicates.
8.9 Labeling constraints
8.9.1 fd _labeling/2 ,fd _labeling/1 ,fd _labelingff/1
Templates
fd _labeling(+fd _variable _list, +fd _labeling _option _list)
fd _labeling(+fd _variable, +fd _labeling _option _list)
fd _labeling(+fd _variable _list)
fd _labeling(+fd _variable)
fd _labelingff(+fd _variable _list)
fd _labelingff(+fd _variable)

Description

fd _labeling(Vars, Options) assigns a value to each varial{ef the listVVars according to the list of
labeling options given bPptions . Vars can be also a single FD variable. This predicate is re-executable on
backtracking.

FD labeling options Options is a list of labeling options. If this list contains contradictory options, the right-
most option is the one which applies. Possible options are:

e variable
— standard

_method(V) : specifies the heuristics to select the variable to enumerate:
: no heuristics, the leftmost variable is selected.

8.10 Optimization constraints

179

— first _fail (or ff): selects the variable with the smallest number of elements in its domain. If

several variables have the same number
— most _constrained : like first _fail

of elements the leftmost variable is selected.

ments selects the variable that appears in most constraints.

— smallest : selects the variable that has the smallest value in its domain. If there is more than one
such variable selects the variable that appears in most constraints.

but when several variables have the same number of ele-

— largest : selects the variable that has the greatest value in its domain. If there is more than one such
variable selects the variable that appears in most constraints.

— maxregret : selects the variable that has the greatest difference between the smallest value and the
next value of its domain. If there is more than one such variable selects the variable that appears in

most constraints.

— randaom : selects randomly a variable. Each variable is only chosen once.

The default value istandard

e reorder(true/false) : specifies if the variable heuristics should dynamically reorder the list of vari-
able true) or not false). Dynamic reordering is generally more efficient but in some cases a static

ordering is faster. The default valuetisie .

e value _method(V) : specifies the heuristics to select the value to assign to the chosen variable:

— min: enumerates the values from the smallest to the greatest (default).

— max enumerates the values from the greatest to the smallest.

— middle : enumerates the values from the middle to the bounds.

— bounds : enumerates the values from the bounds to the middle.

— random : enumerates the values randomly. Each value is only tried once.

The default value 1sin .

e backtracks(B) : unifiesB with the number of backtracks during the enumeration.

fd _labeling(Vars) is equivalent tdd _labeling(Vars, [])

fd _labelingff(Vars) is equivalent tdd _labeling(Vars, [variable _method(ff)])

Errors

Vars is a partial list or a list with an elemeft
which is a variable

instantiation _error

Vars is neither a partial list nor a list

type _error(list, Vars)

an elemenk of theVars list is neither a variable no
an integer nor an FD variable

I type _error(fd _variable, E)

Options is a partial list or a list with an elemekt
which is a variable

instantiation _error

Options is neither a partial list nor a list

type _error(list, Options)

an elemenE of theOptions list is neither a
variable nor a labeling option

domain _error(fd _labeling _option, E)

Portability

GNU Prolog predicates.

8.10 Optimization constraints
8.10.1 fd _minimize/2 ,fd _maximize/2

Templates

180 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

fd _minimize(+callable _term, ?fd _variable)
fd _maximize(+callable _term, ?fd _variable)
Description

fd _minimize(Goal, X) repeatedly call&oal to find a value that minimizes the variatieGoal is a Prolog
goal that should instantiabé a common case being the usef@f_labeling/2 (sectior{ 8.9/1, pade 1r8). This
predicate uses a branch-and-bound algorithm with restart: eachctti{&oal) succeeds the computation
restarts with a new constraidt #< V whereV is the value ofX at the end of the last call dboal . When a
failure occurs (either because there are no remaining choice-poin®&ofalr or because the added constraint is
inconsistent with the rest of the store) the last solution is recomputed since it is optimal.

fd _maximize(Goal, X) is similar tofd _minimize/2 butXis maximized
Errors
Goal is avariable instantiation _error
Goal is neither a variable nor a callable term type _error(callable, Goal)
The predicate indicatdPred of Goal does not existence _error(procedure, Pred)

correspond to an existing procedure and the value|of
theunknown Prolog flag iserror (sectior] 7.22]1,
pagq 13P)

Xis neither a variable nor an FD variable nor an type _error(fd _variable, X)
integer

Portability

GNU Prolog predicates.

181

9 Coroutining and attributes

9.1 Coroutining
9.1.1 freeze/2

Templates
freeze(?term, ?term)

Description

freeze(Var, Goal) blocksGoal until Var is unified to a non variable term.
Errors

None.

Portability

GNU Prolog RH predicate.

9.1.2 frozen/2

Templates
frozen(-term, ?term)

Description

frozen(Var, Goals) unifiesGoals with the conjunction of all goals which are blocked on the variatze.
If no goal is blockedGoals is unified with atorrtrue .

Errors
None.
Portability

GNU Prolog RH predicate.

9.1.3 portray/2 [user-definef
Templates
portray(+callable _term, -callable _term)
Description
If after the success of a query, a gdabal is still blocked on a variabl&ar , portray(Goal, Goal2) is

called by the Prolog top level. If this one succed@sals?2 is displayed, but iportray/2 fails or if it is not
definedfreeze(Var, Goal) is printed instead.

Note: Only the goals blocked on the variables of the query are displayed.

182 9 COROUTINING AND ATTRIBUTES

9.2 Attributed variables
9.2.1 Introduction

The facility presented here implements attributed variables in the style of [9]. It provides a way for associating
to variables one or several arbitrary terms called attributes. By allowing the user to redefine the unification of
attributed variables, this extension makes possible the design of coroutining facilities (see supsection 9.2.7 , page
[184) and clean interfaces between Prolog and constraints solvers (see [section 10, page 187). This facility is
available if the attributes part of GNU Prolog has been installed.

A new type of data is introduced: attributed variables on which can be attached one or several attributes. Currently,
FD variables cannot be attributed and unification between attributed variables and FD variables always fails.

9.2.2 Attribute declaration - attribute/1

Templates
;- attribute(+structure _indicator)
Description
The directiveattribute(Name/Arity) provides the means to declare a new attribute which is a compound

term of principal functoName/Arity . Attributes can be associated to a variable or updated only if they have
been previously declared using this directive.

Portability

GNU Prolog RH directives.

9.2.3 Attributes manipulation - get _atts/2 , put _atts/2

Templates
get _atts(-term, +callable _term)
Description
get _atts(Var, AccesSpec) gets the attributes of Var accordingAaccessSpec or fails if Var is not an

attributed variable.

Errors

AccesSpec is a generic variable instantiation _error
AccesSpec is a compound term of principal functardomain _error(attributes,F/N)
F/N but does not correspond to any attribute that has

been declared using the directiatributes/1

Portability
GNU Prolog RH predicate.

Templates

9.2 Attributed variables 183

put _atts(-term, +callable _term)
Description
put _atts(Var, AccesSpec) set the corresponding actual attributevair .
Errors

Var is a neither a variable nor an attributed variable type _error(variable,Var)
AccesSpec is a generic variable instantiation _error
AccesSpec is a compound term of principal domain _error(attributes,F/N)
functorF/N but does not corresponding to any
attribute that has been declared using the directive
attributes/1

Portability

GNU Prolog RH predicate.

9.2.4 Type testing -attributed/1 ,generic _var/l ,non_generic _var/l

Errors

None.

Portability

GNU Prolog predicate.

Templates

attributed(?term)
generic _var(?term)
non _generic _var(?term)

Description

attributed(Term) succeeds ifferm is currently an attributed variable, i.e. at least one attribute has been
previously attached to this variable using predigate _atts/2

Predicategieneric _var/l andnon _generic _var/l , defined in Type testing in the Finite Domain chapter
(sectior] 8.4, pade 1p8) are extended, as following :

e generic _var(Term) succeeds ifferm is either a Prolog variable, an FD variable or an attributed vari-
able;

e non_generic _var(Term) succeeds ifferm is neither a Prolog variable nor an FD variable nor an
attributed variable (opposite generic _var/1).

Errors
None.
Portability

GNU Prolog RH predicates.

184 9 COROUTINING AND ATTRIBUTES

9.2.5 Unification extension verify _attributes _predicate/1

The unification of attributed variables can be extended by defiaitndputes verification handlerghat are user-
defined predicates checking that an attributed variable can be unified with another one or with an non-variable
term. Anattributes verification handleis declared by the following directive :

Templates
- verify _attributes _predicate(+atom)
Description
The directiveverify _attributes _predicate(Functor) declares that the predicakainctor/3 s a

attributes verification handlerUsing this directive the user can defined as many handlers as (s)he wants, all of
them being awaked in an unspecified order.

For example the directiveerify _attributes _predicate(verify _foo) declaresthaterify _foo(Var,
Value, Goal) must be called each time that the unification algorithm tries to bind an attributed vaviable
to a non-variable term or to another attributed varialdéue . If this call succeeds the unification resumes and
Var is actually bound td/alue , otherwise the unification fails<soal has to be unified by the handler to a goal
which will be called after the effective binding dfar .

Notes

e The handler shouldot try to bind Var . A binding of Var could be done after the end of the complete
unification using the paramet&oal .

e If Var is bound to another attributed variable, only the attributégadfie are preserved. Therefore it could
be necessary to move attributes frdfar to Value .

9.2.6 Attributed variables portraying - portray _attributes _predicate/1

For printing attributed variables the Prolog top level uses user-defined predicates that arattdilees portray-
ing handlers To declare such handlers the user must use the following directive:

Templates
.- portray _attributes _predicate(+atom)
Description
The directiveportray _attributes _predicate(Functor) declares that the predicaf@nctor/2 is an

attribute portraying handlerUsing this directive the user can define as many handlers as (s)he wants, all of them
being called in an unspecified order.

Before printing the result of a query, the Prolog top level passes (as first argument) the list of attributed variables

of the answer to eversttribute portraying handler It is expected that these handlers always succeeds and unify
their second argument to a (possibly empty) list. Each elements of this list are then printed by the the top level.

9.2.7 A simple example

To illustrate the use of attributed variables, look at the following classical program faredie/2 . It is named
myfreeze/2 to avoid conflict with the built-in version of this predicate.

9.2 Attributed variables 185

%%% File : myfreeze.pl %%%

%% declares a new attribute
:-attribute(myfrozen/1).

%% declares verify_myfreeze/3 as an attributes verification handler.
:-verify_attributes_predicate(verify_myfreeze).

verify_myfreeze(Var, Other, Goal):-

get_atts(vVar, myfrozen(Fa)), !, % is Var revelant ?
(attributed(Other) -> % is Other attributed ?
(get_atts(Other, myfrozen(Fb)) -> % have a pending goal ?
put_atts(Other, myfrozen((Fa, Fb)))% makes conjunction of goals
; put_atts(Other, myfrozen(Fa)) % rescues the pending goal
), Goal=true % does nothing after unification
; Goal=Fa). % wakes the pending goal
verify_myfreeze(_, _, true). % succeeds if Var is not revelant

%% declares portray _myfreeze/2 as an attribute portraying handler.
-portray_attributes_predicate(portray_myfreeze).

portray_myfreeze([H|T],L):-

(get_atts(H, myfrozen(G)) -> % is the head revelant ?

L = [myfreeze(H, G) | T2]; % produces output

L = T2), % throws the non-revelant vari
portray_myfreeze(T, T2). % treats the tail

portray_myfreeze([],[]).

myfreeze(X, Goal):-
put_atts(X, myfrozen(Goal)).

Now look the call of next goals :

| ?- [myfreeze].

compiling /usr/local/gprolog-1.2.16.rh/ExamplesATT/myfreeze.pl for byte code...
usr/local/gprolog-1.2.16.rh/ExamplesATT/myfreeze.pl compiled, 34 lines read -
4368 bytes written, 37 ms

yes

| 2- myfreeze(X,write(X'=X)), X=[].

X=[] % side effect
X =1 % bindings
yes

| ?- myfreeze(X,write("X'=X)).
myfreeze(X, write(X = X)) % attributes portray

yes

186 9 COROUTINING AND ATTRIBUTES

187

10 Constraint logic programming over reals

10.1 Introduction

The CLP(R) presented here extends Prolog with constraint logic programming over reals. This facility is available
if the CLP(R) part of GNU Prolog has been installed. The solver is an instance of the Constraint Logic Pro-
gramming scheme introduced by Jaffar and Michaylov in 1987 [10]. Constraints over reals are solved using an
incremental version of the simplex soMer _solve 2°. The interface between Prolog and the simplex solver is
made using attributed variables, therefore the CLP(R) part of GNU Prolog can only be installed if the attributes
part is installed too.

10.2 Solver predicates
10.2.1 {}1

Templates
{+Constraint }
Description
{Constraint } succeeds ifConstraint is a term accepted by the grammar below. If the corresponding

constraint is linear, it is added to the current constraints store which is then checked for satisfiability, otherwise it
is frozen until it becomes a linear constraint.

Constraint --> Constraint , Constraint conjunction
| Constraint ; Constraint disjunction
| Expr = Expr equation
| Expr =< Expr inequation
| Expr >= Expr inequation
Expr --> Variable variable (attributed or not)
| Evaluable evaluable expression
| + Expr unary plus
| - Expr unary minus
| Expr + Expr binary plus
| Expr - Expr binary minus
| Expr * Expr binary multiplication
| Expr / Expr binary division
| Expr ** Evaluable raise to power
| abs(Expr) absolute value
| sin(Expr) trigonometric sine
| cos(Expr) trigonometric cosine
| min(Expr,Expr) minimum of the two arguments
| max(Expr,Expr) maximum of the two arguments

To learn more about evaluable expressions refer to the evaluation of an arithmetic expression ion 7.6.1,

pageg 5Y).

Errors

20http://contraintes.inria.fr haemmerl/lp _solve _inc/

188 10 CONSTRAINT LOGIC PROGRAMMING OVER REALS

Constraint is not a structure or its main functor istype _error(’expected a constraint,
neither =" nor '=<’nor’>=’ found’, Constraint)

Portability

GNU Prolog RH predicate.

10.2.2 inf/l2 ,sup/2

Templates

inf(+term, -float)
sup(+term, -float)

Description

inf(ExprLin, Inf) computes the infimum of the linear expresstdprLin and unifies it withnf . Failure
indicates that this infimum is equal teocc.

sup(ExprLin, Sup) computes the supremum of the linear expres&@gprLin and unifies it withSup.
Failure indicates that this supremum is equatts.

Errors

ExprLin is either a atom or a list or a FD variable| type _error(expected a linear
expression, found’, ExprLin)

ExprLin is not a linear expression system _error(’expected a linear
expression’)
Inf (or Sup) is neither a variable nor a CLP(R) type _error(‘float’, Inf)

variable nor a float

Portability

GNU Prolog RH predicate.

10.2.3 clpr _get _store/2

Templates

clpr _get _store(+list, -list)

Description

clpr _get _store(Vars, Constraints) unifiesConstraints with the list of CLP(R) constraints, which
constrain the variables Mars .

Errors

| Vars is not a list | type _error(list, Vars)

Portability

GNU Prolog RH predicate.

10.3 Real and Herbrand domains combinations 189

10.3 Real and Herbrand domains combinations

10.3.1 Unification

The unification of a CLP(R) variable either to another CLP(R) variable or to a floating point number is interpreted
as an equality constraint. For example :

| ?- {X=2*Y+3*Z}, Z=Y, X=5.0.

X =50
Y = 1.0
Z =10
yes

is equivalent to

| - {X=2*Y+3*Z, Z=Y, X=5}.

X =50
Y =10
Z =10
yes

Note that CLP(R) variables cannot be bound to integer numbers. This is because, in standard Prolog, unification
between float and integer fails. Insiflig the integer values are automatically converted into floats.

10.3.2 Implicit equalities

The solver tries to detected equalities implied by the store of constraints and unifies CLP(R) variables in conse-
quence. Currently equalities implied by inequations are not detected. For example in the following goal, the two
first constraints imphA=2.0 andB=Cand the two last imply)=1.0 , but only the first equalities are detected.

| 7- {A+B-C=2, A-B+C=2}, {1>=X, 1=<X}.

{ X =< 10}

{-10 * X =< -1.0 }
A =20

C=8B

yes

10.3.3 Nonlinear constraints

The solver presented here can only solve linear constraints, however it freezes all nonlinear constraints in the hope
that they would become linear. A nonlinear constraint may be reduce to a linear one by unification, example :

| 2- {X + 2 * X * Y + Y®2 = 10}
{Y* 2+ X*Y*20+X =100}

yes

190

10 CONSTRAINT LOGIC PROGRAMMING OVER REALS

X
I

yes

X+2*X*Y + Y*2 = 10}, Y=1.0.

3.0
1.0

191

11 Interfacing Prolog and C

11.1 Calling C from Prolog
11.1.1 Introduction

This interface allows a Prolog predicate to call a C function. Here are some features of this facility:
o implicit Prolog«+ C data conversions for simple types.

o functions to handle complex types.

error detection depending on the type of the argument.

different kinds of arguments: input, output or input/output.

possibility to write non-deterministic code.

This interface can then be used to write both simple and complex C routines. A simple routine uses either input or
output arguments which type is simple. In that case the user does not need any knowledge of Prolog data structures
since all Prolog— C data conversions are implicitly achieved. To manipulate complex terms (lists, structures) a
set of functions is provided. Finally it is also possible to write non-deterministic C code.

11.1.2 foreign/2 directive

foreign/2 directive (sectiop 6.1.14, paQe]45) declares a C function interface. The generalforeiga(Template,
Options) which defines an interface predicate whose prototypeeimplate according to the options given

by Options . Template is a callable term specifying the type/mode of each argument of the associated Prolog
predicate.

Foreign options Options is a list of foreign options. If this list contains contradictory options, the rightmost
option is the one which applies. Possible options are:

e fct _name(F) : Fis an atom representing the name of the C function to call. By default the name of the C
function is the same as the principal functoff@mplate . In any case, the atom associated to the name of
the function must conforms to the syntax of C identifiers.

e return(boolean /none /jump) : specifies the value returned by the C function:
— boolean : the type of the function iBool (returnsTRUEon succes$ALSE otherwise).

— none: the type of the function igoid (no returned value).

— jump : the type of the function igoid(* returns the address of a Prolog code to execute).
The &ert{'!\%lt va ugegoolean .)0 (g)

e bip _name(Name, Arity) : initializes the error context withameandArity . If an error occurs this
information is used to indicate from which predicate the error occurred (s¢ction 5.3.1, page 37). Itis also
possible to prevent the initialization of the error context udiy _name(none) . By defaultNameand
Arity are set to the functor and arity ®@&mplate .

e choice _size(N) : this option specifies that the function implements a non-deterministic ddde.an
integer specifying the size needed by the non-deterministic C function. This facility is explained later (sec-
tion[I1.1.7, page 194). By default a foreign function is deterministic.

foreign(Template) is equivalent tdoreign(Template, [])

Foreign modes and typeseach argument dfemplate specifies the foreign mode and type of the corresponding
argument. This information is used to check the type of effective arguments at run-time and to perform-Pélog
data conversions. Each argumenffeinplate is formed with a mode symbol followed by a type name. Possible
foreign modes are:

192 11 INTERFACING PROLOG AND C

e +: input argument.
e - output argument.
e ?: input/output argument.

Possible foreign types are:

| Foreign type| Prolog type | Ctype [Description of the C type
integer integer long value of the integer
positive positive integer long value of the integer
float floating point number; double | value of the floating point number
number number double value of the number
atom atom int internal key of the atom
boolean boolean int value of the boolean (Galse , 1=true)
char character int value of (the code of) the character
code character code int value of the character-code
byte byte int value of the byte
in _char in-character int value of the character el for end-of-file
in _code in-character code int value of the character-code dr for end-of-file
in _byte in-byte int value of the byte orl for the end-of-file
string atom char * C string containing the name of the atom
chars character list char * C string containing the characters of the list
codes character-code list | char * C string containing the characters of the list
term Prolog term PITerm | generic Prolog term

Simple foreign type a simple type is any foreign type listed in the above tabled exeept . A simple foreign
type is an atomic term (character and character-code lists are in fact lists of constants). Each simple foreign type is
converted to/from a C type to simplify the writing of the C function.

Complex foreign type type foreign typeerm refers to any Prolog term (e.g. lists, structures...). When such an
type is specified the argument is passed to the C functiorPébeam (GNU Prolog C type equivalent tolang).

Several functions are provided to manipulBi@erm variables (sectiop 11).2, page 198). Since the original term

is passed to the function it is possible to read its value or to unify it. So the meaning of the mode symbol is less
significant. For this reason it is possible to omit the mode symbol. In thatease is equivalent totterm .

11.1.3 The C function

The C code is written in a C file which must first include the GNU Prolog header file oglerlog.h . This
file contains all GNU Prolog C definitions (constants, types, prototypes,...).

The type returned by a C function depends on the value oftiven foreign option (section 11.1.2, pdge 191). If
itis boolean then the C function is of typBool and shall returTRUEin case of success afé\LSEotherwise.

If the return option isnone the C function is of typevoid . Finally if it is jump , the function shall return the
address of a Prolog predicate and, at the exit of the function, the control is given to that predicate.

The type of the arguments of the C function depends on the mode and type declaration spebéieglate for
the corresponding argument as explained in the following sections.

11.1.4 Input arguments

An input argument is tested at run-time to check if its type conforms to the foreign type and then it is passed to
the C function. The type of the associated C argument is given by the above table (sectign 11.1.2,Jpage 191). For

11.1 Calling C from Prolog 193

instance, the effective argumehitg associated te-positive foreign declaration is submitted to the following
process:

e if Arg is a variable arnstantiation _error is raised.

e if Arg is neither a variable nor an integetygpe _error(integer, Arg) is raised.

o if Arg is an integex 0 adomain _error(not _less _than _zero, Arg) s raised.

e otherwise the value dirg is passed to the C is passed to the C function as an intiegey (.

When+string s specified the string passed to the function is the internal string of the corresponding atom and
should not be modified.

When+term is specified the term passed to the function is the original Prolog term. It can be read and/or unified.
It is also the case whaerm is specified without any mode symbol.

11.1.5 Output arguments

An output argument is tested at run-time to check if its type conforms to the foreign type and it is unified with
the value set by the C function. The type of the associated C argument is a pointer to the type given by the above
table (sectioff 11.12, page 191). For instance, the effective argukngnassociated tepositive foreign
declaration is handled as follows:

e if Arg is neither a variable nor an integetyge _error(integer, Arg) is raised.
e if Arg is anintegex 0 adomain _error(not _less _than _zero, Arg) israised.

e otherwise a pointer to an integdoifig *) is passed to the C function. If the function retuffiRUEthe
integer stored at this location is unified witig .

When-term is specified, the function must construct a term into the its corresponding argument (which is of type
PITerm *). At the exit of the function this term will be unified with the actual predicate argument.

11.1.6 Input/output arguments

Basically an input/output argument is treated as in input argument if it is not a variable, as an output argument
otherwise. The type of the associated C argument is a pointefFi®@Arg (GNU Prolog C type) defined as
follows:

typedef struct
{
Bool is_var;
Bool unify;
union
{
long l;
char *s;
double d;
}value;
}FIOArg;

The fieldis _var is set toTRUEIf the argument is a variable afeALSE otherwise. This value can be tested by
the C function to determine which treatment to perform. The fielifly controls whether the effective argument
must be unified at the exit of the C function. Initiallyify is set to the same value &s _var (i.e. a variable
argument will be unified while a non-variable argument will not) but it can be modified by the C function. The
field value stores the value of the argument. It is declared asumiGn since there are several kinds of value

194 11 INTERFACING PROLOG AND C

types. The fields is used for C stringsy for C doubles and otherwise int |, long , PITerm). if is _var is
FALSEthenvalue contains the input value of the argument with the same conventions as for input arguments
(sectior IT.T}4, pade 192). At the exit of the function, if unifffRUE value must contain the value to unify

with the same conventions as for output arguments (s€ction [L1.1.5, pgge 193).

For instance, the effective argume¥rg associated t@positive foreign declaration is handled as follows:
o if Arg isavariablés _var andunify are settd’RUEelse toFALSEand its value is copied imalue.l
o if Arg is neither a variable nor an integetyge _error(integer, Arg) is raised.
e if Arg is anintegex 0 adomain _error(not _less _than _zero, Arg) is raised.

e otherwise a pointer to thelOArg (FIOArg *) is passed to the C function. If the function retuffRUE
and ifunify is TRUE the value stored ivalue.l s unified withArg .

11.1.7 Writing non-deterministic C code

The interface allows the user to write non-deterministic C code. When a C function is non-deterministic, a choice-
point is created for this function. When a failure occurs, if all more recent non-deterministic code are finished, the
function is re-invoked. It is then important to inform Prolog when there is no more solution (i.e. no more choice)
for a non-deterministic code. So, when no more choices remains the function must remove the choice-point. The
interface increments a counter each time the function is re-invoked. At the first call this counter is equal to 0. This
information allows the function to detect its first call. When writing non-deterministic code, it is often useful to
record data between consecutive re-invocations of the function. The interface maintains a buffer to record such
an information. The size of this buffer is given blgoice _size(N) when usingoreign/2 (sectiorf 11.1]2,

page I9]1). This size is the number of (consecutiva)) s needed by the C function. Inside the function it is
possible to call the following functions/macros:

void Get_Choice_Counter(void)
TYPE Get_Choice_Buffer (TYPE)
void No_More_Choice (void)

The functionGet _Choice _Counter() returns the value of the invocation counter (0 at the first call).
The macrdGet _Choice _Buffer(TYPE) returns a pointer to the buffer (casteditéPE).

The functionNo_More _Choice() deletes the choice point associated to the function.

11.1.8 Example: input and output arguments

All examples presented here can be found in En@amplesC sub-directory of the distribution, in the files
examp.pl (Prolog part) anéxamp_c.c (C part).

Let us define a predicaf@st _occurrence(A, C, P) which unifiesP with the position (from 0) of the
first occurrence of the charact@iin the atomA. The predicate must fail i€ does not appear iA.

In the prolog fileexamp.pl
.- foreign(first _occurrence(+string, +char, -positive)).
In the C fileexamp_c.c :

#include <string.h>
#include "gprolog.h"

Bool

11.1 Calling C from Prolog 195

first_occurrence(char *str, long c, long *pos)

{

char *p;

p = strchr(str, c);

if (p == NULL) /* C does not appear in A */
return FALSE; [* fail */

pos = p - str; / set the output argument */

return TRUE; I* succeed */

}

The compilation produces an executable catigdmp:
% gplc examp.pl examp _c.c
Examples of use:

| ?- first_occurrence(prolog, p, X).
X =0

| ?- first_occurrence(prolog, k, X).
no

| ?- first_occurrence(prolog, A, X).
{exception: error(instantiation_errorfirst_occurrence/3)}

| ?- first_occurrence(prolog, 1 ,X).
{exception: error(type_error(character,1),first_occurrence/3)}

11.1.9 Example: non-deterministic code

We here define a predicatecurrence(A, C, P) which unifiesP with the position (from 0) of one oc-
currence of the charact& in the atomA. The predicate will fail ifC does not appear iA. The predicate is
re-executable on backtracking. The information that must be recorded between two invocations of the function is
the next starting position iA to search foC.

In the prolog fileexamp.pl
.- foreign(occurrence(+string, +char, -positive), [choice _size(1)]).
In the C fileexamp_c.c :

#include <string.h>
#include "gprolog.h"

Bool
occurrence(char *str, long c, long *pos)

{

char **info_pos;
char *p;

info_pos = Get_Choice_Buffer(char **); /* recover the buffer */

if (Get_Choice_Counter() == 0) [* first invocation ? */
*info_pos = str;

196 11 INTERFACING PROLOG AND C

p = strchr(*info_pos, c);
if (p == NULL) [* C does not appear */
{
No_More_Choice(); /* remove choice-point */
return FALSE; [* fail */
}
pos = p - str; / set the output argument */
info_pos = p + 1; [update next starting pos */
return TRUE; /* succeed */

}

The compilation produces an executable caigdmp:
% gplc examp.pl examp _c.c

Examples of use:

| ?- occurrence(prolog, o, X).

X=27 (here the user presspdo compute another solution)
X =47 (here the user presspdo compute another solution)
no (no more solution)

| 7

occurrence(prolog, k, X).

no

In the first example when the second (the last) occurrence is fotsd) the choice-point remains and the failure
is detected only when another solution is requested (by pressingt is possible to improve this behavior by
deleting the choice-point when there is no more occurrence. To do this it is necessary to do one search ahead.

The information stored is the position of the next occurrence. Let us define such a behavior for the predicate
occurrence2/3

In the prolog fileexamp.pl
:- foreign(occurrence2(+string, +char, -positive), [choice _size(1)]).
In the C fileexamp_c.c :

#include <string.h>
#include "gprolog.h”

Bool
occurrence2(char *str, long ¢, long *pos)

{
char **info_pos;
char *p;

info_pos = Get_Choice_Buffer(char **); /* recover the buffer */

if (Get_Choice_Counter() == 0) /* first invocation ? */
{
p = strchr(str, c);
if (p == NULL) /* C does not appear at all */
{

No_More_Choice(); /* remove choice-point */

11.1 Calling C from Prolog

197

return FALSE; [* fail */
}
*info_pos = p;
}
/* info_pos = an occurrence */
*pos = *info_pos - str; /* set the output argument */

p = strchr(*info_pos + 1, c);

if (o0 == NULL) /* no more occurrence */
No_More_Choice(); /* remove choice-point */
else
info_pos = p; / else update next solution */
return TRUE; /* succeed */

}

Examples of use:

| ?- occurrence2(prolog, I, X).

X =3 (here the user is not prompted since there is no more alternative)

| ?- occurrence2(prolog, o, X).

X=27? (here the user presspdo compute another solution)

X =4 (here the user is not prompted since there is no more alternative)

11.1.10 Example: input/output arguments

We here define a predicathar _ascii(Char, Code) which converts in both directions the charad@érar

and its character-codgode. This predicate is then similar thar _code/2 (sectior] 7.19}4, page Tl14).

In the prolog fileexamp.pl
.- foreign(char _ascii(?char, ?code), [fct _name('Char _Ascii")]).
In the C fileexamp_c.c :

#include "gprolog.h"

Bool
char_ascii(FIOArg *c, FIOArg *ascii)
{
if (lc->is_var) /* Char is not a variable */
{
ascii->unify = TRUE; /* enforce unif. of Code */
ascii->value.l = c->value.l; /* set Code */
return TRUE; /* succeed */
}
if (ascii->is_var) /* Code is also a variable */
Pl_Err_Instantiation(); /* emit instantiation_error */
c->value.l = ascii->value.l; /* set Char */
return TRUE; I* succeed */

}

198 11 INTERFACING PROLOG AND C

If Char is instantiated it is necessary to enforce the unificatioBade since it could be instantiated. Recall that

by default if an input/output argument is instantiated it will not be unified at the exit of the function (dectiorj 11.1.6,
pagq 19B). If botlChar andCode are variables the function raises iastantiation _error . The way to

raise Prolog errors is described later (sedtion|11.3, page 204).

The compilation produces an executable caligdmp:
% gplc examp.pl examp _c.c
Examples of use:

| ?- char_ascii(a, X).
X = 97

| ?- char_ascii(X, 65).
X ="A

| ?- char_ascii(a, 12).
no

| ?- char_ascii(X, X).
{exception: error(instantiation_error,char_ascii/2)}

| ?- char_ascii(1, 12).
{exception: error(type_error(character,1),char_ascii/2)}

11.2 Manipulating Prolog terms
11.2.1 Introduction

In the following we presents a set of functions to manipulate Prolog terms. For simple foreign terms the functions

manipulate simple C types (section 17]1.2, 191).

Functions managing lists handle an array of 2 elements (ofyperm) containing the terms corresponding to
the head and the tail of the list. For the empty N&iLLis passed as the array. These functions require to flatten a
list in each sub-list. To simplify the management of proper lists (i.e. lists terminatfd g set of functions is
provided that handle the number of elements of the list (an integer) and an array whose element$(dEype

are the elements of the list. The caller of these functions must provide the array.

Functions managing compound terms handle a functor (the principal functor of the term), ax arilyand an

array ofN elements (of typd’ITerm) containing the sub-terms of the compound term. Since a list is a special
case of compound term (functorx and arity=2) it is possible to use any function managing compound terms

to deal with a list but the error detection is not the same. Indeed many functions check if the Prolog argument
is correct. The name of a read or unify function checking the Prolog arguments is of thé&lé&omaCheck() .

For each of these functions there is a also check-free version dddledf) . We then only present the name of
checking functions.

11.2.2 Managing Prolog atoms

Each atom has a unique internal key which corresponds to its index in the GNU Prolog atom table. It is possible
to obtain the information about an atom and to create new atoms using:

11.2 Manipulating Prolog terms 199

char *Atom_Name (int atom)
int Atom_Length (int atom)
Bool Atom_Needs_Quote (int atom)
Bool Atom_Needs Scan (int atom)
Bool Is_Valid_Atom (int atom)
int Create_Atom (char *str)
int Create_Allocate_ Atom(char *str)

int Find_Atom (char *str)
int ATOM_CHAR (char ¢)

int atom_nil

int atom_false

int atom_true

int atom_end_of file

The macroAtom _Name(atom) returns the internal string aitom (this string should not be modified). The
functionAtom _Lengh(atom) returns the length (of the name) atom .

The functionAtom _Needs _Scan(atom) indicates if the canonical form Gftom needs to be quoted as done
bywriteq/2 (sectior] 7.14J6, page P5). In that cégem Needs _Scan(atom) indicates if this simply comes
down to write quotes around the nameatdm or if it necessary to scan each character of the name because there
are some non-printable characters (or included quote characters). The fuactisalid _Atom(atom) is true

only if atom is the internal key of an existing atom.

The functionCreate _Atom(str) adds a new atom whose name is the contestrof to the system and returns
its internal key. If the atom already exists its key is simply returned. The sttingpassed to the function should
not be modified later. The functidbreate _Allocate _Atom(str) s provided when this condition cannot be
ensured. It simply makes a dynamic copystf .

The functionFind _Atom(str) returns the internal key of the atom whose nansris or -1 if does not exist.

All atoms corresponding to a single character already exist and their key can be obtained via theTdd@HAR
For instancBATOMCHAR('.") is the atom associated 16 (this atom is the functor of lists). The other vari-
ables correspond to the internal key of frequently used atfimsfalse , true andend _of _file

11.2.3 Reading Prolog terms

The name of all functions presented here are of the fRdrNameCheck() . They all check the validity of
the Prolog term to read emitting appropriate errors if necessary. Each function has a check-free version called

Rd_.Namd) .

Simple foreign types for each simple foreign type (sectipn 11]1.2, 191) there is a read function (used by the
interface when an input argument is provided):

long Rd_Integer_Check (PITerm term)
long Rd_Positive_Check (PITerm term)
double Rd_Float_Check (PITerm term)
double Rd_Number_Check (PITerm term)

int Rd_Atom_Check (PITerm term)
int Rd_Boolean_Check (PITerm term)
int Rd_Char_Check (PITerm term)
int Rd_In_Char_Check (PITerm term)

int Rd_Code_Check (PITerm term)
int Rd_In_Code_Check (PITerm term)
int Rd_Byte_Check (PITerm term)
int Rd_In_Byte Check (PITerm term)

char *Rd_String_Check (PITerm term)

200 11 INTERFACING PROLOG AND C

char *Rd_Chars_Check (PITerm term)
char *Rd_Codes_Check (PITerm term)
int Rd_Chars_Str_Check(PITerm term, char *str)
int Rd_Codes_Str_Check(PITerm term, char *str)

All functions returning a C stringchar *) use a same buffer. The functi®ud_Chars _Str _Check() is similar
to Rd_Chars _Check() but accepts as argument a string to store the result and returns the length of that string
(which is also the length of the Prolog list). Similarly fed_Codes _Str _Check() .

Complex terms the following functions return the sub-arguments (terms) of complex terms as an array of
PITerm exceptRd_Proper _List _Check() which returns the size of the list read (and initializes the array
element). Refer to the introduction of this section for more information about the arguments of complex func-

tions (sectiof 11.2]1, pafe 198).
int Rd_Proper_List_Check(PITerm term, PITerm *arg)
PITerm *Rd_List Check (PITerm term)

PITerm *Rd_Compound_Check (PITerm term, int *functor, int *arity)
PITerm *Rd_Callable_ Check (PITerm term, int *functor, int *arity)

11.2.4 Unifying Prolog terms

The name of all functions presented here are of the fommNameCheck() . They all check the validity of
the Prolog term to unify emitting appropriate errors if necessary. Each function has a check-free version called
Un_Namgd) .

Simple foreign types for each simple foreign type (sectipn 11]1.2, pagg 191) there is an unify function (used by
the interface when an output argument is provided):

Bool Un_Integer_Check (long n, PITerm term)
Bool Un_Positive_Check(long n, PlTerm term)
Bool Un_Float_Check (double n, PITerm term)
Bool Un_Number_Check (double n, PITerm term)

Bool Un_Atom_Check (int atom, PITerm term)
Bool Un_Boolean_Check (int b, PITerm term)
Bool Un_Char_Check (int c, PlTerm term)
Bool Un_In_Char_Check (int c, PITerm term)

Bool Un_Code_Check (int c, PITerm term)
Bool Un_In_Code_Check (int c, PITerm term)
Bool Un_Byte Check (int b, PITerm term)
Bool Un_In_Byte Check (int b, PITerm term)

Bool Un_String_Check (char *str, PITerm term)
Bool Un_Chars_Check (char *str, PITerm term)
Bool Un_Codes_Check (char *str, PITerm term)

The functionUn_Number_Check(n, term) unifiesterm with an integer ifn is an integer, with a floating
point number otherwise. The functidsn_String _Check(str, term) creates the atom corresponding to
str and then unifies term with it (same da_Atom_Check(Create _Allocate _Atom(str), term)).

Complex terms the following functions accept the sub-arguments (terms) of complex terms as an array of
PITerm . Refer to the introduction of this section for more information about the arguments of complex func-

tions (sectiof 11.2]1, page 198).

Bool Un_Proper_List_Check(int size, PITerm *arg, PlTerm term)

Bool Un_List_Check (PITerm *arg, PITerm term)

Bool Un_Compound_Check (int functor, int arity, PITerm *arg,
PlTerm term)

Bool Un_Callable_Check (int functor, int arity, PITerm *arg,
PITerm term)

11.2 Manipulating Prolog terms 201

All these functions check the type of the term to unify and return the result of the unification. Generally if an
unification fails the C function returiSALSEto enforce a failure. However if there are several arguments to unify

and if an unification fails then the C function retufSLSEand the type of other arguments has not been checked.
Normally all error cases are tested before doing any work to be sure that the predicate fails/succeeds only if no
error condition is satisfied. So a good method is to check if the validity of all arguments to unify and later to do the
unification (using check-free functions). Obviously if there is only one to unify it is more efficient to use a unify
function checking the argument. For the other cases the interface provides a set of functions to check the type of a
term.

Simple foreign types for each simple foreign type (sectipn 11]1.2, 191) there is check-for-unification func-
tion (used by the interface when an output argument is provided):

void Check For_Un_Integer (PlTerm term)
void Check _For_Un_Positive(PITerm term)
void Check For_Un_Float (PITerm term)
void Check For_Un_Number (PITerm term)
void Check_For_Un_Atom (PITerm term)
void Check For_Un_Boolean (PITerm term)
void Check For_Un_Char (PITerm term)
void Check For_Un_In_Char (PITerm term)
void Check For_Un_Code (PITerm term)
void Check For _Un_In_Code (PITerm term)
void Check_For_Un_Byte (PITerm term)
void Check For_Un_In_Byte (PITerm term)
void Check For_Un_String (PITerm term)
void Check For_Un_Chars (PITerm term)
void Check For_Un_Codes (PITerm term)

Complex terms the following functions check the validity of complex terms:

void Check For_Un_List (PITerm term)
void Check For_Un_Compound(PITerm term)
void Check For_Un_Callable(PITerm term)
void Check For_Un_Variable(PITerm term)

The functionCheck _For _Un_List(term) checks ifterm can be unified with a list. This test is done for

the entire list (not only for the functor/arity dérm but also recursively on the tail of the list). The function
Check _For _Un_Variable(term) ensures thaterm is not currently instantiated. These functions can be
defined using functions to test the type of a Prolog term (seffion 11.2.6[page 202) and functions to raise Prolog
errors (sectiof 11]3, pafje 204). For instaBbeck _For _Un_List(term) s defined as follows:

void Check_For_Un_List(PITerm term)

if (!Blt_List_Or_Partial_List(term))
Pl_Err_Type(type_list, term);

11.2.5 Creating Prolog terms

These functions are provided to creates Prolog terms. Each function ret®figran containing the created
term.

Simple foreign types for each simple foreign type (sectipn 11]1.2, pagq 191) there is a creation function:

PITerm Mk_Integer (long n)
PITerm Mk_Positive(long n)
PITerm Mk Float (double n)

202 11 INTERFACING PROLOG AND C

PITerm Mk_Number (double n)
PITerm Mk_Atom (int atom)
PITerm Mk Boolean (int b)
PITerm Mk_Char (int ¢)
PITerm Mk_In_Char (int c)
PITerm Mk_Code (int c)
PITerm Mk _In_Code (int c)
PITerm Mk _Byte (int b)
PITerm Mk_In_Byte (int b)
PITerm Mk_String (char *str)
PITerm Mk _Chars (char *str)
PITerm Mk_Codes (char *str)

The functionMk Number(n, term) initializesterm with an integer ifn is an integer, with a floating point
number otherwise. The functidvik String(str) first creates an atom correspondingsto and then returns
that Prolog atom (i.e. equivalent bk Atom(Create _Allocate _Atom(str))).

Complex terms the following functions accept the sub-arguments (terms) of complex terms as an array of
PITerm . Refer to the introduction of this section for more information about the arguments of complex func-

tions (sectiof I1.2]1, pafe 198).

PITerm Mk_Proper_List(int size, PITerm *arg)

PITerm Mk _List (PITerm *arg)

PITerm Mk_Compound (int functor, int arity, PITerm *arg)
PITerm Mk_Callable (int functor, int arity, PITerm *arg)

11.2.6 Testing the type of Prolog terms

The following functions test the type of a Prolog term. Each function corresponds to a type testing built-in predicate

(sectiof] 7.1.11, pade 49).

Bool BIt Var (PITerm term)
Bool BIlt_Non_Var (PITerm term)
Bool BIlt_Atom (PITerm term)
Bool BIt_Integer (PITerm term)
Bool BIt Float (PITerm term)
Bool Blt_Number (PITerm term)
Bool BIlt_Atomic (PITerm term)
Bool Blt_Compound (PITerm term)
Bool BIt_Callable (PITerm term)
Bool BIt_List (PITerm term)
Bool BIt_Partial_List (PITerm term)
Bool Blt_List_Or_Partial_List(PITerm term)

Bool BIlt_Fd_Var (PITerm term)
Bool BIt Non_Fd_Var (PITerm term)
Bool BIt_Generic_Var (PITerm term)
Bool BIt_Non_Generic_Var (PITerm term)
int Type_Of Term (PITerm term)
int List_Length (PITerm list)

The functionType _Of _Term(term) returns the type oferm , the following constants can be used to test this
type (e.g. in asswitch instruction):

e PLV: Prolog variable.
e FDV finite domain variable.

e INT: integer.

11.2 Manipulating Prolog terms 203

e FLT: floating point number.
e ATM atom.

e LST: list.

e STC structure

The tagLST means a term whose principal functor.is and whose arity is 2 (recall that the empty list is the
atom[]). The tagSTCmeans any other compound term.

The functionList _Length(list) returns the number of elements of it (0 for the empty list). If list is
not a list this function returnsl .

11.2.7 Comparing Prolog terms

The following functions compares Prolog terms. Each function corresponds to a comparison built-in predicate
(sectior 7.3.2, pade p1).

Bool Blt_Term_Eqg (PITerm terml, PITerm term?2)
Bool BIlt_Term_Neq(PITerm terml, PITerm term2)
Bool BIt Term_Lt (PITerm terml, PlTerm term2)
Bool Blt Term_Lte(PITerm terml, PlTerm term2)
Bool Blt_Term_Gt (PITerm terml, PlTerm term2)
Bool BIlt_Term_Gte(PITerm terml, PITerm term?2)

All these functions are based on a general comparison function returning a negative intexget ifis less than
term2 , O if they are equal and a positive integer otherwise:

int Term_Compare(PITerm terml, PITerm term2)

11.2.8 Copying Prolog terms

The following functions make a copy of a Prolog term:

void Copy_Term (PITerm *dst_adr, PITerm *src_adr)
void Copy_Contiguous_Term(PITerm *dst_adr, PITerm *src_adr)
int Term_Size (PITerm term)

The functionCopy_Term(dst _adr, src _adr) makes a copy of the term locatedsat _adr and stores it
from the address given yst _adr . The result is a contiguous term. If it can be ensured that the source term is
a contiguous term (i.e. result of a previous copy) the funaopy_Contiguous _Term() can be used instead

(it is faster). In any case, sufficient space should be available for the copy (i.e.dBbnadr). The function
Term _Size(term) returns the number &#ITerm needed byerm .

11.2.9 Comparing and evaluating arithmetic expressions

The following functions compare arithmetic expressions. Each function corresponds to a comparison built-in
predicate (sectign 7.§.3, pggd 60).

Bool Blt_Eq (PITerm exprl, PITerm expr2)
Bool BIt_Neq(PITerm exprl, PlTerm expr2)
Bool BIlt_Lt (PITerm exprl, PlTerm expr2)
Bool Blt_Lte(PITerm exprl, PITerm expr2)
Bool Blt_Gt (PITerm exprl, PITerm expr2)
Bool BIlt_Gte(PITerm exprl, PlTerm expr2)

204 11 INTERFACING PROLOG AND C

The following function evaluates the expressexpr and stores its result as a Prolog number (integer or floating
point number) irresult

void Math_Load_Value(PITerm expr, PlITerm *result)

This function can be followed by a read function (secfion 11.2.3, pade 199) to obtain the resullt.

11.3 Raising Prolog errors

The following functions allows a C function to raise a Prolog error. Refer to the section concerning Prolog errors
for more information about the effect of raising an error (sedtioh 5.3, [pdge 37).

11.3.1 Managing the error context

When one of the following error function is invoked it refers to the implicit error context (s€ctiorj 5.3.1], page 37).
This context indicates the name and the arity of the concerned predicate. When figig@/2 declaration

this context is set by default to the name and arity of the associated Prolog predicate. This can be controlled using
thebip _name option (sectiof 11.1]2, page 191). In any case, the following functions can also be used to modify
this context:

void Set_C_Bip_Name (char *functor, int arity)
void Unset_C_Bip_Name(void)

The functionSet _C Bip _Name(functor, arity) initializes the context of the error witfunctor and

arity (if arity <O onlyfunctor is significant). The functiotnset _C Bip _Name() removes such an ini-
tialization (the context is then reset to the lBahctor /Arity setby a calltset _bip _name/2 (sectior) 7.22]3,

pagd I3}). This is useful when writing a C routine to define a context for errors occurring in this routine and, before
exiting to restore the previous context.

11.3.2 Instantiation error

The following function raises an instantiation error (secfion 5.3.2, pajge 37):

void Pl _Err _Instantiation(void)

11.3.3 Type error

The following function raises a type error (sectjon 5.3.3, page 38):
void Pl _Err _Type(int atom _type, PITerm culprit)

atom _type is (the internal key of) the atom associated to the expected type. For each typd rthere is a
corresponding predefined atom stored in a global variable whose name is of thiyfermT . culprit is the
argument which caused the error.

Example: x is an atom while an integer was expect®li_Err _Type(type _integer, X)

11.3.4 Domain error

The following function raises a domain error (secfion §.3.4, page 38):

11.3 Raising Prolog errors 205

void Pl _Err _Domain(int atom _domain, PITerm culprit)

atom _domain is (the internal key of) the atom associated to the expected domain. For each domalib theamee
is a corresponding predefined atom stored in a global variable whose name is of ttaéofoaim _D. culprit
is the argument which caused the error.

Example: x is < 0 but should be> 0: Pl _Err _Domain(domain _not _less _than _zero, X)

11.3.5 Existence error

The following function raises an existence error (sedtion 5.3.5, [pgdge 39):
void Pl _Err _Existence(int atom _object, PITerm culprit)

atom _object is (the internal key of) the atom associated to the type of the object. For each objectOname
there is a corresponding predefined atom stored in a global variable whose name is of tezisbemce _O.
culprit is the argument which caused the error.

Example: x does not refer to an existing sourdd: _Err _Existence(existence _source _sink, Xx)

11.3.6 Permission error

The following function raises a permission error (secfion $.3.6, page 39):
void Pl _Err _Permission(int atom _operation, int atom _permission, PITerm culprit)

atom _operation is (the internal key of) the atom associated to the operation which caused the error. For
each operation nam® there is a corresponding predefined atom stored in a global variable whose name is of
the formpermission _operation _O. atom _permission s (the internal key of) the atom associated to the
tried permission. For each permission naere is a corresponding predefined atom stored in a global variable
whose name is of the forpermission _type _P.culprit is the argument which caused the error.

Example: reading from an output streaxn Pl _Err _Permission(permission _operation _input,
permission _type _stream, X)

11.3.7 Representation error

The following function raises a representation error (se¢tion|5.3.7 [page 39):

void Pl _Err _Representation(int atom _limit)
atom _limit is (the internal key of) the atom associated to the reached limit. For each limit hahsze is a
corresponding predefined atom stored in a global variable whose name is of thefoasentation L.
Example: an arity too big occursPl _Err _Representation(representation _max.arity)

11.3.8 Evaluation error

The following function raises an evaluation error (secfion %.3.8, page 40):
void Pl _Err _Evaluation(int atom _error)

atom _error is (the internal key of) the atom associated to the error. For each evaluation erroErthare is a
corresponding predefined atom stored in a global variable whose name is of theviatration _E.

Example: a division by zero occurd?l _Err _Evaluation(evluation _zero _divisor)

206 11 INTERFACING PROLOG AND C

11.3.9 Resource error

The following function raises a resource error (sedtion $.3.9, pdge 40):
void Pl _Err _Resource(int atom _resource)

atom _resource is (the internal key of) the atom associated to the resource. For each resource errd® name
there is a corresponding predefined atom stored in a global variable whose name is of trestarmoe _R.

Example: too many open streamBl _Err _Resource(resource _too _many_open _streams)

11.3.10 Syntax error

The following function raises a syntax error (secfion 5.3.10, pape 40):
void Pl _Err _Syntax(int atom _error)

atom _error is (the internal key of) the atom associated to the error. There is no predefined syntax error atoms.
Example: a/ is expectedPl _Err _Syntax(Create _Atom("/ expected"))

The following function emits a syntax error according to the value ofsyrtax _error Prolog flag (sec-
tion[7.22.], page 132). This function can then return (if the value of the flag is eiiraing orfail). In that

case the calling function should fail (e.g. returnis§LSE). This function accepts a file name (the empty string C

" can be passed), a line and column number and an error message string. Using this function makes it possible
to further call the built-in predicateyntax _error _info/4 (sectior] 7.14]4, page P4):

void Emit _Syntax _Error(char *file _name, int line, int column, char *message)

Example: a/ is expectedEmit _Syntax _Error("data”, 10, 30, "/ expected")

11.3.11 System error

The following function raises a system error (4.3.11, page *):

void Pl _Err _System(int atom _error)
atom _error is (the internal key of) the atom associated to the error. There is no predefined system error atoms.
Example: an invalid pathname is give®?l _Err _System(Create _Atom("invalid path name"))
The following function emits a system error associated to an operating system error according to the value of the
os _error Prolog flag (sectiop 7.22.1, palge 132). This function can then return (if the value of the flag is either

warning or fail). In that case the calling function should fail (e.g. returniig_SE). This function uses the
value of theerrno C library variable:

void Os _Error(void)

Example: a call to the C Unix functiorthdir(3) returns-1 : Os_Error()

11.4 Calling Prolog from C
11.4.1 Introduction

The following functions allows a C function to call a Prolog predicate:

11.4 Calling Prolog from C 207

void PI_Query_Begin (Bool recoverable)

int Pl_Query_Call (int functor, int arity, PlTerm *arg)
int PI_Query_Next_Solution(void)

void Pl_Query End (int op)

PITerm Pl_Get_Exception (void)

void PI_Exec_Continuation (int functor, int arity, PITerm *arg)
The invocation of a Prolog predicate should be done as follows:
e open a query usinBl _Query _Begin()
e compute the first solution usirig _Query _Call()
¢ eventually compute next solutions usiRf_Query _Next _Solution()
e close the query usinBl _Query _End()

The functionP! _Query _Begin(recoverable) is used to initialize a query. The argumeatoverable

shall be set tafRUEIf the user wants to recover, at the end of the query, the memory space consumed by the
query (in that case an additional choice-point is created). All terms created in the heap, e.§llusing family
functions (sectiop 11.2.5, page 201), after the invocatid®laRQuery _Begin() can be recovered when calling

Pl _Query End(TRUE) (see below).

The functionPl _Query _Call(functor, arity, arg) calls a predicate passing arguments. It is then used
to compute the first solution. The argumefuactor , arity andarg are similar to those of the functions
handling complex terms (sectipn I1]2.1, page 198). This function returns:

e PL_FAILURE (a constant equal tBALSE, i.e. 0) if the query fails.

e PL_SUCCESS%a constant equal tbRUE i.e. 1) in case of success. In that case the argumentargaygan
be used to obtain the unification performed by the query.

e PL_LEXCEPTION(a constant equal to 2). In that case functPIinGet _Exception() can be used to
obtained the exceptional term raisedthyow/1 (sectior] 6.2.4, pade }47).

The functionPl _Query _Next _Solution() is used to compute a new solution. It must be only used if the result
of the previous solution weBL_SUCCESST his functions returns the same kind of value®hQuery _Call()
(see above).

The functionPl _Query _End(op) is used to finish a query. This function mainly manages the remaining alter-
natives of the query. However, even if the query has no alternatives this function must be used to correctly finish
the query. The value alp is:

e PL_RECOVERo0 recover the memory space consumed by the query. After that the state of Prolog stacks
is exactly the same as before opening the query. To use this option the query must have been initialized
specifyingTRUEfor recoverable (see above).

e PL_CUT to cut remaining alternatives. The effect of this option is similar to a cut after the query.

e PLKEEPFORPROLOG0 keep the alternatives for Prolog. This is useful when the query was invoked in
a foreign C function. In that case, when the predicate corresponding to the C foreign function is invoked a
query is executed and the remaining alternatives are then available as alternatives of that predicate.

Note that several queries can be nested since a stack of queries is maintained. For instance, it is possible to call
a query and before terminating it to call another query. In that case the first execuRbn@dery _End() will
finish the second query (i.e. the inner) and the next executiéh duery _End() will finish the first query.

Finally, the functionPl _Exec _Continuation(functor, arity, arg) replaces the current calculus by
the execution of the specified predicate. The argumiemtstor , arity andarg are similar to those of the

functions handling complex terms (sectjon 111.2.1, 198).

208 11 INTERFACING PROLOG AND C

11.4.2 Examplexmycall/l -acal/l clone

We here define a predicatey_call(Goal) which acts likecall(Goal) except that we do not handle excep-
tions (if an exception occurs the goal simply fails):

In the prolog fileexamp.pl
:- foreign(my _call(term)).
In the C fileexamp_c.c :

#include <string.h>
#include "gprolog.h”

Bool
my_call(PITerm goal)

{

PITerm *arg;
int functor, arity;
int result;

arg = Rd_Callable_Check(goal, &functor, &arity);
Pl_Query_Begin(FALSE);
result = PI_Query_Call(functor, arity, arg);
PI_Query_End(PL_KEEP_FOR_PROLOG);
return (result == PL_SUCCESS);

}

The compilation produces an executable caligdmp:
% gplc examp.pl examp _c.c
Examples of use:

| ?- my _call(write(hello)).
hello

| ?- my _call(for(X,1,3)).

X=17? (here the user presspdo compute another solution)

X =27 (here the user presspdo compute another solution)

X =3 (here the user is not prompted since there is no more alternative)
| ?- my _call(1).

{exception: error(type _error(callable,1),my _call/1)}

| ?- my _call(call(1)).

no

Whenmy_call(1) is called an error is raised due to the usdRofCallable _Check() . However the error
raised bymy_call(call(1)) is ignored and~ALSE (i.e. a failure) is returned by the foreign function.

To really simulate the behavior cfll/1 when an exception is recovered it should be re-raised to be captured
by an earlier handler. The idea is then to executlerew/1 as the continuation. This is what it is done by the
following code:

11.4 Calling Prolog from C 209

#include <string.h>
#include “gprolog.h”

Bool
my_call(PITerm goal)

{
PITerm *args;
int functor, arity;
int result;

args = Rd_Callable_Check(goal, &functor, &arity);
PI_Query_Begin(FALSE);

result = PI_Query_Call(functor, arity, args);
Pl_Query End(PL_KEEP_FOR_PROLOG);

if (result == PL_EXCEPTION)

{
PITerm except = Pl_Get_Exception();

Pl_Exec_Continuation(Find_Atom("throw"), 1, &except);
}

return result;

}

The following code propagates the error raisecthly/1

| ?- my _call(call(1)).
{exception: error(type _error(callable,1),my _call/1)}

Finally note that a simpler way to defimey_call/1l s to usePl _Exec _Continuation() as follows:

#include <string.h>
#include "gprolog.h"

Bool
my_call(PITerm goal)

{
PITerm *args;
int functor, arity;

args = Rd_Callable_Check(goal, &functor, &arity);
Pl_Exec_Continuation(functor, arity, args);
return TRUE;

11.4.3 Example: recovering the list of all operators

We here define a predicadél _op(List) which unifiesList with the list of all currently defined operators as
would be done byfindall(X,current _op(-, ., X),List)

In the prolog fileexamp.pl
:- foreign(all _op(term)).
In the C fileexamp_c.c :

#include <string.h>
#include "gprolog.h"

210 11 INTERFACING PROLOG AND C

Bool
all_op(PITerm list)
{
PlTerm op[1024];
PITerm args[3];
int n = 0;
int result;

PI_Query_Begin(TRUE);

args[0] = Mk_Variable();
args[1l] = Mk_Variable();
args[2] = Mk_Variable();

result = PI_Query_Call(Find_Atom("current_op"), 3, args);
while (result)

{
op[n++] = MK_Atom(Rd_Atom(args[2])); /* arg #2 is the name of the op */
result = PI_Query_ Next_Solution();

}
PI_Query_End(PL_RECOVERY);

return Un_Proper_List_Check(n, op, list);
}

Note that we know here that there is no source for exception. In that case the reBuliQxfery Call and
Pl _Query Next _Solution can be considered as a boolean.

The compilation produces an executable catigdmp:
% gplc examp.pl examp _c.c
Example of use:

| ?- all_op(L).
L = [:-7:-1\:1:::1#>:1#<#1@>:1-->1m0d1#>:#1**1*1+1+1,1’1'"]

| ?- findall(X,current_op(_,_,X),L).

L = [-:-\=, === #<#, @>=,-->,mod #>=#** * + +,"",...]

11.5 Defining a new Gmain() function

GNU Prolog allows the user to define his omsain() function. This can be useful to perform several tasks before
starting the Prolog engine. To do this simply define a classi@h(argc, argv) function. The following
functions can then be used:

int Start_Prolog (int argc, char *argv(])
void Stop_Prolog (void)
void Reset_Prolog (void)

Bool Try Execute_Top_Level(void)

The functionStart _Prolog(argc, argv) initializes the Prolog enginefgc andargv are the command-

line variables). This function collects all linked objects (issued from the compilation of Prolog files) and initializes
them. The initialization of a Prolog object file consists in adding to appropriate tables new atoms, new predicates
and executing its system directives. A system directive is generated by the Prolog to WAM compiler to reflect
a (user) directive executed at compile-time suclopi (sectior] 6.1.70, pade 44). Indeed, when the compiler
encounters such a directive it immediately executes it and also generates a system directive to execute it at the

11.5 Defining a new @ain() function 211

start of the executable. When all system directives have been executed the Prolog engine executes all initialization

directives defined witmitialization/1 (sectior] 6.1.7]3, page B5). The function returns the number of user
directives (i.einitialization/1) executed. This function must be called only once.

The functionStop _Prolog() stops the Prolog engine. This function must be called only once after all Prolog
treatment have been done.

The functionReset _Prolog() reinitializes the Prolog engine (i.e. reset all Prolog stacks).

The functionTry _Execute _Top_Level() executes the top-level if linked (section 3]4.3, 22) and returns
TRUE If the top-level is not present the functions retuf#d_SE

Here is the definition of the default GNU Prolagain() function:
int
Main_Wrapper(int argc, char *argv[])
{

int nb_user_directive;
Bool top_level,

nb_user_directive = Start_Prolog(argc, argv);
top_level = Try Execute_Top_Level();
Stop_Prolog();

if (top_level || nb_user_directive)
return O;

fprintf(stderr,
"Warning: no initial goal executed\n”
" use a directive :- initialization(Goal)\n"
or remove the link option --no-top-level
(or --min-bips or --min-size)\n");

return 1;
}
int
main(int argc, char *argv[])
{
return Main_Wrapper(argc, argv);
}

Note that under some circumstances it is necessary to encapsulate the codi@(®f inside an intermediate
function called bymain() . Indeed, some C compilers (e.g. gcc) treeumin() particularly, producing an
uncompatible code w.r.t GNU Prolog. So it is a good idea to always use a wrapper function as shown above.

11.5.1 Example: asking for ancestors

In this example we use the following Prolog code (in a file catled_main.pl):

parent(bob, mary).
parent(jane, mary).
parent(mary, peter).
parent(paul, peter).

212 11 INTERFACING PROLOG AND C

parent(peter, john).

anc(X, Y):-
parent(X, Y).

anc(X, 2) :-
parent(X, Y),
anc(Y, 2).

The following file (callechew_main _c.c) defines anain() function readinfthe name of a person and displaying
all successors of that person. This is equivalent to the Prolog gaecyResult, Name)

static int
Main_Wrapper(int argc, char *argv[])
{

int func;

WamWord arg[10];

char str[100];

char *sol[100];

int i, nb_sol = 0;

Bool res;

Start_Prolog(argc, argv);

func = Find_Atom("anc");
for (;;)
{
printf("\nEnter a name (or ’end’ to finish): ");
scanf("%s", str);

if (strcmp(str, "end") == 0)
break;

PI_Query_Begin(TRUE);

arg[0] Mk_Variable();

arg[1] Mk_String(str);

nb_sol = 0;

res = PI_Query_Call(func, 2, arg);
while (res)

sol[nb_sol++] = Rd_String(arg[0]);
res = Pl_Query_Next_Solution();

}
PI_Query End(PL_RECOVER);

for (i = 0; i < nb_sol; i++)
printf(" solution: %s\n", sol[i]);
printf("%d solution(s)\n", nb_sol);

}
Stop_Prolog();
return O;

}
int

main(int argc, char *argv[])

{

11.5 Defining a new @ain() function 213

return Main_Wrapper(argc, argv);

}

The compilation produces an executable calied_main :
% gplc new _main.pl new _main _c.c
Examples of use:

Enter a name (or 'end’ to finish): john
solution:; peter
solution: bob
solution: jane
solution: mary
solution: paul
5 solution(s)

Enter a name (or 'end’ to finish): mary
solution: bob
solution: jane

2 solution(s)

Enter a name (or 'end’ to finish): end

214 11 INTERFACING PROLOG AND C

REFERENCES 215

References

[1] H. Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction
Logic Programming Series, MIT Press, 1991.
http://lwww.isg.sfu.ca/"hak/documents/wam.html

[2] W.F. Clocksin and C.S. Mellish. Programming in Prolog, Springer-Verlag, 1981.

[3] P. Codognet and D. Diazvamcc: Compiling Prolog to C.
In 12th International Conference on Logic Programmifigkyo, Japan, MIT Press, 1995.
ftp://ftp.inria.fr/INRIA/Projects/loco/publications/wamcc/wamcc.ps

[4] P. Codognet and D. Diaz. Compiling Constraincip(FD)
Journal of Logic Programmingvol. 27, No. 3, June 1996.
ftp://ftp.inria.fr/INRIA/Projects/loco/publications/clp fd/long _clp _fd.ps

[5] Information technology - Programming languages - Prolog - Part 1: General Core.
ISO/IEC 13211-1, 1995http://www.logic-programming.org/prolog _std.html

[6] J.Jaffar and J-L. Lassez. Constraint Logic Programming.
In Principles Of Programming Languagdglunich, Germany, January 1987.

[7] P. Van HentenryckConstraint Satisfaction in Logic Programming
Logic Programming Series, The MIT Press, 1989.

[8] D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, Oct. 1983.

[9] C. Holzbaur. Metastructures vs. Attributed Variables in the Context of Extensible Unifica-
tion Programming Language Implementation and Logic Programming, Springer, pp.260-268,1992.
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+92-23

[10] J. Jaffar, S. MichaylovMethodology and Implementation of CLP Sytdrmassez J.L. (ed.), Logic Program-
ming - Proceedings of the 4th International Conference - Volume 1, MIT Press , Cambridge, 1987.

[11] C. Holzbaur. OFAI clp(g,r) Manua) Edition 1.3.3, Austrian Reserch Institute for Artificial Intelligence,
Vienna, 1995 http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09

216 REFERENCES

INDEX 217
Index

110 , 46,[47 --encode , 27
2,135 --entry-goal , 13
()2 , 46 -fast-math , 23,59
(-->)2 108 —fd-to-c 23

(->)2 46 ~-fixed-sizes 19,24
(/2 46 --foreign-only , 23
(=2 ,50 --global-size .24
(=.)2 .53 —help ,13 23 27
(==)/2 ,60 --init-goal , 13

(==)2 ,51[121 --keep-void-inst ,23
(==<)/12 ,60 --local-size ,[19,24
(=\=)2 ,60 --min-bips ,24
(@=<)/12 ,51 --min-fd-bips ~ ,24
(@<)/2 ,51 --min-pl-bips , 24
(@>)/2 ,51 --min-reg-opt , 23
(@>=)2 ,51 --min-size 24

(#\)/2 (FD),174
#=)/2 (FD),171
#==>)/2 (FD),174
#=#)/2 (FD),172
#=<)/2 (FD),171
(#=<#)l2 (FD),172
#HI2 (FD),174
#<)/2 (FD),171
(#<=>)/2 (FD),174
(#<#)/2 (FD),172
#>)2 (FD),171
#>=)2 (FD),171
#>=#)/2 (FD),172
#>#)/2 (FD),172
(#)/1 (FD),174
(#W)/2 (FD),174
(#W)/2 (FD), 174
(#\=)/2 (FD),171
(#\==>)/2 (FD),174
(#\=#)/2 (FD),172
(#\<=>)/2 (FD),174
(#\W)/2 (FD), 174
(is)yy2 ,59

()2 ,60

>)2 ,60

(>=)2 ,60

(\+)/1 111

(\=)/2 ,50

(\==)2 ,51

- ,13

--assembly , 23
--aux-father , 27
--aux-father2 , 27
--c-compiler , 23
--cmd-line 27
--comment ,[23,23
--compile-msg , 23
--cstr-size , 24

--mini-assembly ,23
--no-call-c , 23
--no-debugger ,[24,24
--no-decode-hexa ,23
--no-del-temp , 23

--no-fd-lib , 24
--no-inline , 23
--no-opt-last-subterm
--no-redef-error , 23
--no-reg-opt , 23
--no-reorder , 23
--no-singl-warn , 23
--no-susp-warn , 23
--no-top-level , 24
--object ,23

--output , 23
--pl-state ,23,[133
--printf , 27
--query-goal , 13
--relax 27

--statistics , 23
-strip ,24

--temp-dir , 23
--trail-size , 24

--verbose , 23
--version , 13,23 27
--wam-for-byte-code
--wam-for-native ,23
-A, 23

-C,23

-F,23

-H, 27

-L,24

-M, 23

-P, 27

-S,23

-W, 23

-c,23

, 23

, 23

218 INDEX
-h, 23 built _in (property)[4B65
-0, 23 built _in/0 (directive),43
-s,24 built _in/1 (directive),43
-v,23 built _in fd (property)[4865
-w, 23 built _in fd/0 (directive),43
{H1,187 built _in fd/1 (directive),43
abolish/1 , 63 cal/r ,47
abort/0 ,[14,/[33,111 call’2 111
absolute _file _name (property),146 call _with _args/1-11 ,111
absolute _file _name/2,[44,[70[13F, 136140 callable/l ,49
[T41 1431488 catch/3 ,[29,37.47
add _linedit _completion/1 161 change _directory/1 , 143
add _stream _alias/2 ,[64,78 char _code/2 , 114197
add _stream _mirror/2 ,[68,79 char _conversion (flag),[93]10R133[135

alias (option),70

alias (property),73
append (mode),70
append/1 , 106

append/3 , 120
architecture/1 , 150
arg/3 ,53

argument selecto,25
argument _counter/l1 141
argument _list/1 ,[I4,142
argument _value/2 ,[14,142
asserta/l 61

assertz/1 ,61

at _end _of _stream/0 ,74
at _end _of _stream/1 ,74
atom/1 , 49

atom _chars/2 , 115

atom _codes/2 , 115

atom _concat/3 ,113

atom _hash/2 , 118

atom _length/2 , 113

atom _property/2 ,119
atomic/l , 49

attribute/1 (directive),182
attributed/1 , 183

back _quotes (flag),[14[91133[13§
back _quotes (token),93
backtracks (FD option),179
bagof/3 , 66

binary (option), 70,80

bind _variables/2 , 56

bip _-name (option),191,[204
block (option),70,[87

block _device (permission)146
bof (whence),75

boolean (option),191,[192
bounded (flag),132

bounds (FD option),179
break/0 ,[17,[33,111

buffering (option), 70
buffering (property),73

char _conversion/2 (directive),45
char _conversion/2 ,[45,101
character _count/2 ,76

character _device (permission)146
choice _size (option),191,[194
clause/2 ,62

close/l ,71

close/2 ,71,[I53[157

close _input _atom _stream/1 ,83
close _input _chars _stream/l1 ,83
close _input _codes _stream/1 ,83
close _output _atom _stream/2 ,84
close _output _chars _stream/2 ,84
close _output _codes _stream/2 ,84
clpr _get _store/2 ,188

compare/3 , 52

completion,18,[163[162

compound/1 , 49

consult/1 ,[18,[17[20 2135
copy _term/2 ,54

cpu _time/l , 138

create _pipe/2 ,153

current (whence),75

current _alias/l2 ,78
current _atom/1 ,119

current _bip _name/2 ,[37,134
current _char _conversion/2 102
current _input/l , 68
current _mirror/2 , 80
current _op/3 , 101

current _output/l ,68
current _predicate/1 ,[62,64
current _prolog _flag/2 , 133
current _stream/1 ,72

date _time/1 ,148

debug (flag),133

debug/0 (debug)[IF31
debugging/0 (debug)31,[33
decompose file _name/4,140
Definite clause grammarseeDCG
delete/3 ,121

INDEX

delete _directory/1 , 143
delete _file/1 145

directory (permission),146
directory files/2 ,144
discontiguous/1 (directive),42
display/1 ,95

display/2 , 95,[104[10b

display _to _atom/2 ,104
display _to chars/2 ,105
display _to _codes/2 ,105
double _quotes (flag),[91,133[135
dynamic (property),64
dynamic/1 (directive),41,[6Q

end _of _stream (property),73
end _of _term (option),91

ensure _linked/1 (directive),43
ensure _loaded/1 (directive),44
environ/2 ,143

eof (whence),75

eof _action (option),70

eof _action (property),73

eof _code (option),70,[81

error (option),70,[87,91
escape sequenge | [4, 1263
exclude (option),56

exec/4 , 152

exec/5 , 152

execute (permission)146
expand _term/2 ,110

extended (token),93
extra-constrainedseeextra _cstr
extra _cstr (FD), 165[17Q

fail (option),91

faill0 46
fct _name (option),191
fd _all _different/1 (FD), 175

fd _at least _one/l (FD),175
fd _at _most .one/1 (FD), 175

fd _atleast/3 (FD), 177

fd _atmost/3 (FD), 177

fd _cardinality/2 (FD), 175[177
fd _cardinality/3 (FD), 175

fd .dom/2 (FD), 169

fd .domain/2 (FD), 168

fd _domain/3 (FD), 167

fd _.domain _bool/l (FD), 167

fd _element/3 (FD),176

fd _element _var/3 (FD),176

fd _exactly/3 (FD), 177

fd _has _extra _cstr/1 (FD), 170
fd _has _vector/1 (FD), 170

fd _labeling/1 (FD), 178

fd _labeling/2 (FD), 178180
fd _labelingff/1 (FD),178

fd _-max/2 (FD), 169

fd _maxinteger (FD), 165[166
fd _max.integer/1 (FD), 166
fd _maximize/2 (FD),179
fd _-min/2 (FD), 169

fd _minimize/2 (FD),179
fd _not _prime/1 (FD),172
fd _only _one/l1 (FD), 175
fd prime/l (FD),172

fd _relation/2 (FD), 177
fd _relationc/2 (FD), 177
fd _set _vector _max/1 (FD),[165,167
fd _size/2 (FD), 169

fd _use _vector/1 (FD), 170

fd .var/l1 (FD), 168

fd vector _max/1 (FD),[165,166
fifo (permission)146

file _exists/1 145

file _name (property),73

file _permission/2 145

file _property/2 146

find _linedit _completion/2 | 162
findall/3 , 65

first _fail (FD option),179
flag, seeProlog flag

float/1 49

flush _output/0 ,72

flush _output/l ,[6§,72

for/3 ,112

force (option),71

foreign/1 (directive),45, 191
foreign/2 (directive),45, 191
fork _prolog/l 153

format/2 ,97

format/3 , 97,[104[105%

format _to _atom/3 , 104

format _to _chars/3 , 105
format _to _codes/3 , 105
freeze/2 ,181

from (option),56

frozen/2 181

full (debug)31

functor/3 ,52

g.array (global var.),126
g.array _auto (globalvar.),126
g.array _extend (global var.),126
g._array _size/2 ,127
g.assign/2 ,126

g.assignb/2 , 126

g_dec/1 ,128

g_dec/2 ,128

g_dec/3 ,128

g_deco/2 ,128

g.nc/l ,128

g.inc/2 ,128

g.inc/3 ,128

g.inco/2 ,128

220

INDEX

g.link/2 ,126

g-read/2 ,127

g_reset _hit/2 ,128
g._set _bit/’2 ,128

g_test _reset _bit/2 ,128
g_test _set bit/2 ,128
generic _var/l (FD), 168
generic _var/l ,183
get/l ,107

get0/1 , 107

get _atts/2 ,182

get _byte/1 ,88

get _byte/2 ,[67,88

get char/l ,84

get char/2 ,84

get _code/l ,84

get _code/2 , 84,85

get _key/l ,85

get key/2 ,85

get key no_echo/l ,85
get key _no_echo/2 ,85
get _linedit _prompt/1 , 161
get _print _stream/1 , 99
get _seed/1 , 139

gplc , 22,[25{27[13p

half (debug)31

halt/o ,[13,[17.111

halt/1 111

hash (property),119
hexgplc , 27

host _name/1, 149
hostname _address/2 , 160

ignore _ops (option),95

include/1 (directive),44

inf2 ,188

infix _op (property),119

initialization/1 (directive)[2545,[217
input (property),73
integer/1 ,49

integer _rounding _function
interpreterseetop-level

jump (option),191,[193

keysort/1 ,124
keysort/2 ,124

(flag),[59,132

largest (FD option),179

last/2 ,123

last _modification (property),147
last _read _start _line _column/2 ,94
leash/1 (debug),31,[33

length (property),119

length/2 123

line (option),70,[8]

line _count/2 ,76,[71

line _position/2 ,76

linedit ,18,[83,[161[16R

list/1 49

list _or _partial list/1 ,49
listing/O , 136

listing/1 ,[33,[98,136

load/1 ,[I7,[22[28136

loose (debug)31

lower _upper/2 ,115

MA, 20

make_directory/1 , 143
max (FD option),179
maxarity (flag), 132
max_atom (flag),[118,132
max_depth (option),96
max.integer (flag), 132163
maxlist/’2 124
max_regret (FD option),179
max.unget (flag),[87/90,132
member/2 , 120
memberchk/2 , 120

middle (FD option),179

min (FD option),179

min _integer (flag), 132
min _list/2 ,124
mini-assembly], 11120,[27
mirror (option),70

mirror (property),73

mode (property),73

most _constrained (FD option),179
multifile/1 (directive),42

name/2 ,117

name_query _vars/2 ,55
name.singleton _vars/1 ,55,[08
namevars (option)[16,56, 95
native _code (property),65
needs _quotes (property),120
needs _scan (property),120
new_atom/1 , 118

new_atom/2 , 118

new_atom/3 , 118

next (option),56

nl/o0 , 87

nl/1 , 87

nodebug/0 (debug),31,[33
non_fd var/l (FD),168
non _generic _var/l (FD), 168
non _generic _var/l ,183
none (debug)31

none (option),70,[81,191,[192
nonvar/l ,49

nospy/1 (debug)31,[33

nospyall/0 (debug),31
notrace/0 (debug),31
nth/3 ,123

INDEX

221

number/l , 49

number _atom/2 , 116
number _chars/2 , 116
number _codes/2 , 116

numbervars (option)[16,56, 95
numbervars/1 , 56,

numbervars/3 , 56

once/l ,111

op/3 (directive),44

op/3 ,[44,99

open/3 , 69

open/4 ,[64,69,[80,[81[15p

open _input _atom _stream/2 , 82
open _input _chars _stream/2 , 82
open _input _codes _stream/2 , 82
open _output _atom _stream/1 , 83
open _output _chars _stream/l1 , 83
open _output _codes _stream/1 , 83
os_error (flag),133[20§

os _version/1 , 149

output (property),73

partial ~ _list/1 ,49
peek _byte/1 , 89
peek _byte/2 , 89
peek _char/l , 86
peek _char/2 , 86
peek _code/1 , 86
peek _code/2 , 86
permission (property),147
permutation/2 121
phrase/2 ,110
phrase/3 , 110
popen/3 ,[67,152
portray/l , 95,[99
portray/2 ,181
portray _attributes
184

_clause/1 ,98
_clause/2 ,98[137

(option),95

(property),73
_op (property),119

_property/2 64

, 122
_op (property),119
print/1 95,97
print/2 , 95,[99,[104[10b
print _to _atom/2 , 104
print _to _chars/2 ,105
print _to _codes/2 , 105
priority (option),96
private (property),64
Prolog flag T} 3¢, 4%, 50, P, 187.190] 9T] P3,1102,

[[18,132,[134 [I35[168, 206

prolog _copyright (flag), 132

_predicate/1 (directive),
portray
portray
portrayed
position
postfix
predicate
prefix/2
prefix

prolog _date (flag),132

prolog _file (property),65
prolog _file _name/2,[135,141
prolog _line (property),65

prolog _name (flag),132
prolog _pid/1 , 154
prolog _version (flag),132
public (property),64
public/1 (directive),41,[67
punct (token),93

put/l1 , 108

put _atts/2 182

put _byte/1 ,90

put _byte/2 , 90

put char/l , 87

put _char/2 ,87

put _code/l , 87

put _code/2 , 87

(option) [16,95

random (FD option),179

random/1 , 139

random/3 , 139

randomize/0 , 138

read (mode),70

read (permission),146

read/1 ,91,[94

read/2 ,91,[94,[103[10¢

read _atom/1 , 92,[94

read _atom/2 ,92,[94,[102

read _from _atom/2 , 103

read _from _chars/2 ,103

read _from _codes/2 ,104

read _integer/l ,92[94

read _integer/2 ,92,[94,[102

read _number/1 , 92,94

read _number/2 , 92,[94,[102

read pl _state file/l ,135

read _term/2 ,91,[94

read _term/3 ,91,[94[I02F10¢
read _term _from _atom/3 ,[14,[9]1,103
read _term _from _chars/3 , 103
read _term _from _codes/3 , 104
read _token/1 ,93,[94

read _token/2 ,93,[94[I02F10¢
read _token _from _atom/2 , 103
read _token _from _chars/2 , 103
read _token _from _codes/2 , 104
real file _name (property),146
real _time/l ,138
regular (permission)146
remove _stream _mirror/2
rename _file/2 , 144
reorder (FD option),179
repeat/0 ,112
reposition (option),70

quoted

11'79

222

INDEX

reposition (property),73
reset (option),70,[81
retract/l 62

retractall/1 , 62

return (option),191,[192
reverse/2 ,121

search (permission),146

see/l , 106

seeing/l ,107

seek/4 ,75

seen/0 , 107

select/3 ,121

select/5 ,[68,155[158[160
send _signal/2 , 155

set _bip _-name/2 ,[37,134,[204
set _input/l ,[67,69

set _linedit _prompt/1 , 161
set _output/l1 ,[67,69

set _prolog _flag/2 (directive),45
set _prolog _flag/2 ,[48,132
set _seed/1 , 138

set _stream _buffering/2 ,[68,81,[156[157
set _stream _eof _action/2 ,81
set _stream _line _column/3 ,77
set _stream _position/2 ,[64,74
set _stream _type/2 ,80,[157
setarg/3 ,54

setarg/4 ,54

setof/3 , 66

shell/0 , 150
shell/1 , 150
shell/l2 , 150

singleton _warning (flag), 133135
singletons (option) [55[5p91
size (property),147

skip/1 , 107

sleep/1 , 155

smallest (FD option),179
socket (permission),146
socket/2 , 157

socket _accept/3 , 159

socket _accept/4 159

socket _bind/2 , 158

socket _close/l 157

socket _connect/4 ,[67,[157,158
socket _listen/2 ,159

sort/1 ,124

sort/2 ,124

sort0/1 |, 124

sort0/2 ,124

space _args (option),95
spawn/2 , 151

spawn/3 , 151

spy/1 (debug)331,[33

spypoint _condition/3 (debug)31,[33
sr _change _options/2 , 163

sr _close/l ,163

sr _current _descriptor/1 , 163
sr _error _from _exception/2 , 163
sr _get _error _counters/3 ,163
sr _get file _name/2,163

sr _get _include ist/2 ,163

sr _get _include _stream _ist/2 163
sr _get _-module/3 , 163

sr _get _position/3 163

sr _get _size _counters/3 ,163
sr _get _stream/2 , 163

sr _open/3 , 163

sr read _term/4 , 163

sr _set _error _counters/3 163
sr _write _error/2 ,163

sr _write _error/4 ,163

sr _write _error/6 , 163

sr _write _message/4 , 163

sr _write _message/6 , 163

sr _write _message/8 , 163
standard (FD option),178
static (property),64

statistics/O , 137
statistics/2 , 137
stop/0 , 111

stream _line _column/3 ,77
stream _position/2 , 74,[73

stream _property/2 , 73,[74[7%[79 80
strict _iso (flag),[36[64.133

string (token),93

sub _atom/5 , 114

sublist/2 |, 122

suffix/2 ,122
sumlist/2 , 124
sup/2 , 188

syntax _error (flag),[93,133[206
syntax _error (option),91

syntax _error _info/4 ,94,[208
system/1 , 151

system/2 , 151

system _time/1 , 138

tab/1 , 108

tell/l , 106

telling/1 , 107
temporary file/3 148
temporary _name/2, 147
term _refl2 ,57

text (option),70,[80
throw/1 ,[29[37.47,[201
tight (debug)31
told/0 , 107
top-level,13,[18,[24[26 111, I6L, 2111
top _level/l0 ,[13,111
trace/0 (debug)[IJ31
true/0 , 46

type (option),70

INDEX

223

type (property),73, 146

unget _byte/1 ,89

unget _byte/2 , 89

unget _char/1 , 87

unget _char/2 , 87

unget _code/l , 87

unget _code/2 , 87

unify _with _occurs _check/2 ,50
unknown (flag), 133
unknown (permission)146
unlink/1 | 145

user (property),64

user , 106 [107[135[140, 141
user _input , 67,[71[I06[10}
user _output , 67,[71,[I06[107

user _time/l ,138

value _method (FD option),179
var (token),93

var/l ,49

variable _method (FD option),178
variable _names (option)[55[5691
variables (option),91

vector _max (FD), 165166167} 173

verify _attributes _predicate/1 (directive),
184

wait/2 , 154

WAM, 11,[20,[22[3B

wamdebug/0 (debug)31,[33
warning (option),91

Warren Abstract MachineseeWAM
working _directory/1 , 143

write (mode),70

write (permission),146

write/1 , 95,[99

write/2 , 95,[104[105%

write _canonical/l , 95,[91

write _canonical/2 , 95,[104,[10b
write _canonical _to _atom/2 ,104
write _canonical _to _chars/2 , 105
write _canonical _to _codes/2 , 105
write _pl _state file/1 ,[24,135
write _term/2 ,95

write _term/3 ,[1§,[32,95,[104[105
write _term _to _atom/3 , 104

write _term _to _chars/3 , 105
write _term _to _codes/3 , 105
write _to _atom/2 , 104

write _to _chars/2 , 105

write _to _codes/2 , 105

writeg/1l , 95,[91

writeq/2 , 95,[104[105[199

writeq _to _atom/2 , 104

writeq _to _chars/2 , 105

writeq _to _codes/2 , 105

	Acknowledgements
	Introduction
	Using GNU Prolog
	Introduction
	The GNU Prolog interactive interpreter
	Starting/exiting the interactive interpreter
	The interactive interpreter read-execute-write loop
	Consulting a Prolog program
	Interrupting a query
	The line editor

	Adjusting the size of Prolog stacks
	The GNU Prolog compiler
	Different kinds of codes
	Compilation scheme
	Using the compiler
	Running an executable
	Generating a new interactive interpreter
	The hexadecimal predicate name encoding

	Debugging
	Introduction
	The procedure box model
	Debugging predicates
	Running and stopping the debugger
	Leashing ports
	Spy-points

	Debugging messages
	Debugger commands
	The WAM debugger

	Format of definitions
	General format
	Types and modes
	Errors
	General format and error context
	Instantiation error
	Type error
	Domain error
	Existence error
	Permission error
	Representation error
	Evaluation error
	Resource error
	Syntax error
	System error

	Prolog directives and control constructs
	Prolog directives
	Introduction
	dynamic/1
	public/1
	multifile/1
	discontiguous/1
	ensure_linked/1
	built_in/0, built_in/1, built_in_fd/0, built_in_fd/1
	include/1
	ensure_loaded/1
	op/3
	char_conversion/2
	set_prolog_flag/2
	initialization/1
	foreign/2, foreign/1

	Prolog control constructs
	true/0, fail/0, !/0
	(',')/2 - conjunction, (;)/2 - disjunction, (-'076)/2 - if-then
	call/1
	catch/3, throw/1

	Prolog built-in predicates
	Type testing
	var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, compound/1, callable/1, list/1, partial_list/1, list_or_partial_list/1

	Term unification
	(=)/2 - Prolog unification
	unify_with_occurs_check/2
	('134=)/2 - not Prolog unifiable

	Term comparison
	Standard total ordering of terms
	(==)/2 - term identical, ('134==)/2 - term not identical, (@'074)/2 - term less than, (@='074)/2 - term less than or equal to, (@'076)/2 - term greater than, (@'076=)/2 - term greater than or equal to
	compare/3

	Term processing
	functor/3
	arg/3
	(=..)/2 - univ
	copy_term/2
	setarg/4, setarg/3

	Variable naming/numbering
	name_singleton_vars/1
	name_query_vars/2
	bind_variables/2, numbervars/3, numbervars/1
	term_ref/2

	Arithmetic
	Evaluation of an arithmetic expression
	(is)/2 - evaluate expression
	(=:=)/2 - arithmetic equal, (='134=)/2 - arithmetic not equal, ('074)/2 - arithmetic less than, (='074)/2 - arithmetic less than or equal to, ('076)/2 - arithmetic greater than, ('076=)/2 - arithmetic greater than or equal to

	Dynamic clause management
	Introduction
	asserta/1, assertz/1
	retract/1
	retractall/1
	clause/2
	abolish/1

	Predicate information
	current_predicate/1
	predicate_property/2

	All solutions
	Introduction
	findall/3
	bagof/3, setof/3

	Streams
	Introduction
	current_input/1
	current_output/1
	set_input/1
	set_output/1
	open/4, open/3
	close/2, close/1
	flush_output/1, flush_output/0
	current_stream/1
	stream_property/2
	at_end_of_stream/1, at_end_of_stream/0
	stream_position/2
	set_stream_position/2
	seek/4
	character_count/2
	line_count/2
	line_position/2
	stream_line_column/3
	set_stream_line_column/3
	add_stream_alias/2
	current_alias/2
	add_stream_mirror/2
	remove_stream_mirror/2
	current_mirror/2
	set_stream_type/2
	set_stream_eof_action/2
	set_stream_buffering/2

	Constant term streams
	Introduction
	open_input_atom_stream/2, open_input_chars_stream/2, open_input_codes_stream/2
	close_input_atom_stream/1, close_input_chars_stream/1, close_input_codes_stream/1
	open_output_atom_stream/1, open_output_chars_stream/1, open_output_codes_stream/1
	close_output_atom_stream/2, close_output_chars_stream/2, close_output_codes_stream/2

	Character input/output
	get_char/2, get_char/1, get_code/1, get_code/2
	get_key/2, get_key/1 get_key_no_echo/2, get_key_no_echo/1
	peek_char/2, peek_char/1, peek_code/1, peek_code/2
	unget_char/2, unget_char/1, unget_code/2, unget_code/1
	put_char/2, put_char/1, put_code/1, put_code/2, nl/1, nl/0

	Byte input/output
	get_byte/2, get_byte/1
	peek_byte/2, peek_byte/1
	unget_byte/2, unget_byte/1
	put_byte/2, put_byte/1

	Term input/output
	read_term/3, read_term/2, read/2, read/1
	read_atom/2, read_atom/1, read_integer/2, read_integer/1, read_number/2, read_number/1
	read_token/2, read_token/1
	syntax_error_info/4
	last_read_start_line_column/2
	write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1, write_canonical/2, write_canonical/1, display/2, display/1, print/2, print/1
	format/3, format/2
	portray_clause/2, portray_clause/1
	get_print_stream/1
	op/3
	current_op/3
	char_conversion/2
	current_char_conversion/2

	Input/output from/to constant terms
	read_term_from_atom/3, read_from_atom/2, read_token_from_atom/2
	read_term_from_chars/3, read_from_chars/2, read_token_from_chars/2
	read_term_from_codes/3, read_from_codes/2, read_token_from_codes/2
	write_term_to_atom/3, write_to_atom/2, writeq_to_atom/2, write_canonical_to_atom/2, display_to_atom/2, print_to_atom/2, format_to_atom/3
	write_term_to_chars/3, write_to_chars/2, writeq_to_chars/2, write_canonical_to_chars/2, display_to_chars/2, print_to_chars/2, format_to_chars/3
	write_term_to_codes/3, write_to_codes/2, writeq_to_codes/2, write_canonical_to_codes/2, display_to_codes/2, print_to_codes/2, format_to_codes/3

	DEC-10 compatibility input/output
	Introduction
	see/1, tell/1, append/1
	seeing/1, telling/1
	seen/0, told/0
	get0/1, get/1, skip/1
	put/1, tab/1

	Term expansion
	Definite clause grammars
	expand_term/2, term_expansion/2
	phrase/3, phrase/2

	Logic, control and exceptions
	abort/0, stop/0, top_level/0, break/0, halt/1, halt/0
	once/1, ('134+)/1 - not provable, call_with_args/1-11, call/2
	repeat/0
	for/3

	Atomic term processing
	atom_length/2
	atom_concat/3
	sub_atom/5
	char_code/2
	lower_upper/2
	atom_chars/2, atom_codes/2
	number_atom/2, number_chars/2, number_codes/2
	name/2
	atom_hash/2
	new_atom/3, new_atom/2, new_atom/1
	current_atom/1
	atom_property/2

	List processing
	append/3
	member/2, memberchk/2
	reverse/2
	delete/3, select/3
	permutation/2
	prefix/2, suffix/2
	sublist/2
	last/2
	length/2
	nth/3
	max_list/2, min_list/2, sum_list/2
	sort/2, sort0/2, keysort/2 sort/1, sort0/1, keysort/1

	Global variables
	Introduction
	g_assign/2, g_assignb/2, g_link/2
	g_read/2
	g_array_size/2
	g_inc/3, g_inc/2, g_inco/2, g_inc/1, g_dec/3, g_dec/2, g_deco/2, g_dec/1
	g_set_bit/2, g_reset_bit/2, g_test_set_bit/2, g_test_reset_bit/2
	Examples

	Prolog state
	set_prolog_flag/2
	current_prolog_flag/2
	set_bip_name/2
	current_bip_name/2
	write_pl_state_file/1, read_pl_state_file/1

	Program state
	consult/1, '.'/2 - program consult
	load/1
	listing/1, listing/0

	System statistics
	statistics/0, statistics/2
	user_time/1, system_time/1, cpu_time/1, real_time/1

	Random number generator
	set_seed/1, randomize/0
	get_seed/1
	random/1
	random/3

	File name processing
	absolute_file_name/2
	decompose_file_name/4
	prolog_file_name/2

	Operating system interface
	argument_counter/1
	argument_value/2
	argument_list/1
	environ/2
	make_directory/1, delete_directory/1, change_directory/1
	working_directory/1
	directory_files/2
	rename_file/2
	delete_file/1, unlink/1
	file_permission/2, file_exists/1
	file_property/2
	temporary_name/2
	temporary_file/3
	date_time/1
	host_name/1
	os_version/1
	architecture/1
	shell/2, shell/1, shell/0
	system/2, system/1
	spawn/3, spawn/2
	popen/3
	exec/5, exec/4
	fork_prolog/1
	create_pipe/2
	wait/2
	prolog_pid/1
	send_signal/2
	sleep/1
	select/5

	Sockets input/output
	Introduction
	socket/2
	socket_close/1
	socket_bind/2
	socket_connect/4
	socket_listen/2
	socket_accept/4, socket_accept/3
	hostname_address/2

	Linedit management
	get_linedit_prompt/1
	set_linedit_prompt/1
	add_linedit_completion/1
	find_linedit_completion/2

	Source reader facility
	Introduction
	sr_open/3
	sr_change_options/2
	sr_close/1
	sr_read_term/4
	sr_current_descriptor/1
	sr_get_stream/2
	sr_get_module/3
	sr_get_file_name/2
	sr_get_position/3
	sr_get_include_list/2
	sr_get_include_stream_list/2
	sr_get_size_counters/3
	sr_get_error_counters/3
	sr_set_error_counters/3
	sr_error_from_exception/2
	sr_write_message/8, sr_write_message/6, sr_write_message/4
	sr_write_error/6, sr_write_error/4, sr_write_error/2

	Finite domain solver and built-in predicates
	Introduction
	Finite Domain variables

	FD variable parameters
	fd_max_integer/1
	fd_vector_max/1
	fd_set_vector_max/1

	Initial value constraints
	fd_domain/3, fd_domain_bool/1
	fd_domain/2

	Type testing
	fd_var/1, non_fd_var/1, generic_var/1, non_generic_var/1

	FD variable information
	fd_min/2, fd_max/2, fd_size/2, fd_dom/2
	fd_has_extra_cstr/1, fd_has_vector/1, fd_use_vector/1

	Arithmetic constraints
	FD arithmetic expressions
	Partial AC: (#=)/2 - constraint equal, (#'134=)/2 - constraint not equal, (#'074)/2 - constraint less than, (#='074)/2 - constraint less than or equal, (#'076)/2 - constraint greater than, (#'076=)/2 - constraint greater than or equal
	Full AC: (#=#)/2 - constraint equal, (#'134=#)/2 - constraint not equal, (#'074#)/2 - constraint less than, (#='074#)/2 - constraint less than or equal, (#'076#)/2 - constraint greater than, (#'076=#)/2 - constraint greater than or equal
	fd_prime/1, fd_not_prime/1

	Boolean and reified constraints
	Boolean FD expressions
	(#'134)/1 - constraint NOT, (#'074='076)/2 - constraint equivalent, (#'134'074='076)/2 - constraint different, (##)/2 - constraint XOR, (#=='076)/2 - constraint imply, (#'134=='076)/2 - constraint not imply, (#/'134)/2 - constraint AND, (#'134/'134)/2 - constraint NAND, (#'134/)/2 - constraint OR, (#'134'134/)/2 - constraint NOR
	fd_cardinality/2, fd_cardinality/3, fd_at_least_one/1, fd_at_most_one/1, fd_only_one/1

	Symbolic constraints
	fd_all_different/1
	fd_element/3
	fd_element_var/3
	fd_atmost/3, fd_atleast/3, fd_exactly/3
	fd_relation/2, fd_relationc/2

	Labeling constraints
	fd_labeling/2, fd_labeling/1, fd_labelingff/1

	Optimization constraints
	fd_minimize/2, fd_maximize/2

	Coroutining and attributes
	Coroutining
	freeze/2
	frozen/2
	portray/2 [user-defined]

	Attributed variables
	Introduction
	Attribute declaration - attribute/1
	Attributes manipulation - get_atts/2, put_atts/2
	Type testing - attributed/1, generic_var/1, non_generic_var/1
	Unification extension - verify_attributes_predicate/1
	Attributed variables portraying - portray_attributes_predicate/1
	A simple example

	Constraint logic programming over reals
	Introduction
	Solver predicates
	{}/1
	inf/2, sup/2
	clpr_get_store/2

	Real and Herbrand domains combinations
	Unification
	Implicit equalities
	Nonlinear constraints

	Interfacing Prolog and C
	Calling C from Prolog
	Introduction
	foreign/2 directive
	The C function
	Input arguments
	Output arguments
	Input/output arguments
	Writing non-deterministic C code
	Example: input and output arguments
	Example: non-deterministic code
	Example: input/output arguments

	Manipulating Prolog terms
	Introduction
	Managing Prolog atoms
	Reading Prolog terms
	Unifying Prolog terms
	Creating Prolog terms
	Testing the type of Prolog terms
	Comparing Prolog terms
	Copying Prolog terms
	Comparing and evaluating arithmetic expressions

	Raising Prolog errors
	Managing the error context
	Instantiation error
	Type error
	Domain error
	Existence error
	Permission error
	Representation error
	Evaluation error
	Resource error
	Syntax error
	System error

	Calling Prolog from C
	Introduction
	Example: my_call/1 - a call/1 clone
	Example: recovering the list of all operators

	Defining a new C main() function
	Example: asking for ancestors

	References
	Index

