
GNU PROLOG RH

A Native Prolog Compiler with Attributed Variables, Coroutinings and
Constraint Solving

Edition 1.7.rh, for GNU Prolog version 1.2.16.rh
June 23, 2003

by Daniel Diaz and Ŕemy Haemmerĺe

Copyright (C) 1999-2002 Daniel Diaz ; Copyright (C) 2001-2002 INRIA, Remy Haemmerle

All chapters except 9 and 10 by Daniel Diaz.
Chapters 9 and 10 by Rémy Haemmerĺe.

Original version of this document can be downloaded from the GNU Prolog web site1.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions, except that this permission notice may be stated in a translation approved by the
Free Software Foundation2, 59 Temple Place - Suite 330, Boston, MA 02111, USA.

1http://gnu-prolog.inria.fr
2http://www.fsf.org/

CONTENTS 1

Contents

1 Acknowledgements 9

2 Introduction 11

3 Using GNU Prolog 13
3.1 Introduction . 13
3.2 The GNU Prolog interactive interpreter . 13

3.2.1 Starting/exiting the interactive interpreter . 13
3.2.2 The interactive interpreter read-execute-write loop . 14
3.2.3 Consulting a Prolog program . 16
3.2.4 Interrupting a query . 17
3.2.5 The line editor . 18

3.3 Adjusting the size of Prolog stacks . 19
3.4 The GNU Prolog compiler . 20

3.4.1 Different kinds of codes . 20
3.4.2 Compilation scheme . 20
3.4.3 Using the compiler . 22
3.4.4 Running an executable . 25
3.4.5 Generating a new interactive interpreter . 26
3.4.6 The hexadecimal predicate name encoding . 26

4 Debugging 29
4.1 Introduction . 29
4.2 The procedure box model . 29
4.3 Debugging predicates . 31

4.3.1 Running and stopping the debugger . 31
4.3.2 Leashing ports . 31
4.3.3 Spy-points . 31

4.4 Debugging messages . 32
4.5 Debugger commands . 32
4.6 The WAM debugger . 33

5 Format of definitions 35
5.1 General format . 35
5.2 Types and modes . 35
5.3 Errors . 37

5.3.1 General format and error context . 37
5.3.2 Instantiation error . 37
5.3.3 Type error . 38
5.3.4 Domain error . 38
5.3.5 Existence error . 39
5.3.6 Permission error . 39
5.3.7 Representation error . 39
5.3.8 Evaluation error . 40
5.3.9 Resource error . 40
5.3.10 Syntax error . 40
5.3.11 System error . 40

6 Prolog directives and control constructs 41
6.1 Prolog directives . 41

6.1.1 Introduction . 41
6.1.2 dynamic/1 . 41
6.1.3 public/1 . 41
6.1.4 multifile/1 . 42
6.1.5 discontiguous/1 . 42
6.1.6 ensure linked/1 . 43

2 CONTENTS

6.1.7 built in/0 , built in/1 , built in fd/0 , built in fd/1 43
6.1.8 include/1 . 44
6.1.9 ensure loaded/1 . 44
6.1.10 op/3 . 44
6.1.11 char conversion/2 . 45
6.1.12 set prolog flag/2 . 45
6.1.13 initialization/1 . 45
6.1.14 foreign/2 , foreign/1 . 45

6.2 Prolog control constructs . 46
6.2.1 true/0 , fail/0 , !/0 . 46
6.2.2 (’,’)/2 - conjunction,(;)/2 - disjunction,(->)/2 - if-then 46
6.2.3 call/1 . 47
6.2.4 catch/3 , throw/1 . 47

7 Prolog built-in predicates 49
7.1 Type testing . 49

7.1.1 var/1 , nonvar/1 , atom/1 , integer/1 , float/1 , number/1 , atomic/1 ,
compound/1 , callable/1 , list/1 , partial list/1 , list or partial list/1 49

7.2 Term unification . 50
7.2.1 (=)/2 - Prolog unification . 50
7.2.2 unify with occurs check/2 . 50
7.2.3 (\=)/2 - not Prolog unifiable . 50

7.3 Term comparison . 51
7.3.1 Standard total ordering of terms . 51
7.3.2 (==)/2 - term identical,(\==)/2 - term not identical,

(@<)/2 - term less than,(@=<)/2 - term less than or equal to,
(@>)/2 - term greater than,(@>=)/2 - term greater than or equal to 51

7.3.3 compare/3 . 52
7.4 Term processing . 52

7.4.1 functor/3 . 52
7.4.2 arg/3 . 53
7.4.3 (=..)/2 - univ . 53
7.4.4 copy term/2 . 54
7.4.5 setarg/4 , setarg/3 . 54

7.5 Variable naming/numbering . 55
7.5.1 name singleton vars/1 . 55
7.5.2 name query vars/2 . 55
7.5.3 bind variables/2 , numbervars/3 , numbervars/1 56
7.5.4 term ref/2 . 57

7.6 Arithmetic . 57
7.6.1 Evaluation of an arithmetic expression . 57
7.6.2 (is)/2 - evaluate expression . 59
7.6.3 (=:=)/2 - arithmetic equal,(=\=)/2 - arithmetic not equal,

(<)/2 - arithmetic less than,(=<)/2 - arithmetic less than or equal to,
(>)/2 - arithmetic greater than,(>=)/2 - arithmetic greater than or equal to 60

7.7 Dynamic clause management . 60
7.7.1 Introduction . 60
7.7.2 asserta/1 , assertz/1 . 61
7.7.3 retract/1 . 62
7.7.4 retractall/1 . 62
7.7.5 clause/2 . 62
7.7.6 abolish/1 . 63

7.8 Predicate information . 64
7.8.1 current predicate/1 . 64
7.8.2 predicate property/2 . 64

7.9 All solutions . 65
7.9.1 Introduction . 65

CONTENTS 3

7.9.2 findall/3 . 65
7.9.3 bagof/3 , setof/3 . 66

7.10 Streams . 67
7.10.1 Introduction . 67
7.10.2 current input/1 . 68
7.10.3 current output/1 . 68
7.10.4 set input/1 . 69
7.10.5 set output/1 . 69
7.10.6 open/4 , open/3 . 69
7.10.7 close/2 , close/1 . 71
7.10.8 flush output/1 , flush output/0 . 72
7.10.9 current stream/1 . 72
7.10.10 stream property/2 . 73
7.10.11 at end of stream/1 , at end of stream/0 . 74
7.10.12 stream position/2 . 74
7.10.13 set stream position/2 . 74
7.10.14 seek/4 . 75
7.10.15 character count/2 . 76
7.10.16 line count/2 . 76
7.10.17 line position/2 . 76
7.10.18 stream line column/3 . 77
7.10.19 set stream line column/3 . 77
7.10.20 add stream alias/2 . 78
7.10.21 current alias/2 . 78
7.10.22 add stream mirror/2 . 79
7.10.23 remove stream mirror/2 . 79
7.10.24 current mirror/2 . 80
7.10.25 set stream type/2 . 80
7.10.26 set stream eof action/2 . 81
7.10.27 set stream buffering/2 . 81

7.11 Constant term streams . 82
7.11.1 Introduction . 82
7.11.2 open input atom stream/2 , open input chars stream/2 ,

open input codes stream/2 . 82
7.11.3 close input atom stream/1 , close input chars stream/1 ,

close input codes stream/1 . 83
7.11.4 open output atom stream/1 , open output chars stream/1 ,

open output codes stream/1 . 83
7.11.5 close output atom stream/2 , close output chars stream/2 ,

close output codes stream/2 . 84
7.12 Character input/output . 84

7.12.1 get char/2 , get char/1 , get code/1 , get code/2 84
7.12.2 get key/2 , get key/1 get key no echo/2 , get key no echo/1 85
7.12.3 peek char/2 , peek char/1 , peek code/1 , peek code/2 86
7.12.4 unget char/2 , unget char/1 , unget code/2 , unget code/1 87
7.12.5 put char/2 , put char/1 , put code/1 , put code/2 , nl/1 , nl/0 87

7.13 Byte input/output . 88
7.13.1 get byte/2 , get byte/1 . 88
7.13.2 peek byte/2 , peek byte/1 . 89
7.13.3 unget byte/2 , unget byte/1 . 89
7.13.4 put byte/2 , put byte/1 . 90

7.14 Term input/output . 91
7.14.1 read term/3 , read term/2 , read/2 , read/1 91
7.14.2 read atom/2 , read atom/1 , read integer/2 , read integer/1 ,

read number/2 , read number/1 . 92
7.14.3 read token/2 , read token/1 . 93
7.14.4 syntax error info/4 . 94

4 CONTENTS

7.14.5 last read start line column/2 . 94
7.14.6 write term/3 , write term/2 , write/2 , write/1 , writeq/2 , writeq/1 ,

write canonical/2 , write canonical/1 , display/2 , display/1 , print/2 ,
print/1 . 95

7.14.7 format/3 , format/2 . 97
7.14.8 portray clause/2 , portray clause/1 . 98
7.14.9 get print stream/1 . 99
7.14.10 op/3 . 99
7.14.11 current op/3 . 101
7.14.12 char conversion/2 . 101
7.14.13 current char conversion/2 . 102

7.15 Input/output from/to constant terms . 103
7.15.1 read term from atom/3 , read from atom/2 , read token from atom/2 . . 103
7.15.2 read term from chars/3 , read from chars/2 , read token from chars/2 103
7.15.3 read term from codes/3 , read from codes/2 , read token from codes/2 104
7.15.4 write term to atom/3 , write to atom/2 , writeq to atom/2 ,

write canonical to atom/2 , display to atom/2 , print to atom/2 ,
format to atom/3 . 104

7.15.5 write term to chars/3 , write to chars/2 , writeq to chars/2 ,
write canonical to chars/2 , display to chars/2 , print to chars/2 ,
format to chars/3 . 105

7.15.6 write term to codes/3 , write to codes/2 , writeq to codes/2 ,
write canonical to codes/2 , display to codes/2 , print to codes/2 ,
format to codes/3 . 105

7.16 DEC-10 compatibility input/output . 106
7.16.1 Introduction . 106
7.16.2 see/1 , tell/1 , append/1 . 106
7.16.3 seeing/1 , telling/1 . 107
7.16.4 seen/0 , told/0 . 107
7.16.5 get0/1 , get/1 , skip/1 . 107
7.16.6 put/1 , tab/1 . 108

7.17 Term expansion . 108
7.17.1 Definite clause grammars . 108
7.17.2 expand term/2 , term expansion/2 . 110
7.17.3 phrase/3 , phrase/2 . 110

7.18 Logic, control and exceptions . 111
7.18.1 abort/0 , stop/0 , top level/0 , break/0 , halt/1 , halt/0 111
7.18.2 once/1 , (\+)/1 - not provable,call with args/1-11 , call/2 111
7.18.3 repeat/0 . 112
7.18.4 for/3 . 112

7.19 Atomic term processing . 113
7.19.1 atom length/2 . 113
7.19.2 atom concat/3 . 113
7.19.3 sub atom/5 . 114
7.19.4 char code/2 . 114
7.19.5 lower upper/2 . 115
7.19.6 atom chars/2 , atom codes/2 . 115
7.19.7 number atom/2 , number chars/2 , number codes/2 116
7.19.8 name/2 . 117
7.19.9 atom hash/2 . 118
7.19.10 new atom/3 , new atom/2 , new atom/1 . 118
7.19.11 current atom/1 . 119
7.19.12 atom property/2 . 119

7.20 List processing . 120
7.20.1 append/3 . 120
7.20.2 member/2 , memberchk/2 . 120
7.20.3 reverse/2 . 121

CONTENTS 5

7.20.4 delete/3 , select/3 . 121
7.20.5 permutation/2 . 121
7.20.6 prefix/2 , suffix/2 . 122
7.20.7 sublist/2 . 122
7.20.8 last/2 . 123
7.20.9 length/2 . 123
7.20.10 nth/3 . 123
7.20.11 max list/2 , min list/2 , sum list/2 . 124
7.20.12 sort/2 , sort0/2 , keysort/2 sort/1 , sort0/1 , keysort/1 124

7.21 Global variables . 125
7.21.1 Introduction . 125
7.21.2 g assign/2 , g assignb/2 , g link/2 . 126
7.21.3 g read/2 . 127
7.21.4 g array size/2 . 127
7.21.5 g inc/3 , g inc/2 , g inco/2 , g inc/1 , g dec/3 , g dec/2 , g deco/2 , g dec/1 128
7.21.6 g set bit/2 , g reset bit/2 , g test set bit/2 , g test reset bit/2 . . 128
7.21.7 Examples . 129

7.22 Prolog state . 132
7.22.1 set prolog flag/2 . 132
7.22.2 current prolog flag/2 . 133
7.22.3 set bip name/2 . 134
7.22.4 current bip name/2 . 134
7.22.5 write pl state file/1 , read pl state file/1 135

7.23 Program state . 135
7.23.1 consult/1 , ’.’/2 - program consult . 135
7.23.2 load/1 . 136
7.23.3 listing/1 , listing/0 . 136

7.24 System statistics . 137
7.24.1 statistics/0 , statistics/2 . 137
7.24.2 user time/1 , system time/1 , cpu time/1 , real time/1 138

7.25 Random number generator . 138
7.25.1 set seed/1 , randomize/0 . 138
7.25.2 get seed/1 . 139
7.25.3 random/1 . 139
7.25.4 random/3 . 139

7.26 File name processing . 140
7.26.1 absolute file name/2 . 140
7.26.2 decompose file name/4 . 140
7.26.3 prolog file name/2 . 141

7.27 Operating system interface . 141
7.27.1 argument counter/1 . 141
7.27.2 argument value/2 . 142
7.27.3 argument list/1 . 142
7.27.4 environ/2 . 143
7.27.5 make directory/1 , delete directory/1 , change directory/1 143
7.27.6 working directory/1 . 143
7.27.7 directory files/2 . 144
7.27.8 rename file/2 . 144
7.27.9 delete file/1 , unlink/1 . 145
7.27.10 file permission/2 , file exists/1 . 145
7.27.11 file property/2 . 146
7.27.12 temporary name/2 . 147
7.27.13 temporary file/3 . 148
7.27.14 date time/1 . 148
7.27.15 host name/1 . 149
7.27.16 os version/1 . 149
7.27.17 architecture/1 . 150

6 CONTENTS

7.27.18 shell/2 , shell/1 , shell/0 . 150
7.27.19 system/2 , system/1 . 151
7.27.20 spawn/3 , spawn/2 . 151
7.27.21 popen/3 . 152
7.27.22 exec/5 , exec/4 . 152
7.27.23 fork prolog/1 . 153
7.27.24 create pipe/2 . 153
7.27.25 wait/2 . 154
7.27.26 prolog pid/1 . 154
7.27.27 send signal/2 . 155
7.27.28 sleep/1 . 155
7.27.29 select/5 . 155

7.28 Sockets input/output . 156
7.28.1 Introduction . 156
7.28.2 socket/2 . 157
7.28.3 socket close/1 . 157
7.28.4 socket bind/2 . 158
7.28.5 socket connect/4 . 158
7.28.6 socket listen/2 . 159
7.28.7 socket accept/4 , socket accept/3 . 159
7.28.8 hostname address/2 . 160

7.29 Linedit management . 161
7.29.1 get linedit prompt/1 . 161
7.29.2 set linedit prompt/1 . 161
7.29.3 add linedit completion/1 . 161
7.29.4 find linedit completion/2 . 162

7.30 Source reader facility . 162
7.30.1 Introduction . 162
7.30.2 sr open/3 . 163
7.30.3 sr change options/2 . 163
7.30.4 sr close/1 . 163
7.30.5 sr read term/4 . 163
7.30.6 sr current descriptor/1 . 163
7.30.7 sr get stream/2 . 163
7.30.8 sr get module/3 . 163
7.30.9 sr get file name/2 . 163
7.30.10 sr get position/3 . 163
7.30.11 sr get include list/2 . 163
7.30.12 sr get include stream list/2 . 163
7.30.13 sr get size counters/3 . 163
7.30.14 sr get error counters/3 . 163
7.30.15 sr set error counters/3 . 163
7.30.16 sr error from exception/2 . 163
7.30.17 sr write message/8 , sr write message/6 , sr write message/4 163
7.30.18 sr write error/6 , sr write error/4 , sr write error/2 163

8 Finite domain solver and built-in predicates 165
8.1 Introduction . 165

8.1.1 Finite Domain variables . 165
8.2 FD variable parameters . 166

8.2.1 fd max integer/1 . 166
8.2.2 fd vector max/1 . 166
8.2.3 fd set vector max/1 . 167

8.3 Initial value constraints . 167
8.3.1 fd domain/3 , fd domain bool/1 . 167
8.3.2 fd domain/2 . 168

8.4 Type testing . 168

CONTENTS 7

8.4.1 fd var/1 , non fd var/1 , generic var/1 , non generic var/1 168
8.5 FD variable information . 169

8.5.1 fd min/2 , fd max/2 , fd size/2 , fd dom/2 . 169
8.5.2 fd has extra cstr/1 , fd has vector/1 , fd use vector/1 170

8.6 Arithmetic constraints . 170
8.6.1 FD arithmetic expressions . 170
8.6.2 Partial AC:(#=)/2 - constraint equal,(#\=)/2 - constraint not equal,

(#<)/2 - constraint less than,(#=<)/2 - constraint less than or equal,
(#>)/2 - constraint greater than,(#>=)/2 - constraint greater than or equal 171

8.6.3 Full AC:(#=#)/2 - constraint equal,(#\=#)/2 - constraint not equal,
(#<#)/2 - constraint less than,(#=<#)/2 - constraint less than or equal,
(#>#)/2 - constraint greater than,(#>=#)/2 - constraint greater than or equal 172

8.6.4 fd prime/1 , fd not prime/1 . 172
8.7 Boolean and reified constraints . 173

8.7.1 Boolean FD expressions . 173
8.7.2 (#\)/1 - constraint NOT,(#<=>)/2 - constraint equivalent,

(#\<=>)/2 - constraint different,(##)/2 - constraint XOR,
(#==>)/2 - constraint imply,(#\==>)/2 - constraint not imply,
(#/\)/2 - constraint AND,(#\/\)/2 - constraint NAND,
(#\/)/2 - constraint OR,(#\\/)/2 - constraint NOR 174

8.7.3 fd cardinality/2 , fd cardinality/3 , fd at least one/1 , fd at most one/1 ,
fd only one/1 . 175

8.8 Symbolic constraints . 175
8.8.1 fd all different/1 . 175
8.8.2 fd element/3 . 176
8.8.3 fd element var/3 . 176
8.8.4 fd atmost/3 , fd atleast/3 , fd exactly/3 177
8.8.5 fd relation/2 , fd relationc/2 . 177

8.9 Labeling constraints . 178
8.9.1 fd labeling/2 , fd labeling/1 , fd labelingff/1 178

8.10 Optimization constraints . 179
8.10.1 fd minimize/2 , fd maximize/2 . 179

9 Coroutining and attributes 181
9.1 Coroutining . 181

9.1.1 freeze/2 . 181
9.1.2 frozen/2 . 181
9.1.3 portray/2 [user-defined] . 181

9.2 Attributed variables . 182
9.2.1 Introduction . 182
9.2.2 Attribute declaration -attribute/1 . 182
9.2.3 Attributes manipulation -get atts/2 , put atts/2 182
9.2.4 Type testing -attributed/1 , generic var/1 , non generic var/1 183
9.2.5 Unification extension -verify attributes predicate/1 184
9.2.6 Attributed variables portraying -portray attributes predicate/1 184
9.2.7 A simple example . 184

10 Constraint logic programming over reals 187
10.1 Introduction . 187
10.2 Solver predicates . 187

10.2.1 {}/1 . 187
10.2.2 inf/2 , sup/2 . 188
10.2.3 clpr get store/2 . 188

10.3 Real and Herbrand domains combinations . 189
10.3.1 Unification . 189
10.3.2 Implicit equalities . 189
10.3.3 Nonlinear constraints . 189

8 CONTENTS

11 Interfacing Prolog and C 191
11.1 Calling C from Prolog . 191

11.1.1 Introduction . 191
11.1.2 foreign/2 directive . 191
11.1.3 The C function . 192
11.1.4 Input arguments . 192
11.1.5 Output arguments . 193
11.1.6 Input/output arguments . 193
11.1.7 Writing non-deterministic C code . 194
11.1.8 Example: input and output arguments . 194
11.1.9 Example: non-deterministic code . 195
11.1.10 Example: input/output arguments . 197

11.2 Manipulating Prolog terms . 198
11.2.1 Introduction . 198
11.2.2 Managing Prolog atoms . 198
11.2.3 Reading Prolog terms . 199
11.2.4 Unifying Prolog terms . 200
11.2.5 Creating Prolog terms . 201
11.2.6 Testing the type of Prolog terms . 202
11.2.7 Comparing Prolog terms . 203
11.2.8 Copying Prolog terms . 203
11.2.9 Comparing and evaluating arithmetic expressions . 203

11.3 Raising Prolog errors . 204
11.3.1 Managing the error context . 204
11.3.2 Instantiation error . 204
11.3.3 Type error . 204
11.3.4 Domain error . 204
11.3.5 Existence error . 205
11.3.6 Permission error . 205
11.3.7 Representation error . 205
11.3.8 Evaluation error . 205
11.3.9 Resource error . 206
11.3.10 Syntax error . 206
11.3.11 System error . 206

11.4 Calling Prolog from C . 206
11.4.1 Introduction . 206
11.4.2 Example:my call/1 - acall/1 clone . 208
11.4.3 Example: recovering the list of all operators . 209

11.5 Defining a new Cmain() function . 210
11.5.1 Example: asking for ancestors . 211

References 215

Index 217

9

1 Acknowledgements

I would like to thank the department of computing science3 at the university of Paris 1 for allowing me the time
and freedom necessary to achieve this project.

I am grateful to the members of the Loco project4 at INRIA Rocquencourt5 for their encouragement. Their in-
volvement in this work led to useful feedback and exchange.

I would particularly like to thank Jonathan Hodgson6 for the time and effort he put into the proofreading of this
manual. His suggestions, both regarding ISO technical aspects as well as the language in which it was expressed,
proved invaluable.

The on-line HTML version of this document was created using HEVEA7 developed by Luc Maranget who kindly
devoted so much of his time extending the capabilities of HEVEA in order to handle such a sizeable manual.

Jean-Christophe Aude kindly improved the visual aspect of both the illustrations and the GNU Prolog web pages.

Thanks to Richard A. O’Keefe for his advice regarding the implementation of some Prolog built-in predicates and
for suggesting me the in-place installation feature.

Many thanks to the following contributors:

• Alexander Diemand8 for his initial port to alpha/linux and more generally for his personal involvement in
the development of GNU Prolog.

• Clive Cox9 and Edmund Grimley Evans10 for their port to ix86/SCO.

• Nicolas Ollinger11 to for his port to ix86/FreeBSD.

• Brook Milligan12 for his port to ix86/NetBSD and for general configuration improvements.

• Andreas Stolcke13 for his port to ix86/Solaris.

• Lindsey Spratt14 for his port to powerpc/Darwin (MacOS X).

Many thanks to all those people at GNU15 who helped me to finalize the GNU Prolog project.

Finally, I would like to thank everybody who tested preliminary releases and helped me to put the finishing touches
to this system.

3http://panoramix.univ-paris1.fr/CRINFO/
4http://loco.inria.fr/
5http://www.inria.fr/Unites/ROCQUENCOURT-eng.html
6http://www.sju.edu/˜jhodgson
7http://pauillac.inria.fr/ ˜ maranget/hevea/
8ax@apax.net
9clive@laluna.demon.co.uk

10http://www.rano.org/
11nollinge@ens-lyon.fr
12brook@nmsu.edu
13http://www.speech.sri.com/people/stolcke/
14spratt@alum.mit.edu
15http://www.gnu.org

10 1 ACKNOWLEDGEMENTS

11

2 Introduction

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by Daniel Diaz16. For
recent information about GNU Prolog please consult the GNU Prolog page17.

GNU Prolog is a Prolog compiler based on the Warren Abstract Machine (WAM) [8, 1]. It first compiles a Prolog
program to a WAM file which is then translated to a low-level machine independent language called mini-assembly
specifically designed for GNU Prolog. The resulting file is then translated to the assembly language of the target
machine (from which an object is obtained). This allows GNU Prolog to produce a native stand alone executable
from a Prolog source (similarly to what does a C compiler from a C program). The main advantage of this
compilation scheme is to produce native code and to be fast. Another interesting feature is that executables are
small. Indeed, the code of most unused built-in predicates is not included in the executables at link-time.

A lot of work has been devoted to the ISO compatibility. Indeed, GNU Prolog is very close to the ISO standard for
Prolog18 [5].

GNU Prolog also offers various extensions very useful in practice (global variables, OS interface, sockets,...). In
particular, GNU Prolog contains an efficient constraint solver over Finite Domains (FD). This opens contraint logic
pogramming to the user combining the power of constraint programming to the declarativity of logic programming.
The key feature of the GNU Prolog solver is the use of a single (low-level) primitive to define all (high-level) FD
constraints. There are many advantages of this approach: constraints can be compiled, the user can define his
own constraints (in terms of the primitive), the solver is open and extensible (as opposed to black-box solvers like
CHIP),. . . Moreover, the GNU Prolog solver is rather efficient, often more than commercial solvers.

GNU Prolog is inspired from two systems developed by the same author:

• wamcc: a Prolog to C compiler [3]. the key point ofwamcc was its ability to produce stand alone exe-
cutables using an original compilation scheme: the translation of Prolog to C via the WAM. Its drawback
was the time needed bygcc to compile the produced sources. GNU Prolog can also produce stand alone
executables but using a faster compilation scheme.

• clp(FD) : a constraint programming language over FD [4]. Its key feature was the use of a single primitive
to define FD constraints. GNU Prolog is based on the same idea but offers an extended constraint definition
language. In comparison toclp(FD) , GNU Prolog offers new predefined constraints, new predefined
heuristics, reified constraints,. . .

Here are some features of GNU Prolog:

• Prolog system:
– conforms to the ISO standard for Prolog (floating point numbers, streams, dynamic code,. . .).

– a lot of extensions: global variables, definite clause grammars (DCG), sockets interface, operating
system interface,. . .

– more than 300 Prolog built-in predicates.

– Prolog debugger and a low-level WAM debugger.

– line editing facility under the interactive interpreter with completion on atoms.

– powerful bidirectional interface between Prolog and C.

• Compiler:
– native-code compiler producing stand alone executables.

– simple command-line compiler accepting a wide variety of files: Prolog files, C files, WAM files,. . .

– direct generation of assembly code 15 times faster thanwamcc+ gcc .

– most of unused built-in predicates are not linked (to reduce the size of the executables).

16http://pauillac.inria.fr/˜diaz
17http://www.gnu.org/software/prolog
18http://www.logic-programming.org/prolog std.html

12 2 INTRODUCTION

– compiled predicates (native-code) as fast aswamcmccon average.

– consulted predicates (byte-code) 5 times faster thanwamcc.

• Constraint solver:
– FD variables well integrated into the Prolog environment (full compatibility with Prolog variables and

integers). No need for explicit FD declarations.

– very efficient FD solver (comparable to commercial solvers).

– high-level constraints can be described in terms of simple primitives.

– a lot of predefined constraints: arithmetic constraints, boolean constraints, symbolic constraints, reified
constraints,. . .

– several predefined enumeration heuristics.

– the user can define his own new constraints.

– more than 50 FD built-in constraints/predicates.

13

3 Using GNU Prolog

3.1 Introduction

GNU Prolog offers two ways to execute a Prolog program:

• interpreting it using the GNU Prolog interactive interpreter.

• compiling it to a (machine-dependent) executable using the GNU Prolog native-code compiler.

Running a program under the interactive interpreter allows the user to list it and to make full use of the debugger
on it (section 4, page 29). Compiling a program to native code makes it possible to obtain a stand alone executable,
with a reduced size and optimized for speed. Running a Prolog program compiled to native-code is around 3-5
times faster than running it under the interpreter. However, it is not possible to make full use of the debugger on a
program compiled to native-code. Nor is it possible to list the program. In general, it is preferable to run a program
under the interpreter for debugging and then use the native-code compiler to produce an autonomous executable.
It is also possible to combine these two modes by producing an executable that contains some parts of the program
(e.g. already debugged predicates whose execution-time speed is crucial) and interpreting the other parts under this
executable. In that case, the executable has the same facilities as the GNU Prolog interpreter but also integrates the
native-code predicates. This way to define a new enriched interpreter is detailed later (section 3.4.5, page 26).

3.2 The GNU Prolog interactive interpreter

3.2.1 Starting/exiting the interactive interpreter

GNU Prolog offers a classical Prolog interactive interpreter also calledtop-level. It allows the user to execute
queries, to consult Prolog programs, to list them, to execute them and to debug them. The top-level can be invoked
using the following command:

% gprolog [OPTION]. . . (the%symbol is the operating system shell prompt)

Options:

--init-goal GOAL executeGOALbefore toplevel/0
--entry-goal GOAL executeGOALinside toplevel/0
--query-goal GOAL executeGOALas a query for toplevel/0
--help print a help and exit
--version print version number and exit
-- do not parse the rest of the command-line

The main role of thegprolog command is to execute the top-level itself, i.e. to execute the built-in predicate
top level/0 (section 7.18.1, page 111) which will produce something like:

GNU Prolog 1.2.9
By Daniel Diaz
Copyright (C) 1999-2001 Daniel Diaz
| ?-

The top-level is ready to execute your queries as explained in the next section.

To quit the top-level type the end-of-file key sequence (Ctl-D) or its term representation:end of file. It is
also possible to use the built-in predicatehalt/0 (section 7.18.1, page 111).

However, before entering the top-level itself, the command-line is processed to treat all known options (those listed
above). All unrecognized arguments are collected together to form the argument list which will be available using

14 3 USING GNU PROLOG

argument value/2 (section 7.27.2, page 142) orargument list/1 (section 7.27.3, page 142). The--
option stops the parsing of the command-line, all remainding options are collected into the argument list.

Several options are provided to execute a goal before entering the interaction with the user:

• The --init-goal option executes theGOALas soon as it is encountered (while the commnad-line is
processed).GOALis thus executed before enteringtop level/0 .

• The --entry-goal option executes theGOALat the entry oftop level/0 just after the banner is
displayed.

• The--query-goal option executes theGOALas if the user has typed in.

The above order is thus the order in which each kind of goal (init, entry, query) is executed. If there are several
goals of a same kind they are executed in the oder of appearance. Thus, all init goals are executed (in the order of
appearance) before all entry goals and all entry goals are executed before all query goals.

EachGOALis passed as a shell argument (i.e. one shell string) and should not contain a terminal dot. Exam-
ple: --init-goal ’write(hello), nl’ under a sh-like. To be executed, aGOALis transformed into a
term usingread term from atom(Goal, Term, [end of term(eof)]) . Respecting both the syntax
of shell strings and of Prolog can be heavy. For instance, passing a backslash character\ can be difficult since
it introduces an escape sequence both in sh and inside Prolog quoted atoms. The use of back quotes can then be
useful since, by default, no escape sequence is processed inside back quotes (this behavior can be controlled using
theback quotes Prolog flag (section 7.22.1, page 132)).

Since the Prolog argument list is created when the whole command-line is parsed, if a--init-goal option
usesargument value/2 or argument list/1 it will obtained the original command-line arguments (i.e.
including all recognized arguments).

Here is an example of using execution goal options:

% gprolog --init-goal ’write(before), nl’ --entry-goal ’write(inside), nl’
--query-goal ’append([a,b],[c,d],X)’

will produce the following:

before
GNU Prolog 1.2.9
By Daniel Diaz
Copyright (C) 1999-2001 Daniel Diaz
inside
| ?- append([a,b],[c,d],X).

X = [a,b,c,d]

yes
| ?-

3.2.2 The interactive interpreter read-execute-write loop

The GNU Prolog top-level is built on a classical read-execute-write loop that also allows for re-executions (when
the query is not deterministic) as follows:

• display the prompt, i.e. ’| ?- ’.

• read a query (i.e. a goal).

• execute the query.

3.2 The GNU Prolog interactive interpreter 15

• in case of success display the values of the variables of the query.

• if there are remaining alternatives (i.e. the query is not deterministic), display a? and ask the user who can
use one of the following commands:RETURNto stop the execution,; to compute the next solution ora to
compute all remaining solution.

Here is an example of execution of a query (“find the listsX andY such that the concatenation ofX andY is
[a,b] ”):

| ?- append(X,Y,[a,b,c]).

X = []
Y = [a,b,c] ? ; (here the user presses; to compute another solution)

X = [a]
Y = [b,c] ? a (here the user pressesa to compute all remaining solutions)

X = [a,b]
Y = [c] (here the user is not asked and the next solution is computed)

X = [a,b,c]
Y = [] (here the user is not asked and the next solution is computed)

no (no more solution)

In some cases the top-level can detect that the current solution is the last one (no more alternatives remaining). In
such a case it does not display the? symbol (and does not ask the user). Example:

| ?- (X=1 ; X=2).

X = 1 ? ; (here the user presses; to compute another solution)

X = 2 (here the user is not prompted since there are no more alternatives)

yes

The user can stop the execution even if there are more alternatives by typingRETURN.

| ?- (X=1 ; X=2).

X = 1 ? (here the user pressesRETURNto stop the execution)

yes

The top-level tries to display the values of the variables of the query in a readable manner. For instance, when
a variable is bound to a query variable, the name of this variable appears. When a variable is a singleton an
underscore symbol is displayed (is a generic name for a singleton variable, it is also called an anonymous
variable). Other variables are bound to new brand variable names. When a query variable nameX appears as the
value of another query variableY it is becauseX is itself not instantiated otherwise the value ofX is displayed. In
such a case, nothing is output forX itself (since it is a variable). Example:

| ?- X=f(A,B, ,A), A=k.

A = k (the value ofA is displayed also inf/3 for X)
X = f(k,B, ,k) (sinceB is a variable which is also a part ofX, B is not displayed)

| ?- functor(T,f,3), arg(1,T,X), arg(3,T,X).

T = f(X, ,X) (the 1st and 3rd args are equal toX, the 2nd is an anonymous variable)

| ?- read from atom(’k(X,Y,X).’,T).

T = k(A, ,A) (the 1st and 3rd args are unified, a new variable nameA is introduced)

16 3 USING GNU PROLOG

The top-level uses variable binding predicates (section 7.5, page 55). To display the value of a variable, the
top-level callswrite term/3 with the following option list: [quoted(true),numbervars(false),
namevars(true)] (section 7.14.6, page 95). A term of the form’$VARNAME’(Name) whereNameis an
atom is displayed as a variable name while a term of the form’$VAR’(N) whereN is an integer is displayed as a
normal compound term (such a term could be output as a variable name bywrite term/3). Example:

| ?- X=’$VARNAME’(’Y’), Y=’$VAR’(1).

X = Y (the term’$VARNAME’(’Y’) is displayed asY)
Y = ’$VAR’(1) (the term’$VAR’(1) is displayed as is)

| ?- X=Y, Y=’$VAR’(1).

X = ’$VAR’(1)
Y = ’$VAR’(1)

In the first example,X is explicitly bound to’$VARNAME’(’Y’) by the query so the top-level displaysY as the
value ofX. Y is unified with ’$VAR’(1) so the top-level displays it as a normal compound term. It should be
clear thatX is not bound toY (whereas it is in the second query). This behavior should be kept in mind when doing
variable binding operations.

Finally, the top-level computes the user-time (section 7.24.2, page 138) taken by a query and displays it when it is
significant. Example:

| ?- retractall(p()), assertz(p(0)),
repeat,

retract(p(X)),
Y is X + 1,
assertz(p(Y)),
X = 1000, !.

X = 1000
Y = 1001

(180 ms) yes (the query took 180ms of user time)

3.2.3 Consulting a Prolog program

The top-level allows the user to consult Prolog source files. Consulted predicates can be listed, executed and
debugged (while predicates compiled to native-code cannot). For more information about the difference between
a native-code predicate and a consulted predicate refer to the introduction of this section (section 3.1, page 13) and
to the part devoted to the compiler (section 3.4.1, page 20).

To consult a program use the built-in predicateconsult/1 (section 7.23.1, page 135). The argument of this
predicate is a Prolog file name oruser to specify the terminal. This allows the user to directly input the predicates
from the terminal. In that case the input shall be terminated by the end-of-file key sequence (Ctl-D) or its term
representation:end of file. A shorthand forconsult(FILE) is [FILE] . Example:

3.2 The GNU Prolog interactive interpreter 17

| ?- [user].
{compiling user for byte code...}
even(0).
even(s(s(X))):-

even(X).
(here the user pressesCtl-D to end the input)

{user compiled, 3 lines read - 350 bytes written, 1180 ms}

| ?- even(X).

X = 0 ? ; (here the user presses; to compute another solution)

X = s(s(0)) ? ; (here the user presses; to compute another solution)

X = s(s(s(s(0))))
?

(here the user pressesRETURNto stop the execution)

yes
| ?- listing.

even(0).
even(s(s(A))) :-

even(A).

Whenconsult/1 (section 7.23.1, page 135) is invoked on a Prolog file it first runs the GNU Prolog compiler
(section 3.4, page 20) as a child process to generate a temporary WAM file for byte-code. If the compilation fails a
message is displayed and nothing is loaded. If the compilation succeeds, the produced file is loaded into memory
usingload/1 (section 7.23.2, page 136). Namely, the byte-code of each predicate is loaded. When a predicateP
is loaded if there is a previous definition forP it is removed (i.e. all clauses definingP are erased). We say thatP is
redefined. Note that only consulted predicates can be redefined. IfP is a native-code predicate, trying to redefine it
will produce an error at load-time: the predicate redefinition will be ignored and the following message displayed:

native code procedure P cannot be redefined

Finally, an existing predicate will not be removed if it is not re-loaded. This means that if a predicateP is loaded
when consulting the fileF, and if later the definition ofP is removed from the fileF, consultingF again will not
remove the previously loaded definition ofP from the memory.

Consulted predicates can be debugged using the Prolog debugger. Use the debugger predicatetrace/0 or
debug/0 (section 4.3.1, page 31) to activate the debugger.

3.2.4 Interrupting a query

Under the top-level it is possible to interrupt the execution of a query by typing the interruption key (Ctl-C). This
can be used to abort a query, to stop an infinite loop, to activate the debugger,. . . When an interruption occurs the
top-level displays the following message:Prolog interruption (h for help) ? The user can then
type one of the following commands:

Command Name Description

a abort abort the current execution. Same asabort/0 (section 7.18.1, page 111)
e exit quit the current Prolog process. Same ashalt/0 (section 7.18.1, page 111)
b break invoke a recursive top-level. Same asbreak/0 (section 7.18.1, page 111)
c continue resume the execution
t trace start the debugger usingtrace/0 (section 4.3.1, page 31)
d debug start the debugger usingdebug/0 (section 4.3.1, page 31)

h or ? help display a summary of available commands

18 3 USING GNU PROLOG

3.2.5 The line editor

The line editor (linedit) allows the user to build/update the current input line using a variety of commands.
This facility is available if thelinedit part of GNU Prolog has been installed.linedit is implicitly called
by any built-in predicate reading from a terminal (e.g.get char/1 , read/1 ,. . .). This is the case when the
top-level reads a query.

Bindings: each command oflinedit is activated using a key. For some commands another key is also available
to invoke the command (on some terminals this other key may not work properly while the primary key always
works). Here is the list of available commands:

Key Alternate key Description

Ctl-B ← go to the previous character
Ctl-F → go to the next character
Esc-B Ctl- ← go to the previous word
Esc-F Ctl- → go to the next word
Ctl-A Home go to the beginning of the line
Ctl-E End go to the end of the line
Ctl-H Backspace delete the previous character
Ctl-D Delete delete the current character
Ctl-U Ctl-Home delete from beginning of the line to the current character
Ctl-K Ctl-End delete from the current character to the end of the line
Esc-L lower case the next word
Esc-U upper case the next word
Esc-C capitalize the next word
Ctl-T exchange last two characters
Ctl-V Insert switch on/off the insert/replace mode
Ctl-I Tab complete word (twice displays all possible completions)

Esc-Ctl-I Esc-Tab insert spaces to emulate a tabulation
Ctl-space mark beginning of the selection

Esc-W copy (from the begin selection mark to the current character)
Ctl-W cut (from the begin selection mark to the current character)
Ctl-Y paste
Ctl-P ↑ recall previous history line
Ctl-N ↓ recall next history line
Esc-P recall previous history line beginning with the current prefix
Esc-N recall next history line beginning with the current prefix
Esc-< Page Up recall first history line
Esc-> Page Down recall last history line
Ctl-C generate an interrupt signal (section 3.2.4, page 17)
Ctl-D generate an end-of-file character (at the begin of the line)

RETURN validate a line
Esc-? display a summary of available commands

History : when a line is entered (i.e. terminated byRETURN), linedit records it in an internal list called history.
It is later possible to recall history lines using appropriate commands (e.g.Ctl-P recall the last entered line) and
to modify them as needed. It is also possible to recall a history line beginning with a given prefix. For instance
to recall the previous line beginning withwrite simply typewrite followed byEsc-P . AnotherEsc-P will
recall an earlier line beginning withwrite ,. . .

Completion: another important feature oflinedit is its completion facility. Indeed,linedit maintains a list
of known words and uses it to complete the prefix of a word. Initially this list contains all predefined atoms and
the atoms corresponding to available predicates. This list is dynamically updated when a new atom appears in the
system (whether read at the top-level, created with a built-in predicate, associated to a new consulted predicate,. . .).
When the completion key (Tab) is pressedlinedit acts as follows:

3.3 Adjusting the size of Prolog stacks 19

• use the current word as a prefix.

• collect all words of the list that begin with this prefix.

• complete the current word with the longest common part of all matching words.

• if more than one word matches emit a beep (a secondTab will display all possibilities).

Example:

| ?- argu (here the user pressesTab to complete the word)
| ?- argument (linedit completesargu with argument and emits a beep)

(the user presses againTab to see all possible completions)
argument counter (linedit shows 3 possible completions)
argument list
argument value
| ?- argument (linedit redisplays the input line)

| ?- argument c (to selectargument counter the user pressesc andTab)
| ?-
argument counter

(linedit completes withargument counter)

Finally, linedit allows the user to check that (square/curly) brackets are well balanced. For this, when a close
bracket symbol, i.e.) ,] or } , is typed,linedit determines the associated open bracket, i.e.(, [or { , and
temporarily repositions the cursor on it to show the match.

3.3 Adjusting the size of Prolog stacks

GNU Prolog uses several stacks to execute a Prolog program. Each stack has a static size and cannot be dynam-
ically increased during the execution. For each stack there is a default size but the user can define a new size by
setting an environment variable. When a GNU Prolog program is run it first consults these variables and if they
are not defined uses the default sizes. The following table presents each stack of GNU Prolog with its default size
and the name of its associated environment variable:

Stack Default Environment Description
name size (Kb) variable

local 4096 LOCALSZ control stack (environments and choice-points)
global 8192 GLOBALSZ heap (compound terms)
trail 3072 TRAILSZ conditional bindings (bindings to undo at backtracking)
cstr 3072 CSTRSZ finite domain constraint stack (FD variables and constraints)

If the size of a stack is too small an overflow will occur during the execution. In that case GNU Prolog emits the
following error message before stopping:

S stack overflow (size: N Kb, environment variable used: E)

whereS is the name of the stack,N is the current stack size in Kb andE the name of the associated environment
variable. When such a message occurs it is possible to (re)define the variableE with the new size. For instance to
allocate 8192 Kb to the local stack under a Unix shell use:

LOCALSZ=8192; export LOCALS (undersh or bash)
setenv LOCALSZ 8192 (undercsh or tcsh)

This method allows the user to adjust the size of Prolog stacks. However, in some cases it is preferable not to
allow the user to modify these sizes. For instance, when providing a stand alone executable whose behavior should
be independent of the environment in which it is run. In that case the program should not consult environment
variables and the programmer should be able to define new default stack sizes. The GNU Prolog compiler offers
this facilities via several command-line options such as--local-size or --fixed-sizes (section 3.4.3,
page 22).

20 3 USING GNU PROLOG

Finally note that GNU Prolog stacks are virtually allocated (i.e. use virtual memory). This means that a physical
memory page is allocated only when needed (i.e. when an attempt to read/write it occurs). Thus it is possible to
define very large stacks. At the execution, only the needed amount of space will be physically allocated.

3.4 The GNU Prolog compiler

3.4.1 Different kinds of codes

One of the main advantages of GNU Prolog is its ability to produce stand alone executables. A Prolog program can
be compiled to native code to give rise to a machine-dependent executable using the GNU Prolog compiler. How-
ever native-code predicates cannot be listed nor fully debugged. So there is an alternative to native-code compila-
tion: byte-code compilation. By default the GNU Prolog compiler produces native-code but via a command-line
option it can produce a file ready for byte-code loading. This is exactly whatconsult/1 does as was explained
above (section 3.2.3, page 16). GNU Prolog also manages interpreted code using a Prolog interpreter written in
Prolog. Obviously interpreted code is slower than byte-code but does not require the invocation of the GNU Prolog
compiler. This interpreter is used each time a meta-call is needed as bycall/1 (section 6.2.3, page 47). This
also the case of dynamically asserted clauses. The following table summarizes these three kinds of codes:

Type Speed Debug ? For what

interpreted-code slow yes meta-call and dynamically asserted clauses
byte-code medium yes consulted predicates
native-code fast no compiled predicates

3.4.2 Compilation scheme

Native-code compilation: a Prolog source is compiled in several stages to produce an object file that is linked
to the GNU Prolog libraries to produce an executable. The Prolog source is first compiled to obtain a WAM [8]
file. For a detailed study of the WAM the interested reader can refer to “Warren’s Abstract Machine: A Tutorial
Reconstruction”19 [1]. The WAM file is translated to a machine-independent language specifically designed for
GNU Prolog. This language is close to a (universal) assembly language and is based on a very reduced instruction
set. For this reason this language is called mini-assembly (MA). The mini-assembly file is then mapped to the
assembly language of the target machine. This assembly file is assembled to give rise to an object file which is
then linked with the GNU Prolog libraries to provide an executable. The compiler also takes into account Finite
Domain constraint definition files. It translates them to C and invoke the C compiler to obtain object files. The
following figure presents this compilation scheme:

19http://www.isg.sfu.ca/˜hak/documents/wam.html

3.4 The GNU Prolog compiler 21

WAM
files

Prolog
files

mini−assembly
files

assembly
files

object
files

FD constraint
definition files

Prolog/FD libraries
and user libraries

pl2wam

wam2ma

ma2asm

linker

executable

fd2c

C files

C compilerassembler

22 3 USING GNU PROLOG

Obviously all intermediate stages are hidden to the user who simply invokes the compiler on his Prolog file(s)
(plus other files: C,. . .) and obtains an executable. However, it is also possible to stop the compiler at any given
stage. This can be useful, for instance, to see the WAM code produced (perhaps when learning the WAM). Finally
it is possible to give any kind of file to the compiler which will insert it in the compilation chain at the stage
corresponding to its type. The type of a file is determined using the suffix of its file name. The following table
presents all recognized types/suffixes:

Suffix of the file Type of the file Handled by:

.pl , .pro Prolog source file pl2wam

.wam WAM source file wam2ma

.ma Mini-assembly source file ma2asm

.s Assembly source file the assembler

.c , .C , .CC, .cc , .cxx , .c++ , .cpp C or C++ source file the C compiler

.fd Finite Domain constraint source file fd2c
any other suffix (.o , .a ,. . .) any other type (object, library,. . .) the linker (C linker)

Byte-code compilation: the same compiler can be used to compile a source Prolog file for byte-code. In that case
the Prolog to WAM compiler is invoked using a specific option and produces a WAM for byte-code source file
(suffixed.wbc) that can be later loaded usingload/1 (section 7.23.2, page 136). Note that this is exactly what
consult/1 (section 7.23.1, page 135) does as explained above (section 3.2.3, page 16).

3.4.3 Using the compiler

The GNU Prolog compiler is a command-line compiler similar in spirit to a Unix C compiler likegcc . To invoke
the compiler use thegplc command as follows:

% gplc [OPTION]. . . FILE . . . (the%symbol is the operating system shell prompt)

The arguments ofgplc are file names that are dispatched in the compilation scheme depending on the type
determined from their suffix as was explained previously (section 3.4.2, page 20). All object files are then linked
to produce an executable. Note however that GNU Prolog has no module facility (since there is not yet an ISO
reference for Prolog modules) thus a predicate defined in a Prolog file is visible from any other predicate defined
in any other file. GNU Prolog allows the user to split a big Prolog source into several files but does not offer any
way to hide a predicate from others.

The simplest way to obtain an executable from a Prolog source fileprog.pl is to use:

% gplc prog.pl

This will produce an native executable calledprog which can be executed as follows:

% prog

However, there are several options that can be used to control the compilation:

General options:

3.4 The GNU Prolog compiler 23

-o FILE , --output FILE useFILE as the name of the output file
-W, --wam-for-native stop after producing WAM files(s)
-w ,
--wam-for-byte-code

stop after producing WAM for byte-code file(s) (force--no-call-c)

-M, --mini-assembly stop after producing mini-assembly files(s)
-S , --assembly stop after producing assembly files (s)
-F , --fd-to-c stop after producing C files(s) from FD constraint definition file(s)
-c , --object stop after producing object files(s)
--temp-dir PATH usePATHas directory for temporary files
--no-del-temp do not delete temporary files
--no-decode-hexa do not decode hexadecimal predicate names
-v , --verbose print executed commands
-h , --help print a help and exit
--version print version number and exit

Prolog to WAM compiler options:

--pl-state FILE readFILE to set the initial Prolog state
--no-susp-warn do not show warnings for suspicious predicates
--no-singl-warn do not show warnings for named singleton variables
--no-redef-error no not show errors for built-in predicate redefinitions
--foreign-only only compileforeign/1-2 directives
--no-call-c do not allow the use offd tell , ’$call c ’,. . .
--no-inline do not inline predicates
--no-reorder do not reorder predicate arguments
--no-reg-opt do not optimize registers
--min-reg-opt minimally optimize registers
--no-opt-last-subterm do not optimize last subterm compilation
--fast-math use fast mathematical mode (assume integer arithmetics)
--keep-void-inst keep void WAM instructions in the output file
--compile-msg print a compile message
--statistics print statistics information

WAM to mini-assembly translator options:

--comment include comments in the output file

Mini-assembly to assembly translator options:

--comment include comments in the output file

C compiler options:

--c-compiler FILE useFILE as C compiler
-C OPTION passOPTION to the C compiler

Assembler options:

-A OPTION passOPTION to the assembler

Linker options :

24 3 USING GNU PROLOG

--local-size N set default local stack size toN Kb
--global-size N set default global stack size toN Kb
--trail-size N set default trail stack size toN Kb
--cstr-size N set default constraint stack size toN Kb
--fixed-sizes do not consult environment variables at run-time (use default sizes)
--no-top-level do not link the top-level (force--no-debugger)
--no-debugger do not link the Prolog/WAM debugger
--min-pl-bips link only used Prolog built-in predicates
--min-fd-bips link only used FD solver built-in predicates
--min-bips shorthand for:--no-top-level --min-pl-bips --min-fd-bips
--min-size shorthand for:--min-bips --strip
--no-fd-lib do not look for the FD library (maintenance only)
-s , --strip strip the executable
-L OPTION PassOPTION to the linker

It is possible to only give the prefix of an option if there is no ambiguity.

The name of the output file is controlled via the-o FILE option. If present the output file produced will be named
FILE . If not specified, the output file name depends on the last stage reached by the compiler. If the link is not
done the output file name(s) is the input file name(s) with the suffix associated to the last stage. If the link is done,
the name of the executable is the name (without suffix) of the first file name encountered in the command-line.
Note that if the link is not done-o has no sense in the presence of multiple input file names. For this reason,
several meta characters are available for substitution inFILE :

• %f is substitued by the whole input file name.

• %Fis similar to%f but the directory part is omitted.

• %pis substitued by the whole prefix file name (omitting the suffix).

• %Pis similar to%pbut the directory part is omitted.

• %sis substitued by the file suffix (including the dot).

• %dis substitued by the directory part (empty if no directory is specified).

• %cis substitued by the value of an internal counter starting from 1 and auto-incremented.

By default the compiler runs in the native-code compilation scheme. To generate a WAM file for byte-code use
the --wam-for-byte-code option. The resulting file can then be loaded usingload/1 (section 7.23.2,
page 136).

To execute the Prolog to WAM compiler in a givenread environment(operator definitions, character conversion
table,. . .) use--pl-state FILE . The state file should be produced bywrite pl state file/1 (sec-
tion 7.22.5, page 135).

By default the Prolog to WAM compiler inlines calls to some deterministic built-in predicates (e.g.arg/3 and
functor/3). Namely a call to such a predicate will not yield a classical predicate call but a simple C function
call (which is obviously faster). It is possible to avoid this using--no-inline .

Another optimization performed by the Prolog to WAM compiler is unification reordering. The arguments of
a predicate are reordered to optimize unification. This can be deactivated using--no-reorder . The compiler
also optimizes the unification/loading of nested compound terms. More precisely, the compiler emits optimized in-
structions when the last subterm of a compound term is itself a compound term (e.g. lists). This can be deactivated
using--no-opt-last-subterm .

By default the Prolog to WAM compiler fully optimizes the allocation of registers to decrease both the number of
instruction produced and the number of used registers. A good allocation will generate manyvoid instructionsthat
are removed from the produced file except if--keep-void-inst is specified. To prevent any optimization use
--no-reg-opt while --min-reg-opt forces the compiler to only perform simple register optimizations.

3.4 The GNU Prolog compiler 25

The Prolog to WAM compiler emits an error when a control construct or a built-in predicate is redefined. This can
be avoided using--no-redef-error . The compiler also emits warnings for suspicious predicate definitions
like -/2 since this often corresponds to an earlier syntax error (e.g.- instead of . This can be deactivated by
specifying--no-susp-warn . Finally, the compiler warns when a singleton variable has a name (i.e. not the
generic anonymous name). This can be deactivated specifying--no-singl-warn .

Predicate names are encoded with an hexadecimal representation. This is explained in more detail later (sec-
tion 3.4.6, page 26). By default the error messages from the linker (e.g. multiple definitions for a given predicate,
reference to an undefined predicate,. . .) are filtered to replace any hexadecimal representation by the real predicate
name. Specifying the--no-decode-hexa preventsgplc from filtering linker output messages and hexadeci-
mal representations are then shown.

When producing an executable it is possible to specify default stack sizes (using-- STACKNAME-size) and to
prevent it from consulting environment variables (using--fixed-sizes) as was explained above (section 3.3,
page 19). By default the produced executable will include the top-level, the Prolog/WAM debugger and all Pro-
log and FD built-in predicates. It is possible to avoid linking the top-level (section 3.2, page 13) by specifying
--no-top-level . In this case, at least oneinitialization/1 directive (section 6.1.13, page 45) should
be defined. The option--no-debugger does not link the debugger. To include only used built-in predicates that
are actually used the options--no-pl-bips and/or--no-fd-bips can be specified. For the smallest exe-
cutable all these options should be specified. This can be abbreviated by using the shorthand option--min-bips .
By default, executables are notstripped, i.e. their symbol table is not removed. This table is only useful for the
C debugger (e.g. when interfacing Prolog and C). To remove the symbol table (and then to reduce the size of the
final executable) use--strip . Finally --min-size is a shortcut for--min-bips and--strip , i.e. the
produced executable is as small as possible.

Example: compile and link two Prolog sourcesprog1.pl andprog2.pl . The resulting executable will be
namedprog1 (since-o is not specified):

% gplc prog1.pl prog2.pl

Example: compile the Prolog fileprog.pl to study basic WAM code. The resulting file will be namedprog.wam :

% gplc -W --no-inline --no-reorder --keep-void-inst prog.pl

Example: compile the Prolog fileprog.pl and its C interface fileutils.c to provide an autonomous executable
calledmycommand. The executable is not stripped to allow the use of the C debugger:

% gplc -o mycommand prog.pl utils.c

Example: detail all steps to compile the Prolog fileprog.pl (the resulting executable is stripped). All interme-
diate files are produced (prog.wam , prog.ma , prog.s , prog.o and the executableprog):

% gplc -W prog.pl
% gplc -M --comment prog.wam
% gplc -S --comment prog.ma
% gplc -c prog.s
% gplc -o prog -s prog.o

3.4.4 Running an executable

In this section we explain what happens when running an executable produced by the GNU Prolog native-code
compiler. The default main function first starts the Prolog engine. This function collects all linked objects (issued
from the compilation of Prolog files) and initializes them. The initialization of a Prolog object file consists in
adding to appropriate tables new atoms, new predicates and executing its system directives. A system directive is
generated by the Prolog to WAM compiler to reflect a (user) directive executed at compile-time such asop/3 (sec-
tion 6.1.10, page 44). Indeed, when the compiler encounters such a directive it immediately executes it and also
generates a system directive to execute it at the start of the executable. When all system directives have been exe-
cuted the Prolog engine executes all initialization directives defined withinitialization/1 (section 6.1.13,

26 3 USING GNU PROLOG

page 45). If several initialization directives appear in the same file they are executed in the order of appearance. If
several initialization directives appear in different files the order in which they are executed is machine-dependant.
However, on most machines the order will be the reverse order in which the associated files have been linked (this
is not true under native win32). When all initialization directives have been executed the default main function
looks for the GNU Prolog top-level. If present (i.e. it has been linked) it is called otherwise the program simply
ends. Note that if the top-level is not linked and if there is no initialization directive the program is useless since
it simply ends without doing any work. The default main function detects such a behavior and emits a warning
message.

Example: compile an empty fileprog.pl without linking the top-level and execute it:

% gplc --no-top-level prog.pl
% prog
Warning: no initial goal executed

use a directive :- initialization(Goal)
or remove the link option --no-top-level (or --min-bips or --min-size)

3.4.5 Generating a new interactive interpreter

In this section we show how to define a new top-level extending the GNU Prolog interactive interpreter with new
predicate definitions. The obtained top-level can then be considered as an enriched version of the basic GNU
Prolog top-level (section 3.2, page 13). Indeed, each added predicate can be viewed as a predefined predicate just
like any other built-in predicate. This can be achieved by compiling these predicates and including the top-level at
link-time.

The real question is: why would we include some predicates in a new top-level instead of simply consulting them
under the GNU Prolog top-level ? There are two reasons for this:

• the predicate cannot be consulted. This is the case of a predicate calling foreign code, like a predicate
interfacing with C (section 11, page 191) or a predicate defining a new FD constraint.

• the performance of the predicate is crucial. Since it is compiled to native-code such a predicate will be
executed very quickly. Consulting will load it as byte-code. The gain is much more noticeable if the program
is run under the debugger. The included version will not be affected by the debugger while the consulted
version will be several times slower. Obviously, a predicate should be included in a new top-level only when
it is itself debugged since it is difficult to debug native-code.

To define a new top-level simply compile the set of desired predicates and linking them with the GNU Prolog
top-level (this is the default) usinggplc (section 3.4.3, page 22).

Example: let us define a new top-level calledmy top level including all predicates defined inprog.pl :

% gplc -o my top level prog.pl

By the way, note that ifprog.pl is an empty Prolog file the previous command will simply create a new interac-
tive interpreter similar to the GNU Prolog top-level.

Example: as before where some predicates ofprog.pl call C functions defined inutils.c :

% gplc -o my top level prog.pl utils.c

In conclusion, defining a particular top-level is nothing else but a particular case of the native-code compilation. It
is simple to do and very useful in practice.

3.4.6 The hexadecimal predicate name encoding

When the GNU Prolog compiler compiles a Prolog source to an object file it has to associate a symbol to each
predicate name. However, the syntax of symbols is restricted to identifiers: string containing only letters, digits or

3.4 The GNU Prolog compiler 27

underscore characters. On the other hand, predicate names (i.e. atoms) can contain any character with quotes if
necessary (e.g.’x+y=z’ is a valid predicate name). The compiler has then to encode predicate names respecting
the syntax of identifiers. To achieve this, GNU Prolog uses an hexadecimal representation where each predicate
name is translated to a symbol beginning with anX followed by the hexadecimal notation of the code of each
character of the name.

Example:’x+y=z’ will be encoded asX782B793D7A since78 is the hexadecimal representation of the code
of x , 2B of the code of+, etc.

Since Prolog allows the user to define several predicates with the same name but with a different arity GNU Prolog
encodes predicate indicators (predicate name followed by the arity). The symbol associated to the predicate name
is then followed by an underscore and by the decimal notation of the arity.

Example:’x+y=z’/3 will be encoded asX782B793D7A 3.

So, from the mini-assembly stage, each predicate indicator is replaced by its hexadecimal encoding. The knowl-
edge of this encoding is normally not of interest for the user, i.e. the Prolog programmer. For this reason the
GNU Prolog compiler hides this encoding. When an error occurs on a predicate (undefined predicate, predicate
with multiple definitions,. . .) the compiler has to decode the symbol associated to the predicate indicator. For this
gplc filters each message emitted by the linker to locate and decode eventual predicate indicators. This filtering
can be deactivated specifying--no-decode-hexa when invokinggplc (section 3.4.3, page 22).

This filter is provided as an utility that can be invoked using thehexgplc command as follows:

% hexgplc
[OPTION]. . . FILE . . .

(the%symbol is the operating system shell prompt)

Options:

--encode encoding mode (default mode is decoding)
--relax decode also predicate names (not only predicate indicators)
--printf FORMAT pass encoded/decoded string to Cprintf(3) with FORMAT
--aux-father decode an auxiliary predicate as its father
--aux-father2 decode an auxiliary predicate as its father + auxiliary number
--cmd-line encode/decode each argument of the command-line
-H same as:--cmd-line --encode
-P same as:--cmd-line --relax
--help print a help and exit
--version print version number and exit

It is possible to give a prefix of an option if there is no ambiguity.

Without argumentshexgplc runs in decoding mode reading its standard input and decoding each symbol cor-
responding to a predicate indicator. To usehexgplc in the encoding mode the--encode option must be
specified. By defaulthexgplc only decodes predicate indicators, this can be relaxed using--relax to also
take into account simple predicate names (the arity can be omitted). It is possible to format the output of an
encoded/decoded string using--printf FORMATin that case each stringS is passed to the Cprintf(3)
function asprintf(FORMAT, S) .

Auxiliary predicates are generated by the Prolog to WAM compiler when simplifying some control constructs like
’;’/2 present in the body of a clause. They are of the form’$ NAME/ ARITY $aux N’ whereNAME/ ARITY
is the predicate indicator of the simplified (i.e. father) predicate andN is a sequential number (a predicate can give
rise to several auxiliary predicates). It is possible to forcehexgplc to decode an auxiliary predicate as its father
predicate indicator using--aux-father or as its father predicate indicator followed by the sequential number
using--aux-father2 .

If no file is specified,hexgplc processes its standard input otherwise each file is treated sequentially. Specifying
the --cmd-line option informshexgplc that each argument is not a file name but a string that must be

28 3 USING GNU PROLOG

encoded (or decoded). This is useful to encode/decode a particular string. For this reason the option-H (encode to
hexadecimal) and-P (decode to Prolog) are provided as shorthand. Then, to obtain the hexadecimal representation
of a predicateP use:

% hexgplc -H P

Example:

% hexgplc -H ’x+y=z’
X782B793D7A

29

4 Debugging

4.1 Introduction

The GNU Prolog debugger provides information concerning the control flow of the program. The debugger can
be fully used on consulted predicates (i.e. byte-code). For native compiled code only the calls/exits are traced, no
internal behavior is shown. Under the debugger it is possible to exhaustively trace the execution or to set spy-points
to only debug a specific part of the program. Spy-points allow the user to indicate on which predicates the debugger
has to stop to allow the user to interact with it. The debugger uses the “procedure box control flow model”, also
called the Byrd Box model since it is due to Lawrence Byrd.

4.2 The procedure box model

The procedure box model of Prolog execution provides a simple way to show the control flow. This model is
very popular and has been adopted in many Prolog systems (e.g. SICStus Prolog, Quintus Prolog,. . .). A good
introduction is the chapter 8 of “Programming in Prolog” of Clocksin & Mellish [2]. The debugger executes a
program step by step tracing an invocation to a predicate (call) and the return from this predicate due to either a
success (exit) or a failure (fail). When a failure occurs the execution backtracks to the last predicate with an
alternative clause. The predicate is then re-invoked (redo). Another source of change of the control flow is due
to exceptions. When an exception is raised from a predicate (exception) by throw/1 (section 6.2.4, page 47)
the control is given back to the most recent predicate that has defined a handler to recover this exception using
catch/3 (section 6.2.4, page 47). The procedure box model shows these different changes in the control flow, as
illustrated here:

30 4 DEBUGGING

predicate

redo

exitcall

fail

exception

4.3 Debugging predicates 31

Each arrow corresponds to aport. An arrow to the box indicates that the control is given to this predicate while an
arrow from the box indicates that the control is given back from the procedure. This model visualizes the control
flow through these five ports and the connections between the boxes associated to subgoals. Finally, it should be
clear that a box is associated to one invocation of a given predicate. In particular, a recursive predicate will give
raise to a box for each invocation of the predicate with different entries/exits in the control flow. Since this might
get confusing for the user, the debugger associates to each box a unique identifier (i.e. the invocation number).

4.3 Debugging predicates

4.3.1 Running and stopping the debugger

trace/0 activates the debugger. The next invocation of a predicate will be traced.

debug/0 activates the debugger. The next invocation of a predicate on which a spy-point has been set will be
traced.

It is important to understand that the information associated to the control flow is only available when the debugger
is on. For efficiency reasons, when the debugger is off the information concerning the control flow (i.e. the boxes)
is not retained. So, if the debugger is activated in the middle of a computation (by a call todebug/0 or trace/0
in the program or after the interrupt key sequence (Ctl-C) by choosingtrace or debug), information prior to
this point is not available.

debugging/0 : prints onto the terminal information about the current debugging state (whether the debugger is
switched on, what are the leashed ports, spy-points defined,. . .).

notrace/0 or nodebug/0 switches the debugger off.

wamdebug/0 invokes the sub-debugger devoted to the WAM data structures (section 4.6, page 33). It can be
also invoked using theWdebugger command (section 4.5, page 32).

4.3.2 Leashing ports

leash(Ports) requests the debugger to prompt the user, as he creeps through the program, for every port
defined in thePorts list. Each element ofPorts is an atom incall , exit , redo , fail , exception .
Ports can also be an atom defining a shorthand:

• full : equivalent to[call, exit, redo, fail, exception]

• half : equivalent to[call, redo]

• loose : equivalent to[call]

• none : equivalent to[]

• tight : equivalent to[call, redo, fail, exception]

When an unleashed port is encountered the debugger continues to show the associated goal but does not stop the
execution to prompt the user.

4.3.3 Spy-points

When dealing with big sources it is not very practical to creep through the entire program. It is preferable to define
a set of spy-points on interesting predicates to be prompted when the debugger reaches one of these predicates.

32 4 DEBUGGING

Spy-points can be added either usingspy/1 (or spypoint condition/3) or dynamically when prompted by
the debugger using the+ (or *) debugger command (section 4.5, page 32). The current mode of leashing does not
affect spy-points in the sense that user interaction is requested on every port.

spy(PredSpec) sets a spy-point on all the predicates given byPredSpec . PredSpec defines one or several
predicates and has one of the following forms:

• [PredSpec1, PredSpec2,...] : set a spy-point for each element of the list.

• Name: set a spy-point for any predicate whose name isName(whatever the arity).

• Name/Arity : set a spy-point for the predicate whose name isNameand arity isArity .

• Name/A1-A2 : set a spy-point for the each predicate whose name isNameand arity is betweenA1 andA2.

It is not possible to set a spy-point on an undefined predicate.

The following predicate is used to remove one or several spy-points:

nospy(PredSpec) removes the spy-points from the specified predicates.

nospyall/0 removes all spy-points:

It is also possible to define conditional spy-points.

spypoint condition(Goal, Port, Test) sets a conditional spy-point on the predicate forGoal . When
the debugger reaches a conditional spy-point it only shows the associated goal if the following conditions are ver-
ified:

• the actual goal unifies withGoal .

• the actual port unifies withPort .

• the Prolog goalTest succeeds.

4.4 Debugging messages

We here described which information is displayed by the debugger when it shows a goal. The basic format is as
follows:

S N M Port : Goal ?

S is a spy-point indicator: if there is a spy-point on the current goal the+ symbol is displayed else a space is
displayed.N is the invocation number. This unique number can be used to correlate the trace messages for the
various ports, since it is unique for every invocation.M is an index number which represents the number of direct
ancestors of the goal (i.e. the current depth of the goal).Port specifies the particular port (call , exit , fail ,
redo , exception). Goal is the current goal (it is then possible to inspect its current instantiation) which is
displayed usingwrite term/3 with quoted(true) andmax depth(D) options (section 7.14.6, page 95).
Initially D (the print depth) is set to 10 but can be redefined using the< debugger command (section 4.5, page 32).
The? symbol is displayed when the debugger is waiting a command from the user. (i.e.Port is a leashed port).
If the port is unleashed, this symbol is not displayed and the debugger continues the execution displaying the next
goal.

4.5 Debugger commands

When the debugger reaches a leashed port it shows the current goal followed by the? symbol. At this point there
are many commands available. TypingRETURNwill creep into the program. Continuing to creep will show all the

4.6 The WAM debugger 33

control flow. The debugger shows every port for every predicate encountered during the execution. It is possible
to select the ports at which the debugger will prompt the user using the built-in predicateleash/1 (section 4.3.2,
page 31). Each command is only one character long:

Command Name Description

RETor c creep single-step to the next port
l leap continue the execution only stopping when a goal with a spy-point is

reached
s skip skip over the entire execution of the current goal. No message will be

shown until control returns
G go to ask for an invocation number and continue the execution until a port is

reached for that invocation number
r retry try to restart the invocation of the current goal by failing until reaching the

invocation of the goal. The state of execution is the same as when the goal
was initially invoked (except when using side-effect predicates)

f fail force the current goal to fail immediately
w write show the current goal usingwrite/2 (section 7.14.6, page 95)
d display show the current goal usingdisplay/2 (section 7.14.6, page 95)
p print show the current goal usingprint/2 (section 7.14.6, page 95)
e exception show the pending exception. Only applicable to anexception port
g ancestors show the list of ancestors of the current goal
A alternatives show the list of ancestors of the current goal combined with choice-points
u unify ask for a term and unify the current goal with this term. This is convenient

for getting a specific solution. Only available at acall port
. father file show the Prolog file name and the line number where the current predicate

is defined
n no debug switch the debugger off. Same asnodebug/0 (section 4.3.1, page 31)
= debugging show debugger information. Same asdebugging/0 (section 4.3.1,

page 31)
+ spy this set a spy-point on the current goal. Usesspy/1 (section 4.3.3, page 31)
- nospy this remove a spy-point on the current goal. Usesnospy/1 (section 4.3.3,

page 31)
* spy conditionally ask for a termGoal, Port, Test (terminated by a dot) and set a con-

ditional spy-point on the current predicate.Goal and the current goal must
have the same predicate indicator. Usesspypoint condition/3
(section 4.3.3, page 31)

L listing list the clauses associated to the current predicate. Useslisting/1 (sec-
tion 7.23.3, page 136)

a abort abort the current execution. Same asabort/0 (section 7.18.1, page 111)
b break invoke a recursive top-level. Same asbreak/0 (section 7.18.1, page 111)
@ execute goal ask for a goal and execute it
< set print depth ask for an integer and set the print depth to this value (-1 for no depth

limit)
h or ? help display a summary of available commands

W WAM debugger invoke the low-level WAM debugger (section 4.6, page 33)

4.6 The WAM debugger

In some cases it is interesting to have access to the WAM data structures. This sub-debugger allows the user to
inspect/modify the contents of any stack or register of the WAM. The WAM debugger is invoked using the built-
in predicatewamdebug/0 (section 4.3.1, page 31) or theWdebugger command (section 4.5, page 32). The
following table presents the specific commands of the WAM debugger:

34 4 DEBUGGING

Command Description

write A [N] write N terms starting at the addressA usingwrite/1 (section 7.14.6, page 95)
data A [N] displayN words starting at the addressA
modify A [N] display and modifyN words starting at the addressA
where A display the real address corresponding toA
what RA display what corresponds to the real addressRA
deref A display the dereferenced word starting at the addressA
envir [SA] display the contents of the environment located atSA (or the current one)
backtrack [SA] display the contents of the choice-point located atSA (or the current one)
backtrack all display all choice-points
quit quit the WAM debugger
help display a summary of available commands

In the above table the following conventions apply:

• elements between [and] are optional.

• N is an optional integer (defaults to 1).

• A is a WAM address, its syntax is:BANKNAME[[N]], i.e. a bank name possibly followed by an index
(defaults to 0).BANKNAMEis either:

– reg : WAM general register (stack pointers, continuation, ...).

– x : WAM X register (temporary variables, i.e. arguments).

– y : WAM Y register (permanent variables).

– ab : WAM X register saved in the current choice-point.

– STACKNAME: WAM stack (STACKNAMEin local , global , trail , cstr).

• SA is a WAM stack address, i.e.STACKNAME[[N]] (special case of WAM addresses).

• RA is a real address, its syntax is the syntax of C integers (in particular the notation0x... is recognized).

It is possible to only use the first letters of a commands and bank names when there is no ambiguity. Also the
square brackets[] enclosing the index of a bank name can be omitted. For instance the following command
(showing the contents of 25 consecutive words of the global stack from the index 3):data global[3] 25 can
be abbreviated as:d g 3 25 .

35

5 Format of definitions

5.1 General format

The definition of control constructs, directives and built-in predicates is presented as follows:

Templates

Specifies the types of the arguments and which of them shall be instantiated (mode). Types and modes are described
later (section 5.2, page 35).

Description

Describes the behavior (in the absence of any error conditions). It is explicitly mentioned when a built-in predicate
is re-executable on backtracking. Predefined operators involved in the definition are also mentioned.

Errors

Details the error conditions. Possible errors are detailed later (section 5.3, page 37). For directives, this part is
omitted.

Portability

Specifies whether the definition conforms to the ISO standard or is a GNU Prolog extension.

5.2 Types and modes

The templates part defines, for each argument of the concerned built-in predicate, its mode and type. The mode
specifies whether or not the argument must be instantiated when the built-in predicate is called. The mode is
encoded with a symbol just before the type. Possible modes are:

• +: the argument must be instantiated.

• - : the argument must be a variable (will be instantiated if the built-in predicate succeeds).

• ?: the argument can be instantiated or a variable.

The type of an argument is defined by the following table:

36 5 FORMAT OF DEFINITIONS

Type Description

TYPE list a list whose the type of each element isTYPE
TYPE1 or TYPE2 a term whose type is eitherTYPE1or TYPE2
atom an atom
atom property an atom property (section 7.19.12, page 119)
boolean the atomtrue or false
byte an integer≥ 0 and≤ 255
callable term an atom or a compound term
character a single character atom
character code an integer≥ 1 and≤ 255
clause a clause (fact or rule)
close option a close option (section 7.10.7, page 71)
compound term a compound term
evaluable an arithmetic expression (section 7.6.1, page 57)
fd bool evaluable a boolean FD expression (section 8.7.1, page 173)
fd labeling option an FD labeling option (section 8.9.1, page 178)
fd evaluable an arithmetic FD expression (section 8.6.1, page 170)
fd variable an FD variable
flag a Prolog flag (section 7.22.1, page 132)
float a floating point number
head a head of a clause (atom or compound term)
integer an integer
in byte an integer≥ 0 and≤ 255 or-1 (for the end-of-file)
in character a single character atom or the atomend of file (for the end-of-file)
in character code an integer≥ 1 and≤ 255 or-1 (for the end-of-file)
io mode an atom in:read , write or append
list the empty list[] or a non-empty list[|]
nonvar any term that is not a variable
number an integer or a floating point number
operator specifier an operator specifier (section 7.14.10, page 99)
os file property an operating system file property (section 7.27.11, page 146)
predicate indicator a termName/Arity whereName is an atom andArity an integer≥ 0. A

callable term can be given if thestrict iso Prolog flag is switched off (sec-
tion 7.22.1, page 132)

predicate property a predicate property (section 7.8.2, page 64)
read option a read option (section 7.14.1, page 91)
socket address a term of the form’AF UNIX’(A) or ’AF INET’(A,N) whereA is an atom

andNan integer
socket domain an atom in:’AF UNIX’ or ’AF INET’
source sink an atom identifying a source or a sink
stream a stream-term: a term of the form’$stream’(N) whereN is an integer≥ 0
stream option a stream option (section 7.10.6, page 69)
stream or alias a stream-term or an alias (atom)
stream position a stream position: a term’$stream position’(I1, I2, I3, I4)

whereI1 , I2 , I3 andI4 are integers
stream property a stream property (section 7.10.10, page 73)
stream seek method an atom in:bof , current or eof
term any term
var binding option a variable binding option (section 7.5.3, page 56)
write option a write option (section 7.14.6, page 95)

5.3 Errors 37

5.3 Errors

5.3.1 General format and error context

When an error occurs an exception of the form:error(ErrorTerm , Caller) is raised. ErrorTerm is
a term specifying the error (detailed in next sections) andCaller is a term specifying the context of the error.
The context is either the predicate indicator of the last invoked built-in predicate or an atom giving general context
information.

Using exceptions allows the user both to recover an error usingcatch/3 (section 6.2.4, page 47) and to raise an
error usingthrow/1 (section 6.2.4, page 47).

To illustrate how to write error cases, let us write a predicatemy pred(X) whereX must be an integer:

my_pred(X) :-
(nonvar(X) ->

true
; throw(error(instantiation_error), my_pred/1)),
),
(integer(X) ->

true
; throw(error(type_error(integer, X), my_pred/1))
),
...

To help the user to write these error cases, a set of system predicates is provided to raise errors. These predicates are
of the form’$pl err ...’ and they all refer to the implicit error context. The predicatesset bip name/2
(section 7.22.3, page 134) andcurrent bip name/2 (section 7.22.4, page 134) are provided to set and recover
the name and the arity associated to this context (an arity< 0 means that only the atom corresponding to the functor
is significant). Using these system predicates the user could define the above predicate as follow:

my_pred(X) :-
set_bip_name(my_pred,1),
(nonvar(X) ->

true
; ’$pl_err_instantiation’
),
(integer(X) ->

true
; ’$pl_err_type’(integer, X)
),
...

The following sections detail each kind of errors (and associated system predicates).

5.3.2 Instantiation error

An instantiation error occurs when an argument or one of its components is variable while an instantiated argument
was expected.ErrorTerm has the following form:instantiation error .

The system predicate’$pl err instantiation’ raises this error in the current error context (section 5.3.1,
page 37).

38 5 FORMAT OF DEFINITIONS

5.3.3 Type error

A type error occurs when the type of an argument or one of its components is not the expected type (but not a
variable).ErrorTerm has the following form:type error(Type , Culprit) whereType is the expected
type andCulprit the argument which caused the error.Type is one of:

• atom

• atomic

• boolean

• byte

• callable

• character

• compound

• evaluable

• fd bool evaluable

• fd evaluable

• fd variable

• float

• in byte

• in character

• integer

• list

• number

• predicate indicator

• variable

The system predicate’$pl err type’(Type, Culprit) raises this error in the current error context (sec-
tion 5.3.1, page 37).

5.3.4 Domain error

A domain error occurs when the type of an argument is correct but its value is outside the expected domain.
ErrorTerm has the following form:domain error(Domain , Culprit) whereDomain is the expected
domain andCulprit the argument which caused the error.Domain is one of:

• atom property

• buffering mode

• character code list

• close option

• date time

• eof action

• fd labeling option

• flag value

• format control sequence

• g array index

• io mode

• non empty list

• not less than zero

• operator priority

• operator specifier

• os file permission

• os file property

• os path

• predicate property

• prolog flag

• read option

• selectable item

• socket address

• socket domain

• source sink

• statistics key

• statistics value

• stream

• stream option

• stream or alias

• stream position

• stream property

• stream seek method

• stream type

• term stream or alias

• var binding option

• write option

The system predicate’$pl err domain’(Domain, Culprit) raises this error in the current error context
(section 5.3.1, page 37).

5.3 Errors 39

5.3.5 Existence error

an existence error occurs when an object on which an operation is to be performed does not exist.ErrorTerm
has the following form:existence error(Object , Culprit) whereObject is the type of the object
andCulprit the argument which caused the error.Object is one of:

• procedure • source sink • stream

The system predicate’$pl err existence’(Object, Culprit) raises this error in the current error
context (section 5.3.1, page 37).

5.3.6 Permission error

A permission error occurs when an attempt to perform a prohibited operation is made.ErrorTerm has the fol-
lowing form: permission error(Operation , Permission , Culprit) whereOperation is the
operation which caused the error,Permission the type of the tried permission andCulprit the argument
which caused the error.Operation is one of:

• access

• add alias

• close

• create

• input

• modify

• open

• output

• reposition

andPermission is one of:

• binary stream

• flag

• operator

• past end of stream

• private procedure

• source sink

• static procedure

• stream

• text stream

The system predicate’$pl err permission’(Operation, Permission, Culprit) raises this error
in the current error context (section 5.3.1, page 37).

5.3.7 Representation error

A representation error occurs when an implementation limit has been breached.ErrorTerm has the following
form: representation error(Limit) whereLimit is the name of the reached limit.Limit is one of:

• character

• character code

• in character code

• max arity

• max integer

• min integer

• too many variables

The errorsmax integer andmin integer are not currently implemented.

The system predicate’$pl err representation’(Limit) raises this error in the current error context
(section 5.3.1, page 37).

40 5 FORMAT OF DEFINITIONS

5.3.8 Evaluation error

An evaluation error occurs when an arithmetic expression gives rise to an exceptional value.ErrorTerm has the
following form: evaluation error(Error) whereError is the name of the error.Error is one of:

• float overflow

• int overflow

• undefined

• underflow

• zero divisor

The errorsfloat overflow , int overflow , undefined andunderflow are not currently implemented.

The system predicate’$pl err evaluation’(Error) raises this error in the current error context (sec-
tion 5.3.1, page 37).

5.3.9 Resource error

A resource error occurs when GNU Prolog does not have enough resources.ErrorTerm has the following form:
resource error(Resource) whereResource is the name of the resource.Resource is one of:

• print object not linked • too big fd constraint • too many open streams

The system predicate’$pl err resource’(Resource) raises this error in the current error context (sec-
tion 5.3.1, page 37).

5.3.10 Syntax error

A syntax error occurs when a sequence of character does not conform to the syntax of terms.ErrorTerm has the
following form: syntax error(Error) whereError is an atom explaining the error.

The system predicate’$pl err syntax’(Error) raises this error in the current error context (section 5.3.1,
page 37).

5.3.11 System error

A system error can occur at any stage. A system error is generally associated to an external component (e.g.
operating system).ErrorTerm has the following form:system error(Error) whereError is an atom
explaining the error. This is an extension to ISO which only definessystem error without arguments.

The system predicate’$pl err system’(Error) raises this error in the current error context (section 5.3.1,
page 37).

41

6 Prolog directives and control constructs

6.1 Prolog directives

6.1.1 Introduction

Prolog directives are annotations inserted in Prolog source files for the compiler. A Prolog directive is used to
specify:

• the properties of some procedures defined in the source file.

• the format and the syntax for read-terms in the source file (using changeable Prolog flags).

• included source files.

• a goal to be executed at run-time.

6.1.2 dynamic/1

Templates

dynamic(+predicate indicator)
dynamic(+predicate indicator list)
dynamic(+predicate indicator sequence)

Description

dynamic(Pred) specifies that the procedure whose predicate indicator isPred is a dynamic procedure. This
directive makes it possible to alter the definition ofPred by adding or removing clauses. For more information
refer to the section about dynamic clause management (section 7.7.1, page 60).

This directive shall precede the definition ofPred in the source file.

If there is no clause forPred in the source file,Pred exists however as an empty predicate (this means that
current predicate(Pred) succeeds).

In order to allow multiple definitions,Pred can also be a list of predicate indicators or a sequence of predicate
indicators using’,’/2 as separator.

Portability

ISO directive.

6.1.3 public/1

Templates

public(+predicate indicator)
public(+predicate indicator list)
public(+predicate indicator sequence)

Description

42 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

public(Pred) specifies that the procedure whose predicate indicator isPred is a public procedure. This
directive makes it possible to inspect the clauses ofPred . For more information refer to the section about dynamic
clause management (section 7.7.1, page 60).

This directive shall precede the definition ofPred in the source file. Since a dynamic procedure is also public. It
is useless (but correct) to define a public directive for a predicate already declared as dynamic.

In order to allow multiple definitions,Pred can also be a list of predicate indicators or a sequence of predicate
indicators using’,’/2 as separator.

Portability

GNU Prolog directive. The ISO reference does not define any directive to declare a predicate public but it does
distinguish public predicates. It is worth noting that in most Prolog systems thepublic/1 directive is as a
visibility declaration. Indeed, declaring a predicate as public makes it visible from any predicate defined in any
other file (otherwise the predicate is only visible from predicates defined in the same source file as itself). When a
module system is incorporated in GNU Prolog a more general visibility declaration shall be provided conforming
to the ISO reference.

6.1.4 multifile/1

Templates

multifile(+predicate indicator)
multifile(+predicate indicator list)
multifile(+predicate indicator sequence)

Description

multifile(Pred) is not supported by GNU Prolog. When such a directive is encountered it is simply ignored.
All clauses for a given predicate must reside in a single file.

Portability

ISO directive. Not supported.

6.1.5 discontiguous/1

Templates

discontiguous(+predicate indicator)
discontiguous(+predicate indicator list)
discontiguous(+predicate indicator sequence)

Description

discontiguous(Pred) specifies that the procedure whose predicate indicator isPred is a discontiguous
procedure. Namely, the clauses definingPred are not restricted to be consecutive but can appear anywhere in the
source file.

This directive shall precede the definition ofPred in the source file.

In order to allow multiple definitions,Pred can also be a list of predicate indicators or a sequence of predicate
indicators using’,’/2 as separator.

6.1 Prolog directives 43

Portability

ISO directive. The ISO reference document states that if there is no clause forPred in the source file,Pred exists
however as an empty predicate (i.e.current predicate(Pred) will succeed). This is not the case for GNU
Prolog.

6.1.6 ensure linked/1

Templates

ensure linked(+predicate indicator)
ensure linked(+predicate indicator list)
ensure linked(+predicate indicator sequence)

Description

ensure linked(Pred) specifies that the procedure whose predicate indicator isPred must be included by
the linker. This directive is useful when compiling to native code to force the linker to include the code of a
given predicate. Indeed, if thegplc is invoked with an option to reduce the size of the executable (section 3.4.3,
page 22), the linker only includes the code of predicates that are statically referenced. However, the linker cannot
detect dynamically referenced predicates (used as data passed to a meta-call predicate). The use of this directive
prevents it to exclude the code of such predicates.

In order to allow multiple definitions,Pred can also be a list of predicate indicators or a sequence of predicate
indicators using’,’/2 as separator.

Portability

GNU Prolog directive.

6.1.7 built in/0 , built in/1 , built in fd/0 , built in fd/1

Templates

built in
built in(+predicate indicator)
built in(+predicate indicator list)
built in(+predicate indicator sequence)
built in fd
built in fd(+predicate indicator)
built in fd(+predicate indicator list)
built in fd(+predicate indicator sequence)

Description

built in specifies that the procedures defined from now have thebuilt in property (section 7.8.2, page 64).

built in(Pred) is similar tobuilt in/0 but only affects the procedure whose predicate indicator isPred .

This directive shall precede the definition ofPred in the source file.

In order to allow multiple definitions,Pred can also be a list of predicate indicators or a sequence of predicate
indicators using’,’/2 as separator.

built in fd (resp. built in fd(Pred)) is similar tobuilt in (resp. built in(Pred)) but sets the
built in fd predicate property (section 7.8.2, page 64).

44 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

Portability

GNU Prolog directives.

6.1.8 include/1

Templates

include(+atom)

Description

include(File) specifies that the content of the Prolog sourceFile shall be inserted. The resulting Prolog
text is identical to the Prolog text obtained by replacing the directive by the content of the Prolog sourceFile .

Seeabsolute file name/2 for information about the syntax ofFile (section 7.26.1, page 140).

Portability

ISO directive.

6.1.9 ensure loaded/1

Templates

ensure loaded(+atom)

Description

ensure loaded(File) is not supported by GNU Prolog. When such a directive is encountered it is simply
ignored.

Portability

ISO directive. Not supported.

6.1.10 op/3

Templates

op(+integer, +operator specifier, +atom or atom list)

Description

op(Priority, OpSpecifier, Operator) alters the operator table. This directive is executed as soon
as it is encountered by calling the built-in predicateop/3 (section 7.14.10, page 99). A system directive is also
generated to reflect the effect of this directive at run-time (section 3.4.4, page 25).

Portability

ISO directive.

6.1 Prolog directives 45

6.1.11 char conversion/2

Templates

char conversion(+character, +character)

Description

char conversion(InChar, OutChar) alters the character-conversion mapping. This directive is executed
as soon as it is encountered by a call to the built-in predicatechar conversion/2 (section 7.14.12, page 101).
A system directive is also generated to reflect the effect of this directive at run-time (section 3.4.4, page 25).

Portability

ISO directive.

6.1.12 set prolog flag/2

Templates

set prolog flag(+flag, +term)

Description

set prolog flag(Flag, Value) sets the value of the Prolog flagFlag to Value . This directive is ex-
ecuted as soon as it is encountered by a call to the built-in predicateset prolog flag/2 (section 7.22.1,
page 132). A system directive is also generated to reflect the effect of this directive at run-time (section 3.4.4,
page 25).

Portability

ISO directive.

6.1.13 initialization/1

Templates

initialization(+callable term)

Description

initialization(Goal) addsGoal to the set of goal which shall be executed at run-time. A user directive is
generated to executeGoal at run-time. If several initialization directives appear in the same file they are executed
in the order of appearance (section 3.4.4, page 25).

Portability

ISO directive.

6.1.14 foreign/2 , foreign/1

Templates

46 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

foreign(+callable term, +foreign option list)
foreign(+callable term)

Description

foreign(Template, Options) defines an interface predicate whose prototype isTemplate according to
the options given byOptions . Refer to the foreign code interface for more information (section 11.1, page 191).

foreign(Template) is equivalent toforeign(Template, []) .

Portability

GNU Prolog directive.

6.2 Prolog control constructs

6.2.1 true/0 , fail/0 , !/0

Templates

true
fail
!

Description

true always succeeds.

fail always fails (enforces backtracking).

! always succeeds and the for side-effect of removing all choice-points created since the invocation of the predicate
activating it.

Errors

None.

Portability

ISO control constructs.

6.2.2 (’,’)/2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then

Templates

’,’(+callable term, +callable term)
;(+callable term, +callable term)
->(+callable term, +callable term)

Description

Goal1 , Goal2 executesGoal1 and, in case of success, executesGoal2 .

Goal1 ; Goal2 first creates a choice-point and executesGoal1 . On backtrackingGoal2 is executed.

6.2 Prolog control constructs 47

Goal1 -> Goal2 first executesGoal1 and, in case of success, removes all choice-points created byGoal1
and executesGoal2 . This control construct acts like an if-then (Goal1 is the test part andGoal2 the then part).
Note that ifGoal1 fails ->/2 fails also.->/2 is often combined with;/2 to define an if-then-else as follows:
Goal1 -> Goal2 ; Goal3 . Note thatGoal1 -> Goal2 is the first argument of the(;)/2 andGoal3
(the else part) is the second argument. Such an if-then-else control construct first creates a choice-point for the
else-part (intuitively associated to;/2) and then executesGoal1 . In case of success, all choice-points created by
Goal1 together with the choice-point for the else-part are removed andGoal2 is executed. IfGoal1 fails then
Goal3 is executed.

’,’ , ; and-> are predefined infix operators (section 7.14.10, page 99).

Errors

Goal1 or Goal2 is a variable instantiation error
Goal1 is neither a variable nor a callable term type error(callable, Goal1)
Goal2 is neither a variable nor a callable term type error(callable, Goal2)
The predicate indicatorPred of Goal1 or Goal2
does not correspond to an existing procedure and the
value of theunknown Prolog flag iserror
(section 7.22.1, page 132)

existence error(procedure, Pred)

Portability

ISO control constructs.

6.2.3 call/1

Templates

call(+callable term)

Description

call(Goal) executesGoal . call/1 succeeds ifGoal represents a goal which is true. WhenGoal contains
a cut symbol! (section 6.2.1, page 46) as a subgoal, the effect of! does not extend outsideGoal .

Errors

Goal is a variable instantiation error
Goal is neither a variable nor a callable term type error(callable, Goal)
The predicate indicatorPred of Goal does not
correspond to an existing procedure and the value of
theunknown Prolog flag iserror (section 7.22.1,
page 132)

existence error(procedure, Pred)

Portability

ISO control construct.

6.2.4 catch/3 , throw/1

Templates

catch(?callable term, ?term, ?term)
throw(+nonvar)

48 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

Description

catch(Goal, Catcher, Recovery) is similar tocall(Goal) (section 6.2.3, page 47). If this succeeds
or fails, so does the call tocatch/3 . If however, during the execution ofGoal , there is a call tothrow(Ball) ,
the current flow of control is interrupted, and control returns to a call ofcatch/3 that is being executed. This can
happen in one of two ways:

• implicitly, when an error condition for a built-in predicate is satisfied.

• explicitly, when the program executes a call ofthrow/1 because the program wishes to abandon the current
processing, and instead to take an alternative action.

throw(Ball) causes the normal flow of control to be transferred back to an existing call ofcatch/3 . When a
call to throw(Ball) happens,Ball is copied and the stack is unwound back to the call tocatch/3 , where-
upon the copy ofBall is unified withCatcher . If this unification succeeds, thencatch/3 executes the goal
Recovery usingcall/1 (section 6.2.3, page 47) in order to determine the success or failure ofcatch/3 .
Otherwise, in case the unification fails, the stack keeps unwinding, looking for an earlier invocation ofcatch/3 .
Ball may be any non-variable term.

Errors

Goal is a variable instantiation error
Goal is neither a variable nor a callable term type error(callable, Goal)
The predicate indicatorPred of Goal does not
correspond to an existing procedure and the value of
theunknown Prolog flag iserror (section 7.22.1,
page 132)

existence error(procedure, Pred)

Ball is a variable instantiation error

If Ball does not unify with theCatcher argument of any call ofcatch/3 , a system error message is displayed
andthrow/1 fails.

Whencatch/3 calls Recovery it usescall/1 (section 6.2.3, page 47), aninstantiation error , a
type error or anexistence error can then occur depending onRecovery .

Portability

ISO control constructs.

49

7 Prolog built-in predicates

7.1 Type testing

7.1.1 var/1 , nonvar/1 , atom/1 , integer/1 , float/1 , number/1 , atomic/1 ,
compound/1 , callable/1 , list/1 , partial list/1 , list or partial list/1

Templates

var(?term)
nonvar(?term)
atom(?term)
integer(?term)
float(?term)
number(?term)

atomic(?term)
compound(?term)
callable(?term)
list(?term)
partial list(?term)
list or partial list(?term)

Description

var(Term) succeeds ifTerm is currently uninstantiated (which therefore has not been bound to anything, except
possibly another uninstantiated variable).

nonvar(Term) succeeds ifTerm is currently instantiated (opposite ofvar/1).

atom(Term) succeeds ifTerm is currently instantiated to an atom.

integer(Term) succeeds ifTerm is currently instantiated to an integer.

float(Term) succeeds ifTerm is currently instantiated to a floating point number.

number(Term) succeeds ifTerm is currently instantiated to an integer or a floating point number.

atomic(Term) succeeds ifTerm is currently instantiated to an atom, an integer or a floating point number.

compound(Term) succeeds ifTerm is currently instantiated to a compound term, i.e. a term of arity> 0 (a list
or a structure).

callable(Term) succeeds ifTerm is currently instantiated to a callable term, i.e. an atom or a compound
term.

list(Term) succeeds ifTerm is currently instantiated to a list, i.e. the atom[] (empty list) or a term with
principal functor’.’/2 and with second argument (the tail) a list.

partial list(Term) succeeds ifTerm is currently instantiated to a partial list, i.e. a variable or a term whose
the main functor is’.’/2 and the second argument (the tail) is a partial list.

list or partial list(Term) succeeds ifTerm is currently instantiated to a list or a partial list.

Errors

None.

Portability

var/1 , nonvar/1 , atom/1 , integer/1 , float/1 , number/1 , atomic/1 , compound/1 andcallable/1
are ISO predicates.

50 7 PROLOG BUILT-IN PREDICATES

list/1 , partial list/1 andlist or partial list/1 are GNU Prolog predicates.

7.2 Term unification

7.2.1 (=)/2 - Prolog unification

Templates

=(?term, ?term)

Description

Term1 = Term2 unifiesTerm1 andTerm2 . No occurs check is done, i.e. this predicate does not check if a
variable is unified with a compound term containing this variable (this can lead to an infinite loop).

= is a predefined infix operator (section 7.14.10, page 99).

Errors

None.

Portability

ISO predicate.

7.2.2 unify with occurs check/2

Templates

unify with occurs check(?term, ?term)

Description

unify with occurs check(Term1, Term2) unifiesTerm1 andTerm2 . The occurs check test is done
(i.e. the unification fails if a variable is unified with a compound term containing this variable).

Errors

None.

Portability

ISO predicate.

7.2.3 (\=)/2 - not Prolog unifiable

Templates

\=(?term, ?term)

Description

Term1 \= Term2 succeeds ifTerm1 andTerm2 are not unifiable (no occurs check is done).

7.3 Term comparison 51

\= is a predefined infix operator (section 7.14.10, page 99).

Errors

None.

Portability

ISO predicate.

7.3 Term comparison

7.3.1 Standard total ordering of terms

The built-in predicates described in this section allows the user to compare Prolog terms. Prolog terms are totally
ordered according to the standard total ordering of terms which is as follows (from the smallest term to the greatest):

• variables, oldest first.

• finite domain variables (section 8.1.1, page 165), oldest first.

• floating point numbers, in numeric order.

• integers, in numeric order.

• atoms, in alphabetical (i.e. character code) order.

• compound terms, ordered first by arity, then by the name of the principal functor and by the arguments in
left-to-right order.

A list is treated as a compound term (whose principal functor is’.’/2).

The portability of the order of variables is not guaranteed (in the ISO reference the oder of variables is system
dependent).

7.3.2 (==)/2 - term identical, (\==)/2 - term not identical,
(@<)/2 - term less than,(@=<)/2 - term less than or equal to,
(@>)/2 - term greater than, (@>=)/2 - term greater than or equal to

Templates

==(?term, ?term)
\==(?term, ?term)
@<(?term, ?term)

@=<(?term, ?term)
@>(?term, ?term)
@>=(?term, ?term)

Description

These predicates compare two terms according to the standard total ordering of terms (section 7.3.1, page 51).

Term1 == Term2 succeeds ifTerm1 andTerm2 are equal.

Term1 \== Term2 succeeds ifTerm1 andTerm2 are different.

Term1 @< Term2succeeds ifTerm1 is less thanTerm2 .

52 7 PROLOG BUILT-IN PREDICATES

Term1 @=< Term2succeeds ifTerm1 is less than or equal toTerm2 .

Term1 @> Term2succeeds ifTerm1 is greater thanTerm2 .

Term1 @>= Term2succeeds ifTerm1 is greater than or equal toTerm2 .

==, \== , @<, @=<, @>and@>=are predefined infix operators (section 7.14.10, page 99).

Errors

None.

Portability

ISO predicates.

7.3.3 compare/3

Templates

compare(?atom, +term, +term)

Description

compare(Result, Term1, Term2) comparesTerm1 andTerm2 according to the standard (section 7.3.1,
page 51) and unifiesResult with:

• the atom< if Term1 is less thanTerm2 .

• the atom= if Term1 andTerm2 are equal.

• the atom> if Term1 is greater thanTerm2 .

Errors

Result is neither a variable nor an atom type error(atom, Result)

Portability

GNU Prolog predicate.

7.4 Term processing

7.4.1 functor/3

Templates

functor(+nonvar, ?atomic, ?integer)
functor(-nonvar, +atomic, +integer)

Description

functor(Term, Name, Arity) succeeds if the principal functor ofTerm is Nameand its arity isArity .
This predicate can be used in two ways:

• Term is not a variable: extract the name (an atom or a number ifTerm is a number) and the arity ofTerm
(if Term is atomicArity = 0).

7.4 Term processing 53

• Term is a variable: unifyTerm with a general term whose principal functor is given byNameand arity is
given byArity .

Errors

Term andNameare both variables instantiation error
Term andArity are both variables instantiation error
Term is a variable andNameis neither a variable nor
an atomic term

type error(atomic, Name)

Term is a variable andArity is neither a variable
nor an integer

type error(integer, Arity)

Term is a variable,Nameis a constant but not an
atom andArity is an integer> 0

type error(atom, Name)

Term is a variable andArity is an integer>
max arity flag (section 7.22.1, page 132)

representation error(max arity)

Term is a variable andArity is an integer< 0 domain error(not less than zero,
Arity)

Portability

ISO predicate.

7.4.2 arg/3

Templates

arg(+integer, +compound term, ?term)

Description

arg(N, Term, Arg) succeeds if theNth argument ofTerm is Arg .

Errors

N is a variable instantiation error
Term is a variable instantiation error
N is neither a variable nor an integer type error(integer, N)
Term is neither a variable nor a compound term type error(compound, Term)
N is an integer< 0 domain error(not less than zero, N)

Portability

ISO predicate.

7.4.3 (=..)/2 - univ

Templates

=..(+nonvar, ?list)
=..(-nonvar, +list)

Description

Term =.. List succeeds ifList is a list whose head is the atom corresponding to the principal functor of
Term and whose tail is a list of the arguments ofTerm.

54 7 PROLOG BUILT-IN PREDICATES

=.. is a predefined infix operator (section 7.14.10, page 99).

Errors

Term is a variable andList is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)
Term is a variable andList is a list whose head is a
variable

instantiation error

List is a list whose headH is neither an atom nor a
variable and whose tail is not the empty list

type error(atom, H)

List is a list whose headH is a compound term and
whose tail is the empty list

type error(atomic, H)

Term is a variable andList is the empty list domain error(non empty list, [])
Term is a variable and the tail ofList has a length
> max arity flag (section 7.22.1, page 132)

representation error(max arity)

Portability

ISO predicate.

7.4.4 copy term/2

Templates

copy term(?term, ?term)

Description

copy term(Term1, Term2) succeeds ifTerm2 unifies with a termT which is a renamed copy ofTerm1 .

Errors

None.

Portability

ISO predicate.

7.4.5 setarg/4 , setarg/3

Templates

setarg(+integer, +compound term, +term, +boolean)
setarg(+integer, +compound term, +term)

Description

setarg(N, Term, NewValue, Undo) replaces destructively theNth argument ofTerm with NewValue .
This assignment is undone on backtracking ifUndo = true . This should only used if there is no further use of
the old value of the replaced argument. IfUndo = false thenNewValue must be either an atom or an integer.

setarg(N, Term, NewValue) is equivalent tosetarg(N, Term, NewValue, true) .

Errors

7.5 Variable naming/numbering 55

N is a variable instantiation error
N is neither a variable nor an integer type error(integer, N)
N is an integer< 0 domain error(not less than zero, N)
Term is a variable instantiation error
Term is neither a variable nor a compound term type error(compound, Term)
NewValue is neither an atom nor an integer and
Undo = false

type error(atomic, NewValue)

Undo is a variable instantiation error
Undo is neither a variable nor a boolean type error(boolean, Undo)

Portability

GNU Prolog predicate.

7.5 Variable naming/numbering

7.5.1 name singleton vars/1

Templates

name singleton vars(?term)

Description

name singleton vars(Term) binds each singleton variable appearing inTerm with a term of the form
’$VARNAME’(’ ’) . Such a term can be output bywrite term/3 as a variable name (section 7.14.6, page 95).

Errors

None.

Portability

GNU Prolog predicates.

7.5.2 name query vars/2

Templates

name query vars(+list, ?list)

Description

name query vars(List, Rest) for each element ofList of the form Name = Var whereName is
an atom andVar a variable, bindsVar with the term’$VARNAME’(Name) . Such a term can be output by
write term/3 as a variable name (section 7.14.6, page 95).Rest is unified with the list of elements ofList
that have not given rise to a binding. This predicate is provided as a way to name the variable lists obtained re-
turned byread term/3 with variable names(List) or singletons(List) options (section 7.14.1,
page 91).

Errors

List is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)
Rest is neither a partial list nor a list type error(list, Rest)

56 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicate.

7.5.3 bind variables/2 , numbervars/3 , numbervars/1

Templates

bind variables(?term, +var binding option list)
numbervars(?term, +integer, ?integer)
numbervars(?term)

Description

bind variables(Term, Options) binds each variable appearing inTerm according to the options given
by Options .

Variable binding options: Options is a list of variable binding options. If this list contains contradictory
options, the rightmost option is the one which applies. Possible options are:

• numbervars : specifies that each variable appearing inTerm should be bound to a term of the form
’$VAR’(N) whereN is an integer. Such a term can be output bywrite term/3 as a variable name
(section 7.14.6, page 95). This is the default.

• namevars : specifies that each variables appearing inTerm shall be bound to a term of the form’$VARNAME’(Name)
whereNameis the atom that would be output bywrite term/3 seeing a term of the’$VAR’(N) where
N is an integer. Such a term can be output bywrite term/3 as a variable name (section 7.14.6, page 95).
This is the alternative tonumbervars .

• from(From) : the first integerN to use for number/name variables ofTerm is From. The default value is
0.

• next(Next) : whenbind variables/2 succeeds,Next is unified with the (last integerN)+1 used to
bind the variables ofTerm.

• exclude(List) : collects all variable names appearing inList to avoid a clash when binding a variable
of Term. Precisely a numberN≥ From will not be used to bind a variable ofTerm if:

– there is a sub-term ofList of the form’$VAR’(N) or ’$VARNAME’(Name) whereNameis the
constant that would be output bywrite term/3 seeing a term of the’$VAR’(N) .

– an element ofList is of the formName = Var whereNameis an atom that would be output by
write term/3 on seeing a term of the from’$VAR’(N) . This case allows for lists returned by
read term/3 (with variable names(List) orsingletons(List) options) (section 7.14.1,
page 91) and byname query vars/2 (section 7.5.2, page 55).

numbervars(Term, From, Next) is equivalent tobind variables(Term, [from(From), next(Next)] ,
i.e. each variable ofTerm is bound to’$VAR’(N) whereFrom ≤ N< Next .

numbervars(Term) is equivalent tonumbervars(Term, 0,) .

Errors

7.6 Arithmetic 57

Options is a partial list or a list with an elementE
which is a variable

instantiation error

Options is neither a partial list nor a list type error(list, Options)
an elementE of theOptions list is neither a
variable nor a variable binding option

domain error(var binding option, E)

From is a variable instantiation error
From is neither a variable nor an integer type error(integer, From)
Next is neither a variable nor an integer type error(integer, Next)
List is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)

Portability

GNU Prolog predicates.

7.5.4 term ref/2

Templates

term ref(+term, ?integer)
term ref(?term, +integer)

Description

term ref(Term, Ref) succeeds if the internal reference ofTerm is Ref . This predicate can be used either to
obtain the internal reference of a term or to obtain the term associated to a given reference. Note that two identical
terms can have different internal references. A good way to use this predicate is to first record the internal reference
of a given term and to later re-obtain the term via this reference.

Errors

Term andRef are both variables instantiation error
Ref is neither a variable nor an integer type error(integer, Ref)
Ref is an integer< 0 domain error(not less than zero, Ref)

Portability

GNU Prolog predicate.

7.6 Arithmetic

7.6.1 Evaluation of an arithmetic expression

An arithmetic expression is a Prolog term built from numbers, variables, and functors (or operators) that represent
arithmetic functions. When an expression is evaluated each variable must be bound to a non-variable expression.
An expression evaluates to a number, which may be an integer or a floating point number. The following table
details the components of an arithmetic expression, how they are evaluated, the types expected/returned and if they
are ISO or an extension:

58 7 PROLOG BUILT-IN PREDICATES

Expression Result =eval(Expression) Signature ISO

Variable must be bound to a non-variable expressionE.
The result iseval(E)

IF→ IF Y

integer number this number I → I Y
floating point number this number F→ F Y
+ E eval(E) IF→ IF N
- E - eval(E) IF→ IF Y
inc(E) eval(E) + 1 IF→ IF N
dec(E) eval(E) - 1 IF→ IF N
E1 + E2 eval(E1) + eval(E2) IF, IF→ IF Y
E1 - E2 eval(E1) - eval(E2) IF, IF→ IF Y
E1 * E2 eval(E1) * eval(E2) IF, IF→ IF Y
E1 / E2 eval(E1) / eval(E2) IF, IF→ F Y
E1 // E2 rnd(eval(E1) / eval(E2)) I, I → I Y
E1 rem E2 eval(E1) - (rnd(eval(E1) / eval(E2))*eval(E2)) I, I → I Y
E1 mod E2 eval(E1) - (beval(E1) / eval(E2)c *eval(E2)) I, I → I Y
E1 /\ E2 eval(E1) bitwise andeval(E2) I, I → I Y
E1 \/ E2 eval(E1) bitwise or eval(E2) I, I → I Y
E1 ˆ E2 eval(E1) bitwise xor eval(E2) I, I → I N
\ E bitwise noteval(E) I → I Y
E1 << E2 eval(E1) integershift left eval(E2) I, I → I Y
E1 >> E2 eval(E1) integershift right eval(E2) I, I → I Y
abs(E) absolute value ofeval(E) IF→ IF Y
sign(E) sign ofeval(E) (-1 if < 0, 0 if = 0, +1 if> 0) IF→ IF Y
min(E1,E2) minimal value betweeneval(E1) andeval(E2) IF, IF→ ? N
max(E1,E2) maximal value betweeneval(E1) andeval(E2) IF, IF→ ? N
E1 ** E2 eval(E1) raised to the power ofeval(E2) IF, IF→ F Y
sqrt(E) square root ofeval(E) IF→ F Y
atan(E) arc tangent ofeval(E) IF→ F Y
cos(E) cosine ofeval(E) IF→ F Y
acos(E) arc cosine ofeval(E) IF→ F N
sin(E) sine ofeval(E) IF→ F Y
asin(E) arc sine ofeval(E) IF→ F N
exp(E) e raised to the power ofeval(E) IF→ F Y
log(E) natural logarithms ofeval(E) IF→ F Y
float(E) the floating point number equal toeval(E) IF→ F Y
ceiling(E) roundseval(E) upward to the nearest integer F→ I Y
floor(E) roundseval(E) downward to the nearest integer F→ I Y
round(E) roundseval(E) to the nearest integer F→ I Y
truncate(E) the integer value ofeval(E) F→ I Y
float fractional part(E) the float equal to the fractional part ofeval(E) F→ F Y
float integer part(E) the float equal to the integer part ofeval(E) F→ F Y

The meaning of the signature field is as follows:

• I → I: unary function, the operand must be an integer and the result is an integer.

• F→ F: unary function, the operand must be a floating point number and the result is a floating point number.

• F→ I: unary function, the operand must be a floating point number and the result is an integer.

• IF→ F: unary function, the operand can be an integer or a floating point number and the result is a floating
point number.

• IF→ IF: unary function, the operand can be an integer or a floating point number and the result has the same
type as the operand.

• I, I → I: binary function: each operand must be an integer and the result is an integer.

7.6 Arithmetic 59

• IF, IF→ IF: binary function: each operand can be an integer or a floating point number and the result is a
floating point number if at least one operand is a floating point number, an integer otherwise.

• IF, IF→ ?: binary function: each operand can be an integer or a floating point number and the result has the
same type as the selected operand. This is used formin andmax. Note that in case of equality between an
integer and a floating point number the result is an integer.

is , +, - , * , // , / , rem, andmod are predefined infix operators.+ and- are predefined prefix operators (sec-
tion 7.14.10, page 99).

Integer division rounding function : the integer division rounding functionrnd (X) rounds the floating point
numberX to an integer. There are two possible definitions (depending on the target machine) for this function
which differ on negative numbers:

• rnd (X) = integer part ofX, e.g.rnd (-1.5) = -1 (round toward 0)

• rnd (X) = bXc, e.g.rnd (-1.5) = -2 (round toward−∞)

The definition of this function determines the precise definition of the integer division(//)/2 and of the integer
remainder(rem)/2 . Rounding toward zero is the most common case. In any case it is possible to test the value
(toward zero or down) of the integer rounding function Prolog flag to determine which function
being used (section 7.22.1, page 132).

Fast mathematical mode: in order to speed-up integer computations, the GNU Prolog compiler can generate
faster code when invoked with the--fast-math option (section 3.4.3, page 22). In this mode only integer
operations are allowed and a variable in an expression must be bound at evaluation time to an integer. No type
checking is done.

Errors

a sub-expressionE is a variable instantiation error
a sub-expressionE is neither a number nor an
evaluable functor

type error(evaluable, E)

a sub-expressionE is a floating point number while
an integer is expected

type error(integer, E)

a sub-expressionE is an integer while a floating point
number is expected

type error(float, E)

a division by zero occurs evaluation error(zero divisor)

Portability

Refer to the above table to determine which evaluable functors are ISO and which are GNU Prolog extensions.
For efficiency reasons, GNU Prolog does not detect the following ISO arithmetic errors:float overflow ,
int overflow, int underflow , andundefined .

7.6.2 (is)/2 - evaluate expression

Templates

is(?nonvar, +evaluable)

Description

Result is Expression succeeds ifResult can be unified witheval(Expression). Refer to the evalua-
tion of an arithmetic expression for the definition of theevalfunction (section 7.6.1, page 57).

is is a predefined infix operator (section 7.14.10, page 99).

60 7 PROLOG BUILT-IN PREDICATES

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section 7.6.1, page 57).

Portability

ISO predicate.

7.6.3 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,
(<)/2 - arithmetic less than,(=<)/2 - arithmetic less than or equal to,
(>)/2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to

Templates

=:=(+evaluable, +evaluable)
=\=(+evaluable, +evaluable)
<(+evaluable, +evaluable)

=<(+evaluable, +evaluable)
>(+evaluable, +evaluable)
>=(+evaluable, +evaluable)

Description

Expr1 =:= Expr2 succeeds ifeval(Expr1) = eval(Expr2).

Expr1 =\= Expr2 succeeds ifeval(Expr1) 6= eval(Expr2).

Expr1 < Expr2 succeeds ifeval(Expr1) < eval(Expr2).

Expr1 =< Expr2 succeeds ifeval(Expr1) ≤ eval(Expr2).

Expr1 > Expr2 succeeds ifeval(Expr1) > eval(Expr2).

Expr1 >= Expr2 succeeds ifeval(Expr1) ≥ eval(Expr2).

Refer to the evaluation of an arithmetic expression for the definition of theevalfunction (section 7.6.1, page 57).

=:= , =\= , <, =<, > and>= are predefined infix operators (section 7.14.10, page 99).

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section 7.6.1, page 57).

Portability

ISO predicates.

7.7 Dynamic clause management

7.7.1 Introduction

Static and dynamic procedures: a procedure is either dynamic or static. All built-in predicates are static. A
user-defined procedure is static by default unless adynamic/1 directive precedes its definition (section 6.1.2,
page 41). Adding a clause to a non-existent procedure creates a dynamic procedure. The clauses of a dynamic
procedure can be altered (e.g. usingasserta/1), the clauses of a static procedure cannot be altered.

7.7 Dynamic clause management 61

Private and public procedures: each procedure is either public or private. A dynamic procedure is always public.
Each built-in predicate is private, and a static user-defined procedure is private by default unless apublic/1
directive precedes its definition (section 6.1.3, page 41). If a dynamic declaration exists it is unnecessary to add a
public declaration since a dynamic procedure is also public. A clause of a public procedure can be inspected (e.g.
usingclause/2), a clause of a private procedure cannot be inspected.

A logical database update view: any change in the database that occurs as the result of executing a goal (e.g.
when a sub-goal is a call ofassertz/1 or retract/1) only affects subsequent activations. The change does
not affect any activation that is currently being executed. Thus the database is frozen during the execution of a
goal, and the list of clauses defining a predication is fixed at the moment of its execution.

7.7.2 asserta/1 , assertz/1

Templates

asserta(+clause)
assertz(+clause)

Description

asserta(Clause) first converts the termClause to a clause and then adds it to the current internal database.
The predicate concerned must be dynamic (section 7.7.1, page 60) or undefined and the clause is inserted before
the first clause of the predicate. If the predicated is undefined it is created as a dynamic procedure.

assertz(Clause) acts likeasserta/1 except that the clause is added at the end of all existing clauses of
the concerned predicate.

Converting a term Clause to a clauseClause1 :

• extract the head and the body ofClause : eitherClause = (Head :- Body) or Clause = Head and
Body = true .

• Head must be a callable term (or else the conversion fails).

• convertBody to a body clause (i.e. a goal)Body1 .

• the converted clauseClause1 = (Head :- Body1) .

Converting a term T to a goal:

• if T is a variable it is replaced by the termcall(T) .

• if T is a control construct(’,’)/2 , (;)/2 or (->)/2 each argument of the control construct is recur-
sively converted to a goal.

• if T is a callable term it remains unchanged.

• otherwise the conversion fails (T is neither a variable nor a callable term).

Errors

Head is a variable instantiation error
Head is neither a variable nor a callable term type error(callable, Head)
Body cannot be converted to a goal type error(callable, Body)
The predicate indicatorPred of Head is that of a
static procedure

permission error(modify,
static procedure, Pred)

Portability

ISO predicates.

62 7 PROLOG BUILT-IN PREDICATES

7.7.3 retract/1

Templates

retract(+clause)

Description

retract(Clause) erases the first clause of the database that unifies withClause . The concerned predicate
must be a dynamic procedure (section 7.7.1, page 60). Removing all clauses of a procedure does not erase the
procedure definition. To achieve this useabolish/1 (section 7.7.6, page 63).retract/1 is re-executable on
backtracking.

Errors

Head is a variable instantiation error
Head is neither a variable nor a callable term type error(callable, Head)
The predicate indicatorPred of Head is that of a
static procedure

permission error(modify,
static procedure, Pred)

Portability

ISO predicate. In the ISO reference, the operation associated to thepermission error is access while it is
modify in GNU Prolog. This seems to be an error of the ISO reference since forasserta/1 (which is similar
in spirit to retract/1) the operation is alsomodify .

7.7.4 retractall/1

Templates

retractall(+head)

Description

retractall(Head) erases all clauses whose head unifies withHead. The concerned predicate must be a
dynamic procedure (section 7.7.1, page 60). The procedure definition is not removed so that it is found by
current predicate/1 (section 7.8.1, page 64).abolish/1 should be used to remove the procedure (sec-
tion 7.7.6, page 63).

Errors

Head is a variable instantiation error
Head is not a callable term type error(callable, Head)
The predicate indicatorPred of Head is that of a
static procedure

permission error(modify,
static procedure, Pred)

Portability

GNU Prolog predicate.

7.7.5 clause/2

Templates

clause(+head, ?callable term)

7.7 Dynamic clause management 63

Description

clause(Head, Body) succeeds if there exists a clause in the database that unifies withHead :- Body .
The predicate in question must be a public procedure (section 7.7.1, page 60). Clauses are delivered from the first
to the last. This predicate is re-executable on backtracking.

Errors

Head is a variable instantiation error
Head is neither a variable nor a callable term type error(callable, Head)
The predicate indicatorPred of Head is that of a
private procedure

permission error(access,
private procedure, Pred)

Body is neither a variable nor a callable term type error(callable, Body)

Portability

ISO predicate.

7.7.6 abolish/1

Templates

abolish(+predicate indicator)

Description

abolish(Pred) removes from the database the procedure whose predicate indicator isPred . The concerned
predicate must be a dynamic procedure (section 7.7.1, page 60).

Errors

Pred is a variable instantiation error
Pred is a termName/Arity and eitherNameor
Arity is a variable

instantiation error

Pred is neither a variable nor a predicate indicator type error(predicate indicator,
Pred)

Pred is a termName/Arity andArity is neither
a variable nor an integer

type error(integer, Arity)

Pred is a termName/Arity andNameis neither a
variable nor an atom

type error(atom, Name)

Pred is a termName/Arity andArity is an
integer< 0

domain error(not less than zero,
Arity)

Pred is a termName/Arity andArity is an
integer> max arity flag (section 7.22.1, page 132)

representation error(max arity)

The predicate indicatorPred is that of a static
procedure

permission error(modify,
static procedure, Pred)

Portability

ISO predicate.

64 7 PROLOG BUILT-IN PREDICATES

7.8 Predicate information

7.8.1 current predicate/1

Templates

current predicate(?predicate indicator)

Description

current predicate(Pred) succeeds if there exists a predicate indicator of a defined procedure that unifies
with Pred . All user defined procedures are found, whether static or dynamic. Internal system procedures whose
name begins with’$’ are not found. A user-defined procedure is found even when it has no clauses. A user-
defined procedure is not found if it has been abolished. To conform to the ISO reference, built-in predicates are
not found except if thestrict iso Prolog flag is switched off (section 7.22.1, page 132). This predicate is
re-executable on backtracking.

Errors

Pred is neither a variable nor a predicate indicator type error(predicate indicator,
Pred)

Pred is a termName/Arity andArity is neither
a variable nor an integer

type error(integer, Arity)

Pred is a termName/Arity andNameis neither a
variable nor an atom

type error(atom, Name)

Pred is a termName/Arity andArity is an
integer< 0

domain error(not less than zero,
Arity)

Pred is a termName/Arity andArity is an
integer> max arity flag (section 7.22.1, page 132)

representation error(max arity)

Portability

ISO predicate.

7.8.2 predicate property/2

Templates

predicate property(?predicate indicator, ?predicate property)

Description

predicate property(Pred, Property) succeeds if there exists a predicate indicator of a defined proce-
dure that unifies withPred and ifProperty unifies with one of the properties of the procedure. All user defined
procedures and built-in predicates are found. Internal system procedures whose name begins with’$’ are not
found. This predicate is re-executable on backtracking.

Predicate properties:

• static : if the procedure is static.

• dynamic : if the procedure is dynamic.

• private : if the procedure is private.

• public : if the procedure is public.

• user : if the procedure is a user-defined procedure.

7.9 All solutions 65

• built in : if the procedure is a Prolog built-in predicate.

• built in fd : if the procedure is an FD built-in predicate.

• native code : if the procedure is compiled in native code.

• prolog file(File) : source file from which the predicate has been read.

• prolog line(Line) : line number of the source file.

Errors

Pred is neither a variable nor a predicate indicator type error(predicate indicator,
Pred)

Pred is a termName/Arity andArity is neither
a variable nor an integer

type error(integer, Arity)

Pred is a termName/Arity andNameis neither a
variable nor an atom

type error(atom, Name)

Pred is a termName/Arity andArity is an
integer< 0

domain error(not less than zero,
Arity)

Pred is a termName/Arity andArity is an
integer> max arity flag (section 7.22.1, page 132)

representation error(max arity)

Property is neither a variable nor a predicate
property term

domain error(predicate property,
Property)

Property = prolog file(File) andFile is
neither a variable nor an atom

type error(atom, File)

Property = prolog line(Line) andLine is
neither a variable nor an integer

type error(integer, Line)

Portability

GNU Prolog predicate.

7.9 All solutions

7.9.1 Introduction

It is sometimes useful to collect all solutions for a goal. This can be done by repeatedly backtracking and gradually
building the list of solutions. The following built-in predicates are provided to automate this process.

The built-in predicates described in this section invokecall/1 (section 6.2.3, page 47) on the argumentGoal .
When efficiency is crucial andGoal is complex it is better to define an auxiliary predicate which can then be
compiled, and haveGoal call this predicate.

7.9.2 findall/3

Templates

findall(?term, +callable term, ?list)

Description

findall(Template, Goal, Instances) succeeds ifInstances unifies with the list of values to which
a variableXnot occurring inTemplate orGoal would be instantiated by successive re-executions ofcall(Goal),

66 7 PROLOG BUILT-IN PREDICATES

X = Template after systematic replacement of all variables inX by new variables. Thus, the order of the list
Instances corresponds to the order in which the proofs are found.

Errors

Goal is a variable instantiation error
Goal is neither a variable nor a callable term type error(callable, Goal)
The predicate indicatorPred of Goal does not
correspond to an existing procedure and the value of
theunknown Prolog flag iserror (section 7.22.1,
page 132)

existence error(procedure, Pred)

Instances is neither a partial list nor a list type error(list, Instances)

Portability

ISO predicate.

7.9.3 bagof/3 , setof/3

Templates

bagof(?term, +callable term, ?list)
setof(?term, +callable term, ?list)

Description

bagof(Template, Goal, Instances) assembles as a list the set of solutions ofGoal for each different
instantiation of the free variables inGoal . The elements of each list are in order of solution, but the order in which
each list is found is undefined. This predicate is re-executable on backtracking.

Free variable set: bagof/3 groups the solutions ofGoal according to the free variables inGoal . This set
corresponds to all variables occurring inGoal but not inTemplate . It is sometimes useful to exclude some
additional variables ofGoal . For that,bagof/3 recognizes a goal of the formTˆGoal and exclude all variables
occuring inT from the free variable set.(ˆ)/2 can be viewed as anexistential quantifier(the logical reading
of XˆGoal being “there exists anX such thatGoal is true”). The use of this existential qualifier is superfluous
outsidebagof/3 (andsetof/3) and then is not recognized.

(ˆ)/2 is a predefined infix operator (section 7.14.10, page 99).

setof(Template, Goal, Instances) is equivalent tobagof(Template,Goal,I), sort(I,Instances) .
Each list is then a sorted list (duplicate elements are removed).

From the implementation point of viewsetof/3 is as fast asbagof/3 . Both predicates use an in-place (i.e.
destructive) sort (section 7.20.12, page 124) and require the same amount of memory.

Errors

Goal is a variable instantiation error
Goal is neither a variable nor a callable term type error(callable, Goal)
The predicate indicatorPred of Goal does not
correspond to an existing procedure and the value of
theunknown Prolog flag iserror (section 7.22.1,
page 132)

existence error(procedure, Pred)

Instances is neither a partial list nor a list type error(list, Instances)

Portability

7.10 Streams 67

ISO predicates.

7.10 Streams

7.10.1 Introduction

A stream provides a logical view of a source/sink.

Sources and sinks: a program can output results to a sink or input data from a source. A source/sink may be a file
(regular file, terminal, device,. . .), a constant term, a pipe, a socket,. . .

Associating a stream to a source/sink: to manipulate a source/sink it must be associated to a stream. This provides
a logical and uniform view of the source/sink whatever its type. Once this association has been established, i.e. a
stream has been created, all subsequent references to the source/sink are made by referring the stream. A stream is
unidirectional: it is either an input stream or an output stream. For a classical file, the association is done by opening
the file (whose name is specified as an atom) with theopen/4 (section 7.10.6, page 69). GNU Prolog makes it
possible to treat a Prolog constant term as a source/sink and provides built-in predicates to associate a stream to
such a term (section 7.11, page 82). GNU Prolog provides operating system interface predicates defining pipes
between GNU Prolog and child processes with streams associated to these pipes, e.g.popen/3 (section 7.27.21,
page 152). Similarly, socket interface predicates associate streams to a socket to allow the communication, e.g.
socket connect/4 (section 7.28.5, page 158).

Stream-term: a stream-term identifies a stream during a call of an input/output built-in predicate. It is created as
a result of associating a stream to a source/sink (section above). A stream-term is a compound term of the form
’$stream’(I) whereI is an integer.

Stream aliases: any stream may be associated with a stream alias which is an atom which may be used to refer
to that stream. The association can be done at open time or usingadd stream alias/2 (section 7.10.20,
page 78). Such an association automatically ends when the stream is closed. A particular alias only refers to
at most one stream at any one time. However, more than one alias can be associated to a stream. Most built-in
predicates which have a stream-term as an input argument also accept a stream alias as that argument. However,
built-in predicates which return a stream-term do not accept a stream alias.

Standard streams: two streams are predefined and open during the execution of every goal: the standard input
stream which has the aliasuser input and the standard output stream which has the aliasuser output . A
goal which attempts to close either standard stream succeeds, but does not close the stream.

Current streams: during execution there is a current input stream and a current output stream. By default, the cur-
rent input and output streams are the standard input and output streams, but the built-in predicatesset input/1
(section 7.10.4, page 69) andset output/1 (section 7.10.5, page 69) can be used to change them. When the
current input stream is closed, the standard input stream becomes the current input stream. When the current output
stream is closed, the standard output stream becomes the current output stream.

Text streams and binary streams: a text stream is a sequence of characters. A text stream is also regarded as
a sequence of lines where each line is a possibly empty sequence of characters followed by a new line character.
GNU Prolog may add or remove space characters at the ends of lines in order to conform to the conventions for
representing text streams in the operating system. A binary stream is a sequence of bytes. Only a few built-in
predicates can deal with binary streams, e.g.get byte/2 (section 7.13, page 88).

Stream positions: the stream position of a stream identifies an absolute position of the source/sink to which the
stream is connected and defines where in the source/sink the next input or output will take place. A stream position
is a ground term of the form’$stream position’(I1, I2, I3, I4) whereI1 , I2 , I3 andI4 are inte-
gers. Stream positions are used to reposition a stream (when possible) using for instanceset stream position/2
(section 7.10.13, page 74).

68 7 PROLOG BUILT-IN PREDICATES

The position end of stream: when all data of a streamS has been inputS has a stream position end-of-stream.
At this stream position a goal to input more data will return a specific value to indicate that end of stream has been
reached (e.g.-1 for get code/2 or end of file for get char/2 ,. . .). When this terminating value has
been input, the stream has a stream position past-end-of-stream.

Buffering mode: input/output on a stream can be buffered (line-buffered or block-buffered) or not buffered at
all. The buffering mode can be specified at open time or usingset stream buffering/2 (section 7.10.27,
page 81). Line buffering is used on output streams, output data are only written to the sink when a new-line
character is output (or at the close time). Block buffering is used on input or output. On input streams, when
an input is requested on the source, if the buffer is empty, all available characters are read (within the limits of
the size of the buffer), subsequent reads will first use the characters in the buffer. On output streams, output data
are stored in the buffer and only when the buffer is full is it physically written on the sink. Thus, an output to
a buffered stream may not be sent immediately to the sink connected to that stream. When it is necessary to be
certain that output has been delivered, the built-in predicateflush output/1 (section 7.10.8, page 72) should
be used. Finally, it is also possible to use non-buffered streams, in that case input/output are directly done on the
connected source/sink. This can be useful for communication purposes (e.g. sockets) or when a precise control is
needed, e.g.select/5 (section 7.27.25, page 154).

Stream mirrors : any stream may be associated with mirror streams specified at open time or usingadd stream mirror/2
(section 7.10.22, page 79). Then, all characters/bytes read from/written to the stream are also written on each mir-
ror stream. The association automatically ends when either the stream or the mirror stream is closed. It is also
possible to explicitely remove a mirror stream usingremove stream mirror/2 (section 7.10.23, page 79).

7.10.2 current input/1

Templates

current input(?stream)

Description

current input(Stream) unifiesStream with the stream-term identifying the current input stream.

Errors

Stream is neither a variable nor a stream domain error(stream, Stream)

Portability

ISO predicate.

7.10.3 current output/1

Templates

current output(?stream)

Description

current output(Stream) unifiesStream with the stream-term identifying the current output stream.

Errors

Stream is neither a variable nor a stream domain error(stream, Stream)

7.10 Streams 69

Portability

ISO predicate.

7.10.4 set input/1

Templates

set input(+stream or alias)

Description

set input(SorA) sets the current input stream to be the stream associated with the stream-term or aliasSorA .

Errors

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)

Portability

ISO predicate.

7.10.5 set output/1

Templates

set output(+stream or alias)

Description

set output(SorA) sets the current output stream to be the stream associated with the stream-term or alias
SorA .

Errors

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(output, stream,

SorA)

Portability

ISO predicate.

7.10.6 open/4 , open/3

Templates

70 7 PROLOG BUILT-IN PREDICATES

open(+source sink, +io mode, -stream, +stream option list)
open(+source sink, +io mode, -stream)

Description

open(SourceSink, Mode, Stream, Options) opens the source/sinkSourceSink for input or out-
put as indicated byModeand the list of stream-optionsOptions and unifiesStream with the stream-term which
is associated to this stream. Seeabsolute file name/2 for information about the syntax ofSourceSink
(section 7.26.1, page 140).

Input/output modes: Mode is an atom which defines the input/output operations that may be performed the
stream. Possible modes are:

• read : the source/sink is a source and must already exist. Input starts at the beginning of the source.

• write : the source/sink is a sink. If the sink already exists then it is emptied else an empty sink is created.
Output starts at the beginning of that sink.

• append : the source/sink is a sink. If the sink does not exist it is created. Output starts at the end of that
sink.

Stream options: Options is a list of stream options. If this list contains contradictory options, the rightmost
option is the one which applies. Possible options are:

• type(text /binary) : specifies whether the stream is a text stream or a binary stream. The default value
is text .

• reposition(true /false) : specifies whether it is possible to reposition the stream. The default value
is true except if the stream cannot be repositioned (e.g. a terminal).

• eof action(error /eof code /reset) : specifies the effect of attempting to input from a stream whose
stream position is past-end-of-stream:

– error : apermission error is raised signifying that no more input exists in this stream.

– eof code : the result of input is as if the stream position is end-of-stream.

– reset : the stream position is reset so that it is not past-end-of-stream, and another attempt is made to
input from it (this is useful when inputting from a terminal).

The default value iseof code .

• alias(Alias) : specifies that the atomAlias is to be an alias for the stream. By default no alias is
attached to the stream. Several aliases can be defined for a same stream.

• mirror(Mirror) : specifies the stream associated with the stream-term or aliasMirror is a mirror for
the stream. By default no mirro is attached to the stream. Several mirrors can be defined for a same stream.

• buffering(none /line /block) : specifies which type of buffering is used by input/output operations
on this stream:

– none : no buffering.

– line : output operations buffer data emitted until a new-line occurs

– block : input/output operations buffer data until a given number (implementation dependant) of char-
acters/bytes have been treated.

The default value isline for a terminal (TTY),block otherwise.

open(SourceSink, Mode, Stream, Options) is equivalent toopen(SourceSink, Mode, Stream,
[]) .

Errors

7.10 Streams 71

SourceSink is a variable instantiation error
Mode is a variable instantiation error
Options is a partial list or a list with an elementE
which is a variable

instantiation error

Mode is neither a variable nor an atom type error(atom, Mode)
Options is neither a partial list nor a list type error(list, Options)
Stream is not a variable type error(variable, Stream)
SourceSink is neither a variable nor a source/sinkdomain error(source sink,

SourceSink)
Mode is an atom but not an input/output mode domain error(io mode, Mode)
an elementE of theOptions list is neither a
variable nor a stream-option

domain error(stream option, E)

the source/sink specified bySourceSink does not
exist

existence error(source sink,
SourceSink)

the source/sink specified bySourceSink cannot be
opened

permission error(open, source sink,
SourceSink)

an elementE of theOptions list is alias(A) and
A is already associated with an open stream

permission error(open, source sink,
alias(A))

an elementE of theOptions list is mirror(M)
andMis not associated with an open stream

existence error(stream, M)

an elementE of theOptions list is mirror(M)
andMiis an input stream

permission error(output, stream, M)

an elementE of theOptions list is
reposition(true) and it is not possible to
reposition this stream

permission error(open, source sink,
reposition(true))

Portability

ISO predicates. Themirror/1 andbuffering/1 stream options are GNU Prolog extensions.

7.10.7 close/2 , close/1

Templates

close(+stream or alias, +close option list)
close(+stream or alias)

Description

close(SorA, Options) closes the stream associated with the stream-term or aliasSorA . If SorA is the
standard input stream or the standard output streamclose/2 simply succeeds else the associated source/sink is
physically closed. IfSorA is the current input stream the current input stream becomes the standard input stream
user input . If SorA is the current output stream the current output stream becomes the standard output stream
user output .

Close options: Options is a list of close options. For the moment only one option is available:

• force(true /false) : with false , if an error occurs when trying to close the source/sink, the stream is
not closed and an error (system error or resource error) is raised (butclose/2 succeeds). With
true , if an error occurs it is ignored and the stream is closed. The purpose offorce/1 option is to allow
an error handling routine to do its best to reclaim resources. The default value isfalse .

close(SorA) is equivalent toclose(SorA, []) .

Errors

72 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation error
Options is a partial list or a list with an elementE
which is a variable

instantiation error

Options is neither a partial list nor a list type error(list, Options)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
an elementE of theOptions list is neither a
variable nor a close-option

domain error(close option, E)

SorA is not associated with an open stream existence error(stream, SorA)
SorA needs a special close (section 7.11, page 82) system error(needs special close)

Portability

ISO predicates. Thesystem error(needs special close) is a GNU Prolog extension.

7.10.8 flush output/1 , flush output/0

Templates

flush output(+stream or alias)
flush output

Description

flush output(SorA) sends any buffered output characters/bytes to the stream.

flush output/0 applies to the current output stream.

Errors

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(output, stream,

SorA)

Portability

ISO predicates.

7.10.9 current stream/1

Templates

current stream(?stream)

Description

current stream(Stream) succeeds if there exists a stream-term that unifies withStream . This predicate
is re-executable on backtracking.

Errors

Stream is neither a variable nor a stream-term domain error(stream, Stream)

Portability

7.10 Streams 73

GNU Prolog predicate.

7.10.10 stream property/2

Templates

stream property(?stream, ?stream property)

Description

stream property(Stream, Property) succeeds ifcurrent stream(Stream) succeeds (section 7.10.9,
page 72) and ifProperty unifies with one of the properties of the stream. This predicate is re-executable on
backtracking.

Stream properties:

• file name(F) : the name of the connected source/sink.

• mode(M) : Mis the open mode (read , write , append).

• input : if it is an input stream.

• output : if it is an output stream.

• alias(A) : A is an alias of the stream.

• mirror(M) : Mis a mirror stream of the stream.

• type(T) : T is the type of the stream (text , binary).

• reposition(R) : R is the reposition boolean (true , false).

• eof action(A) : A is the end-of-file action (error , eof code , reset).

• buffering(B) : B is the buffering mode (none , line , block).

• end of stream(E) : E is the current end-of-stream status (not , at , past). If the stream position is
end-of-stream thenE is unified withat else if the stream position is past-end-of-stream thenE is unified
with past elseE is unified withnot .

• position(P) : P is the stream-position term associated to the current position.

Errors

Stream is a variable instantiation error
Stream is neither a variable nor a stream-term domain error(stream, Stream)
Property is neither a variable nor a stream
property

domain error(stream property,
Property)

Property = file name(E) , mode(E) ,
alias(E) , end of stream(E) ,
eof action(E) , reposition(E) , type(E)
or buffering(E) andE is neither a variable nor
an atom

type error(atom, E)

Portability

ISO predicate. Thebuffering/1 property is a GNU Prolog extension.

74 7 PROLOG BUILT-IN PREDICATES

7.10.11 at end of stream/1 , at end of stream/0

Templates

at end of stream(+stream or alias)
at end of stream

Description

at end of stream(SorA) succeeds if the stream associated with stream-term or aliasSorA has a stream
position end-of-stream or past-end-of-stream. This predicate can be defined usingstream property/2 (sec-
tion 7.10.10, page 73).

at end of stream/0 applies to the current input stream.

Errors

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)

Portability

ISO predicates. Thepermission error(input, stream, SorA) is a GNU Prolog extension.

7.10.12 stream position/2

Templates

stream position(+stream or alias, ?stream position)

Description

stream position(SorA, Position) succeeds unifyingPosition with the stream-position term associ-
ated to the current position of the stream-term or aliasSorA . This predicate can be defined usingstream property/2
(section 7.10.10, page 73).

Errors

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
Position is neither a variable nor a
stream-position term

domain error(stream position,
Position)

SorA is not associated with an open stream existence error(stream, SorA)

Portability

GNU Prolog predicate.

7.10.13 set stream position/2

Templates

7.10 Streams 75

set stream position(+stream or alias, +stream position)

Description

set stream position(SorA, Position) sets the position of the stream associated with the stream-term
or aliasSorA to Position . Position should have previously been returned bystream property/2
(section 7.10.10, page 73) or bystream position/2 (section 7.10.12, page 74).

Errors

SorA is a variable instantiation error
Position is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
Position is neither a variable nor a
stream-position term

domain error(stream position,
Position)

SorA is not associated with an open stream existence error(stream, SorA)
SorA has stream propertyreposition(false) permission error(reposition, stream,

SorA)

Portability

ISO predicate.

7.10.14 seek/4

Templates

seek(+stream or alias, +stream seek method, +integer, ?integer)

Description

seek(SorA, Whence, Offset, NewOffset) sets the position of the stream associated with the stream-
term or aliasSorA to Offset according toWhence and unifiesNewOffset with the new offset from the
beginning of the file.seek/4 can only be used on binary streams.Whence is an atom from:

• bof : the position is set relatively to the begin of the file (Offset should be≥ 0).

• current : the position is set relatively to the current position (Offset can be≥ 0 or≤ 0).

• eof : the position is set relatively to the end of the file (Offset should be≤ 0).

This predicate is an interface to the C Unix functionlseek(2) .

Errors

SorA is a variable instantiation error
Whence is a variable instantiation error
Offset is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
Whence is neither a variable nor an atom type error(atom, Whence)
Whence is an atom but not a valid stream seek
method

domain error(stream seek method,
Whence)

Offset is neither a variable nor an integer type error(integer, Offset)
NewOffset is neither a variable nor an integer type error(integer, NewOffset)
SorA is not associated with an open stream existence error(stream, SorA)
SorA has stream propertyreposition(false) permission error(reposition, stream,

SorA)
SorA is associated with a text stream permission error(reposition,

text stream, SorA)

76 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicate.

7.10.15 character count/2

Templates

character count(+stream or alias, ?integer)

Description

character count(SorA, Count) unifiesCount with the number of characters/bytes read/written on the
stream associated with stream-term or aliasSorA .

Errors

SorA is a variable instantiation error
Count is neither a variable nor an integer type error(integer, Count)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)

Portability

GNU Prolog predicate.

7.10.16 line count/2

Templates

line count(+stream or alias, ?integer)

Description

line count(SorA, Count) unifiesCount with the number of lines read/written on the stream associated
with the stream-term or aliasSorA . This predicate can only be used on text streams.

Errors

SorA is a variable instantiation error
Count is neither a variable nor an integer type error(integer, Count)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is associated with a binary stream permission error(access,

binary stream, SorA)

Portability

GNU Prolog predicate.

7.10.17 line position/2

Templates

7.10 Streams 77

line position(+stream or alias, ?integer)

Description

line position(SorA, Count) unifiesCount with the number of characters read/written on the current
line of the stream associated with the stream-term or aliasSorA . This predicate can only be used on text streams.

Errors

SorA is a variable instantiation error
Count is neither a variable nor an integer type error(integer, Count)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is associated with a binary stream permission error(access,

binary stream, SorA)

Portability

GNU Prolog predicate.

7.10.18 stream line column/3

Templates

stream line column(+stream or alias, ?integer, ?integer)

Description

stream line column(SorA, Line, Column) unifiesLine (resp.Column) with the current line num-
ber (resp. column number) of the stream associated with the stream-term or aliasSorA . This predicate can only be
used on text streams. Note thatLine corresponds to the value returned byline count/2 + 1 (section 7.10.16,
page 76) andColumn to the value returned byline position/2 + 1 (section 7.10.17, page 76).

Errors

SorA is a variable instantiation error
Line is neither a variable nor an integer type error(integer, Line)
Column is neither a variable nor an integer type error(integer, Column)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is associated with a binary stream permission error(access,

binary stream, SorA)

Portability

GNU Prolog predicate.

7.10.19 set stream line column/3

Templates

set stream line column(+stream or alias, +integer, +integer)

Description

78 7 PROLOG BUILT-IN PREDICATES

set stream line column(SorA, Line, Column) sets the stream position of the stream associated with
the stream-term or aliasSorA according to the line numberLine and the column numberColumn . This predicate
can only be used on text streams. It first repositions the stream to the beginning of the file and then reads character
by character until the required position is reached.

Errors

SorA is a variable instantiation error
Line is a variable instantiation error
Column is a variable instantiation error
Line is neither a variable nor an integer type error(integer, Line)
Column is neither a variable nor an integer type error(integer, Column)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is associated with a binary stream permission error(reposition,

binary stream, SorA)
SorA has stream propertyreposition(false) permission error(reposition, stream,

SorA)

Portability

GNU Prolog predicate.

7.10.20 add stream alias/2

Templates

add stream alias(+stream or alias, +atom)

Description

add stream alias(SorA, Alias) addsAlias as a new alias to the stream associated with the stream-
term or aliasSorA .

Errors

SorA is a variable instantiation error
Alias is a variable instantiation error
Alias is neither a variable nor an atom type error(atom, Alias)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
Alias is already associated with an open stream permission error(add alias,

source sink, alias(Alias))

Portability

GNU Prolog predicate.

7.10.21 current alias/2

Templates

current alias(?stream, ?atom)

Description

7.10 Streams 79

current alias(Stream, Alias) succeeds ifcurrent stream(Stream) succeeds (section 7.10.9,
page 72) and ifAlias unifies with one of the aliases of the stream. It can be defined usingstream property/2
(section 7.10.10, page 73). This predicate is re-executable on backtracking.

Errors

Stream is neither a variable nor a stream-term domain error(stream, Stream)
Alias is neither a variable nor an atom type error(atom, Alias)

Portability

GNU Prolog predicate.

7.10.22 add stream mirror/2

Templates

add stream mirror(+stream or alias, +stream or alias)

Description

add stream mirror(SorA, Mirror) adds the stream associated with the stream-term or aliasMirror as
a new mirror to the stream associated with the stream-term or aliasSorA . After this, all characters (or bytes) read
from (or written to)SorA are also written toMirror . This mirroring occurs untilMirror is explicitely removed
usingremove stream mirror/2 (section 7.10.23, page 79) or implicitely whenMirror is closed. Several
mirror streams can be associated to a same stream. IfMirror represents the same stream asSorA or if Mirror
is already a mirror forSorA , no mirror is added.

Errors

SorA is a variable instantiation error
Mirror is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
Mirror is neither a variable nor a stream-term or
alias

domain error(stream or alias, Mirror)

SorA is not associated with an open stream existence error(stream, SorA)
Mirror is not associated with an open stream existence error(stream, Mirror)
Mirror is an input stream permission error(output, stream,

Mirror)

Portability

GNU Prolog predicate.

7.10.23 remove stream mirror/2

Templates

remove stream mirror(+stream or alias, +stream or alias)

Description

remove stream mirror(SorA, Mirror) removes the stream associated with the stream-term or alias
Mirror from the list of mirrors of the stream associated with the stream-term or aliasSorA . This predicate
fails if Mirror is not a mirror stream forSorA .

80 7 PROLOG BUILT-IN PREDICATES

Errors

SorA is a variable instantiation error
Mirror is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
Mirror is neither a variable nor a stream-term or
alias

domain error(stream or alias, Mirror)

SorA is not associated with an open stream existence error(stream, SorA)
Mirror is not associated with an open stream existence error(stream, Mirror)

Portability

GNU Prolog predicate.

7.10.24 current mirror/2

Templates

current mirror(?stream, ?stream)

Description

current mirror(Stream, M) succeeds ifcurrent stream(Stream) succeeds (section 7.10.9, page 72)
and if M unifies with one of the mirrors of the stream. It can be defined usingstream property/2 (sec-
tion 7.10.10, page 73). This predicate is re-executable on backtracking.

Errors

Stream is neither a variable nor a stream-term domain error(stream, Stream)
Mis neither a variable nor a stream-term domain error(stream, M)

Portability

GNU Prolog predicate.

7.10.25 set stream type/2

Templates

set stream type(+stream or alias, +atom)

Description

set stream type(SorA, Type) updates the type associated with stream-term or aliasSorA . The value of
Type is an atom intext or binary as foropen/4 (section 7.10.6, page 69). The type of a stream can only be
changed before any input/output operation is executed.

Errors

SorA is a variable instantiation error
Type is a variable instantiation error
Type is neither a variable nor a valid type domain error(stream type, Type)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
An I/O operation has already been executed onSorA permission error(modify, stream,

SorA)

7.10 Streams 81

Portability

GNU Prolog predicate.

7.10.26 set stream eof action/2

Templates

set stream eof action(+stream or alias, +atom)

Description

set stream eof action(SorA, Action) updates theeof action option associated with the stream-
term or aliasSorA . The value ofAction is one of the atomserror , eof code , reset as for open/4
(section 7.10.6, page 69).

Errors

SorA is a variable instantiation error
Action is a variable instantiation error
Action is neither a variable nor a valid eof action domain error(eof action, Action)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(modify, stream,

SorA)

Portability

GNU Prolog predicate.

7.10.27 set stream buffering/2

Templates

set stream buffering(+stream or alias, +atom)

Description

set stream buffering(SorA, Buffering) updates the buffering mode associated with the stream-term
or aliasSorA . The value ofBuffering is one of the atomsnone , line or block as for open/4 (sec-
tion 7.10.6, page 69). This predicate may only be used after opening a stream and before any other operations have
been performed on it.

Errors

SorA is a variable instantiation error
Buffering is a variable instantiation error
Buffering is neither a variable nor a valid
buffering mode

domain error(buffering mode,
Buffering)

SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)

Portability

GNU Prolog predicate.

82 7 PROLOG BUILT-IN PREDICATES

7.11 Constant term streams

7.11.1 Introduction

Constant term streams allow the user to consider a constant term (atom, character list or character code list) as a
source/sink by associating to them a stream. Reading from a constant term stream will deliver the characters of the
constant term as if they had been read from a standard file. Characters written on a constant term stream are stored
to form the final constant term when the stream is closed. The built-in predicates described in this section allow the
user to open and close a constant term stream for input or output. However, very often, a constant term stream is
created to be only read or written once and then closed. To avoid the creation and the destruction of such a stream,
GNU Prolog offers several built-in predicates to perform single input/output from/to constant terms (section 7.15,
page 103).

7.11.2 open input atom stream/2 , open input chars stream/2 ,
open input codes stream/2

Templates

open input atom stream(+atom, -stream)
open input chars stream(+character list, -stream)
open input codes stream(+character code list, -stream)

Description

open input atom stream(Atom, Stream) unifiesStream with the stream-term which is associated to
a new input text-stream whose data are the characters ofAtom.

open input chars stream(Chars, Stream) is similar toopen input atom stream/2 except that
data are the content of the character listChars .

open input codes stream(Codes, Stream) is similar toopen input atom stream/2 except that
data are the content of the character code listCodes .

Errors

Stream is not a variable type error(variable, Stream)
Atom is a variable instantiation error
Chars is a partial list or a list with an elementE
which is a variable

instantiation error

Codes is a partial list or a list with an elementE
which is a variable

instantiation error

Atom is neither a variable nor a an atom type error(atom, Atom)
Chars is neither a partial list nor a list type error(list, Chars)
Codes is neither a partial list nor a list type error(list, Codes)
an elementE of theChars list is neither a variable
nor a character

type error(character, E)

an elementE of theCodes list is neither a variable
nor an integer

type error(integer, E)

an elementE of theCodes list is an integer but not a
character code

representation error(character code)

Portability

GNU Prolog predicates.

7.11 Constant term streams 83

7.11.3 close input atom stream/1 , close input chars stream/1 ,
close input codes stream/1

Templates

close input atom stream(+stream or alias)
close input chars stream(+stream or alias)
close input codes stream(+stream or alias)

Description

close input atom stream(SorA) closes the constant term stream associated with the stream-term or alias
SorA . SorA must a stream open withopen input atom stream/2 (section 7.11.1, page 82).

close input chars stream(SorA) acts similarly for a character list stream.

close input codes stream(SorA) acts similarly for a character code list stream.

Errors

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(close, stream,

SorA)
SorA is a stream-term or alias but does not refer to a
constant term stream.

domain error(term stream or alias,
SorA)

Portability

GNU Prolog predicates.

7.11.4 open output atom stream/1 , open output chars stream/1 ,
open output codes stream/1

Templates

open output atom stream(-stream)
open output chars stream(-stream)
open output codes stream(-stream)

Description

open output atom stream(Stream) unifiesStream with the stream-term which is associated to a new
output text-stream. All characters written to this stream are collected and will be returned as an atom when the
stream is closed byclose ouput atom stream/2 (section 7.11.5, page 84).

open output chars stream(Stream) is similar toopen output atom stream/1 except that the re-
sult will be a character list.

open output codes stream(Stream) is similar toopen output atom stream/1 except that the re-
sult will be a character code list.

Errors

Stream is not a variable type error(variable, Stream)

84 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicates.

7.11.5 close output atom stream/2 , close output chars stream/2 ,
close output codes stream/2

Templates

close output atom stream(+stream or alias, ?atom)
close output chars stream(+stream or alias, ?character list)
close output codes stream(+stream or alias, ?character code list)

Description

close output atom stream(SorA, Atom) closes the constant term stream associated with the stream-
term or aliasSorA . SorA must be associated to a stream open withopen output atom stream/1 (sec-
tion 7.11.4, page 83).Atom is unified with an atom formed with all characters written on the stream.

close output chars stream(SorA, Chars) acts similarly for a character list stream.

close output codes stream(SorA, Codes) acts similarly for a character code list stream.

Errors

SorA is a variable instantiation error
Atom is neither a variable nor an atom type error(atom, Atom)
Chars is neither a partial list nor a list type error(list, Chars)
Codes is neither a partial list nor a list type error(list, Codes)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(close, stream,

SorA)
SorA is a stream-term or alias but does not refer to a
constant term stream

domain error(term stream or alias,
SorA)

Portability

GNU Prolog predicates.

7.12 Character input/output

These built-in predicates enable a single character or character code to be input from and output to a text stream.
The atomend of file is returned as character to indicate the end-of-file.-1 is returned as character code to
indicate the end-of-file.

7.12.1 get char/2 , get char/1 , get code/1 , get code/2

Templates

get char(+stream or alias, ?in character)
get char(?in character)

7.12 Character input/output 85

get code(+stream or alias, ?in character code)
get code(?in character code)

Description

get char(SorA, Char) succeeds ifChar unifies with the next character read from the stream associated
with the stream-term or aliasSorA .

get code/2 is similar toget char/2 but deals with character codes.

get char/1 andget code/1 apply to the current input stream.

Errors

SorA is a variable instantiation error
Char is neither a variable nor an in-character type error(in character, Char)
Code is neither a variable nor an integer type error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

The entity input from the stream is not a character representation error(character)
Code is an integer but not an in-character code

representation error(in character code)

Portability

ISO predicates.

7.12.2 get key/2 , get key/1 get key no echo/2 , get key no echo/1

Templates

get key(+stream or alias, ?integer)
get key(?integer)
get key no echo(+stream or alias, ?integer)
get key no echo(?integer)

Description

get key(Code, SorA) succeeds ifCode unifies with the character code of the next key read from the stream
associated with the stream-term or aliasSorA . It is intended to read a single key from the keyboard (thusSorA
should refer to current input stream). No buffering is performed (a character is read as soon as available) and
function keys can also be read (in that case,Code is an integer> 255). The read character is echoed if it is
printable.

This facility is only possible if thelinedit facility has been installed (section 3.2.5, page 18) otherwiseget key/2
behaves similarly toget code/2 (section 7.12.1, page 84) (the code of the first character is returned) but also
pumps remaining characters until a character< space (0x20) is read (in particular RETURN). The same behavior
occurs ifSorA does not refer to the current input stream or if this stream is not attached to a terminal.

get key no echo/2 behaves similarly toget key/2 except that the read character is not echoed.

86 7 PROLOG BUILT-IN PREDICATES

get key/1 andget key no echo/1 apply to the current input stream.

Errors

SorA is a variable instantiation error
Code is neither a variable nor an integer type error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

Portability

GNU Prolog predicates.

7.12.3 peek char/2 , peek char/1 , peek code/1 , peek code/2

Templates

peek char(+stream or alias, ?in character)
peek char(?in character)
peek code(+stream or alias, ?in character code)
peek code(?in character code)

Description

peek char(SorA, Char) succeeds ifChar unifies with the next character that will be read from the stream
associated with the stream-term or aliasSorA . The character is not read.

peek code/2 is similar topeek char/2 but deals with character codes.

peek char/1 andpeek code/1 apply to the current input stream.

Errors

SorA is a variable instantiation error
Char is neither a variable nor an in-character type error(in character, Char)
Code is neither a variable nor an integer type error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

The entity input from the stream is not a character representation error(character)
Code is an integer but not an in-character code

representation error(in character code)

7.12 Character input/output 87

Portability

ISO predicates.

7.12.4 unget char/2 , unget char/1 , unget code/2 , unget code/1

Templates

unget char(+stream or alias, +character)
unget char(+character)
unget code(+stream or alias, +character code)
unget code(+character code)

Description

unget char(SorA, Char) pushes backChar onto the stream associated with the stream-term or aliasSorA .
Char will be the next character read byget char/2 . The maximum number of characters that can be cumula-
tively pushed back is given by themax unget Prolog flag (section 7.22.1, page 132).

unget code/2 is similar tounget char/2 but deals with character codes.

unget char/1 andunget code/1 apply to the current input stream.

Errors

SorA is a variable instantiation error
Char is a variable instantiation error
Code is a variable instantiation error
Char is neither a variable nor a character type error(character, Char)
Code is neither a variable nor an integer type error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
Code is an integer but not a character code representation error(character code)

Portability

GNU Prolog predicates.

7.12.5 put char/2 , put char/1 , put code/1 , put code/2 , nl/1 , nl/0

Templates

put char(+stream or alias, +character)
put char(+character)
put code(+stream or alias, +character code)
put code(+character code)
nl(+stream or alias)
nl

Description

88 7 PROLOG BUILT-IN PREDICATES

put char(SorA, Char) writesChar onto the stream associated with the stream-term or aliasSorA .

put code/2 is similar toput char/2 but deals with character codes.

nl(SorA) writes a new-line character onto the stream associated with the stream-term or aliasSorA . This is
equivalent toput char(SorA, ’\n’) .

put char/1 , put code/1 andnl/0 apply to the current output stream.

Errors

SorA is a variable instantiation error
Char is a variable instantiation error
Code is a variable instantiation error
Char is neither a variable nor a character type error(character, Char)
Code is neither a variable nor an integer type error(integer, Code)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(output, stream,

SorA)
SorA is associated with a binary stream permission error(output,

binary stream, SorA)
Code is an integer but not a character code representation error(character code)

Portability

ISO predicates.

7.13 Byte input/output

These built-in predicates enable a single byte to be input from and output to a binary stream.-1 is returned to
indicate the end-of-file.

7.13.1 get byte/2 , get byte/1

Templates

get byte(+stream or alias, ?in byte)
get byte(?in byte)

Description

get byte(SorA, Byte) succeeds ifByte unifies with the next byte read from the stream associated with the
stream-term or aliasSorA .

get byte/1 applies to the current input stream.

Errors

7.13 Byte input/output 89

SorA is a variable instantiation error
Byte is neither a variable nor an in-byte type error(in byte, Byte)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a text stream permission error(input, text stream,

SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

Portability

ISO predicates.

7.13.2 peek byte/2 , peek byte/1

Templates

peek byte(+stream or alias, ?in byte)
peek byte(?in byte)

Description

peek byte(SorA, Byte) succeeds ifByte unifies with the next byte that will be read from the stream
associated with the stream-term or aliasSorA . The byte is not read.

peek byte/1 applies to the current input stream.

Errors

SorA is a variable instantiation error
Byte is neither a variable nor an in-byte type error(in byte, Byte)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a text stream permission error(input, text stream,

SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

Portability

ISO predicates.

7.13.3 unget byte/2 , unget byte/1

Templates

unget byte(+stream or alias, +byte)
unget byte(+byte)

90 7 PROLOG BUILT-IN PREDICATES

Description

unget byte(SorA, Byte) pushes backByte onto the stream associated with the stream-term or aliasSorA .
Byte will be the next byte read byget byte/2 . The maximum number of bytes that can be successively pushed
back is given by themax unget Prolog flag (section 7.22.1, page 132).

unget byte/1 applies to the current input stream.

Errors

SorA is a variable instantiation error
Byte is a variable instantiation error
Byte is neither a variable nor a byte type error(byte, Byte)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a text stream permission error(input, text stream,

SorA)

Portability

GNU Prolog predicates.

7.13.4 put byte/2 , put byte/1

Templates

put byte(+stream or alias, +byte)
put byte(+byte)

Description

put byte(SorA, Byte) writesByte onto the stream associated with the stream-term or aliasSorA .

put byte/1 applies to the current output stream.

Errors

SorA is a variable instantiation error
Byte is a variable instantiation error
Byte is neither a variable nor a byte type error(byte, Byte)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(output, stream,

SorA)
SorA is associated with a text stream permission error(output,

text stream, SorA)

Portability

GNU Prolog predicates.

7.14 Term input/output 91

7.14 Term input/output

These built-in predicates enable a Prolog term to be input from or output to a text stream. The atomend of file
is returned as term to indicate the end-of-file. The syntax of such terms can also be altered by changing the opera-
tors (section 7.14.10, page 99), and making some characters equivalent to others (section 7.14.12, page 101) if the
char conversion Prolog flag ison (section 7.22.1, page 132). Double quoted tokens will be returned as an
atom or a character list or a character code list depending on the value of thedouble quotes Prolog flag (sec-
tion 7.22.1, page 132). Similarly, back quoted tokens are returned depending on the value of theback quotes
Prolog flag.

7.14.1 read term/3 , read term/2 , read/2 , read/1

Templates

read term(+stream or alias, ?term, +read option list)
read term(?term, +read option list)
read(+stream or alias, ?term)
read(?term)

Description

read term(SorA, Term, Options) is true if Term unifies with the next term read from the stream asso-
ciated with the stream-term or aliasSorA according to the options given byOptions .

Read options: Options is a list of read options. If this list contains contradictory options, the rightmost option
is the one which applies. Possible options are:

• variables(VL) : VL is unified with the list of all variables of the input term, in left-to-right traversal
order. Anonymous variables are included in the listVL.

• variable names(VNL) : VNL is unified with the list of pairsName = Var whereVar is a named
variable of the term andNameis the atom associated to the name ofVar . Anonymous variables are not
included in the listVNL.

• singletons(SL) : SL is unified with the list of pairsName = Var whereVar is a named variable
which occurs only once in the term andName is the atom associated to the name ofVar . Anonymous
variables are not included in the listSL.

• syntax error(error /warning /fail) : specifies the effect of a syntax error:
– error : asyntax error is raised.

– warning : a warning message is displayed and the predicate fails.

– fail : the predicate quietly fails.
The default value is the value of thesyntax error Prolog flag (section 7.22.1, page 132).

• end of term(dot /eof) : specifies the end-of-term delimiter:dot is the classical full-stop delimiter (a
dot followed with a layout character),eof is the end-of-file delimiter. This option is useful for predicates
like read term from atom/3 (section 7.15.1, page 103) to avoid to add a terminal dot at the end of the
atom. The default value isdot .

read(SorA, Term) is equivalent toread term(SorA, Term, []) .

read term/2 andread/1 apply to the current input stream.

Errors

92 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation error
Options is a partial list or a list with an elementE
which is a variable

instantiation error

SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
Options is neither a partial list nor a list type error(list, Options)
an elementE of theOptions list is neither a
variable nor a valid read option

domain error(read option, E)

SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

a syntax error occurs and the value of the
syntax error Prolog flag iserror
(section 7.22.1, page 132)

syntax error(atom explaining the
error)

Portability

ISO predicates. The ISO reference raises arepresentation error(Flag) whereFlag is max arity ,
max integer , or min integer when the read term breaches an implementation defined limit specified by
Flag . GNU Prolog detects neithermin integer nor max integer violation and treats amax arity viola-
tion as a syntax error. The read optionssyntax error/1 andend of term/1 are GNU Prolog extensions.

7.14.2 read atom/2 , read atom/1 , read integer/2 , read integer/1 ,
read number/2 , read number/1

Templates

read atom(+stream or alias, ?atom)
read atom(?atom)
read integer(+stream or alias, ?integer)
read integer(?integer)
read number(+stream or alias, ?number)
read number(?number)

Description

read atom(SorA, Atom) succeeds ifAtom unifies with the next atom read from the stream associated with
the stream-term or aliasSorA .

read integer(SorA, Integer) succeeds ifInteger unifies with the next integer read from the stream
associated with the stream-term or aliasSorA .

read number(SorA, Number) succeeds ifNumber unifies with the next number (integer or floating point
number) read from the stream associated with the stream-term or aliasSorA .

read atom/1 , read integer/1 andread number/1 apply to the current input stream.

Errors

7.14 Term input/output 93

SorA is a variable instantiation error
Atom is neither a variable nor an atom type error(atom, Atom)
Integer is neither a variable nor an integer type error(integer, Integer)
Number is neither a variable nor a number type error(number, Number)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

a syntax error occurs and the value of the
syntax error Prolog flag iserror
(section 7.22.1, page 132)

syntax error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.14.3 read token/2 , read token/1

Templates

read token(+stream or alias, ?nonvar)
read token(?nonvar)

Description

read token(SorA, Token) succeeds ifToken unifies with the encoding of the next Prolog token read from
the stream associated with stream-term or aliasSorA .

Token encoding:

• var(A) : a variable is read whose name is the atomA.

• an atomA: an atomA is read.

• integerN: an integerN is read.

• floating point numberN: a floating point numberN is read.

• string(A) : a string (double quoted item) is read whose characters forms the atomA.

• punct(P) : a punctuation characterP is read (P is a one-character atom in()[]{|} , the atomfull stop
or the atomend of file).

• back quotes(A) : a back quoted item is read whose characters forms the atomA.

• extended(A) : an extended characterA (an atom) is read.

As for read term/3 , the behavior ofread token/2 can be affected by some Prolog flags (section 7.14,
page 91).

read token/1 applies to the current input stream.

Errors

94 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an output stream permission error(input, stream,

SorA)
SorA is associated with a binary stream permission error(input,

binary stream, SorA)
SorA has stream properties
end of stream(past) and
eof action(error)

permission error(input,
past end of stream, SorA)

a syntax error occurs and the value of the
syntax error Prolog flag iserror
(section 7.22.1, page 132)

syntax error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.14.4 syntax error info/4

Templates

syntax error info(?atom, ?integer, ?integer, ?atom)

Description

syntax error info(FileName, Line, Column, Error) returns the information associated to the
last syntax error.Line is the line number of the error,Column is the column number of the error andError is
an atom explaining the error.

Errors

FileName is neither a variable nor an atom type error(atom, FileName)
Line is neither a variable nor an integer type error(integer, Line)
Column is neither a variable nor an integer type error(integer, Column)
Error is neither a variable nor an atom type error(atom, Error)

Portability

GNU Prolog predicate.

7.14.5 last read start line column/2

Templates

last read start line column(?integer, ?integer)

Description

last read start line column(Line, Column) unifiesLine andColumn with the line number and
the column number associated to the start of the last read predicate. This predicate can be used after calling
one of the following predicates:read term/3 , read term/2 , read/2 , read/1 (section 7.14.1, page 91),
read atom/2 , read atom/1 , read integer/2 , read integer/1 , read number/2 , read number/1
(section 7.14.2, page 92) orread token/2 , read token/1 (section 7.14.3, page 93).

7.14 Term input/output 95

Errors

Line is neither a variable nor an integer type error(integer, Line)
Column is neither a variable nor an integer type error(integer, Column)

Portability

GNU Prolog predicate.

7.14.6 write term/3 , write term/2 , write/2 , write/1 , writeq/2 , writeq/1 ,
write canonical/2 , write canonical/1 , display/2 , display/1 , print/2 ,
print/1

Templates

write term(+stream or alias, ?term, +write option list)
write term(?term, +write option list)
write(+stream or alias, ?term)
write(?term)
writeq(+stream or alias, ?term)
writeq(?term)
write canonical(+stream or alias, ?term)
write canonical(?term)
display(+stream or alias, ?term)
display(?term)
print(+stream or alias, ?term)
print(?term)

Description

write term(SorA, Term, Options) writesTerm to the stream associated with the stream-term or alias
SorA according to the options given byOptions .

Write options: Options is a list of write options. If this list contains contradictory options, the rightmost option
is the one which applies. Possible options are:

• quoted(true /false) : if true each atom and functor is quoted if this would be necessary for the term
to be input byread term/3 . If false no extra quotes are written. The default value isfalse .

• ignore ops(true /false) : if true each compound term is output in functional notation (neither op-
erator notation nor list notation is used). Iffalse operator and list notations are used. The default value is
false .

• numbervars(true /false) : if true a term of the form’$VAR’(N) , whereN is an integer, is output
as a variable name (see below). Iffalse such a term is output normally (according to the other options).
The default value istrue .

• namevars(true /false) : if true a term of the form’$VARNAME’(Name) , whereNameis an atom,
is output as a variable name (see below). Iffalse such a term is output normally (according to the other
options). The default value istrue .

• space args(true /false) : if true an extra space character is emitted after each comma separating
the arguments of a compound term in functional notation or of a list. Iffalse no extra space is emitted.
The default value isfalse .

• portrayed(true /false) : if true and if there exists a predicateportray/1 , write term/3
acts as follows: ifTerm is a variable it is simply written. IfTerm is non-variable then it is passed to
portray/1 . If this succeeds then it is assumed thatTerm has been output. Otherwisewrite term/3

96 7 PROLOG BUILT-IN PREDICATES

outputs the principal functor ofTerm (Term itself if it is atomic) according to other options and recursively
callsportray/1 on the components ofTerm (if it is a compound term). Withignore ops(false) a
list is first passed toportray/1 and only if this call fails each element of the list is passed toportray/1
(thus every sub-list is not passed). The default value isfalse .

• max depth(N) : controls the depth of output for compound terms.N is an integer specifying the depth.
The output of a term whose depth is greater thanNgives rise to the output of... (3 dots). By default there
is no depth limit.

• priority(N) : specifies the starting priority to output the term. This option controls ifTerm should be
enclosed in brackets.N is a positive integer≤ 1200. By defaultN= 1200.

Variable numbering: when thenumbervars(true) option is passed towrite term/3 any term of the form
’$VAR’(N) whereN is an integer is output as a variable name consisting of a capital letter possibly followed by
an integer. The capital letter is the(I+1) th letter of the alphabet and the integer isJ , whereI = N mod 26
andJ = N // 26 . The integerJ is omitted if it is zero. For example:

’$VAR’(0) is written asA
’$VAR’(1) is written asB
...
’$VAR’(25) is written asZ
’$VAR’(26) is written asA1
’$VAR’(27) is written asB1

Variable naming: when thenamevars(true) option is passed towrite term/3 any term of the form
’$VARNAME’(Name) whereNameis an atom is output as a variable name consisting of the charactersName.
For example:’$VARNAME’(’A’) is written asA (even in the presence of thequoted(true) option).

write(SorA, Term) is equivalent towrite term(SorA, Term, []) .

writeq(SorA, Term) is equivalent towrite term(SorA, Term, [quoted(true)]) .

write canonical(SorA, Term) is equivalent towrite term(SorA, Term, [quoted(true),
ignore ops(true), numbervars(false)]) .

display(SorA, Term) is equivalent towrite term(SorA, Term, [ignore ops(true),
numbervars(false)]) .

print(SorA, Term) is equivalent towrite term(SorA, Term, [numbervars(false),
portrayed(true)]) .

write term/2 , write/1 , writeq/1 , write canonical/1 , display/1 andprint/1 apply to the
current output stream.

Errors

SorA is a variable instantiation error
Options is a partial list or a list with an elementE
which is a variable

instantiation error

Options is neither a partial list nor a list type error(list, Options)
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
an elementE of theOptions list is neither a
variable nor a valid write-option

domain error(write option, E)

SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(output, stream,

SorA)
SorA is associated with a binary stream permission error(output,

binary stream, SorA)

7.14 Term input/output 97

Portability

ISO predicates exceptdisplay/1-2 andprint/1-2 that are GNU Prolog predicates.namevars/1 , space args/1 ,
portrayed/1 , max depth/1 andpriority/1 options are GNU Prolog extensions.

7.14.7 format/3 , format/2

Templates

format(+stream or alias, +character code list or atom, +list)
format(+character code list or atom, +list)

Description

format(SorA, Format, Arguments) writes theFormat string replacing each format control sequence
F by the corresponding element ofArguments (formatted according toF) to the stream associated with the
stream-term or aliasSorA .

Format control sequences: the general format of a control sequence is’˜NC’ . The characterC determines the
type of the control sequence.N is an optional numeric argument. An alternative form ofN is ’*’ . ’*’ implies
that the next argumentArg in Arguments should be used as a numeric argument in the control sequence. The
use of Cprintf() formatting sequence (beginning by the character%) is also allowed. The following control
sequences are available:

Format
sequence

type of the
argument

Description

˜Na atom print the atom without quoting.N is minimal number of characters to print
using spaces on the rigth if needed (default: the length of the atom)

˜Nc character code print the character associated to the code.N is the number of times to print
the character (default: 1)

˜Nf
˜Ne
˜NE
˜Ng
˜NG

float expression pass the argumentArg and N to the C printf() function as:
if N is not specified printf("%f",Arg) else
printf("%.Nf",Arg) .
Similarly for ˜Ne , ˜NE, ˜Ng and˜NG

˜Nd integer expression print the argument.N is the number of digits after the decimal point. IfN
is 0 no decimal point is printed (default: 0)

˜ND integer expression identical to˜Nd except that’,’ separates groups of three digits to the left
of the decimal point

˜Nr integer expression print the argument according to the radixN. 2≤ N≤ 36 (default: 8). The
lettersa-z denote digits> 9

˜NR integer expression identical to˜Nr except that the lettersA-Z denote digits> 9
˜Ns character code list print exactlyNcharacters (default: the length of the list)
˜NS character list print exactlyNcharacters (default: the length of the list)
˜i term ignore the current argument
˜k term pass the argument towrite canonical/1 (section 7.14.6, page 95)
˜p term pass the argument toprint/1 (section 7.14.6, page 95)
˜q term pass the argument towriteq/1 (section 7.14.6, page 95)
˜w term pass the argument towrite/1 (section 7.14.6, page 95)
˜˜ none print the character’˜’

˜Nn none print Nnew-line characters (default: 1)
˜N none print a new-line character if not at the beginning of a line
˜? atom use the argument as a nested format string
%F atom, integer or

float expression
interface to the C functionprintf(3) for outputting atoms (C string),
integers and floating point numbers.* are also allowed.

98 7 PROLOG BUILT-IN PREDICATES

format/2 applies to the current output stream.

Errors

SorA is a variable instantiation error
Format is a partial list or a list with an elementE
which is a variable

instantiation error

Arguments is a partial list instantiation error
Format is neither a partial list nor a list or an atom type error(list, Format)
Arguments is neither a partial list nor a list type error(list, Arguments)
an elementE of theFormat list is neither a variable
nor a character code

representation error(character code,
E)

SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
an elementE of Format is not a valid format control
sequence

domain error(format control sequence,
E)

theArguments list does not contain sufficient
elements

domain error(non empty list, [])

an elementE of theArguments list is a variable
while a non-variable term was expected

instantiation error

an elementE of theArguments list is neither
variable nor an atom while an atom was expected

type error(atom, E)

an elementE of theArguments cannot be evaluated
as an arithmetic expression while an integer or a
floating point number was expected

an arithmetic error (section 7.6.1, page 57)

an elementE of theArguments list is neither
variable nor character code while a character code
was expected

representation error(character code,
E)

SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(output, stream,

SorA)
SorA is associated with a binary stream permission error(output,

binary stream, SorA)

Portability

GNU Prolog predicates.

7.14.8 portray clause/2 , portray clause/1

Templates

portray clause(+stream or alias, +clause)
portray clause(+clause)

Description

portray clause(SorA, Clause) pretty printsClause to the stream associated with the stream-term
or aliasSorA . portray clause/2 uses the variable binding predicatesname singleton vars/1 (sec-
tion 7.5.1, page 55) andnumbervars/1 (section 7.5.3, page 56). This predicate is used bylisting/1 (sec-
tion 7.23.3, page 136).

portray clause/1 applies to the current output stream.

Errors

7.14 Term input/output 99

Clause is a variable instantiation error
Clause is neither a variable nor a callable term type error(callable, Clause)
SorA is a variable instantiation error
SorA is neither a variable nor a stream-term or aliasdomain error(stream or alias, SorA)
SorA is not associated with an open stream existence error(stream, SorA)
SorA is an input stream permission error(output, stream,

SorA)
SorA is associated with a binary stream permission error(output,

binary stream, SorA)

Portability

GNU Prolog predicates.

7.14.9 get print stream/1

Templates

get print stream(?stream)

Description

get print stream(Stream) unifiesStream with the stream-term associated to the output stream used by
print/2 (section 7.14.6, page 95). The purpose of this predicate is to allow a user-definedportray/1 predicate
to identify the output stream in use.

Errors

Stream is neither a variable nor a stream-term domain error(stream, Stream)

Portability

GNU Prolog predicate.

7.14.10 op/3

Templates

op(+integer, +operator specifier, +atom or atom list)

Description

op(Priority, OpSpecifier, Operator) alters the operator table.Operator is declared as an opera-
tor with properties defined by specifierOpSpecifier andPriority . Priority must be an integer≥ 0 and
≤ 1200. If Priority is 0 then the operator properties ofOperator (if any) are canceled.Operator may
also be a list of atoms in which case all of them are declared to be operators. In general, operators can be removed
from the operator table and their priority or specifier can be changed. However, it is an error to attempt to change
the ’,’ operator from its initial status. An atom can have multiple operator definitions (e.g. prefix and infix like
+) however an atom cannot have both an infix and a postfix operator definitions.

Operator specifiers: the following specifiers are available:

100 7 PROLOG BUILT-IN PREDICATES

Specifier Type Associativity

fx prefix no
fy prefix yes
xf postfix no
yf postfix yes

xfx infix no
yfx infix left
xfy infix right

Prolog predefined operators:

Priority Specifier Operators

1200 xfx :- -->
1200 fx :-
1100 xfy ;
1050 xfy ->
1000 xfy ,

900 fy \+
700 xfx = \= =.. == \== @< @=< @> @>= is =:= =\=

< =< > >=
600 xfy :
500 yfx + - /\ \/
400 yfx * / // rem mod << >>
200 xfy ** ˆ
200 fy + - \

FD predefined operators:

Priority Specifier Operators

750 xfy #<=> #\<=>
740 xfy #==> #\==>
730 xfy ## #\/ #\\/
720 yfx #/\ #\/\
710 fy #\
700 xfx #= #\= #< #=< #> #>= #=# #\=# #<# #=<# #>#

#>=#
500 yfx + -
400 yfx * / // rem
200 xfy **
200 fy + -

Errors

7.14 Term input/output 101

Priority is a variable instantiation error
OpSpecifier is a variable instantiation error
Operator is a partial list or a list with an elementE
which is a variable

instantiation error

Priority is neither a variable nor an integer type error(integer, Priority)
OpSpecifier is neither a variable nor an atom type error(atom, OpSpecifier)
Operator is neither a partial list nor a list nor an
atom

type error(list, Operator)

an elementE of theOperator list is neither a
variable nor an atom

type error(atom, E)

Priority is an integer not≥ 0 and≤ 1200 domain error(operator priority,
Priority)

OpSpecifier is not a valid operator specifier domain error(operator specifier,
OpSpecifier)

Operator is ’,’ or an element of theOperator
list is ’,’

permission error(modify, operator,
’,’)

OpSpecifier is a specifier such thatOperator
would have a postfix and an infix definition.

permission error(create, operator,
Operator)

Portability

ISO predicate.

The ISO reference implies that if a program callscurrent op/3 , then modifies an operator definition by call-
ing op/3 and backtracks into the call tocurrent op/3 , then the changes are guaranteed not to affect that
current op/3 goal. This is not guaranteed by GNU Prolog.

7.14.11 current op/3

Templates

current op(?integer, ?operator specifier, ?atom)

Description

current op(Priority, OpSpecifier, Operator) succeeds ifOperator is an operator with prop-
erties defined by specifierOpSpecifier andPriority . This predicate is re-executable on backtracking.

Errors

Priority is neither a variable nor an operator
priority

domain error(operator priority,
Priority)

OpSpecifier is neither a variable nor an operator
specifier

domain error(operator specifier,
OpSpecifier)

Operator is neither a variable nor an atom type error(atom, Operator)

Portability

ISO predicate.

7.14.12 char conversion/2

Templates

char conversion(+character, +character)

102 7 PROLOG BUILT-IN PREDICATES

Description

char conversion(InChar, OutChar) alters the character-conversion mapping. This mapping is used by
the following read predicates:read term/3 (section 7.14.1, page 91),read atom/2 , read integer/2 ,
read number/2 (section 7.14.2, page 92) andread token/2 (section 7.14.3, page 93) to replace any occur-
rence of a characterInChar by OutChar . However the conversion mechanism should have been previously
activated by switching on thechar conversion Prolog flag (section 7.22.1, page 132). WhenInChar and
OutChar are the same, the effect is to remove any conversion of a characterInChar .

Note that the single character read predicates (e.g.get char/2) never do character conversion. If such behavior
is required, it must be explicitly done usingcurrent char conversion/2 (section 7.14.13, page 102).

Errors

InChar is a variable instantiation error
OutChar is a variable instantiation error
InChar is neither a variable nor a character type error(character, InChar)
OutChar is neither a variable nor a character type error(character, OutChar)

Portability

ISO predicate. Thetype error(character,...) is a GNU Prolog behavior, the ISO reference instead
defines arepresentation error(character) in this case. This seems to be an error of the ISO ref-
erence since, for many other built-in predicates accepting a character (e.g.char code/2 , put char/2), a
type error is raised.

The ISO reference implies that if a program callscurrent char conversion/2 , then modifies the character
mapping by callingchar conversion/2 , and backtracks into the call tocurrent char conversion/2
then the changes are guaranteed not to affect thatcurrent char conversion/2 goal. This is not guaranteed
by GNU Prolog.

7.14.13 current char conversion/2

Templates

current char conversion(?character, ?character)

Description

current char conversion(InChar, OutChar) succeeds if the conversion ofInChar is OutChar
according to the character-conversion mapping. In that case,InChar andOutChar are different. This predicate
is re-executable on backtracking.

Errors

InChar is neither a variable nor a character type error(character, InChar)
OutChar is neither a variable nor a character type error(character, OutChar)

Portability

ISO predicate. Same remark as for charconversion/2 (section 7.14.12, page 101).

7.15 Input/output from/to constant terms 103

7.15 Input/output from/to constant terms

These built-in predicates enable a Prolog term to be input from or output to a Prolog constant term (atom, character
list or character code list). All these predicates can be defined using constant term streams (section 7.11, page 82).
They are however simpler to use.

7.15.1 read term from atom/3 , read from atom/2 , read token from atom/2

Templates

read term from atom(+atom ?term, +read option list)
read from atom(+atom, ?term)
read token from atom(+atom, ?nonvar)

Description

Like read term/3 , read/2 (section 7.14.1, page 91) andread token/2 (section 7.14.3, page 93) except
that characters are not read from a text-stream but fromAtom; the atom given as first argument.

Errors

Atom is a variable instantiation error
Atom is neither a variable nor an atom type error(atom, Atom)
see associated predicate errors (section 7.14.1, page 91) and (section 7.14.3,

page 93)

Portability

GNU Prolog predicates.

7.15.2 read term from chars/3 , read from chars/2 , read token from chars/2

Templates

read term from chars(+character list ?term, +read option list)
read from chars(+character list, ?term)
read token from chars(+character list, ?nonvar)

Description

Like read term/3 , read/2 (section 7.14.1, page 91) andread token/2 (section 7.14.3, page 93) except
that characters are not read from a text-stream but fromChars ; the character list given as first argument.

Errors

Chars is a partial list or a list with an elementE
which is a variable

instantiation error

Chars is neither a partial list nor a list type error(list, Chars)
an elementE of theChars list is neither a variable
nor a character

type error(character, E)

see associated predicate errors (section 7.14.1, page 91) and (section 7.14.3,
page 93)

Portability

104 7 PROLOG BUILT-IN PREDICATES

GNU Prolog predicates.

7.15.3 read term from codes/3 , read from codes/2 , read token from codes/2

Templates

read term from codes(+character code list ?term, +read option list)
read from codes(+character code list, ?term)
read token from codes(+character code list, ?nonvar)

Description

Like read term/3 , read/2 (section 7.14.1, page 91) andread token/2 (section 7.14.3, page 93) except
that characters are not read from a text-stream but fromCodes ; the character code list given as first argument.

Errors

Codes is a partial list or a list with an elementE
which is a variable

instantiation error

Codes is neither a partial list nor a list type error(list, Codes)
an elementE of theCodes list is neither a variable
nor an integer

type error(integer, E)

an elementE of theCodes list is an integer but not a
character code

representation error(character code,
E)

see associated predicate errors (section 7.14.1, page 91) and (section 7.14.3,
page 93)

Portability

GNU Prolog predicates.

7.15.4 write term to atom/3 , write to atom/2 , writeq to atom/2 ,
write canonical to atom/2 , display to atom/2 , print to atom/2 ,
format to atom/3

Templates

write term to atom(?atom, ?term, +write option list)
write to atom(?atom, ?term)
writeq to atom(?atom, ?term)
write canonical to atom(?atom, ?term)
display to atom(?atom, ?term)
print to atom(?atom, ?term)
format to atom(?atom, +character code list or atom, +list)

Description

Similar to write term/3 , write/2 , writeq/2 , write canonical/2 , display/2 , print/2 (sec-
tion 7.14.6, page 95) andformat/3 (section 7.14.7, page 97) except that characters are not written onto a text-
stream but are collected as an atom which is then unified with the first argumentAtom.

Errors

Atom is neither a variable nor an atom type error(atom, Atom)
see associated predicate errors (section 7.14.6, page 95) and (section 7.14.7,

page 97)

7.15 Input/output from/to constant terms 105

Portability

GNU Prolog predicates.

7.15.5 write term to chars/3 , write to chars/2 , writeq to chars/2 ,
write canonical to chars/2 , display to chars/2 , print to chars/2 ,
format to chars/3

Templates

write term to chars(?character list, ?term, +write option list)
write to chars(?character list, ?term)
writeq to chars(?character list, ?term)
write canonical to chars(?character list, ?term)
display to chars(?character list, ?term)
print to chars(?character list, ?term)
format to chars(?character list, +character code list or atom, +list)

Description

Similar to write term/3 , write/2 , writeq/2 , write canonical/2 , display/2 , print/2 (sec-
tion 7.14.6, page 95) andformat/3 (section 7.14.7, page 97) except that characters are not written onto a text-
stream but are collected as a character list which is then unified with the first argumentChars .

Errors

Chars is neither a partial list nor a list type error(list, Chars)
see associated predicate errors (section 7.14.6, page 95) and (section 7.14.7,

page 97)

Portability

GNU Prolog predicates.

7.15.6 write term to codes/3 , write to codes/2 , writeq to codes/2 ,
write canonical to codes/2 , display to codes/2 , print to codes/2 ,
format to codes/3

Templates

write term to codes(?character code list, ?term, +write option list)
write to codes(?character code list, ?term)
writeq to codes(?character code list, ?term)
write canonical to codes(?character code list, ?term)
display to codes(?character code list, ?term)
print to codes(?character code list, ?term)
format to codes(?character code list, +character code list or atom, +list)

Description

Similar to write term/3 , write/2 , writeq/2 , write canonical/2 , display/2 , print/2 (sec-
tion 7.14.6, page 95) andformat/3 (section 7.14.7, page 97) except that characters are not written onto a text-
stream but are collected as a character code list which is then unified with the first argumentCodes .

Errors

106 7 PROLOG BUILT-IN PREDICATES

Codes is neither a partial list nor a list type error(list, Codes)
see associated predicate errors (section 7.14.6, page 95) and (section 7.14.7,

page 97)

Portability

GNU Prolog predicates.

7.16 DEC-10 compatibility input/output

7.16.1 Introduction

The DEC-10 Prolog I/O predicates manipulate streams implicitly since they only refer to current input/output
streams (section 7.10.1, page 67). The current input and output streams are initially set touser input and
user output respectively. The predicatesee/1 (resp. tell/1 , append/1) can be used for setting the
current input (resp. output) stream to newly opened streams for particular files. The predicateseen/0 (resp.
told/0) close the current input (resp. output) stream, and resets it to the standard input (resp. output). The pred-
icateseeing/1 (resp.telling/1) is used for retrieving the file name associated with the current input (resp.
output) stream. The file nameuser stands for the standard input or output, depending on context (user input
anduser output can also be used). The DEC-10 Prolog I/O predicates are only provided for compatibility,
they are now obsolete and their use is discouraged. The predicates for explicit stream manipulation should be used
instead (section 7.10, page 67).

7.16.2 see/1 , tell/1 , append/1

Templates

see(+source sink)
see(+stream)
tell(+source sink)
tell(+stream)
append(+source sink)
append(+stream)

Description

see(FileName) sets the current input stream toFileName . If there is a stream opened bysee/1 associated
with the sameFileName already, then it becomes the current input stream. Otherwise,FileName is opened for
reading and becomes the current input stream.

tell(FileName) sets the current output stream toFileName . If there is a stream opened bytell/1 asso-
ciated with the sameFileName already, then it becomes the current output stream. Otherwise,FileName is
opened for writing and becomes the current output stream.

append(FileName) like tell/1 butFileName is opened for writing + append.

A stream-term (obtained with any other built-in predicate) can also be provided asFileName to these predicates.

Errors

See errors associated toopen/4 (section 7.10.6, page 69).

Portability

7.16 DEC-10 compatibility input/output 107

GNU Prolog predicates.

7.16.3 seeing/1 , telling/1

Templates

seeing(?source sink)
telling(?source sink)

Description

seeing(FileName) succeeds ifFileName unifies with the name of the current input file, if it was opened by
see/1 ; else with the current input stream-term, if this is notuser input , otherwise withuser .

telling(FileName) succeeds ifFileName unifies with the name of the current output file, if it was opened
by tell/1 or append/1 ; else with the current output stream-term, if this is notuser output , otherwise with
user .

Errors

None.

Portability

GNU Prolog predicates.

7.16.4 seen/0 , told/0

Templates

seen
told

Description

seen closes the current input, and resets it touser input .

told closes the current output, and resets it touser output .

Errors

None.

Portability

GNU Prolog predicates.

7.16.5 get0/1 , get/1 , skip/1

Templates

get0(?in character code)
get(?in character code)
skip(+character code)

108 7 PROLOG BUILT-IN PREDICATES

Description

get0(Code) succeeds ifCode unifies with the next character code read from the current input stream. Thus it
is equivalent toget code(Code) (section 7.12.1, page 84).

get(Code) succeeds ifCode unifies with the next character code read from the current input stream that is not
a layout character.

skip(Code) skips just past the next character codeCode from the current input stream.

Errors

See errors forget code/2 (section 7.12.1, page 84).

Portability

GNU Prolog predicates.

7.16.6 put/1 , tab/1

Templates

put(+character code)
tab(+evaluable)

Description

put(Code) writes the character whose code isCode onto the current output stream. It is equivalent toput code(Code)
(section 7.12.5, page 87).

tab(N) writesNspaces onto the current output stream.Nmay be an arithmetic expression.

Errors

See errors forput code/2 (section 7.12.5, page 87) and for arithmetic expressions (section 7.6.1, page 57).

Portability

GNU Prolog predicates.

7.17 Term expansion

7.17.1 Definite clause grammars

Definite clause grammars are a useful notation to express grammar rules. However the ISO reference does not
include them, so they should be considered as a system dependent feature. Definite clause grammars are an
extension of context-free grammars. A grammar rule is of the form:

head --> body.

--> is a predefined infix operator (section 7.14.10, page 99).

Here are some features of definite clause grammars:

• a non-terminal symbol may be any callable term.

7.17 Term expansion 109

• a terminal symbol may be any Prolog term and is written as a list. The empty list represents an empty
sequence of terminals.

• a sequence is expressed using the Prolog conjunction operator((’,’)/2).

• the head of a grammar rule consists of a non-terminal optionally followed by a sequence of terminals (i.e. a
Prolog list).

• the body of a grammar rule consists of a sequence of non-terminals, terminals, predicate call, disjunction
(using;/2), if-then (using(->)/2) or cut (using!).

• a predicate call must be enclosed in curly brackets (using{}/1). This makes it possible to express an extra
condition.

A grammar rule is nothing but a “syntactic sugar” for a Prolog clause. Each grammar rule accepts as input a list of
terminals (tokens), parses a prefix of this list and gives as output the rest of this list (possibly enlarged). This rest
is generally parsed later. So, each a grammar rule is translated into a Prolog clause that explicitly the manages the
list. Two arguments are then added: the input list (Start) and the output list (Stop). For instance:

p --> q.

is translated into:

p(Start, End) :- q(Start, End).

Extra arguments can be provided and the body of the rule can contain several non-terminals. Example:

p(X, Y) -->
q(X),
r(X, Y),
s(Y).

is translated into:

p(X, Y, Start, End) :-
q(X, Start, A),
r(X, Y, A, B),
s(Y, B, End).

Terminals are translated using unification:

assign(X,Y) --> left(X), [:=], right(Y), [;].

is translated into:

assign(X,Y,Start,End) :-
left(X, Start, A),
A=[:=|B],
right(Y, B, C),
C=[;|End].

Terminals appearing on the left-hand side of a rule are connected to the output argument of the head.

It is possible to include a call to a prolog predicate enclosing it in curly brackets (to distinguish them from non-
terminals):

assign(X,Y) --> left(X), [:=], right(Y0), {Y is Y0 }, [;].

is translated into:

assign(X,Y,Start,End) :-
left(X, Start, A),
A=[:=|B],
right(Y0, B, C),
Y is Y0,
C=[;|End].

Cut, disjunction and if-then(-else) are translated literally (and do not need to be enclosed in curly brackets).

110 7 PROLOG BUILT-IN PREDICATES

7.17.2 expand term/2 , term expansion/2

Templates

expand term(?term, ?term)
term expansion(?term, ?term)

Description

expand term(Term1, Term2) succeeds ifTerm2 is a transformation ofTerm1 . The transformation steps
are as follows:

• if Term1 is a variable, it is unified withTerm2

• if term expansion(Term1, Term2) succeedsTerm2 is assumed to be the transformation ofTerm1 .

• if Term1 is a DCG thenTerm2 is its translation (section 7.17.1, page 108).

• otherwiseTerm2 is unified withTerm1 .

term expansion(Term1, Term2) is a hook predicate allowing the user to define a specific transformation.

The GNU Prolog compiler (section 3.4, page 20) automatically callsexpand term/2 on eachTerm1 read in.
However, in the current release, only DCG transformation are done by the compiler (i.e.term expansion/2
cannot be used). To useterm expansion/2 , it is necessary to callexpand term/2 explicitly.

Errors

None.

Portability

GNU Prolog predicate.

7.17.3 phrase/3 , phrase/2

Templates

phrase(?term, ?list, ?list)
phrase(?term, ?list)

Description

phrase(Phrase, List, Remainder) succeeds if the listList is in the language defined by the grammar
rule bodyPhrase . Remainder is what remains of the list after a phrase has been found.

phrase(Phrase, List) is equivalent tophrase(Phrase, List, []) .

Errors

List is neither a list nor a partial list type error(list, List)
Remainder is neither a list nor a partial list type error(list, Remainder)

Portability

GNU Prolog predicates.

7.18 Logic, control and exceptions 111

7.18 Logic, control and exceptions

7.18.1 abort/0 , stop/0 , top level/0 , break/0 , halt/1 , halt/0

Templates

abort
stop
top level
break
halt(+integer)
halt

Description

abort aborts the current execution. If this execution was initiated under a top-level the control is given back to
the top-level and the message{execution aborted} is displayed. Otherwise, e.g. execution started by a
initialization/1 directive (section 6.1.13, page 45),abort/0 is equivalent tohalt(1) (see below).

stop stops the current execution. If this execution was initiated under a top-level the control is given back to the
top-level. Otherwise,stop/0 is equivalent tohalt(0) (see below).

top level starts a new recursive top-level (including the banner display). To end this new top-level simply type
the end-of-file key sequence (Ctl-D) or its term representation:end of file.

break invokes a recursive top-level (no banner is displayed). To end this new level simply type the end-of-file
key sequence (Ctl-D) or its term representation:end of file.

halt(Status) causes the GNU Prolog process to immediately exit back to the shell with the return code
Status .

halt is equivalent tohalt(0) .

Errors

Status is a variable instantiation error
Status is neither a variable nor an integer type error(integer, Status)

Portability

halt/1 andhalt/0 are ISO predicates.abort/0 , stop/0 , top level/0 andbreak/0 are GNU Prolog
predicates.

7.18.2 once/1 , (\+)/1 - not provable, call with args/1-11 , call/2

Templates

once(+callable term)
\+(+callable term)
call with args(+atom, +term,..., +term)
call(+callable term, ?boolean)

Description

once(Goal) succeeds ifcall(Goal) succeeds. Howeveronce/1 is not re-executable on backtracking since
all alternatives ofGoal are cut.once(Goal) is equivalent tocall(Goal), ! .

112 7 PROLOG BUILT-IN PREDICATES

\+ Goal succeeds ifcall(Goal) fails and fails otherwise. This built-in predicate gives negation by failure.

call with args(Functor, Arg1,..., ArgN) calls the goal whose functor isFunctor and whose
arguments areArg1 ,. . . ,ArgN (0 ≤ N≤ 10).

call(Goal, Deterministic) succeeds ifcall(Goal) succeeds and unifiesDeterministic with
true if Goal has not created any choice-points, withfalse otherwise.

\+ is a predefined prefix operator (section 7.14.10, page 99).

Errors

Goal is a variable instantiation error
Goal is neither a variable nor a callable term type error(callable, Goal)
The predicate indicatorPred of Goal does not
correspond to an existing procedure and the value of
theunknown Prolog flag iserror (section 7.22.1,
page 132)

existence error(procedure, Pred)

Functor is a variable instantiation error
Functor is neither a variable nor an atom type error(atom, Functor)
Deterministic is neither a variable nor a booleantype error(boolean, Deterministic)

Portability

once/1 and(\+)/1 are ISO predicates,call with args/1-11 andcall/2 are GNU Prolog predicates.

7.18.3 repeat/0

Templates

repeat

Description

repeat generates an infinite sequence of backtracking choices. The purpose is to repeatedly perform some action
on elements which are somehow generated, e.g. by reading them from a stream, until some test becomes true.
Repeat loops cannot contribute to the logic of the program. They are only meaningful if the action involves side-
effects. The only reason for using repeat loops instead of a more natural tail-recursive formulation is efficiency:
when the test fails back, the Prolog engine immediately reclaims any working storage consumed since the call to
repeat/0 .

Errors

None.

Portability

ISO predicate.

7.18.4 for/3

Templates

for(?integer, +integer, +integer)

7.19 Atomic term processing 113

Description

for(Counter, Lower, Upper) generates an sequence of backtracking choices instantiatingCounter to
the valuesLower , Lower+1 ,. . . ,Upper .

Errors

Counter is neither a variable nor an integer type error(integer, Counter)
Lower is a variable instantiation error
Lower is neither a variable nor an integer type error(integer, Lower)
Upper is a variable instantiation error
Upper is neither a variable nor an integer type error(integer, Upper)

Portability

GNU Prolog predicate.

7.19 Atomic term processing

These built-in predicates enable atomic terms to be processed as a sequence of characters and character codes.
Facilities exist to split and join atoms, to convert a single character to and from the corresponding character code,
and to convert a number to and from a list of characters and character codes.

7.19.1 atom length/2

Templates

atom length(+atom, ?integer)

Description

atom length(Atom, Length) succeeds ifLength unifies with the number of characters of the name of
Atom.

Errors

Atom is a variable instantiation error
Atom is neither a variable nor an atom type error(atom, Atom)
Length is neither a variable nor an integer type error(integer, Length)
Length is an integer< 0 domain error(not less than zero,

Length)

Portability

ISO predicate.

7.19.2 atom concat/3

Templates

atom concat(+atom, +atom, ?atom)
atom concat(?atom, ?atom, +atom)

114 7 PROLOG BUILT-IN PREDICATES

Description

atom concat(Atom1, Atom2, Atom12) succeeds if the name ofAtom12 is the concatenation of the name
of Atom1 with the name ofAtom1 . This predicate is re-executable on backtracking (e.g. ifAtom12 is instantiated
and bothAtom1 andAtom2 are variables).

Errors

Atom1 andAtom12 are variables instantiation error
Atom2 andAtom12 are variables instantiation error
Atom1 is neither a variable nor an atom type error(atom, Atom1)
Atom2 is neither a variable nor an atom type error(atom, Atom2)
Atom12 is neither a variable nor an atom type error(atom, Atom12)

Portability

ISO predicate.

7.19.3 sub atom/5

Templates

sub atom(+atom, ?integer, ?integer, ?integer, ?atom)

Description

sub atom(Atom, Before, Length, After, SubAtom) succeeds if atomAtom can be split into three
atoms,AtomL , SubAtom andAtomR such thatBefore is the number of characters of the name ofAtomL ,
Length is the number of characters of the name ofSubAtom andAfter is the number of characters of the
name ofAtomR. This predicate is re-executable on backtracking.

Errors

Atom is a variable instantiation error
Atom is neither a variable nor an atom type error(atom, Atom)
SubAtom is neither a variable nor an atom type error(atom, SubAtom)
Before is neither a variable nor an integer type error(integer, Before)
Length is neither a variable nor an integer type error(integer, Length)
After is neither a variable nor an integer type error(integer, After)
Before is an integer< 0 domain error(not less than zero,

Before)
Length is an integer< 0 domain error(not less than zero,

Length)
After is an integer< 0 domain error(not less than zero,

After)

Portability

ISO predicate.

7.19.4 char code/2

Templates

7.19 Atomic term processing 115

char code(+character, ?character code)
char code(-character, +character code)

Description

char code(Char, Code) succeeds if the character code for the one-char atomChar is Code.

Errors

Char andCode are variables instantiation error
Char is neither a variable nor a one-char atom type error(character, Char)
Code is neither a variable nor an integer type error(integer, Code)
Code is an integer but not a character code representation error(character code)

Portability

ISO predicate.

7.19.5 lower upper/2

Templates

lower upper(+character, ?character)
lower upper(-character, +character)

Description

lower upper(Char1, Char2) succeeds ifChar1 andChar2 are one-char atoms and ifChar2 is the upper
conversion ofChar1 . If Char1 (resp.Char2) is a character that is not a lower (resp. upper) letter thenChar2
is equal toChar1 .

Errors

Char1 andChar2 are variables instantiation error
Char1 is neither a variable nor a one-char atom type error(character, Char1)
Char2 is neither a variable nor a one-char atom type error(character, Char2)

Portability

GNU Prolog predicate.

7.19.6 atom chars/2 , atom codes/2

Templates

atom chars(+atom, ?character list)
atom chars(-atom, +character list)
atom codes(+atom, ?character code list)
atom codes(-atom, +character code list)

Description

atom chars(Atom, Chars) succeeds ifChars is the list of one-char atoms whose names are the successive
characters of the name ofAtom.

atom codes(Atom, Codes) is similar toatom chars/2 but deals with a list of character codes.

116 7 PROLOG BUILT-IN PREDICATES

Errors

Atom is a variable andChars (or Codes) is a
partial list or a list with an element which is a variable

instantiation error

Atom is neither a variable nor an atom type error(atom, Atom)
Chars is neither a list nor a partial list type error(list, Chars)
Codes is neither a list nor a partial list type error(list, Codes)
Atom is a variable and an elementE of the list
Chars is neither a variable nor a one-char atom

type error(character, E)

Atom is a variable and an elementE of the list
Codes is neither a variable nor an integer

type error(integer, E)

Atom is a variable and an elementE of the list
Codes is an integer but not a character code

representation error(character code)

Portability

ISO predicates. The ISO reference only causes atype error(list, Chars) if Atom is a variable and
Chars is neither a list nor a partial list. GNU Prolog always checks ifChars is a list. Similarly forCodes . The
type error(integer, E) when an elementE of the Codes is not an integer is a GNU Prolog extension.
This seems to be an omission in the ISO reference since this error is detected for many other built-in predicates
accepting a character code (e.g.char code/2 , put code/2).

7.19.7 number atom/2 , number chars/2 , number codes/2

Templates

number atom(+number, ?atom)
number atom(-number, +atom)
number chars(+number, ?character list)
number chars(-number, +character list)
number codes(+number, ?character code list)
number codes(-number, +character code list)

Description

number atom(Number, Atom) succeeds ifAtom is an atom whose name corresponds to the characters of
Number.

number chars(Number, Chars) is similar tonumber atom/2 but deals with a list of character codes.

number codes(Number, Codes) is similar tonumber atom/2 but deals with a list of characters.

Errors

7.19 Atomic term processing 117

Number andAtom are variables instantiation error
Number is a variable andChars (or Codes) is a
partial list or a list with an element which is a variable

instantiation error

Number is neither a variable nor an number type error(number, Number)
Atom is neither a variable nor an atom type error(atom, Atom)
Number is a variable andChars is neither a list nor
a partial list

type error(list, Chars)

Number is a variable andCodes is neither a list nor
a partial list

type error(list, Codes)

Number is a variable and an elementE of the list
Chars is neither a variable nor a one-char atom

type error(character, E)

Number is a variable and an elementE of the list
Codes is neither a variable nor an integer

type error(integer, E)

Number is a variable and an elementE of the list
Codes is an integer but not a character code

representation error(character code)

Number is a variable,Atom (or Chars or Codes)
cannot be parsed as a number and the value of the
syntax error Prolog flag iserror
(section 7.22.1, page 132)

syntax error(atom explaining the
error)

Portability

number atom/2 is a GNU Prolog predicate.number chars/2 andnumber codes/2 are ISO predicates.

GNU Prolog only raises an error about an elementE of theChars (or Codes) list whenNumber is a variable
while the ISO reference always check this. This seems an error since the list itself is only checked ifNumber is a
variable.

Thetype error(integer, E) when an elementEof theCodes is not an integer is a GNU Prolog extension.
This seems to be an omission in the ISO reference since this error is detected for many other built-in predicates
accepting a character code (e.g.char code/2 , put code/2).

7.19.8 name/2

Templates

name(+atomic, ?character code list)
name(-atomic, +character code list)

Description

name(Constant, Codes) succeeds ifCodes is a list whose elements are the character codes correspond-
ing to the successive characters ofConstant (a number or an atom). However, there atoms are for which
name(Constant, Codes) is true, but which will not be constructed ifname/2 is called withConstant
uninstantiated, e.g. the atom’1024’ . For this reason the use ofname/2 is discouraged and should be lim-
ited to compatibility purposes. It is preferable to use atomcodes/2 (section 7.19.6, page 115) or numberchars/2
(section 7.19.7, page 116).

Errors

118 7 PROLOG BUILT-IN PREDICATES

Constant is a variable andCodes is a partial list
or a list with an element which is a variable

instantiation error

Constant is neither a variable nor an atomic term type error(atomic, Constant)
Constant is a variable andCodes is neither a list
nor a partial list

type error(list, Codes)

Constant is a variable and an elementE of the list
Codes is neither a variable nor an integer

type error(integer, E)

Constant is a variable and an elementE of the list
Codes is an integer but not a character code

representation error(character code)

Portability

GNU Prolog predicate.

7.19.9 atom hash/2

Templates

atom hash(+atom, ?integer)
atom hash(?atom, +integer)

Description

atom hash(Atom, Hash) succeeds ifHash is the internal key associated toAtom (an existing atom). The
internal key of an atom is a unique integer≥ 0 and< to themax atom Prolog flag (section 7.22.1, page 132).

Errors

Atom andHash are both variables instantiation error
Atom is neither a variable nor an atom type error(atom, Atom)
Hash is neither a variable nor an integer type error(integer, Hash)
Hash is an integer< 0 domain error(not less than zero,

Hash)

Portability

GNU Prolog predicate.

7.19.10 new atom/3 , new atom/2 , new atom/1

Templates

new atom(+atom, +integer, -atom)
new atom(+atom, -atom)
new atom(-atom)

Description

new atom(Prefix, Hash, Atom) unifiesAtom with a new atom whose name begins with the characters of
the name ofPrefix and whose internal key isHash (section 7.19.9, page 118). This predicate is then a symbol
generator. It is guaranteed thatAtom does not exist before the invocation ofnew atom/3 . The characters
appended toPrefix to formAtom are in:A-Z (capital letter),a-z (small letter),0-9 (digit), #, $, &, , @.

new atom/2 is similar tonew atom/3 , but the atom generated can have any (free) internal key.

7.19 Atomic term processing 119

new atom/1 is similar tonew atom(atom , Atom) , i.e. the generated atom begins withatom .

Errors

Prefix is a variable instantiation error
Hash is a variable instantiation error
Prefix is neither a variable nor an atom type error(atom, Prefix)
Hash is neither a variable nor an integer type error(integer, Hash)
Hash is an integer< 0 domain error(not less than zero,

Hash)
Atom is not a variable type error(variable, Atom)

Portability

GNU Prolog predicate.

7.19.11 current atom/1

Templates

current atom(?atom)

Description

current atom(Atom) succeeds if there exists an atom that unifies withAtom. All atoms are found except
those beginning with a’$’ (system atoms). This predicate is re-executable on backtracking.

Errors

Atom is neither a variable nor an atom type error(atom, Atom)

Portability

GNU Prolog predicate.

7.19.12 atom property/2

Templates

atom property(?atom, ?atom property)

Description

atom property(Atom, Property) succeeds ifcurrent atom(Atom) succeeds (section 7.19.11, page 119)
and ifProperty unifies with one of the properties of the atom. This predicate is re-executable on backtracking.

Atom properties:

• length(Length) : Length is the length of the name of the atom.

• hash(Hash) : Hash is the internal key of the atom (section 7.19.9, page 118).

• prefix op : if there is a prefix operator currently defined with this name.

• infix op : if there is an infix operator currently defined with this name.

• postfix op : if there is a postfix operator currently defined with this name.

120 7 PROLOG BUILT-IN PREDICATES

• needs quotes : if the atom must be quoted to be read later.

• needs scan : if the atom must be scanned when output to be read later (e.g. contains special characters
that must be output with a\ escape sequence).

Errors

Atom is neither a variable nor an atom type error(atom, Atom)
Property is neither a variable nor a n atom
property term

domain error(atom property,
Property)

Property = length(E) or hash(E) andE is
neither a variable nor an integer

type error(integer, E)

Portability

GNU Prolog predicate.

7.20 List processing

These predicates manipulate lists. They are bootstrapped predicates (i.e. written in Prolog) and no error cases are
tested (for the moment). However, since they are written in Prolog using other built-in predicates, some errors can
occur due to those built-in predicates.

7.20.1 append/3

Templates

append(?list, ?list, ?list)

Description

append(List1, List2, List12) succeeds if the concatenation of the listList1 and the listList2 is
the listList12 . This predicate is re-executable on backtracking (e.g. ifList12 is instantiated and bothList1
andList2 are variable).

Errors

None.

Portability

GNU Prolog predicate.

7.20.2 member/2 , memberchk/2

Templates

member(?term, ?list)
memberchk(?term, ?list)

Description

member(Element, List) succeeds ifElement belongs to theList . This predicate is re-executable on
backtracking and can be thus used to enumerate the elements ofList .

7.20 List processing 121

memberchk/2 is similar tomember/2 but only succeeds once.

Errors

None.

Portability

GNU Prolog predicate.

7.20.3 reverse/2

Templates

reverse(?list, ?list)

Description

reverse(List1, List2) succeeds ifList2 unifies with the listList1 in reverse order.

Errors

None.

Portability

GNU Prolog predicate.

7.20.4 delete/3 , select/3

Templates

delete(?list, ?term, ?list)
select(?term, ?list, ?list)

Description

delete(List1, Element, List2) removes all occurrences ofElement in List1 to provideList2 .
A strict term equality is required, cf.(==)/2 (section 7.3.2, page 51).

select(Element, List1, List2) removes one occurrence ofElement in List1 to provideList2 .
This predicate is re-executable on backtracking.

Errors

None.

Portability

GNU Prolog predicate.

7.20.5 permutation/2

Templates

122 7 PROLOG BUILT-IN PREDICATES

permutation(?list, ?list)

Description

permutation(List1, List2) succeeds ifList2 is a permutation of the elements ofList1 . This predi-
cate is re-executable on backtracking.

Errors

None.

Portability

GNU Prolog predicate.

7.20.6 prefix/2 , suffix/2

Templates

prefix(?list, ?list)
suffix(?list, ?list)

Description

prefix(Prefix, List) succeeds ifPrefix is a prefix ofList . This predicate is re-executable on back-
tracking.

suffix(Suffix, List) succeeds ifSuffix is a suffix ofList . This predicate is re-executable on back-
tracking.

Errors

None.

Portability

GNU Prolog predicate.

7.20.7 sublist/2

Templates

sublist(?list, ?list)

Description

sublist(List1, List2) succeeds ifList2 is a sub-list ofList1 . This predicate is re-executable on
backtracking.

Errors

None.

Portability

GNU Prolog predicate.

7.20 List processing 123

7.20.8 last/2

Templates

last(?list, ?term)

Description

last(List, Element) succeeds ifElement is the last element ofList .

Errors

None.

Portability

GNU Prolog predicate.

7.20.9 length/2

Templates

length(?list, ?integer)

Description

length(List, Length) succeeds ifLength is the length ofList .

Errors

None.

Portability

GNU Prolog predicate.

7.20.10 nth/3

Templates

nth(?integer, ?list, ?term)

Description

nth(N, List, Element) succeeds if theNth argument ofList is Element .

Errors

None.

Portability

GNU Prolog predicate.

124 7 PROLOG BUILT-IN PREDICATES

7.20.11 max list/2 , min list/2 , sum list/2

Templates

min list(+list, ?number)
max list(+list, ?number)
sum list(+list, ?number)

Description

min list(List, Min) succeeds ifMin is the smallest number inList .

max list(List, Max) succeeds ifMax is the largest number inList .

sum list(List, Sum) succeeds ifSumis the sum of all the elements inList .

List must be a list of arithmetic evaluable terms (section 7.6.1, page 57).

Errors

None.

Portability

GNU Prolog predicate.

7.20.12 sort/2 , sort0/2 , keysort/2 sort/1 , sort0/1 , keysort/1

Templates

sort(+list, ?list)
sort0(+list, ?list)
keysort(+list, ?list)
sort(+list)
sort0(+list)
keysort(+list)

Description

sort(List1, List2) succeeds ifList2 is the sorted list corresponding toList1 where duplicate elements
are merged.

sort0/2 is similar tosort/2 except that duplicate elements are not merged.

keysort(List1, List2) succeeds ifList2 is the sorted list ofList1 according to the keys. The list
List1 consists of items of the formKey-Value . These items are sorted according to the value ofKey yielding
theList2 . Duplicate keys are not merged. This predicate is stable, i.e. ifK-A occurs beforeK-B in the input,
thenK-A will occur beforeK-B in the output.

sort/1 , sort0/1 andkeysort/1 are similar tosort/2 , sort0/2 andkeysort/2 but achieve a sort
in-place destructing the originalList1 (this in-place assignment is not undone at backtracking). The sorted list
occupies the same memory space as the original list (saving thus memory consumption).

The time complexity of these sorts isO(N log N), N being the length of the list to sort.

These predicates refer to the standard ordering of terms (section 7.3.1, page 51).

7.21 Global variables 125

Errors

List1 is a partial list instantiation error
List1 is neither a partial list nor a list type error(list, List1)
List2 is neither a partial list nor a list type error(list, List2)

Portability

GNU Prolog predicates.

7.21 Global variables

7.21.1 Introduction

GNU Prolog provides a simple and powerful way to assign and read global variables. A global variable is associ-
ated to each atom, its initial value is the integer 0. A global variable can store 3 kinds of objects:

• a copy of a term (the assignment can be made backtrackable or not).

• a link to a term (the assignment is always backtrackable).

• an array of objects (recursively).

The space necessary for copies and arrays is dynamically allocated and recovered as soon as possible. For instance,
when an atom is associated to a global variable whose current value is an array, the space for this array is recovered
(unless the assignment is to be undone when backtracking occurs).

When a link to a term is associated to a global variable, the reference to this term is stored and thus the original
term is returned when the content of the variable is read.

Global variable naming convention: a global variable is referenced by an atom.

If the variable contains an array, an index (ranging from 0) can be provided using a compound term whose principal
functor is the correponding atom and the argument is the index. In case of a multi-dimensional array, each index
is given as the arguments of the compound term.

If the variable contains a term (link or copy), it is possible to only reference a sub-term by giving its argument
number (also called argument selector). Such a sub-term is specified using a compound term whose principal
functor is -/2 and whose first argument is a global variable name and the second argument is the argument
number (from 1). This can be applied recursively to specify a sub-term of any depth. In case of a list, a argument
number I represents the Ith element of the list. In the rest of this section we use the operator notation since- is a
predefined infix operator (section 7.14.10, page 99).

In the following,GVarNamerepresents a reference to a global variable and its syntax is as follows:

GVarName ::= atom whole content of a variable
atom (Integer , . . ., Integer) element of an array
GVarName- Integer sub-term selection

Integer ::= integer immediate value
GVarName indirect value

When aGVarName is used as an index or an argument number (i.e. indirection), the value of this variable must
be an integer.

Here are some examples of the naming convention:

126 7 PROLOG BUILT-IN PREDICATES

a the content of variable associated toa (any kind)
t(1) the 2nd element of the array associated tot
t(k) if the value associated tok is I, the Ith element of the array associated tot
a-1-2 if the value associated toa is f(g(a,b,c),2) , the sub-termb

Here are the errors associated to global variable names and common to all predicates.

GVarNameis a variable instantiation error
GVarNameis neither a variable nor a callable term type error(callable, GVarName)
GVarNamecontains an invalid argument number (or
GVarNameis an array)

domain error(g argument selector,
GVarName)

GVarNamecontains an invalid index (orGVarName
is not an array)

domain error(g array index, GVarName)

GVarNameis used as an indirect index or argument
selector and is not an integer

type error(integer, GVarName)

Arrays : the predicatesg assign/2 , g assignb/2 andg link/2 (section 7.21.2, page 126) can be used
to create an array. They recognize some terms as values. For instance, a compound term with principal functor
g array is used to define an array of fixed size. There are 3 forms for the termg array :

• g array(Size) : if Size is an integer> 0 then defines an array ofSize elements which are all initialized
with the integer0.

• g array(Size, Initial) : as above but the elements are initialized with the termInitial instead
of 0. Initial can contain other array definitions allowing thus for multi-dimensional arrays.

• g array(List) : as above ifList is a list of lengthSize except that the elements of the array are
initialized according to the elements ofList (which can contain other array definitions).

An array can be extended explicitely using a compound term with principal functorg array extend which
accept the same 3 forms detailed above. In that case, the existing elements of the array are not initialized. If
g array extend is used with an object which is not an array it is similar tog array .

Finally, an array can beautomaticallyexpanded when needed. The programmer does not need to explicitely control
the expansion of an automatic array. An array is expanded as soon as an index is outside the current size of this
array. Such an array is defined using a compound term with principal functorg array auto :

• g array auto(Size) : if Size is an integer> 0 then defines an automatic array whose initial size is
Size . All elements are initialized with the integer0. Elements created during implicit expansions will be
initialized with0.

• g array auto(Size, Initial) : as above but the elements are initialized with the termInitial
instead of 0. Initial can contain other array definitions allowing thus for multi-dimensional arrays.
Elements created during implicit expansions will be initialized withInitial .

• g array auto(List) : as above ifList is a list of lengthSize except that the elements of the array are
initialized according to the elements ofList (which can contain other array definitions). Elements created
during implicit expansions will be initialized with0.

In any case, when an array is read, a term of the formg array([Elem0,..., ElemSize-1]) is returned.

Some examples using global variables are presented later (section 7.21.7, page 129).

7.21.2 g assign/2 , g assignb/2 , g link/2

Templates

g assign(+callable term, ?term)
g assignb(+callable term, ?term)
g link(+callable term, ?term)

7.21 Global variables 127

Description

g assign(GVarName, Value) assigns a copy of the termValue to GVarName. This assignment is not
undone when backtracking occurs.

g assignb/2 is similar tog assign/2 but the assignment is undone at backtracking.

g link(GVarName, Value) makes a link betweenGVarName to the termValue . This allows the user to
give a name to any Prolog term (in particular non-ground terms). Such an assignment is always undone when
backtracking occurs (since the term may no longer exist). IfValue is an atom or an integer,g link/2 and
g assignb/2 have the same behavior. Sinceg link/2 only handles links to existing terms it does not require
extra memory space and is not expensive in terms of execution time.

NB: argument selectors can only be used with gassign/2 (i.e. when using an argument selector inside an assign-
ment, this one must not be backtrackable).

Errors

See common errors detailed in the introduction (section 7.21.1, page 125)

GVarNamecontains an argument selector and the
assignment is backtrackable

domain error(g argument selector,
GVarName)

Portability

GNU Prolog predicates.

7.21.3 g read/2

Templates

g read(+callable term, ?term)

Description

g read(GVarName, Value) unifiesValue with the term assigned toGVarName.

Errors

See common errors detailed in the introduction (section 7.21.1, page 125)

Portability

GNU Prolog predicate.

7.21.4 g array size/2

Templates

g array size(+callable term, ?integer)

Description

g array size(GVarName, Value) unifiesSize with the dimension (an integer> 0) of the array assigned
to GVarName. Fails if GVarNameis not an array.

128 7 PROLOG BUILT-IN PREDICATES

Errors

See common errors detailed in the introduction (section 7.21.1, page 125)

Size is neither a variable nor an integer type error(integer, Size)

Portability

GNU Prolog predicate.

7.21.5 g inc/3 , g inc/2 , g inco/2 , g inc/1 , g dec/3 , g dec/2 , g deco/2 , g dec/1

Templates

g inc(+callable term, ?integer, ?integer)
g inc(+callable term, ?integer)
g inco(+callable term, ?integer)
g inc(+callable term)
g dec(+callable term, ?integer, ?integer)
g dec(+callable term, ?integer)
g deco(+callable term, ?integer)
g dec(+callable term)

Description

g inc(GVarName, Old, New) unifiesOld with the integer assigned toGVarName, incrementsGVarName
and then unifiesNewwith the incremented value.

g inc(GVarName, New) is equivalent tog inc(GVarName, , New) .

g inco(GVarName, Old) is equivalent tog inc(GVarName, Old,) .

g inc(GVarName) is equivalent tog inc(GVarName, ,) .

Predicatesg dec are similar but decrement the content ofGVarNameinstead.

Errors

See common errors detailed in the introduction (section 7.21.1, page 125)

Old is neither a variable nor an integer type error(integer, Old)
Newis neither a variable nor an integer type error(integer, New)
GVarNamestores an array type error(integer, g array)
GVarNamestores a termT which is not an integer type error(integer, T)

Portability

GNU Prolog predicates.

7.21.6 g set bit/2 , g reset bit/2 , g test set bit/2 , g test reset bit/2

Templates

g set bit(+callable term, +integer)
g reset bit(+callable term, +integer)

7.21 Global variables 129

g test set bit(+callable term, +integer)
g test reset bit(+callable term, +integer)

Description

g set bit(GVarName, Bit) sets to 1 the bit number specified byBit of the integer assigned toGVarName
to 1. Bit numbers range from 0 to the maximum number allowed for integers (this is architecture dependent). If
Bit is greater than this limit, the modulo with this limit is taken.

g reset bit(GVarName, Bit) is similar tog set bit/2 but sets the specified bit to 0.

g test set bit/2 succeeds if the specified bit is set to 1.

g test reset bit/2 succeeds if the specified bit is set to 0.

Errors

See common errors detailed in the introduction (section 7.21.1, page 125)

Bit is a variable instantiation error
Bit is neither a variable nor an integer type error(integer, Bit)
Bit is an integer< 0 domain error(not less than zero, Bit)
GVarNamestores an array type error(integer, g array)
GVarNamestores a termT which is not an integer type error(integer, T)

Portability

GNU Prolog predicates.

7.21.7 Examples

Simulating g inc/3 : this predicate behaves like: global variable:

my_g_inc(Var, Old, New) :-
g_read(Var, Old),
N is Value + 1,
g_assign(Var, X),

New = N.

The query:my g inc(c, X,) will succeed unifyingX with 0, another call tomy g inc(a, Y,) will
then unifyY with 1, and so on.

Difference betweeng assign/2 and g assignb/2 : g assign/2 does not undo its assignment when back-
tracking occurs whereasg assignb/2 undoes it.

test(Old) :- testb(Old) :-
g assign(x,1), g assign(x,1),
(g read(x, Old), (g read(x, Old),

g assign (x, 2) g assignb (x, 2)
; g read(x, Old), ; g read(x, Old),

g assign(x, 3) g assign(x, 3)
).).

The querytest(Old) will succeed unifyingOld with 1 and on backtracking with2 (i.e. the assignment of the
value2 has not been undone). The querytestb(Old) will succeed unifyingOld with 1 and on backtracking
with 1 (i.e. the assignment of the value2 has been undone).

130 7 PROLOG BUILT-IN PREDICATES

Difference betweeng assign/2 and g link/2 : g assign/2 (andg assignb/2) creates a copy of the
term whereasg link/2 does not.g link/2 can be used to avoid passing big data structures (e.g. dictionar-
ies,. . .) as arguments to predicates.

test(B) :- test(B) :-
g assign (b, f(X)), g link (b, f(X)),
X = 12, X = 12,
g read(b, B). g read(b, B).

The querytest(B) will succeed unifyingB with f() (g assign/2 assigns a copy of the value). The query
testl(B) will succeed unifyingB with f(12) (g link/2 assigns a pointer to the term).

Simple array definition: here are some queries to show how arrays can be handled:

| ?- g_assign(w, g_array(3)), g_read(w, X).

X = g_array([0,0,0])

| ?- g_assign(w(0), 16), g_assign(w(1), 32), g_assign(w(2), 64), g_read(w, X).

X = g_array([16,32,64])

this is equivalent to:

| ?- g_assign(k, g_array([16,32,64])), g_read(k, X).

X = g_array([16,32,64])

| ?- g_assign(k, g_array(3,null)), g_read(k, X), g_array_size(k, S).

S = 3
X = g_array([null,null,null])

2-D array definition :

| ?- g_assign(w, g_array(2, g_array(3))), g_read(w, X).

X = g_array([g_array([0,0,0]),g_array([0,0,0])])

| ?- (for(I,0,1), for(J,0,2), K is I*3+J, g_assign(w(I,J), K),
fail

; g_read(w, X)
).

X = g_array([g_array([0,1,2]),g_array([3,4,5])])

| ?- g_read(w(1),X).

X = g_array([3,4,5])

Hybrid array :

| ?- g_assign(w,g_array([1,2,g_array([a,b,c]), g_array(2,z),5])), g_read(w, X).

X = g_array([1,2,g_array([a,b,c]), g_array([z,z]),5])

| ?- g_read(w(1), X), g_read(w(2,1), Y), g_read(w(3,1), Z).

X = 2
Y = b

7.21 Global variables 131

Z = z

| ?- g_read(w(1,2),X).
uncaught exception: error(domain_error(g_array_index,w(1,2)),g_read/2)

Array extension:

| ?- g_assign(a, g_array([10,20,30])), g_read(a, X).

X = g_array([10,20,30])

| ?- g_assign(a, g_array_extend(5,null)), g_read(a, X).

X = g_array([10,20,30,null,null])

| ?- g_assign(a, g_array([10,20,30])), g_read(a, X).

X = g_array([10,20,30])

| ?- g_assign(a, g_array_extend([1,2,3,4,5,6])), g_read(a, X).

X = g_array([10,20,30,4,5,6])

Automatic array :

| ?- g_assign(t, g_array_auto(3)), g_assign(t(1), foo), g_read(t,X).

X = g_array([0,foo,0])

| ?- g_assign(t(5), bar), g_read(t,X).

X = g_array([0,foo,0,0,0,bar,0,0])

| ?- g_assign(t, g_array_auto(2, g_array(2))), g_assign(t(1,1), foo),
g_read(t,X).

X = g_array([g_array([0,0]),g_array([0,foo])])

| ?- g_assign(t(3,0), bar), g_read(t,X).

X = g_array([g_array([0,0]),g_array([0,foo]),g_array([0,0]),g_array([bar,0])])

| ?- g_assign(t(3,4), bar), g_read(t,X).
uncaught exception: error(domain_error(g_array_index,t(3,4)),g_assign/2)

| ?- g_assign(t, g_array_auto(2, g_array_auto(2))), g_assign(t(1,1), foo),
g_read(t,X).

X = g_array([g_array([0,0]),g_array([0,foo])])

| ?- g_assign(t(3,3), bar), g_read(t,X).

X = g_array([g_array([0,0]),g_array([0,foo]),g_array([0,0]),
g_array([0,0,0,bar])])

| ?- g_assign(t, g_array_auto(2, g_array_auto(2, null))), g_read(t(2,3), U),
g_read(t, X).

U = null

132 7 PROLOG BUILT-IN PREDICATES

X = g_array([g_array([null,null]),g_array([null,null]),
g_array([null,null,null,null]),g_array([null,null])])

7.22 Prolog state

7.22.1 set prolog flag/2

Templates

set prolog flag(+flag, +term)

Description

set prolog flag(Flag, Value) sets the value of the Prolog flagFlag to Value .

Prolog flags: a Prolog flag is an atom which is associated with a value that is either implementation defined or
defined by the user. Each flag has a permitted range of values; any other value is adomain error . The following
two tables present available flags, the possible values, a description and if they are ISO or an extension. The first
table presents unchangeable flags while the second one the changeable flags. For flags whose default values is
machine independent, this value is underlined.

Unchangeable flags:

Flag Values Description ISO

bounded true / false are integers bounded ? Y
max integer an integer greatest integer Y
min integer an integer smallest integer Y
integer rounding function toward zero

down
rnd (X) = integer part ofX
rnd (X) = bXc (section 7.6.1, page 57)

Y

max arity an integer maximum arity for compound terms (255) Y
max atom an integer maximum number of atoms N
max unget an integer maximum number of successive ungets N
prolog name an atom name of the Prolog system N
prolog version an atom version number of the Prolog system N
prolog date an atom date of the Prolog system N
prolog copyright an atom copyright message of the Prolog system N

Changeable flags:

7.22 Prolog state 133

Flag Values Description ISO

char conversion on / off is character conversion activated ? Y
debug on / off is the debugger activated ? Y
singleton warning on / off warn about named singleton variables ? N
strict iso on / off strict ISO behavior ? N

double quotes atom
chars
codes

atom no escape
chars no escape
codes no escape

a double quoted constant is returned as:
an atom
a list of characters
a list of character codes
asatom but ignore escape sequences
aschars but ignore escape sequences
ascode but ignore escape sequences

Y

N

back quotes atom
chars
codes

atom no escape
chars no escape
codes no escape

a back quoted constant is returned as:
an atom
a list of characters
a list of character codes
asatom but ignore escape sequences
aschars but ignore escape sequences
ascode but ignore escape sequences

N

unknown error
warning

fail

a predicate calls an unknown procedure:
anexistence error is raised
a message is displayed then fails
quietly fails

Y

syntax error error
warning

fail

a predicate causes a syntax error:
asyntax error is raised
a message is displayed then fails
quietly fails

N

os error error
warning

fail

a predicate causes an O.S. error:
asystem error is raised
a message is displayed then fails
quietly fails

N

The strict iso flag is introduced to allow a compatibility with other Prolog systems. When turned off the
following relaxations apply:

• a callable term can be given as a predicate indicator.

• built-in predicates are found bycurrent predicate/1 (section 7.8.1, page 64).

Errors

Flag is a variable instantiation error
Value is a variable instantiation error
Flag is neither a variable nor an atom type error(atom, Flag)
Flag is an atom but not a valid flag domain error(prolog flag, Flag)
Value is inappropriate for Flag domain error(flag value, Flag+Value)
Value is appropriate forFlag but flagFlag is not
modifiable

permission error(modify, flag, Flag)

Portability

ISO predicate. All ISO flags are implemented.

7.22.2 current prolog flag/2

Templates

134 7 PROLOG BUILT-IN PREDICATES

current prolog flag(?flag, ?term)

Description

current prolog flag(Flag, Value) succeeds if there exists a Prolog flag that unifies withFlag and
whose value unifies withValue . This predicate is re-executable on backtracking.

Errors

Flag is neither a variable nor an atom type error(atom, Flag)
Flag is an atom but not a valid flag domain error(prolog flag, Flag)

Portability

ISO predicate.

7.22.3 set bip name/2

Templates

set bip name(+atom, +arity)

Description

set bip name(Functor, Arity) initializes the context of the error (section 5.3.1, page 37) withFunctor
andArity (if Arity < 0 onlyFunctor is significant).

Errors

Functor is a variable instantiation error
Arity is a variable instantiation error
Functor is neither a variable nor an atom type error(atom, Functor)
Arity is neither a variable nor an integer type error(integer, Arity)

Portability

GNU Prolog predicate.

7.22.4 current bip name/2

Templates

current bip name(?atom, ?arity)

Description

current bip name(Functor, Arity) succeeds ifFunctor andArity correspond to the context of the
error (section 5.3.1, page 37) (ifArity < 0 onlyFunctor is significant).

Errors

Functor is neither a variable nor an atom type error(atom, Functor)
Arity is neither a variable nor an integer type error(integer, Arity)

Portability

GNU Prolog predicate.

7.23 Program state 135

7.22.5 write pl state file/1 , read pl state file/1

Templates

write pl state file(+source sink)
read pl state file(+source sink)

Description

write pl state file(FileName) writes ontoFileName all information that influences the parsing of a
term (section 7.14, page 91). This allows a sub-process written in Prolog to read this file and then process any
Prolog term as done by the parent process. This file can also be passed as argument of the--pl-state option
when invokinggplc (section 3.4.3, page 22). More precisely the following elements are saved:

• all operator definitions (section 7.14.10, page 99).

• the character conversion table (section 7.14.12, page 101).

• the value ofchar conversion , double quotes , back quotes andsingleton warning Prolog
flags (section 7.22.1, page 132).

read pl state file(FileName) reads (restores) fromFileName all information previously saved by
write pl state file/1.

Errors

FileName is a variable instantiation error
FileName is neither a variable nor an atom type error(atom, FileName)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.23 Program state

7.23.1 consult/1 , ’.’/2 - program consult

Templates

consult(+atom or atom list)
’.’(+atom, +atom list)

Description

consult(Files) compiles and loads into memory each file of the listFiles . Each file is compiled for byte-
code using the GNU Prolog compiler (section 3.4, page 20) then loaded usingload/1 (section 7.23.2, page 136).
It is possible to specifyuser as a file name to directly enter the program from the terminal.Files can be
also a single file name (i.e. an atom). Refer to the section concerning the consult of a Prolog program for more
information (section 3.2.3, page 16).

The final file name of a file is computed using the predicatesprolog file name/2 (section 7.26.3, page 141)
andabsolute file name/2 (section 7.26.1, page 140).

[File | Files] , i.e. ’.’(File, Files) is equivalent toconsult([File | Files]) .

136 7 PROLOG BUILT-IN PREDICATES

Errors

Files is a partial list or a list with an elementE
which is a variable

instantiation error

Files is neither a partial list nor a list nor an atom type error(list, Files)
an elementE of theFiles list is neither a variable
nor an atom

type error(atom, E)

an elementE of theFiles list is an atom but not a
valid pathname

domain error(os path, E)

an elementE of theFiles list is a valid pathname
but does not correspond to an existing source

existence error(source sink, E)

an error occurs executing a directive seecall/1 errors (section 6.2.3, page 47)

Portability

GNU Prolog predicates.

7.23.2 load/1

Templates

load(+atom or atom list)

Description

load(Files) loads into memory each file of the listFiles . Each file must have been previously compiled for
byte-code using the GNU Prolog compiler (section 3.4, page 20).Files can be also a single file name (i.e. an
atom).

The final file name of a file is computed using the predicatesabsolute file name/2 (section 7.26.1, page 140).
If no suffix is given’.wbc’ is appended to the file name.

Errors

Files is a partial list or a list with an elementE
which is a variable

instantiation error

Files is neither a partial list nor a list nor an atom type error(list, Files)
an elementE of theFiles list is neither a variable
nor an atom

type error(atom, E)

an elementE of theFiles list is an atom but not a
valid pathname

domain error(os path, E)

an elementE of theFiles list is a valid pathname
but does not correspond to an existing source

existence error(source sink, E)

an error occurs executing a directive seecall/1 errors (section 6.2.3, page 47)

Portability

GNU Prolog predicate.

7.23.3 listing/1 , listing/0

Templates

listing(+predicate indicator)
listing(+atom)

7.24 System statistics 137

listing

Description

listing(Pred) lists the clauses of the consulted predicate whose predicate indicator isPred . Pred can also
be a single atom in which case all predicates whose name isPred are listed (of any arity). This predicate uses
portray clause/2 (section 7.14.8, page 98) to output the clauses.

listing lists all clauses of all consulted predicates.

Errors

Pred is a variable instantiation error
Pred is neither a variable nor predicate indicator or
an atom

type error(predicate indicator,
Pred)

Portability

GNU Prolog predicate.

7.24 System statistics

7.24.1 statistics/0 , statistics/2

Templates

statistics
statistics(?atom, ?list)

Description

statistics displays statistics about memory usage and run times.

statistics(Key, Value) unifiesValue with the current value of the statistics keyKey. Value a list of
two elements. Times are in milliseconds, sizes of areas in bytes.

Key Description Value

user time user CPU time [SinceStart, SinceLast]
system time system CPU time [SinceStart, SinceLast]
cpu time total CPU time (user + system) [SinceStart, SinceLast]
real time absolute time [SinceStart, SinceLast]
local stack local stack sizes (control, environments, choices)[UsedSize, FreeSize]
global stack global stack sizes (compound terms) [UsedSize, FreeSize]
trail stack trail stack sizes (variable bindings to undo) [UsedSize, FreeSize]
cstr stack constraint trail sizes (finite domain constraints) [UsedSize, FreeSize]

Note that the keyruntime is recognized asuser time for compatibility purpose.

Errors

Key is neither a variable nor a valid key domain error(statistics key, Key)
Value is neither a variable nor a list of two elementsdomain error(statistics value,

Value)
Value is a list of two elements and an elementE is
neither a variable nor an integer

type error(integer, E)

138 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicates.

7.24.2 user time/1 , system time/1 , cpu time/1 , real time/1

Templates

user time(?integer)
system time(?integer)
cpu time(?integer)
real time(?integer)

Description

user time(Time) unifiesTime with the user CPU time elapsed since the start of Prolog.

system time(Time) unifiesTime with the system CPU time elapsed since the start of Prolog.

cpu time(Time) unifiesTime with the CPU time (user + system) elapsed since the start of Prolog.

real time(Time) unifiesTime with the absolute time elapsed since the start of Prolog.

Errors

Time is neither a variable nor an integer type error(integer, Time)

Portability

GNU Prolog predicates.

7.25 Random number generator

7.25.1 set seed/1 , randomize/0

Templates

set seed(+integer)
randomize

Description

set seed(Seed) reinitializes the random number generator seed withSeed.

randomize reinitializes the random number generator. This predicates callsset seed/1 with a random value
depending on the absolute time.

Errors

Seed is a variable instantiation error
Seed is neither a variable nor an integer type error(integer, Seed)
Seed is an integer< 0 domain error(not less than zero,

Seed)

Portability

7.25 Random number generator 139

GNU Prolog predicates.

7.25.2 get seed/1

Templates

get seed(?integer)

Description

get seed(Seed) unifiesSeed with the current random number generator seed.

Errors

Seed is neither a variable nor an integer type error(integer, Seed)
Seed is an integer< 0 domain error(not less than zero,

Seed)

Portability

GNU Prolog predicate.

7.25.3 random/1

Templates

random(-float)

Description

random(Number) unifiesNumber with a random floating point number such that 0.0≤ Number < 1.0.

Errors

Number is not a variable type error(variable, Number)

Portability

GNU Prolog predicate.

7.25.4 random/3

Templates

random(+number, +number, -number)

Description

random(Base, Max, Number) unifiesNumber with a random number such thatBase ≤ Number < Max.
If both Base andMaxare integersNumber will be an integer, otherwiseNumber will be a floating point number.

Errors

140 7 PROLOG BUILT-IN PREDICATES

Base is a variable instantiation error
Base is neither a variable nor a number type error(number, Base)
Max is a variable instantiation error
Max is neither a variable nor a number type error(number, Max)
Number is not a variable type error(variable, Number)

Portability

GNU Prolog predicate.

7.26 File name processing

7.26.1 absolute file name/2

Templates

absolute file name(+atom, atom)

Description

absolute file name(File1, File2) succeeds ifFile2 is the absolute pathname associated to the rel-
ative file nameFile1 . File1 can contain$VARNAMEsub-strings. When such a sub-string is encountered, it is
expanded with the value of the environment variable whose name isVARNAMEif exists (otherwise no expansion
is done).File1 can also begin with a sub-string˜ USERNAME/ , this is expanded as the home directory of the
userUSERNAME. If USERNAMEdoes not existFile1 is an invalid pathname. If noUSERNAMEis given (i.e.
File1 begins with˜/) the ˜ character is expanded as the value of the environment variableHOME. If the HOME
variable is not definedFile1 is an invalid pathname. Relative references to the current directory (/./ sub-string)
and to the parent directory (/../ sub-strings) are removed and no longer appear inFile2 . File1 is also invalid
if it contains too many/../ consecutive sub-strings (i.e. parent directory relative references). Finally ifFile1
is user thenFile2 is also unified withuser to allow this predicate to be called on Prolog file names (since
user in DEC-10 input/output predicates denotes the current input/output stream).

Most predicates using a file name implicitly call this predicate to obtain the desired file, e.g.open/4 .

Errors

File1 is a variable instantiation error
File1 is neither a variable nor an atom type error(atom, File1)
File2 is neither a variable nor an atom type error(atom, File2)
File1 is an atom but not a valid pathname domain error(os path, File1)

Portability

GNU Prolog predicate.

7.26.2 decompose file name/4

Templates

decompose file name(+atom, ?atom, ?atom, ?atom)

Description

decompose file name(File, Directory, Prefix, Suffix) decomposes the pathnameFile and
extracts theDirectory part (characters before the last/), thePrefix part (characters after the last/ and before

7.27 Operating system interface 141

the last. or until the end if there is no suffix) and theSuffix part (characters from the last. to the end of the
string).

Errors

File is a variable instantiation error
File is neither a variable nor an atom type error(atom, File)
Directory is neither a variable nor an atom type error(atom, Directory)
Prefix is neither a variable nor an atom type error(atom, Prefix)
Suffix is neither a variable nor an atom type error(atom, Suffix)

Portability

GNU Prolog predicate.

7.26.3 prolog file name/2

Templates

prolog file name(+atom, ?atom)

Description

prolog file name(File1, File2) unifiesFile2 with the Prolog file name associated toFile1 . More
preciselyFile2 is computed as follows:

• if File1 has a suffix or if it isuser thenFile2 is unified withFile1 .

• else if the file whose name isFile1 + ’.pl’ exists thenFile2 is unified with this name.

• else if the file whose name isFile1 + ’.pro’ exists thenFile2 is unified with this name.

• elseFile2 is unified with the nameFile1 + ’.pl’ .

This predicate usesabsolute file name/2 to check the existence of a file (section 7.26.1, page 140).

Errors

File1 is a variable instantiation error
File1 is neither a variable nor an atom type error(atom, File1)
File2 is neither a variable nor an atom type error(atom, File2)
File1 is an atom but not a valid pathname domain error(os path, File1)

Portability

GNU Prolog predicate.

7.27 Operating system interface

7.27.1 argument counter/1

Templates

argument counter(?integer)

142 7 PROLOG BUILT-IN PREDICATES

Description

argument counter(Counter) succeeds ifCounter is the number of arguments of the command-line.
Since the first argument is always the name of the running program,Counter is always≥ 1. See (section 3.2,
page 13) for more information about command-line arguments retrieved under the toplevel.

Errors

Counter is neither a variable nor an integer type error(integer, Counter)

Portability

GNU Prolog predicate.

7.27.2 argument value/2

Templates

argument value(+integer, ?atom)

Description

argument value(N, Arg) succeeds if theNth argument on the command-line unifies withArg . The first
argument is always the name of the running program and its number is 0. The number of arguments on the
command-line can be obtained usingargument counter/1 (section 7.27.1, page 141).

Errors

N is a variable instantiation error
N is neither a variable nor an integer type error(integer, N)
N is an integer< 0 domain error(not less than zero, N)
Arg is neither a variable nor an atom type error(atom, Arg)

Portability

GNU Prolog predicate.

7.27.3 argument list/1

Templates

argument list(?list)

Description

argument list(Args) succeeds ifArgs unifies with the list of atoms associated to each argument on the
command-line other than the first argument (the name of the running program).

Errors

Args is neither a partial list nor a list type error(list, Args)

Portability

GNU Prolog predicate.

7.27 Operating system interface 143

7.27.4 environ/2

Templates

environ(?atom, ?atom)

Description

environ(Name, Value) succeeds ifNameis the name of an environment variable whose value isValue .
This predicate is re-executable on backtracking.

Errors

Nameis neither a variable nor an atom type error(atom, Name)
Value is neither a variable nor an atom type error(atom, Value)

Portability

GNU Prolog predicate.

7.27.5 make directory/1 , delete directory/1 , change directory/1

Templates

make directory(+atom)
delete directory(+atom)
change directory(+atom)

Description

make directory(PathName) creates the directory whose pathname isPathName.

delete directory(PathName) removes the directory whose pathname isPathName.

change directory(PathName) sets the current directory to the directory whose pathname isPathName.

Seeabsolute file name/2 for information about the syntax ofPathName (section 7.26.1, page 140).

Errors

PathName is a variable instantiation error
PathName is neither a variable nor an atom type error(atom, PathName)
PathName is an atom but not a valid pathname domain error(os path, PathName)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.27.6 working directory/1

Templates

144 7 PROLOG BUILT-IN PREDICATES

working directory(?atom)

Description

working directory(PathName) succeeds ifPathName is the pathname of the current directory.

Errors

PathName is neither a variable nor an atom type error(atom, PathName)

Portability

GNU Prolog predicate.

7.27.7 directory files/2

Templates

directory files(+atom, ?list)

Description

directory files(PathName, Files) succeeds ifFiles is the list of all entries (files, sub-directories,. . .)
in the directory whose pathname isPathName. Seeabsolute file name/2 for information about the syntax
of PathName (section 7.26.1, page 140).

Errors

PathName is a variable instantiation error
PathName is neither a variable nor an atom type error(atom, PathName)
PathName is an atom but not a valid pathname domain error(os path, PathName)
Files is neither a partial list nor a list type error(list, Files)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.8 rename file/2

Templates

rename file(+atom, +atom)

Description

rename file(PathName1, PathName2) renames the file or directory whose pathname isPathName1 to
PathName2 . Seeabsolute file name/2 for information about the syntax ofPathName1 andPathName2
(section 7.26.1, page 140).

Errors

7.27 Operating system interface 145

PathName1 is a variable instantiation error
PathName1 is neither a variable nor an atom type error(atom, PathName1)
PathName1 is an atom but not a valid pathname domain error(os path, PathName1)
PathName2 is a variable instantiation error
PathName2 is neither a variable nor an atom type error(atom, PathName2)
PathName2 is an atom but not a valid pathname domain error(os path, PathName2)
an operating system error occurs and value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.9 delete file/1 , unlink/1

Templates

delete file(PathName)
unlink(PathName)

Description

delete file(PathName) removes the existing file whose pathname isPathName.

unlink/1 is similar todelete file/1 except that it never causes asystem error (e.g. if PathName
does not refer to an existing file).

Seeabsolute file name/2 for information about the syntax ofPathName (section 7.26.1, page 140).

Errors

PathName is a variable instantiation error
PathName is neither a variable nor an atom type error(atom, PathName)
PathName is an atom but not a valid pathname domain error(os path, PathName)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.27.10 file permission/2 , file exists/1

Templates

file permission(+atom, +atom)
file permission(+atom, +atom list)
file exists(+atom)

Description

file permission(PathName, Permission) succeeds ifPathName is the pathname of an existing file
(or directory) whose permissions includePermission .

146 7 PROLOG BUILT-IN PREDICATES

File permissions: Permission can be a single permission or a list of permissions. A permission is an atom
among:

• read : the file or directory can be read.

• write : the file or directory can be written.

• execute : the file can be executed.

• search : the directory can be searched.

If PathName does not exists or if it its permissions do not includePermission this predicate fails.

file exists(PathName) is equivalent tofile permission(PathName, []) , i.e. it succeeds ifPathName
is the pathname of an existing file (or directory).

Seeabsolute file name/2 for information about the syntax ofPathName (section 7.26.1, page 140).

Errors

PathName is a variable instantiation error
PathName is neither a variable nor an atom type error(atom, PathName)
PathName is an atom but not a valid pathname domain error(os path, PathName)
Permission is a partial list or a list with an
element which is a variable

instantiation error

Permission is neither an atom nor partial list or a
list

type error(list, Permission)

an elementE of thePermission list is neither a
variable nor an atom

type error(atom, E)

an elementE of thePermission is an atom but not
a valid permission

domain error(os file permission,
Permission)

an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.27.11 file property/2

Templates

file property(+atom, ?os file property)

Description

file property(PathName, Property) succeeds ifPathName is the pathname of an existing file (or
directory) and ifProperty unifies with one of the properties of the file. This predicate is re-executable on
backtracking.

File properties:

• absolute file name(File) : File is the absolute file name ofPathName (section 7.26.1, page 140).

• real file name(File) : File is the real file name ofPathName (follows symbolic links).

• type(Type) : Type is the type ofPathName. Possible values are:regular , directory , fifo ,
socket , character device , block device or unknown .

7.27 Operating system interface 147

• size(Size) : Size is the size (in bytes) ofPathName.

• permission(Permission) : Permission is a permission ofPathName (section 7.27.10, page 145).

• last modification(DT) : DT is the last modification date and time (section 7.27.14, page 148).

Seeabsolute file name/2 for information about the syntax ofPathName (section 7.26.1, page 140).

Errors

PathName is a variable instantiation error
PathName is neither a variable nor an atom type error(atom, PathName)
PathName is an atom but not a valid pathname domain error(os path, PathName)
Property is neither a variable nor a file property
term

domain error(os file property,
Property)

Property = absolute file name(E) ,
real file name(E) , type(E) or
permission(E) andE is neither a variable nor an
atom

type error(atom, E)

Property =
last modification(DateTime) and
DateTime is neither a variable nor a compound
term

type error(compound, DateTime)

Property =
last modification(DateTime) and
DateTime is a compound term but not a structure
dt/6

domain error(date time, DateTime)

Property = size(E) or
last modification(DateTime) and
DateTime is a structuredt/6 but an elementE is
neither a variable nor an integer

type error(integer, E)

an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.12 temporary name/2

Templates

temporary name(+atom, ?atom)

Description

temporary name(Template, PathName) creates a unique file namePathName whose pathname begins
by Template . Template should contain a pathname with six trailingXs. PathName is Template with
the sixXs replaced with a letter and the process identifier. This predicate is an interface to the C Unix function
mktemp(3) .

Seeabsolute file name/2 for information about the syntax ofTemplate (section 7.26.1, page 140).

Errors

148 7 PROLOG BUILT-IN PREDICATES

Template is a variable instantiation error
Template is neither a variable nor an atom type error(atom, Template)
Template is an atom but not a valid pathname domain error(os path, Template)
PathName is neither a variable nor an atom type error(atom, PathName)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.13 temporary file/3

Templates

temporary file(+atom, +atom, ?atom)

Description

temporary file(Directory, Prefix, PathName) creates a unique file namePathName whose path-
name begins byDirectory/Prefix . If Directory is the empty atom’’ a standard temporary directory
will be used (e.g./tmp). Prefix can be the empty atom’’ . This predicate is an interface to the C Unix function
tempnam(3) .

Seeabsolute file name/2 for information about the syntax ofDirectory (section 7.26.1, page 140).

Errors

Directory is a variable instantiation error
Directory is neither a variable nor an atom type error(atom, Directory)
Directory is an atom but not a valid pathname domain error(os path, Directory)
Prefix is a variable instantiation error
Prefix is neither a variable nor an atom type error(atom, Prefix)
PathName is neither a variable nor an atom type error(atom, PathName)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.14 date time/1

Templates

date time(?compound)

Description

date time(DateTime) unifies DateTime with a compound term containing the current date and time.
DateTime is a structuredt(Year, Month, Day, Hour, Minute, Second) . Each sub-argument of
the termdt/6 is an integer.

7.27 Operating system interface 149

Errors

DateTime is neither a variable nor a compound
term

type error(compound, DateTime)

DateTime is a compound term but not a structure
dt/6

domain error(date time, DateTime)

DateTime is a structuredt/6 and an elementE is
neither a variable nor an integer

type error(integer, E)

Portability

GNU Prolog predicate.

7.27.15 host name/1

Templates

host name(?atom)

Description

host name(HostName) unifiesHostName with the name of the host machine executing the current GNU
Prolog process. If the sockets are available (section 7.28.1, page 156), the name returned will be fully qualified. In
that case,host name/1 will also succeed ifHostName is instantiated to the unqualified name (or an alias) of
the machine.

Errors

Hostname is neither a variable nor an atom type error(atom, HostName)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.16 os version/1

Templates

os version(?atom)

Description

os version(OSVersion) unifiesOSVersion with the operating system version of the machine executing
the current GNU Prolog process.

Errors

OSVersion is neither a variable nor an atom type error(atom, OSVersion)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

150 7 PROLOG BUILT-IN PREDICATES

GNU Prolog predicate.

7.27.17 architecture/1

Templates

architecture(?atom)

Description

architecture(Architecture) unifiesArchitecture with the name of the machine executing the cur-
rent GNU Prolog process.

Errors

Architecture is neither a variable nor an atom type error(atom, Architecture)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.18 shell/2 , shell/1 , shell/0

Templates

shell(+atom, ?integer)
shell(+atom)
shell

Description

shell(Command, Status) invokes a new shell (named by theSHELLenvironment variable) passingCommand
for execution and unifiesStatus with the result of the execution. IfCommandis the empty atom’’ a new in-
teractive shell is executed. The control is returned to Prolog upon termination of the called process.

shell(Command) is equivalent toshell(Command, 0) .

shell is equivalent toshell(’’, 0) .

Errors

Commandis a variable instantiation error
Commandis neither a variable nor an atom type error(atom, Command)
Status is neither a variable nor an integer type error(integer, Status)

Portability

GNU Prolog predicates.

7.27 Operating system interface 151

7.27.19 system/2 , system/1

Templates

system(+atom, ?integer)
system(+atom)

Description

system(Command, Status) invokes a new default shell passingCommandfor execution and unifiesStatus
with the result of the execution. The control is returned to Prolog upon termination of the shell process. This pred-
icate is an interface to the C Unix functionsystem(3) .

system(Command) is equivalent tosystem(Command, 0) .

Errors

Commandis a variable instantiation error
Commandis neither a variable nor an atom type error(atom, Command)
Status is neither a variable nor an integer type error(integer, Status)

Portability

GNU Prolog predicates.

7.27.20 spawn/3 , spawn/2

Templates

spawn(+atom, +atom list, ?integer)
spawn(+atom, +atom list)

Description

spawn(Command, Arguments, Status) executesCommandpassing as arguments of the command-line
each element of the listArguments and unifiesStatus with the result of the execution. The control is returned
to Prolog upon termination of the command.

spawn(Command, Arguments) is equivalent tospawn(Command, Arguments, 0) .

Errors

Commandis a variable instantiation error
Commandis neither a variable nor an atom type error(atom, Command)
Arguments is a partial list or a list with an element
which is a variable

instantiation error

Arguments is neither a partial list nor a list type error(list, Arguments)
an elementE of theArguments list is neither a
variable nor an atom

type error(atom, E)

Status is neither a variable nor an integer type error(integer, Status)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicates.

152 7 PROLOG BUILT-IN PREDICATES

7.27.21 popen/3

Templates

popen(+atom, +io mode, -stream)

Description

popen(Command, Mode, Stream) invokes a new default shell (by creating a pipe) passingCommandfor
execution and associates a stream either to the standard input or the standard output of the created process. if
Mode is read (resp. write) an input (resp. output) stream is created andStream is unified with the stream-
term associated. Writing to the stream writes to the standard input of the command while reading from the stream
reads the command’s standard output. The stream must be closed usingclose/2 (section 7.10.7, page 71). This
predicate is an interface to the C Unix functionpopen(3) .

Errors

Commandis a variable instantiation error
Commandis neither a variable nor an atom type error(atom, Command)
Mode is a variable instantiation error
Mode is neither a variable nor an atom type error(atom, Mode)
Mode is an atom but neitherread norwrite . domain error(io mode, Mode)
Stream is not a variable type error(variable, Stream)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.22 exec/5 , exec/4

Templates

exec(+atom, -stream, -stream, -stream, -integer)
exec(+atom, -stream, -stream, -stream)

Description

exec(Command, StreamIn, StreamOut, StreamErr, Pid) invokes a new default shell passingCommand
for execution and associates streams to standard streams of the created process.StreamIn is unified with the
stream-term associated to the standard input stream ofCommand(it is an output stream).StreamOut is unified
with the stream-term associated to the standard output stream ofCommand(it is an input stream).StreamErr
is unified with the stream-term associated to the standard error stream ofCommand(it is an input stream).Pid is
unified with the process identifier of the new process. This information is only useful if it is necessary to obtain
the status of the execution usingwait/2 (section 7.27.25, page 154). Until a call towait/2 is done the process
remains in the system processes table (as a zombie process if terminated). For this reason, if the status is not
needed it is preferable to useexec/4 .

exec/4 is similar toexec/5 but the process is removed from system processes as soon as it is terminated.

Errors

7.27 Operating system interface 153

Commandis a variable instantiation error
Commandis neither a variable nor an atom type error(atom, Command)
StreamIn is not a variable type error(variable, StreamIn)
StreamOut is not a variable type error(variable, StreamOut)
StreamErr is not a variable type error(variable, StreamErr)
Pid is not a variable type error(variable, Pid)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.27.23 fork prolog/1

Templates

fork prolog(-integer)

Description

fork prolog(Pid) creates a child process that differs from the parent process only in its PID. In the parent
processPid is unified with the PID of the child while in the child processPid is unified with 0. In the parent
process, the status of the child process can be ontained usingwait/2 (section 7.27.25, page 154). Until a call to
wait/2 is done the child process remains in the system processes table (as a zombie process if terminated). This
predicate is an interface to the C Unix functionfork(2) .

Errors

Pid is not a variable type error(variable, Pid)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.24 create pipe/2

Templates

create pipe(-stream, -stream)

Description

create pipe(StreamIn, StreamOut) creates a pair of streams pointing to a pipe inode.StreamIn is
unified with the stream-term associated to the input side of the pipe andStreamOut is unified with the stream-
term associated to output side. This predicate is an interface to the C Unix functionpipe(2) .

Errors

154 7 PROLOG BUILT-IN PREDICATES

StreamIn is not a variable type error(variable, StreamIn)
StreamOut is not a variable type error(variable, StreamOut)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.25 wait/2

Templates

wait(+integer, ?integer)

Description

wait(Pid, Status) waits for the child process whose identifier isPid to terminate.Status is then unified
with the exit status. This predicate is an interface to the C Unix functionwaitpid(2) .

Errors

Pid is a variable instantiation error
Pid is neither a variable nor an integer type error(integer, Pid)
Status is neither a variable nor an integer type error(integer, Status)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.26 prolog pid/1

Templates

prolog pid(?integer)

Description

prolog pid(Pid) unifiesPid with the process identifier of the current GNU Prolog process.

Errors

Pid is neither a variable nor an integer type error(integer, Pid)

Portability

GNU Prolog predicate.

7.27 Operating system interface 155

7.27.27 send signal/2

Templates

send signal(+integer, +integer)
send signal(+integer, +atom)

Description

send signal(Pid, Signal) sendsSignal to the process whose identifier isPid. Signal can be spec-
ified directly as an integer or symbolically as an atom. Allowed atoms depend on the machine (e.g.’SIGINT’ ,
’SIGQUIT’ , ’SIGKILL’ , ’SIGUSR1’ , ’SIGUSR2’ , ’SIGALRM’ ,. . .). This predicate is an interface to the
C Unix functionkill(2) .

Errors

Pid is a variable instantiation error
Pid is neither a variable nor an integer type error(integer, Pid)
Signal is a variable instantiation error
Signal is neither a variable nor an integer or an
atom

type error(integer, Signal)

an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.27.28 sleep/1

Templates

sleep(+number)

Description

sleep(Seconds) puts the GNU Prolog process to sleep forSecond s seconds.Seconds can be an integer
or a floating point number (in which case it can be< 1). This predicate is an interface to the C Unix function
usleep(3) .

Errors

Seconds is a variable instantiation error
Seconds is neither a variable nor a number type error(number, Seconds)
Seconds is a number< 0 domain error(not less than zero,

Seconds)

Portability

GNU Prolog predicate.

7.27.29 select/5

Templates

156 7 PROLOG BUILT-IN PREDICATES

select(+list, ?list, +list, ?list, +number)

Description

select(Reads, ReadyReads, Writes, ReadyWrites, TimeOut) waits for a number of streams
(or file descriptors) to change status.ReadyReads is unified with the list of elements listed inReads that
have characters available for reading. SimilarlyReadyWrites is unified with the list of elements ofWrites
that are ok for immediate writing. The elements ofReads andWrites are either stream-terms or aliases or
integers considered as file descriptors, e.g. for sockets (section 7.28, page 156). Streams that must be tested with
select/5 should not be buffered. This can be done at the opening usingopen/4 (section 7.10.6, page 69)
or later usingset stream buffering/2 (section 7.10.27, page 81).TimeOut is an upper bound on the
amount of time (in milliseconds) elapsed beforeselect/5 returns. IfTimeOut ≤ 0 (no timeout)select/5
waits until something is available (either or reading or for writing) and thus can block indefinitely. This predicate
is an interface to the C Unix functionselect(2) .

Errors

Reads (or Writes) is a partial list or a list with an
elementE which is a variable

instantiation error

Reads is neither a partial list nor a list type error(list, Reads)
Writes is neither a partial list nor a list type error(list, Writes)
ReadyReads is neither a partial list nor a list type error(list, ReadyReads)
ReadyWrites is neither a partial list nor a list type error(list, ReadyWrites)
an elementE of theReads (or Writes) list is
neither a stream-term or alias nor an integer

domain error(stream or alias, E)

an elementE of theReads (or Writes) list is not a
selectable item

domain error(selectable item, E)

an elementE of theReads (or Writes) list is an
integer< 0

domain error(not less than zero, E)

an elementE of theReads (or Writes) list is a
stream-tern or alias not associated with an open
stream

existence error(stream, E)

an elementE of theReads list is associated to an
output stream

permission error(input, stream, E)

an elementE of theWrites list is associated to an
input stream

permission error(output, stream, E)

TimeOut is a variable instantiation error
TimeOut is neither a variable nor a number type error(number, TimeOut)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.28 Sockets input/output

7.28.1 Introduction

This set of predicates provides a way to manipulate sockets. The predicates are straightforward interfaces to the
corresponding BSD-type socket functions. This facility is available if the sockets part of GNU Prolog has been
installed. A reader familiar with BSD sockets will understand them immediately otherwise a study of sockets is
needed.

7.28 Sockets input/output 157

The domain is either the atom’AF INET’ or ’AF UNIX’ corresponding to the same domains in BSD-type
sockets.

An address is either of the form’AF INET’(HostName, Port) or ’AF UNIX’(SocketName) . HostName
is an atom denoting a machine name,Port is a port number andSocketName is an atom denoting a socket.

By default, streams associated to sockets areblock buffered. The predicateset stream buffering/2 (sec-
tion 7.10.27, page 81) can be used to change this mode. They are also text streams by default. Useset stream type/2
(section 7.10.25, page 80) to change the type if binary streams are needed.

7.28.2 socket/2

Templates

socket(+socket domain, -integer)

Description

socket(Domain, Socket) creates a socket whose domain isDomain (section 7.28, page 156) and uni-
fies Socket with the descriptor identifying the socket. This predicate is an interface to the C Unix function
socket(2) .

Errors

Domain is a variable instantiation error
Domain is neither a variable nor an atom type error(atom, Domain)
Domain is an atom but not a valid socket domain domain error(socket domain, Domain)
Socket is not a variable type error(variable, Socket)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.28.3 socket close/1

Templates

socket close(+integer)

Description

socket close(Socket) closes the socket whose descriptor isSocket . This predicate should not be used if
Socket has given rise to a stream, e.g. bysocket connect/4 (section 7.28.5, page 158). In that case simply
useclose/2 (section 7.10.7, page 71) on the associated stream.

Errors

Socket is a variable instantiation error
Socket is neither a variable nor an integer type error(integer, Socket)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

158 7 PROLOG BUILT-IN PREDICATES

Portability

GNU Prolog predicate.

7.28.4 socket bind/2

Templates

socket bind(+integer, +socket address)

Description

socket bind(Socket, Address) binds the socket whose descriptor isSocket to the address specified
by Address (section 7.28, page 156). IfAddress if of the form ’AF INET’(HostName, Port) and if
HostName is uninstantiated then it is unified with the current machine name. IfPort is uninstantiated, it is
unified to a port number picked by the operating system. This predicate is an interface to the C Unix function
bind(2) .

Errors

Socket is a variable instantiation error
Socket is neither a variable nor an integer type error(integer, Socket)
Address is a variable instantiation error
Address is neither a variable nor a valid address domain error(socket address,

Address)
Address = ’AF UNIX’(E) andE is a variable instantiation error
Address = ’AF UNIX’(E) or ’AF INET’(E,
) andE is neither a variable nor an atom

type error(atom, E)

Address = ’AF UNIX’(E) andE is an atom but
not a valid pathname

domain error(os path, E)

Address = ’AF INET’(, E) andE is neither a
variable nor an integer

type error(integer, E)

an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.28.5 socket connect/4

Templates

socket connect(+integer, +socket address, -stream, -stream)

Description

socket connect(Socket, Address, StreamIn, StreamOut) connects the socket whose descrip-
tor is Socket to the address specified byAddress (section 7.28, page 156).StreamIn is unified with a
stream-term associated to the input of the connection (it is an input stream). Reading from this stream gets data
from the socket.StreamOut is unified with a stream-term associated to the output of the connection (it is an out-
put stream). Writing to this stream sends data to the socket. The use ofselect/5 can be useful (section 7.27.29,
page 155). This predicate is an interface to the C Unix functionconnect(2) .

7.28 Sockets input/output 159

Errors

Socket is a variable instantiation error
Socket is neither a variable nor an integer type error(integer, Socket)
Address is a variable instantiation error
Address is neither a variable nor a valid address domain error(socket address,

Address)
Address = ’AF UNIX’(E) or ’AF INET’(E,
) or Address = ’AF INET’(, E) andE is a

variable

instantiation error

Address = ’AF UNIX’(E) or ’AF INET’(E,
) andE is neither a variable nor an atom

type error(atom, E)

Address = ’AF UNIX’(E) andE is an atom but
not a valid pathname

domain error(os path, E)

Address = ’AF INET’(, E) andE is neither a
variable nor an integer

type error(integer, E)

StreamIn is not a variable type error(variable, StreamIn)
StreamOut is not a variable type error(variable, StreamOut)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.28.6 socket listen/2

Templates

socket listen(+integer, +integer)

Description

socket listen(Socket, Length) defines the socket whose descriptor isSocket to have a maximum
backlog queue ofLength pending connections. This predicate is an interface to the C Unix functionlisten(2) .

Errors

Socket is a variable instantiation error
Socket is neither a variable nor an integer type error(integer, Socket)
Length is a variable instantiation error
Length is neither a variable nor an integer type error(integer, Length)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicate.

7.28.7 socket accept/4 , socket accept/3

Templates

160 7 PROLOG BUILT-IN PREDICATES

socket accept(+integer, -atom, -stream, -stream)
socket accept(+integer, -stream, -stream)

Description

socket accept(Socket, Client, StreamIn, StreamOut) extracts the first connection to the socket
whose descriptor isSocket . If the domain is’AF INET’ , Client is unified with an atom whose name is the
Internet host address in numbers-and-dots notation of the connecting machine.StreamIn is unified with a
stream-term associated to the input of the connection (it is an input stream). Reading from this stream gets data
from the socket.StreamOut is unified with a stream-term associated to the output of the connection (it is an out-
put stream). Writing to this stream sends data to the socket. The use ofselect/5 can be useful (section 7.27.29,
page 155). This predicate is an interface to the C Unix functionaccept(2) .

socket accept(Socket, StreamIn, StreamOut) is equivalent tosocket accept(Socket, ,
StreamIn, StreamOut) .

Errors

Socket is a variable instantiation error
Socket is neither a variable nor an integer type error(integer, Socket)
Client is not a variable type error(variable, Client)
StreamIn is not a variable type error(variable, StreamIn)
StreamOut is not a variable type error(variable, StreamOut)
an operating system error occurs and the value of the
os error Prolog flag iserror (section 7.22.1,
page 132)

system error(atom explaining the
error)

Portability

GNU Prolog predicates.

7.28.8 hostname address/2

Templates

hostname address(+atom, ?atom)
hostname address(?atom, +atom)

Description

hostname address(HostName, HostAddress) succeeds if the Internet host address in numbers-and-
dots notation ofHostName is HostAddress . Hostname can be given as a fully qualified name, or an unqual-
ified name or an alias of the machine. The predicate will fail if the machine name or address cannot be resolved.

Errors

HostName andHostAddress are variables instantiation error
HostName is neither a variable nor an atom type error(atom, HostName)
HostAddress is neither a variable nor an atom type error(atom, HostAddress)
Address is neither a variable nor a valid address domain error(socket address,

Address)

Portability

GNU Prolog predicate.

7.29 Linedit management 161

7.29 Linedit management

The following predicates are only available if thelinedit part of GNU Prolog has been installed.

7.29.1 get linedit prompt/1

Templates

get linedit prompt(?atom)

Description

get linedit prompt(Prompt) succeeds ifPrompt is the currentlinedit prompt, e.g. the top-level
prompt is’| ?-’ . By default all other reads have an empty prompt.

Errors

Prompt is neither a variable nor an atom type error(atom, Pred)

Portability

GNU Prolog predicate.

7.29.2 set linedit prompt/1

Templates

set linedit prompt(+atom)

Description

set linedit prompt(Prompt) sets the currentlinedit prompt toPrompt . This prompt will be dis-
played for reads from a terminal (except for top-level reads).

Errors

Prompt is a variable instantiation error
Prompt is neither a variable nor an atom type error(atom, Pred)

Portability

GNU Prolog predicate.

7.29.3 add linedit completion/1

Templates

add linedit completion(+atom)

Description

add linedit completion(Word) addsWord in the list of completion words maintained bylinedit
(section 3.2.5, page 18). Only words containing letters, digits and the underscore character are added (ifWord
does not respect this restriction the predicate fails).

162 7 PROLOG BUILT-IN PREDICATES

Errors

Word is a variable instantiation error
Word is neither a variable nor an atom type error(atom, Word)

Portability

GNU Prolog predicate.

7.29.4 find linedit completion/2

Templates

find linedit completion(+atom, ?atom)

Description

find linedit completion(Prefix, Word) succeeds ifWord is a word beginning byPrefix and be-
longs to the list of completion words maintained bylinedit (section 3.2.5, page 18). This predicate is re-
executable on backtracking.

Errors

Prefix is a variable instantiation error
Prefix is neither a variable nor an atom type error(atom, Prefix)
Word is neither a variable nor an atom type error(atom, Word)

Portability

GNU Prolog predicate.

7.30 Source reader facility

7.30.1 Introduction

To be written...

7.30 Source reader facility 163

7.30.2 sr open/3

7.30.3 sr change options/2

7.30.4 sr close/1

7.30.5 sr read term/4

7.30.6 sr current descriptor/1

7.30.7 sr get stream/2

7.30.8 sr get module/3

7.30.9 sr get file name/2

7.30.10 sr get position/3

7.30.11 sr get include list/2

7.30.12 sr get include stream list/2

7.30.13 sr get size counters/3

7.30.14 sr get error counters/3

7.30.15 sr set error counters/3

7.30.16 sr error from exception/2

7.30.17 sr write message/8 , sr write message/6 , sr write message/4

7.30.18 sr write error/6 , sr write error/4 , sr write error/2

164 7 PROLOG BUILT-IN PREDICATES

165

8 Finite domain solver and built-in predicates

8.1 Introduction

The finite domain (FD) constraint solver extends Prolog with constraints over FD. This facility is available if
the FD part of GNU Prolog has been installed. The solver is an instance of the Constraint Logic Programming
scheme introduced by Jaffar and Lassez in 1987 [6]. Constraints on FD are solved using propagation techniques, in
particular arc-consistency (AC). The interested reader can refer to “Constraint Satisfaction in Logic Programming”
of P. Van Hentenryck (1989) [7]. The solver is based on theclp(FD) solver [4]. The GNU Prolog FD solver
offers arithmetic constraints, boolean constraints, reified constraints and symbolic constraints on an new kind of
variables: Finite Domain variables.

8.1.1 Finite Domain variables

A new type of data is introduced: FD variables which can only take values in their domains. The initial domain
of an FD variable is0..fd max integer where fd max integer represents the greatest value that any
FD variable can take. The predicatefd max integer/1 returns this value which may be different from the
max integer Prolog flag (section 7.22.1, page 132). The domain of an FD variableX is reduced step by step by
constraints in a monotonic way: when a value has been removed from the domain ofX it will never reappear in the
domain ofX. An FD variable is fully compatible with both Prolog integers and Prolog variables. Namely, when an
FD variable is expected by an FD constraint it is possible to pass a Prolog integer (considered as an FD variable
whose domain is a singleton) or a Prolog variable (immediately bound to an initial range0..fd max integer).
This avoids the need for specific type declaration. Although it is not necessary to declare the initial domain of an
FD variable (since it will be bound0..fd max integer when appearing for the fist time in a constraint) it is
advantageous to do so and thus reduce as soon as possible the size of its domain: particularly because GNU Prolog,
for efficiency reasons, does not check for overflows. For instance, without any preliminary domain definitions for
X, Y andZ, the non-linear constraintX*Y#=Z will fail due to an overflow when computing the upper bound of
the domain ofZ: fd max integer × fd max integer . This overflow causes a negative result for the upper
bound and the constraint then fails.

There are two internal representations for an FD variable:

• interval representation: only themin and themaxof the variable are maintained. In this representation it
is possible to store values included in0..fd max integer .

• sparse representation: an additional bit-vector is used to store the set of possible values for the variable (i.e.
the domain). In this representation it is possible to store values included in0..vector max. By default
vector max is set to 127. This value can be redefined via an environment variableVECTORMAXor via the
built-in predicatefd set vector max/1 (section 8.2.3, page 167). The predicatefd vector max/1
returns the current value ofvector max (section 8.2.1, page 166).

The initial representation for an FD variableX is always an interval representation and is switched to a sparse
representation when a “hole” appears in the domain (e.g. due to an inequality constraint). Once a variable uses
a sparse representation it will not switch back to an interval representation even if there are no longer holes in
its domain. When this switching occurs some values in the domain ofX can be lost sincevector max is less
than fd max integer . We say that “X is extra-constrained” sinceX is constrained by the solver to the do-
main0..vector max (via an imaginary constraintX #=< vector max). An extra cstr is associated to
each FD variable to indicate that values have been lost due to the switch to a sparse representation. This flag is
updated on every operations. The domain of an extra-constrained FD variable is output followed by the@sym-
bol. When a constraint fails on a extra-constrained variable a messageWarning: Vector too small -
maybe lost solutions (FD Var: N) is displayed (N is the address of the involved variable).

Example 1 (vector max = 127):

166 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

Constraint onX Domain ofX extra cstr Lost values

X #=< 512 0..512 off none
X #\= 10 0..9:11..127 on 128..512
X #=< 100 0..9:11..100 off none

In this example, when the constraintX #\= 10 is posted some values are lost, theextra cstr is then switched
on. However, posting the constraintX #=< 100 will turn off the flag (no values are lost).

Example 2:

Constraint onX Domain ofX extra cstr Lost values
X #=< 512 0..512 off none
X #\= 10 0..9:11..127 on 128..512
X #>= 256 Warning: Vector too small... on 128..512

In this example, the constraintX #>= 256 fails due to the lost of128..512 so a message is displayed onto the
terminal. The solution would consist in increasing the size of the vector either by setting the environment variable
VECTORMAX(e.g. to512) or usingfd set vector max(512) .

Finally, bit-vectors are not dynamic, i.e. all vectors have the same size (0..vector max). So the use of
fd set vector max/1 is limited to the initial definition of vector sizes and must occur before any constraint.
As seen before, the solver tries to display a message when a failure occurs due to a too shortvector max. Un-
fortunately, in some cases it cannot detect the lost of values and no message is emitted. So the user should always
take care to this parameter to be sure that it is large to encode any vector.

8.2 FD variable parameters

8.2.1 fd max integer/1

Templates

fd max integer(?integer)

Description

fd max integer(N) succeeds ifN is the current value offd max integer (section 8.1, page 165).

Errors

N is neither a variable nor an integer type error(integer, N)

Portability

GNU Prolog predicate.

8.2.2 fd vector max/1

Templates

fd vector max(?integer)

Description

fd vector max(N) succeeds ifN is the current value ofvector max (section 8.1, page 165).

8.3 Initial value constraints 167

Errors

N is neither a variable nor an integer type error(integer, N)

Portability

GNU Prolog predicate.

8.2.3 fd set vector max/1

Templates

fd set vector max(+integer)

Description

fd set vector max(N) initializesvector maxbased on the valueN(section 8.1, page 165). More precisely,
on 32 bit machines,vector max is set to the smallest value of(32*k)- 1 which is≥ N.

Errors

N is a variable instantiation error
N is neither a variable nor an integer type error(integer, N)
N is an integer< 0 domain error(not less than zero, N)

Portability

GNU Prolog predicate.

8.3 Initial value constraints

8.3.1 fd domain/3 , fd domain bool/1

Templates

fd domain(+fd variable list or fd variable, +integer, +integer)
fd domain(?fd variable, +integer, +integer)
fd domain bool(+fd variable list)
fd domain bool(?fd variable)

Description

fd domain(Vars, Lower, Upper) constraints each elementXof Vars to take a value inLower..Upper .
This predicate is generally used to set the initial domain of variables to an interval.Vars can be also a single FD
variable (or a single Prolog variable).

fd domain bool(Vars) is equivalent tofd domain(Vars, 0, 1) and is used to declare boolean FD
variables.

Errors

168 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

Vars is not a variable but is a partial list instantiation error
Vars is neither a variable nor an FD variable nor an
integer nor a list

type error(list, Vars)

an elementE of theVars list is neither a variable nor
an FD variable nor an integer

type error(fd variable, E)

Lower is a variable instantiation error
Lower is neither a variable nor an integer type error(integer, Lower)
Upper is a variable instantiation error
Upper is neither a variable nor an integer type error(integer, Upper)

Portability

GNU Prolog predicate.

8.3.2 fd domain/2

Templates

fd domain(+fd variable list, +integer list)
fd domain(?fd variable, +integer list)

Description

fd domain(Vars, Values) constraints each elementX of the listVars to take a value in the listValues .
This predicate is generally used to set the initial domain of variables to a set of values. The domain of each variable
of Vars uses a sparse representation.Vars can be also a single FD variable (or a single Prolog variable).

Errors

Vars is not a variable but is a partial list instantiation error
Vars is neither a variable nor an FD variable nor an
integer nor a list

type error(list, Vars)

an elementE of theVars list is neither a variable nor
an FD variable nor an integer

type error(fd variable, E)

Values is a partial list or a list with an elementE
which is a variable

instantiation error

Values is neither a partial list nor a list type error(list, Values)
an elementE of theValues list is neither a variable
nor an integer

type error(integer, E)

Portability

GNU Prolog predicate.

8.4 Type testing

8.4.1 fd var/1 , non fd var/1 , generic var/1 , non generic var/1

Templates

fd var(?term)
non fd var(?term)

generic var(?term)
non generic var(?term)

8.5 FD variable information 169

Description

fd var(Term) succeeds ifTerm is currently an FD variable.

non fd var(Term) succeeds ifTerm is currently not an FD variable (opposite offd var/1).

generic var(Term) succeeds ifTerm is either a Prolog variable or an FD variable.

non generic var(Term) succeeds ifTerm is neither a Prolog variable nor an FD variable (opposite of
generic var/1).

Errors

None.

Portability

GNU Prolog predicate.

8.5 FD variable information

These predicate allow the user to get some information about FD variables. They are not constraints, they only
return the current state of a variable.

8.5.1 fd min/2 , fd max/2 , fd size/2 , fd dom/2

Templates

fd min(+fd variable, ?integer)
fd max(+fd variable, ?integer)
fd size(+fd variable, ?integer)
fd dom(+fd variable, ?integer list)

Description

fd min(X, N) succeeds ifN is the minimal value of the current domain ofX.

fd max(X, N) succeeds ifN is the maximal value of the current domain ofX.

fd size(X, N) succeeds ifN is the number of elements of the current domain ofX.

fd dom(X, Values) succeeds ifValues is the list of values of the current domain ofX.

Errors

X is a variable instantiation error
X is neither an FD variable nor an integer type error(fd variable, X)
N is neither a variable nor an integer type error(integer, N)
an elementE of theVars list is neither a variable nor
an FD variable nor an integer

type error(fd variable, E)

Values is neither a partial list nor a list type error(list, Values)

Portability

170 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

GNU Prolog predicate.

8.5.2 fd has extra cstr/1 , fd has vector/1 , fd use vector/1

Templates

fd has extra cstr(+fd variable)
fd has vector(+fd variable)
fd use vector(+fd variable)

Description

fd has extra cstr(X) succeeds if theextra cstr of X is currently on (section 8.1, page 165).

fd has vector(X) succeeds if the current domain ofX uses a sparse representation (section 8.1, page 165).

fd use vector(X) enforces a sparse representation for the domain ofX (section 8.1, page 165).

Errors

X is a variable instantiation error
X is neither an FD variable nor an integer type error(fd variable, X)

Portability

GNU Prolog predicates.

8.6 Arithmetic constraints

8.6.1 FD arithmetic expressions

An FD arithmetic expression is a Prolog term built from integers, variables (Prolog or FD variables), and functors
(or operators) that represent arithmetic functions. The following table details the components of an FD arithmetic
expression:

FD Expression Result

Prolog variable domain0..fd max integer
FD variableX domain ofX
integer numberN domainN..N
+ E same asE
- E opposite ofE
E1 + E2 sum ofE1 andE2
E1 - E2 subtraction ofE2 from E1
E1 * E2 multiplication ofE1 by E2
E1 / E2 integer division ofE1 by E2 (only succeeds if the remainder is 0)
E1 ** E2 E1 raised to the power ofE2 (E1 or E2 must be an integer)
min(E1,E2) minimum ofE1 andE2
max(E1,E2) maximum ofE1 andE2
dist(E1,E2) distance, i.e.|E1 - E2 |
E1 // E2 quotient of the integer division ofE1 by E2
E1 rem E2 remainder of the integer division ofE1 by E2
quot rem(E1,E2,R) quotient of the integer division ofE1 by E2

(R is the remainder of the integer division ofE1 by E2)

8.6 Arithmetic constraints 171

FD expressions are not restricted to be linear. However non-linear constraints usually yield less constraint propa-
gation than linear constraints.

+, - , * , / , // , rem and** are predefined infix operators.+ and- are predefined prefix operators (section 7.14.10,
page 99).

Errors

a sub-expression is of the form** E andE is a
variable

instantiation error

a sub-expressionE is neither a variable nor an integer
nor an FD arithmetic functor

type error(fd evaluable, E)

an expression is too complex resource error(too big fd constraint)

8.6.2 Partial AC: (#=)/2 - constraint equal, (#\=)/2 - constraint not equal,
(#<)/2 - constraint less than,(#=<)/2 - constraint less than or equal,
(#>)/2 - constraint greater than, (#>=)/2 - constraint greater than or equal

Templates

#=(?fd evaluable, ?fd evaluable)
#\=(?fd evaluable, ?fd evaluable)
#<(?fd evaluable, ?fd evaluable)
#=<(?fd evaluable, ?fd evaluable)
#>(?fd evaluable, ?fd evaluable)
#>=(?fd evaluable, ?fd evaluable)

Description

FdExpr1 #= FdExpr2 constrainsFdExpr1 to be equal toFdExpr2 .

FdExpr1 #\= FdExpr2 constrainsFdExpr1 to be different fromFdExpr2 .

FdExpr1 #< FdExpr2 constrainsFdExpr1 to be less thanFdExpr2 .

FdExpr1 #=< FdExpr2 constrainsFdExpr1 to be less than or equal toFdExpr2 .

FdExpr1 #> FdExpr2 constrainsFdExpr1 to be greater thanFdExpr2 .

FdExpr1 #>= FdExpr2 constrainsFdExpr1 to be greater than or equal toFdExpr2 .

FdExpr1 andFdExpr2 are arithmetic FD expressions (section 8.6.1, page 170).

#=, #\= , #<, #=<, #> and#>= are predefined infix operators (section 7.14.10, page 99).

These predicates post arithmetic constraints that are managed by the solver using a partial arc-consistency algo-
rithm to reduce the domain of involved variables. In this scheme only the bounds of the domain of variables
are updated. This leads to less propagation than full arc-consistency techniques (section 8.6.3, page 172) but is
generally more efficient for arithmetic. These arithmetic constraints can be reified (section 8.7, page 173).

Errors

Refer to the syntax of arithmetic FD expressions for possible errors (section 8.6.1, page 170).

Portability

172 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

GNU Prolog predicates.

8.6.3 Full AC: (#=#)/2 - constraint equal, (#\=#)/2 - constraint not equal,
(#<#)/2 - constraint less than,(#=<#)/2 - constraint less than or equal,
(#>#)/2 - constraint greater than, (#>=#)/2 - constraint greater than or equal

Templates

#=#(?fd evaluable, ?fd evaluable)
#\=#(?fd evaluable, ?fd evaluable)
#<#(?fd evaluable, ?fd evaluable)
#=<#(?fd evaluable, ?fd evaluable)
#>#(?fd evaluable, ?fd evaluable)
#>=#(?fd evaluable, ?fd evaluable)

Description

FdExpr1 #=# FdExpr2 constrainsFdExpr1 to be equal toFdExpr2 .

FdExpr1 #\=# FdExpr2 constrainsFdExpr1 to be different fromFdExpr2 .

FdExpr1 #<# FdExpr2 constrainsFdExpr1 to be less thanFdExpr2 .

FdExpr1 #=<# FdExpr2 constrainsFdExpr1 to be less than or equal toFdExpr2 .

FdExpr1 #># FdExpr2 constrainsFdExpr1 to be greater thanFdExpr2 .

FdExpr1 #>=# FdExpr2 constrainsFdExpr1 to be greater than or equal toFdExpr2 .

FdExpr1 andFdExpr2 are arithmetic FD expressions (section 8.6.1, page 170).

#=# , #\=# , #<# , #=<# , #># and#>=# are predefined infix operators (section 7.14.10, page 99).

These predicates post arithmetic constraints that are managed by the solver using a full arc-consistency algorithm
to reduce the domain of involved variables. In this scheme the full domain of variables is updated. This leads to
more propagation than partial arc-consistency techniques (section 8.6.1, page 170) but is generally less efficient
for arithmetic. These arithmetic constraints can be reified (section 8.7.1, page 173).

Errors

Refer to the syntax of arithmetic FD expressions for possible errors (section 8.6.1, page 170).

Portability

GNU Prolog predicates.

8.6.4 fd prime/1 , fd not prime/1

Templates

fd prime(?fd variable)
fd not prime(?fd variable)

Description

8.7 Boolean and reified constraints 173

fd prime(X) constraintsX to be a prime number between0..vector max. This constraint enforces a sparse
representation for the domain ofX (section 8.1, page 165).

fd not prime(X) constraintsX to be a non prime number between0..vector max. This constraint enforces
a sparse representation for the domain ofX (section 8.1, page 165).

Errors

X is neither an FD variable nor an integer type error(fd variable, X)

Portability

GNU Prolog predicates.

8.7 Boolean and reified constraints

8.7.1 Boolean FD expressions

An boolean FD expression is a Prolog term built from integers (0 for false, 1 for true), variables (Prolog or FD
variables), partial AC arithmetic constraints (section 8.6.2, page 171), full AC arithmetic constraints (section 8.6.3,
page 172) and functors (or operators) that represent boolean functions. When a sub-expression of a boolean ex-
pression is an arithmetic constraintc , it is reified. Namely, as soon as the solver detects thatc is true (i.e.entailed)
the sub-expression has the value1. Similarly when the solver detects thatc is false (i.e. disentailed) the sub-
expression evaluates as0. While neither the entailment nor the disentailment can be detected the sub-expression
is evaluated as a domain0..1 . The following table details the components of an FD boolean expression:

FD Expression Result

Prolog variable domain0..1
FD variableX domain ofX, X is constrained to be in0..1
0 (integer) 0 (false)
1 (integer) 1 (true)
#\ E notE
E1 #<=> E2 E1 equivalent toE2
E1 #\<=> E2 E1 not equivalent toE2 (i.e. E1 different fromE2)
E1 ## E2 E1 exclusive ORE2 (i.e. E1 not equivalent toE2)
E1 #==> E2 E1 impliesE2
E1 #\==> E2 E1 does not implyE2
E1 #/\ E2 E1 AND E2
E1 #\/\ E2 E1 NAND E2
E1 #\/ E2 E1 OR E2
E1 #\\/ E2 E1 NORE2

#<=> , #\<=> , ## , #==> , #\==> , #/\ , #\/\ , #\/ and#\\/ are predefined infix operators.#\ is a predefined
prefix operator (section 7.14.10, page 99).

Errors

a sub-expressionE is neither a variable nor an integer
(0 or 1) nor an FD boolean functor nor reified
constraint

type error(fd bool evaluable, E)

an expression is too complex resource error(too big fd constraint)
a sub-expression is an invalid reified constraint an arithmetic constraint error (section 8.6.1,

page 170)

174 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

8.7.2 (#\)/1 - constraint NOT, (#<=>)/2 - constraint equivalent,
(#\<=>)/2 - constraint different, (##)/2 - constraint XOR,
(#==>)/2 - constraint imply, (#\==>)/2 - constraint not imply,
(#/\)/2 - constraint AND, (#\/\)/2 - constraint NAND,
(#\/)/2 - constraint OR, (#\\/)/2 - constraint NOR

Templates

#\(?fd bool evaluable)
#<=>(?fd bool evaluable, ?fd bool evaluable)
#\<=>(?fd bool evaluable, ?fd bool evaluable)
##(?fd bool evaluable, ?fd bool evaluable)
#==>(?fd bool evaluable, ?fd bool evaluable)
#\==>(?fd bool evaluable, ?fd bool evaluable)
#/\(?fd bool evaluable, ?fd bool evaluable)
#\/\(?fd bool evaluable, ?fd bool evaluable)
#\/(?fd bool evaluable, ?fd bool evaluable)
#\\/(?fd bool evaluable, ?fd bool evaluable)

Description

#\= FdBoolExpr1 constraintsFdBoolExpr1 to be false.

FdBoolExpr1 #<=> FdBoolExpr2 constrainsFdBoolExpr1 to be equivalent toFdBoolExpr2 .

FdBoolExpr1 #\<=> FdBoolExpr2 constrainsFdBoolExpr1 to be equivalent to notFdBoolExpr2 .

FdBoolExpr1 ## FdBoolExpr2 constrainsFdBoolExpr1 XOR FdBoolExpr2 to be true

FdBoolExpr1 #==> FdBoolExpr2 constrainsFdBoolExpr1 to imply FdBoolExpr2 .

FdBoolExpr1 #\==> FdBoolExpr2 constrainsFdBoolExpr1 to not implyFdBoolExpr2 .

FdBoolExpr1 #/\ FdBoolExpr2 constrainsFdBoolExpr1 AND FdBoolExpr2 to be true.

FdBoolExpr1 #\/\ FdBoolExpr2 constrainsFdBoolExpr1 AND FdBoolExpr2 to be false.

FdBoolExpr1 #\/ FdBoolExpr2 constrainsFdBoolExpr1 ORFdBoolExpr2 to be true.

FdBoolExpr1 #\\/ FdBoolExpr2 constrainsFdBoolExpr1 OR FdBoolExpr2 to be false.

FdBoolExpr1 andFdBoolExpr2 are boolean FD expressions (section 8.7.1, page 173).

Note that#\<=> (not equivalent) and## (exclusive or) are synonymous.

These predicates post boolean constraints that are managed by the FD solver using a partial arc-consistency algo-
rithm to reduce the domain of involved variables. The (dis)entailment of reified constraints is detected using either
the bounds (for partial AC arithmetic constraints) or the full domain (for full AC arithmetic constraints).

#<=> , #\<=> , ## , #==> , #\==> , #/\ , #\/\ , #\/ and#\\/ are predefined infix operators.#\ is a predefined
prefix operator (section 7.14.10, page 99).

Errors

Refer to the syntax of boolean FD expressions for possible errors (section 8.7.1, page 173).

Portability

8.8 Symbolic constraints 175

GNU Prolog predicates.

8.7.3 fd cardinality/2 , fd cardinality/3 , fd at least one/1 , fd at most one/1 ,
fd only one/1

Templates

fd cardinality(+fd bool evaluable list, ?fd variable)
fd cardinality(+integer, ?fd variable, +integer)
fd at least one(+fd bool evaluable list)
fd at most one(+fd bool evaluable list)
fd only one(+fd bool evaluable list)

Description

fd cardinality(List, Count) unifiesCount with the number of constraints that are true inList . This
is equivalent to post the constraintB1 + B2 + ...+ B n #= Count where each variableBi is a new variable
defined by the constraintBi #<=> Ci whereCi is the i th constraint ofList . EachCi must be a boolean FD
expression (section 8.7.1, page 173).

fd cardinality(Lower, List, Upper) is equivalent tofd cardinality(List, Count), Lower
#=< Count, Count #=< Upper

fd at least one(List) is equivalent tofd cardinality(List, Count), Count #>= 1 .

fd at most one(List) is equivalent tofd cardinality(List, Count), Count #=< 1 .

fd only one(List) is equivalent tofd cardinality(List, 1) .

Errors

List is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)
Count is neither an FD variable nor an integer type error(fd variable, Count)
Lower is a variable instantiation error
Lower is neither a variable nor an integer type error(integer, Lower)
Upper is a variable instantiation error
Upper is neither a variable nor an integer type error(integer, Upper)
an elementE of theList list is an invalid boolean
expression

an FD boolean constraint (section 8.7.1, page 173)

Portability

GNU Prolog predicates.

8.8 Symbolic constraints

8.8.1 fd all different/1

Templates

fd all different(+fd variable list)

Description

176 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

fd all different(List) constrains all variables inList to take distinct values. This is equivalent to
posting an inequality constraint for each pair of variables. This constraint is triggered when a variable becomes
ground, removing its value from the domain of the other variables.

Errors

List is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)
an elementE of theList list is neither a variable nor
an integer nor an FD variable

type error(fd variable, E)

Portability

GNU Prolog predicate.

8.8.2 fd element/3

Templates

fd element(?fd variable, +integer list, ?fd variable)

Description

fd element(I, List, X) constraintsX to be equal to theI th integer (from 1) ofList .

Errors

I is neither a variable nor an FD variable nor an
integer

type error(fd variable, I)

X is neither a variable nor an FD variable nor an
integer

type error(fd variable, X)

List is a partial list or a list with an elementE
which is a variable

instantiation error

List is neither a partial list nor a list type error(list, List)
an elementE of theList list is neither a variable nor
an integer

type error(integer, E)

Portability

GNU Prolog predicate.

8.8.3 fd element var/3

Templates

fd element var(?fd variable, +fd variable list, ?fd variable)

Description

fd element var(I, List, X) constraintsX to be equal to theI th variable (from 1) ofList . This con-
straint is similar tofd element/3 (section 8.8.2, page 176) butList can also contain FD variables (rather than
just integers).

Errors

8.8 Symbolic constraints 177

I is neither a variable nor an FD variable nor an
integer

type error(fd variable, I)

X is neither a variable nor an FD variable nor an
integer

type error(fd variable, X)

List is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)
an elementE of theList list is neither a variable nor
an integer nor an FD variable

type error(fd variable, E)

Portability

GNU Prolog predicate.

8.8.4 fd atmost/3 , fd atleast/3 , fd exactly/3

Templates

fd atmost(+integer, +fd variable list, +integer)
fd atleast(+integer, +fd variable list, +integer)
fd exactly(+integer, +fd variable list, +integer)

Description

fd atmost(N, List, V) posts the constraint that at mostNvariables ofList are equal to the valueV.

fd atleast(N, List, V) posts the constraint that at leastNvariables ofList are equal to the valueV.

fd exactly(N, List, V) posts the constraint that at exactlyNvariables ofList are equal to the valueV.

These constraints are special cases offd cardinality/2 (section 8.7.3, page 175) but their implementation is
more efficient.

Errors

N is a variable instantiation error
N is neither a variable nor an integer type error(integer, N)
V is a variable instantiation error
V is neither a variable nor an integer type error(integer, V)
List is a partial list instantiation error
List is neither a partial list nor a list type error(list, List)
an elementE of theList list is neither a variable nor
an FD variable nor an integer

type error(fd variable, E)

Portability

GNU Prolog predicates.

8.8.5 fd relation/2 , fd relationc/2

Templates

fd relation(+integer list list, ?fd variable list)
fd relationc(+integer list list, ?fd variable list)

Description

178 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

fd relation(Relation, Vars) constraints the tuple of variablesVars to be equal to one tuple of the list
Relation . A tuple is represented by a list.

Example: definition of the boolean AND relation so that X AND Y⇔ Z:

and(X,Y,Z):-
fd_relation([[0,0,0],[0,1,0],[1,0,0],[1,1,1]], [X,Y,Z]).

fd relationc(Columns, Vars) is similar tofd relation/2 except that the relation is not given as the
list of tuples but as the list of the columns of the relation. A column is represented by a list.

Example:

and(X,Y,Z):-
fd_relationc([[0,0,1,1],[0,1,0,1],[0,0,0,1]], [X,Y,Z]).

Errors

Relation is a partial list or a list with a sub-termE
which is a variable

instantiation error

Relation is neither a partial list nor a list type error(list, Relation)
an elementE of theRelation list is neither a
variable nor an integer

type error(integer, E)

Vars is a partial list instantiation error
Vars is neither a partial list nor a list type error(list, Vars)
an elementE of theVars list is neither a variable nor
an integer nor an FD variable

type error(fd variable, E)

Portability

GNU Prolog predicates.

8.9 Labeling constraints

8.9.1 fd labeling/2 , fd labeling/1 , fd labelingff/1

Templates

fd labeling(+fd variable list, +fd labeling option list)
fd labeling(+fd variable, +fd labeling option list)
fd labeling(+fd variable list)
fd labeling(+fd variable)
fd labelingff(+fd variable list)
fd labelingff(+fd variable)

Description

fd labeling(Vars, Options) assigns a value to each variableX of the listVars according to the list of
labeling options given byOptions . Vars can be also a single FD variable. This predicate is re-executable on
backtracking.

FD labeling options: Options is a list of labeling options. If this list contains contradictory options, the right-
most option is the one which applies. Possible options are:

• variable method(V) : specifies the heuristics to select the variable to enumerate:
– standard : no heuristics, the leftmost variable is selected.

8.10 Optimization constraints 179

– first fail (or ff): selects the variable with the smallest number of elements in its domain. If
several variables have the same number of elements the leftmost variable is selected.

– most constrained : like first fail but when several variables have the same number of ele-
ments selects the variable that appears in most constraints.

– smallest : selects the variable that has the smallest value in its domain. If there is more than one
such variable selects the variable that appears in most constraints.

– largest : selects the variable that has the greatest value in its domain. If there is more than one such
variable selects the variable that appears in most constraints.

– max regret : selects the variable that has the greatest difference between the smallest value and the
next value of its domain. If there is more than one such variable selects the variable that appears in
most constraints.

– random : selects randomly a variable. Each variable is only chosen once.
The default value isstandard .

• reorder(true/false) : specifies if the variable heuristics should dynamically reorder the list of vari-
able (true) or not (false). Dynamic reordering is generally more efficient but in some cases a static
ordering is faster. The default value istrue .

• value method(V) : specifies the heuristics to select the value to assign to the chosen variable:
– min : enumerates the values from the smallest to the greatest (default).

– max: enumerates the values from the greatest to the smallest.

– middle : enumerates the values from the middle to the bounds.

– bounds : enumerates the values from the bounds to the middle.

– random : enumerates the values randomly. Each value is only tried once.
The default value ismin .

• backtracks(B) : unifiesB with the number of backtracks during the enumeration.

fd labeling(Vars) is equivalent tofd labeling(Vars, []) .

fd labelingff(Vars) is equivalent tofd labeling(Vars, [variable method(ff)]) .

Errors

Vars is a partial list or a list with an elementE
which is a variable

instantiation error

Vars is neither a partial list nor a list type error(list, Vars)
an elementE of theVars list is neither a variable nor
an integer nor an FD variable

type error(fd variable, E)

Options is a partial list or a list with an elementE
which is a variable

instantiation error

Options is neither a partial list nor a list type error(list, Options)
an elementE of theOptions list is neither a
variable nor a labeling option

domain error(fd labeling option, E)

Portability

GNU Prolog predicates.

8.10 Optimization constraints

8.10.1 fd minimize/2 , fd maximize/2

Templates

180 8 FINITE DOMAIN SOLVER AND BUILT-IN PREDICATES

fd minimize(+callable term, ?fd variable)
fd maximize(+callable term, ?fd variable)

Description

fd minimize(Goal, X) repeatedly callsGoal to find a value that minimizes the variableX. Goal is a Prolog
goal that should instantiateX, a common case being the use offd labeling/2 (section 8.9.1, page 178). This
predicate uses a branch-and-bound algorithm with restart: each timecall(Goal) succeeds the computation
restarts with a new constraintX #< V whereV is the value ofX at the end of the last call ofGoal . When a
failure occurs (either because there are no remaining choice-points forGoal or because the added constraint is
inconsistent with the rest of the store) the last solution is recomputed since it is optimal.

fd maximize(Goal, X) is similar tofd minimize/2 butX is maximized.

Errors

Goal is a variable instantiation error
Goal is neither a variable nor a callable term type error(callable, Goal)
The predicate indicatorPred of Goal does not
correspond to an existing procedure and the value of
theunknown Prolog flag iserror (section 7.22.1,
page 132)

existence error(procedure, Pred)

X is neither a variable nor an FD variable nor an
integer

type error(fd variable, X)

Portability

GNU Prolog predicates.

181

9 Coroutining and attributes

9.1 Coroutining

9.1.1 freeze/2

Templates

freeze(?term, ?term)

Description

freeze(Var, Goal) blocksGoal until Var is unified to a non variable term.

Errors

None.

Portability

GNU Prolog RH predicate.

9.1.2 frozen/2

Templates

frozen(-term, ?term)

Description

frozen(Var, Goals) unifiesGoals with the conjunction of all goals which are blocked on the variableVar .
If no goal is blocked,Goals is unified with atomtrue .

Errors

None.

Portability

GNU Prolog RH predicate.

9.1.3 portray/2 [user-defined]

Templates

portray(+callable term, -callable term)

Description

If after the success of a query, a goalGoal is still blocked on a variableVar , portray(Goal, Goal2) is
called by the Prolog top level. If this one succeeds,Goals2 is displayed, but ifportray/2 fails or if it is not
definedfreeze(Var, Goal) is printed instead.

Note : Only the goals blocked on the variables of the query are displayed.

182 9 COROUTINING AND ATTRIBUTES

9.2 Attributed variables

9.2.1 Introduction

The facility presented here implements attributed variables in the style of [9]. It provides a way for associating
to variables one or several arbitrary terms called attributes. By allowing the user to redefine the unification of
attributed variables, this extension makes possible the design of coroutining facilities (see subsection 9.2.7 , page
184) and clean interfaces between Prolog and constraints solvers (see section 10, page 187). This facility is
available if the attributes part of GNU Prolog has been installed.

A new type of data is introduced: attributed variables on which can be attached one or several attributes. Currently,
FD variables cannot be attributed and unification between attributed variables and FD variables always fails.

9.2.2 Attribute declaration - attribute/1

Templates

:- attribute(+structure indicator)

Description

The directiveattribute(Name/Arity) provides the means to declare a new attribute which is a compound
term of principal functorName/Arity . Attributes can be associated to a variable or updated only if they have
been previously declared using this directive.

Portability

GNU Prolog RH directives.

9.2.3 Attributes manipulation - get atts/2 , put atts/2

Templates

get atts(-term, +callable term)

Description

get atts(Var, AccesSpec) gets the attributes of Var according toAccessSpec or fails if Var is not an
attributed variable.

Errors

AccesSpec is a generic variable instantiation error
AccesSpec is a compound term of principal functor
F/N but does not correspond to any attribute that has
been declared using the directiveattributes/1

domain error(attributes,F/N)

Portability

GNU Prolog RH predicate.

Templates

9.2 Attributed variables 183

put atts(-term, +callable term)

Description

put atts(Var, AccesSpec) set the corresponding actual attribute ofVar .

Errors

Var is a neither a variable nor an attributed variable type error(variable,Var)
AccesSpec is a generic variable instantiation error
AccesSpec is a compound term of principal
functorF/N but does not corresponding to any
attribute that has been declared using the directive
attributes/1

domain error(attributes,F/N)

Portability

GNU Prolog RH predicate.

9.2.4 Type testing -attributed/1 , generic var/1 , non generic var/1

Errors

None.

Portability

GNU Prolog predicate.

Templates

attributed(?term)
generic var(?term)
non generic var(?term)

Description

attributed(Term) succeeds ifTerm is currently an attributed variable, i.e. at least one attribute has been
previously attached to this variable using predicateput atts/2 .

Predicatesgeneric var/1 andnon generic var/1 , defined in Type testing in the Finite Domain chapter
(section 8.4, page 168) are extended, as following :

• generic var(Term) succeeds ifTerm is either a Prolog variable, an FD variable or an attributed vari-
able;

• non generic var(Term) succeeds ifTerm is neither a Prolog variable nor an FD variable nor an
attributed variable (opposite ofgeneric var/1).

Errors

None.

Portability

GNU Prolog RH predicates.

184 9 COROUTINING AND ATTRIBUTES

9.2.5 Unification extension -verify attributes predicate/1

The unification of attributed variables can be extended by definingattributes verification handlers, that are user-
defined predicates checking that an attributed variable can be unified with another one or with an non-variable
term. Anattributes verification handleris declared by the following directive :

Templates

:- verify attributes predicate(+atom)

Description

The directiveverify attributes predicate(Functor) declares that the predicateFunctor/3 is a
attributes verification handler. Using this directive the user can defined as many handlers as (s)he wants, all of
them being awaked in an unspecified order.

For example the directiveverify attributes predicate(verify foo) declares thatverify foo(Var,
Value, Goal) must be called each time that the unification algorithm tries to bind an attributed variableVar
to a non-variable term or to another attributed variableValue . If this call succeeds the unification resumes and
Var is actually bound toValue , otherwise the unification fails.Goal has to be unified by the handler to a goal
which will be called after the effective binding ofVar .

Notes:

• The handler shouldnot try to bind Var . A binding of Var could be done after the end of the complete
unification using the parameterGoal .

• If Var is bound to another attributed variable, only the attributes ofValue are preserved. Therefore it could
be necessary to move attributes fromVar to Value .

9.2.6 Attributed variables portraying - portray attributes predicate/1

For printing attributed variables the Prolog top level uses user-defined predicates that are calledattributes portray-
ing handlers. To declare such handlers the user must use the following directive:

Templates

:- portray attributes predicate(+atom)

Description

The directiveportray attributes predicate(Functor) declares that the predicateFunctor/2 is an
attribute portraying handler. Using this directive the user can define as many handlers as (s)he wants, all of them
being called in an unspecified order.

Before printing the result of a query, the Prolog top level passes (as first argument) the list of attributed variables
of the answer to everyattribute portraying handler. It is expected that these handlers always succeeds and unify
their second argument to a (possibly empty) list. Each elements of this list are then printed by the the top level.

9.2.7 A simple example

To illustrate the use of attributed variables, look at the following classical program for offreeze/2 . It is named
myfreeze/2 to avoid conflict with the built-in version of this predicate.

9.2 Attributed variables 185

%%% File : myfreeze.pl %%%

%% declares a new attribute
:-attribute(myfrozen/1).

%% declares verify_myfreeze/3 as an attributes verification handler.
:-verify_attributes_predicate(verify_myfreeze).

verify_myfreeze(Var, Other, Goal):-
get_atts(Var, myfrozen(Fa)), !, % is Var revelant ?
(attributed(Other) -> % is Other attributed ?

(get_atts(Other, myfrozen(Fb)) -> % have a pending goal ?
put_atts(Other, myfrozen((Fa, Fb)))% makes conjunction of goals

; put_atts(Other, myfrozen(Fa)) % rescues the pending goal
), Goal=true % does nothing after unification

; Goal=Fa). % wakes the pending goal
verify_myfreeze(_, _, true). % succeeds if Var is not revelant

%% declares portray_myfreeze/2 as an attribute portraying handler.
:-portray_attributes_predicate(portray_myfreeze).

portray_myfreeze([H|T],L):-
(get_atts(H, myfrozen(G)) -> % is the head revelant ?

L = [myfreeze(H, G) | T2]; % produces output
L = T2), % throws the non-revelant vari

portray_myfreeze(T, T2). % treats the tail
portray_myfreeze([],[]).

myfreeze(X, Goal):-
put_atts(X, myfrozen(Goal)).

Now look the call of next goals :

| ?- [myfreeze].
compiling /usr/local/gprolog-1.2.16.rh/ExamplesATT/myfreeze.pl for byte code...
usr/local/gprolog-1.2.16.rh/ExamplesATT/myfreeze.pl compiled, 34 lines read -
4368 bytes written, 37 ms

yes
| ?- myfreeze(X,write(’X’=X)), X=[].
X=[] % side effect

X = [] % bindings

yes
| ?- myfreeze(X,write(’X’=X)).

myfreeze(X, write(X = X)) % attributes portray

yes

186 9 COROUTINING AND ATTRIBUTES

187

10 Constraint logic programming over reals

10.1 Introduction

The CLP(R) presented here extends Prolog with constraint logic programming over reals. This facility is available
if the CLP(R) part of GNU Prolog has been installed. The solver is an instance of the Constraint Logic Pro-
gramming scheme introduced by Jaffar and Michaylov in 1987 [10]. Constraints over reals are solved using an
incremental version of the simplex solverlp solve 20. The interface between Prolog and the simplex solver is
made using attributed variables, therefore the CLP(R) part of GNU Prolog can only be installed if the attributes
part is installed too.

10.2 Solver predicates

10.2.1 {}/1

Templates

{+Constraint }

Description

{Constraint } succeeds ifConstraint is a term accepted by the grammar below. If the corresponding
constraint is linear, it is added to the current constraints store which is then checked for satisfiability, otherwise it
is frozen until it becomes a linear constraint.

Constraint --> Constraint , Constraint conjunction
| Constraint ; Constraint disjunction
| Expr = Expr equation
| Expr =< Expr inequation
| Expr >= Expr inequation

Expr --> Variable variable (attributed or not)
| Evaluable evaluable expression
| + Expr unary plus
| - Expr unary minus
| Expr + Expr binary plus
| Expr - Expr binary minus
| Expr * Expr binary multiplication
| Expr / Expr binary division
| Expr ** Evaluable raise to power
| abs(Expr) absolute value
| sin(Expr) trigonometric sine
| cos(Expr) trigonometric cosine
| min(Expr,Expr) minimum of the two arguments
| max(Expr,Expr) maximum of the two arguments

To learn more about evaluable expressions refer to the evaluation of an arithmetic expression (section 7.6.1,
page 57).

Errors
20http://contraintes.inria.fr/˜haemmerl/lp solve inc/

188 10 CONSTRAINT LOGIC PROGRAMMING OVER REALS

Constraint is not a structure or its main functor is
neither ’=’ nor ’=<’ nor ’>=’

type error(’expected a constraint,
found’, Constraint)

Portability

GNU Prolog RH predicate.

10.2.2 inf/2 , sup/2

Templates

inf(+term, -float)
sup(+term, -float)

Description

inf(ExprLin, Inf) computes the infimum of the linear expressionExprLin and unifies it withInf . Failure
indicates that this infimum is equal to−∞.

sup(ExprLin, Sup) computes the supremum of the linear expressionExprLin and unifies it withSup.
Failure indicates that this supremum is equal to+∞.

Errors

ExprLin is either a atom or a list or a FD variable type error(’expected a linear
expression, found’, ExprLin)

ExprLin is not a linear expression system error(’expected a linear
expression’)

Inf (or Sup) is neither a variable nor a CLP(R)
variable nor a float

type error(’float’, Inf)

Portability

GNU Prolog RH predicate.

10.2.3 clpr get store/2

Templates

clpr get store(+list, -list)

Description

clpr get store(Vars, Constraints) unifiesConstraints with the list of CLP(R) constraints, which
constrain the variables inVars .

Errors

Vars is not a list type error(list, Vars)

Portability

GNU Prolog RH predicate.

10.3 Real and Herbrand domains combinations 189

10.3 Real and Herbrand domains combinations

10.3.1 Unification

The unification of a CLP(R) variable either to another CLP(R) variable or to a floating point number is interpreted
as an equality constraint. For example :

| ?- {X=2*Y+3*Z}, Z=Y, X=5.0.

X = 5.0
Y = 1.0
Z = 1.0

yes

is equivalent to

| ?- {X=2*Y+3*Z, Z=Y, X=5}.

X = 5.0
Y = 1.0
Z = 1.0

yes

Note that CLP(R) variables cannot be bound to integer numbers. This is because, in standard Prolog, unification
between float and integer fails. Inside{} the integer values are automatically converted into floats.

10.3.2 Implicit equalities

The solver tries to detected equalities implied by the store of constraints and unifies CLP(R) variables in conse-
quence. Currently equalities implied by inequations are not detected. For example in the following goal, the two
first constraints implyA=2.0 andB=Cand the two last implyX=1.0 , but only the first equalities are detected.

| ?- {A+B-C=2, A-B+C=2}, {1>=X, 1=<X}.

{ X =< 1.0 }
{ -1.0 * X =< -1.0 }
A = 2.0
C = B

yes

10.3.3 Nonlinear constraints

The solver presented here can only solve linear constraints, however it freezes all nonlinear constraints in the hope
that they would become linear. A nonlinear constraint may be reduce to a linear one by unification, example :

| ?- {X + 2 * X * Y + Y**2 = 10}.

{ Y ** 2 + X * Y * 2.0 + X = 10.0 }

yes

190 10 CONSTRAINT LOGIC PROGRAMMING OVER REALS

| ?- {X + 2 * X * Y + Y**2 = 10}, Y=1.0.

X = 3.0
Y = 1.0

yes

191

11 Interfacing Prolog and C

11.1 Calling C from Prolog

11.1.1 Introduction

This interface allows a Prolog predicate to call a C function. Here are some features of this facility:

• implicit Prolog↔ C data conversions for simple types.

• functions to handle complex types.

• error detection depending on the type of the argument.

• different kinds of arguments: input, output or input/output.

• possibility to write non-deterministic code.

This interface can then be used to write both simple and complex C routines. A simple routine uses either input or
output arguments which type is simple. In that case the user does not need any knowledge of Prolog data structures
since all Prolog↔ C data conversions are implicitly achieved. To manipulate complex terms (lists, structures) a
set of functions is provided. Finally it is also possible to write non-deterministic C code.

11.1.2 foreign/2 directive

foreign/2 directive (section 6.1.14, page 45) declares a C function interface. The general form isforeign(Template,
Options) which defines an interface predicate whose prototype isTemplate according to the options given
by Options . Template is a callable term specifying the type/mode of each argument of the associated Prolog
predicate.

Foreign options: Options is a list of foreign options. If this list contains contradictory options, the rightmost
option is the one which applies. Possible options are:

• fct name(F) : F is an atom representing the name of the C function to call. By default the name of the C
function is the same as the principal functor ofTemplate . In any case, the atom associated to the name of
the function must conforms to the syntax of C identifiers.

• return(boolean /none /jump) : specifies the value returned by the C function:
– boolean : the type of the function isBool (returnsTRUEon success,FALSEotherwise).

– none : the type of the function isvoid (no returned value).

– jump : the type of the function isvoid(*)() (returns the address of a Prolog code to execute).
The default value isboolean .

• bip name(Name, Arity) : initializes the error context withNameandArity . If an error occurs this
information is used to indicate from which predicate the error occurred (section 5.3.1, page 37). It is also
possible to prevent the initialization of the error context usingbip name(none) . By defaultNameand
Arity are set to the functor and arity ofTemplate .

• choice size(N) : this option specifies that the function implements a non-deterministic code.N is an
integer specifying the size needed by the non-deterministic C function. This facility is explained later (sec-
tion 11.1.7, page 194). By default a foreign function is deterministic.

foreign(Template) is equivalent toforeign(Template, []) .

Foreign modes and types: each argument ofTemplate specifies the foreign mode and type of the corresponding
argument. This information is used to check the type of effective arguments at run-time and to perform Prolog↔C
data conversions. Each argument ofTemplate is formed with a mode symbol followed by a type name. Possible
foreign modes are:

192 11 INTERFACING PROLOG AND C

• +: input argument.

• - : output argument.

• ?: input/output argument.

Possible foreign types are:

Foreign type Prolog type C type Description of the C type

integer integer long value of the integer
positive positive integer long value of the integer
float floating point number double value of the floating point number
number number double value of the number
atom atom int internal key of the atom
boolean boolean int value of the boolean (0=false , 1=true)
char character int value of (the code of) the character
code character code int value of the character-code
byte byte int value of the byte
in char in-character int value of the character or-1 for end-of-file
in code in-character code int value of the character-code or-1 for end-of-file
in byte in-byte int value of the byte or-1 for the end-of-file
string atom char * C string containing the name of the atom
chars character list char * C string containing the characters of the list
codes character-code list char * C string containing the characters of the list
term Prolog term PlTerm generic Prolog term

Simple foreign type: a simple type is any foreign type listed in the above tabled exceptterm . A simple foreign
type is an atomic term (character and character-code lists are in fact lists of constants). Each simple foreign type is
converted to/from a C type to simplify the writing of the C function.

Complex foreign type: type foreign typeterm refers to any Prolog term (e.g. lists, structures. . .). When such an
type is specified the argument is passed to the C function as aPlTerm (GNU Prolog C type equivalent to along).
Several functions are provided to manipulatePlTerm variables (section 11.2, page 198). Since the original term
is passed to the function it is possible to read its value or to unify it. So the meaning of the mode symbol is less
significant. For this reason it is possible to omit the mode symbol. In that caseterm is equivalent to+term .

11.1.3 The C function

The C code is written in a C file which must first include the GNU Prolog header file calledgprolog.h . This
file contains all GNU Prolog C definitions (constants, types, prototypes,. . .).

The type returned by a C function depends on the value of thereturn foreign option (section 11.1.2, page 191). If
it is boolean then the C function is of typeBool and shall returnTRUEin case of success andFALSEotherwise.
If the return option isnone the C function is of typevoid . Finally if it is jump , the function shall return the
address of a Prolog predicate and, at the exit of the function, the control is given to that predicate.

The type of the arguments of the C function depends on the mode and type declaration specified inTemplate for
the corresponding argument as explained in the following sections.

11.1.4 Input arguments

An input argument is tested at run-time to check if its type conforms to the foreign type and then it is passed to
the C function. The type of the associated C argument is given by the above table (section 11.1.2, page 191). For

11.1 Calling C from Prolog 193

instance, the effective argumentArg associated to+positive foreign declaration is submitted to the following
process:

• if Arg is a variable aninstantiation error is raised.

• if Arg is neither a variable nor an integer atype error(integer, Arg) is raised.

• if Arg is an integer< 0 adomain error(not less than zero, Arg) is raised.

• otherwise the value ofArg is passed to the C is passed to the C function as an integer (long).

When+string is specified the string passed to the function is the internal string of the corresponding atom and
should not be modified.

When+term is specified the term passed to the function is the original Prolog term. It can be read and/or unified.
It is also the case whenterm is specified without any mode symbol.

11.1.5 Output arguments

An output argument is tested at run-time to check if its type conforms to the foreign type and it is unified with
the value set by the C function. The type of the associated C argument is a pointer to the type given by the above
table (section 11.1.2, page 191). For instance, the effective argumentArg associated to-positive foreign
declaration is handled as follows:

• if Arg is neither a variable nor an integer atype error(integer, Arg) is raised.

• if Arg is an integer< 0 adomain error(not less than zero, Arg) is raised.

• otherwise a pointer to an integer (long *) is passed to the C function. If the function returnsTRUEthe
integer stored at this location is unified withArg .

When-term is specified, the function must construct a term into the its corresponding argument (which is of type
PlTerm *). At the exit of the function this term will be unified with the actual predicate argument.

11.1.6 Input/output arguments

Basically an input/output argument is treated as in input argument if it is not a variable, as an output argument
otherwise. The type of the associated C argument is a pointer to aFIOArg (GNU Prolog C type) defined as
follows:

typedef struct
{

Bool is_var;
Bool unify;
union

{
long l;
char *s;
double d;

}value;
}FIOArg;

The fieldis var is set toTRUEif the argument is a variable andFALSEotherwise. This value can be tested by
the C function to determine which treatment to perform. The fieldunify controls whether the effective argument
must be unified at the exit of the C function. Initiallyunify is set to the same value asis var (i.e. a variable
argument will be unified while a non-variable argument will not) but it can be modified by the C function. The
field value stores the value of the argument. It is declared as a Cunion since there are several kinds of value

194 11 INTERFACING PROLOG AND C

types. The fields is used for C strings,d for C doubles andl otherwise (int , long , PlTerm). if is var is
FALSE thenvalue contains the input value of the argument with the same conventions as for input arguments
(section 11.1.4, page 192). At the exit of the function, if unify isTRUE value must contain the value to unify
with the same conventions as for output arguments (section 11.1.5, page 193).

For instance, the effective argumentArg associated to?positive foreign declaration is handled as follows:

• if Arg is a variableis var andunify are set toTRUEelse toFALSEand its value is copied invalue.l .

• if Arg is neither a variable nor an integer atype error(integer, Arg) is raised.

• if Arg is an integer< 0 adomain error(not less than zero, Arg) is raised.

• otherwise a pointer to theFIOArg (FIOArg *) is passed to the C function. If the function returnsTRUE
and ifunify is TRUE the value stored invalue.l is unified withArg .

11.1.7 Writing non-deterministic C code

The interface allows the user to write non-deterministic C code. When a C function is non-deterministic, a choice-
point is created for this function. When a failure occurs, if all more recent non-deterministic code are finished, the
function is re-invoked. It is then important to inform Prolog when there is no more solution (i.e. no more choice)
for a non-deterministic code. So, when no more choices remains the function must remove the choice-point. The
interface increments a counter each time the function is re-invoked. At the first call this counter is equal to 0. This
information allows the function to detect its first call. When writing non-deterministic code, it is often useful to
record data between consecutive re-invocations of the function. The interface maintains a buffer to record such
an information. The size of this buffer is given bychoice size(N) when usingforeign/2 (section 11.1.2,
page 191). This size is the number of (consecutive)long s needed by the C function. Inside the function it is
possible to call the following functions/macros:

void Get_Choice_Counter(void)
TYPE Get_Choice_Buffer (TYPE)
void No_More_Choice (void)

The functionGet Choice Counter() returns the value of the invocation counter (0 at the first call).

The macroGet Choice Buffer(TYPE) returns a pointer to the buffer (casted toTYPE).

The functionNo More Choice() deletes the choice point associated to the function.

11.1.8 Example: input and output arguments

All examples presented here can be found in theExamplesC sub-directory of the distribution, in the files
examp.pl (Prolog part) andexamp c.c (C part).

Let us define a predicatefirst occurrence(A, C, P) which unifiesP with the position (from 0) of the
first occurrence of the characterC in the atomA. The predicate must fail ifCdoes not appear inA.

In the prolog fileexamp.pl :

:- foreign(first occurrence(+string, +char, -positive)).

In the C fileexamp c.c :

#include <string.h>
#include "gprolog.h"

Bool

11.1 Calling C from Prolog 195

first_occurrence(char *str, long c, long *pos)
{

char *p;

p = strchr(str, c);
if (p == NULL) /* C does not appear in A */

return FALSE; /* fail */

pos = p - str; / set the output argument */
return TRUE; /* succeed */

}

The compilation produces an executable calledexamp:

% gplc examp.pl examp c.c

Examples of use:

| ?- first_occurrence(prolog, p, X).

X = 0

| ?- first_occurrence(prolog, k, X).

no

| ?- first_occurrence(prolog, A, X).
{exception: error(instantiation_error,first_occurrence/3)}

| ?- first_occurrence(prolog, 1 ,X).
{exception: error(type_error(character,1),first_occurrence/3)}

11.1.9 Example: non-deterministic code

We here define a predicateoccurrence(A, C, P) which unifiesP with the position (from 0) of one oc-
currence of the characterC in the atomA. The predicate will fail ifC does not appear inA. The predicate is
re-executable on backtracking. The information that must be recorded between two invocations of the function is
the next starting position inA to search forC.

In the prolog fileexamp.pl :

:- foreign(occurrence(+string, +char, -positive), [choice size(1)]).

In the C fileexamp c.c :

#include <string.h>
#include "gprolog.h"

Bool
occurrence(char *str, long c, long *pos)
{

char **info_pos;
char *p;

info_pos = Get_Choice_Buffer(char **); /* recover the buffer */

if (Get_Choice_Counter() == 0) /* first invocation ? */
*info_pos = str;

196 11 INTERFACING PROLOG AND C

p = strchr(*info_pos, c);
if (p == NULL) /* C does not appear */

{
No_More_Choice(); /* remove choice-point */
return FALSE; /* fail */

}

pos = p - str; / set the output argument */
info_pos = p + 1; / update next starting pos */
return TRUE; /* succeed */

}

The compilation produces an executable calledexamp:

% gplc examp.pl examp c.c

Examples of use:

| ?- occurrence(prolog, o, X).

X = 2 ? (here the user presses; to compute another solution)

X = 4 ? (here the user presses; to compute another solution)

no (no more solution)

| ?- occurrence(prolog, k, X).

no

In the first example when the second (the last) occurrence is found (X=4) the choice-point remains and the failure
is detected only when another solution is requested (by pressing;). It is possible to improve this behavior by
deleting the choice-point when there is no more occurrence. To do this it is necessary to do one search ahead.
The information stored is the position of the next occurrence. Let us define such a behavior for the predicate
occurrence2/3 .

In the prolog fileexamp.pl :

:- foreign(occurrence2(+string, +char, -positive), [choice size(1)]).

In the C fileexamp c.c :

#include <string.h>
#include "gprolog.h"

Bool
occurrence2(char *str, long c, long *pos)
{

char **info_pos;
char *p;

info_pos = Get_Choice_Buffer(char **); /* recover the buffer */

if (Get_Choice_Counter() == 0) /* first invocation ? */
{

p = strchr(str, c);
if (p == NULL) /* C does not appear at all */

{
No_More_Choice(); /* remove choice-point */

11.1 Calling C from Prolog 197

return FALSE; /* fail */
}

*info_pos = p;
}

/* info_pos = an occurrence */
*pos = *info_pos - str; /* set the output argument */

p = strchr(*info_pos + 1, c);
if (p == NULL) /* no more occurrence */

No_More_Choice(); /* remove choice-point */
else

info_pos = p; / else update next solution */

return TRUE; /* succeed */
}

Examples of use:

| ?- occurrence2(prolog, l, X).

X = 3 (here the user is not prompted since there is no more alternative)

| ?- occurrence2(prolog, o, X).

X = 2 ? (here the user presses; to compute another solution)

X = 4 (here the user is not prompted since there is no more alternative)

11.1.10 Example: input/output arguments

We here define a predicatechar ascii(Char, Code) which converts in both directions the characterChar
and its character-codeCode. This predicate is then similar tochar code/2 (section 7.19.4, page 114).

In the prolog fileexamp.pl :

:- foreign(char ascii(?char, ?code), [fct name(’Char Ascii’)]).

In the C fileexamp c.c :

#include "gprolog.h"

Bool
char_ascii(FIOArg *c, FIOArg *ascii)
{

if (!c->is_var) /* Char is not a variable */
{

ascii->unify = TRUE; /* enforce unif. of Code */
ascii->value.l = c->value.l; /* set Code */
return TRUE; /* succeed */

}

if (ascii->is_var) /* Code is also a variable */
Pl_Err_Instantiation(); /* emit instantiation_error */

c->value.l = ascii->value.l; /* set Char */
return TRUE; /* succeed */

}

198 11 INTERFACING PROLOG AND C

If Char is instantiated it is necessary to enforce the unification ofCode since it could be instantiated. Recall that
by default if an input/output argument is instantiated it will not be unified at the exit of the function (section 11.1.6,
page 193). If bothChar andCode are variables the function raises aninstantiation error . The way to
raise Prolog errors is described later (section 11.3, page 204).

The compilation produces an executable calledexamp:

% gplc examp.pl examp c.c

Examples of use:

| ?- char_ascii(a, X).

X = 97

| ?- char_ascii(X, 65).

X = ’A’

| ?- char_ascii(a, 12).

no

| ?- char_ascii(X, X).
{exception: error(instantiation_error,char_ascii/2)}

| ?- char_ascii(1, 12).
{exception: error(type_error(character,1),char_ascii/2)}

11.2 Manipulating Prolog terms

11.2.1 Introduction

In the following we presents a set of functions to manipulate Prolog terms. For simple foreign terms the functions
manipulate simple C types (section 11.1.2, page 191).

Functions managing lists handle an array of 2 elements (of typePlTerm) containing the terms corresponding to
the head and the tail of the list. For the empty listNULL is passed as the array. These functions require to flatten a
list in each sub-list. To simplify the management of proper lists (i.e. lists terminated by[]) a set of functions is
provided that handle the number of elements of the list (an integer) and an array whose elements (of typePlTerm)
are the elements of the list. The caller of these functions must provide the array.

Functions managing compound terms handle a functor (the principal functor of the term), an arityN ≥ 0 and an
array ofN elements (of typePlTerm) containing the sub-terms of the compound term. Since a list is a special
case of compound term (functor =’.’ and arity=2) it is possible to use any function managing compound terms
to deal with a list but the error detection is not the same. Indeed many functions check if the Prolog argument
is correct. The name of a read or unify function checking the Prolog arguments is of the formNameCheck() .
For each of these functions there is a also check-free version calledName() . We then only present the name of
checking functions.

11.2.2 Managing Prolog atoms

Each atom has a unique internal key which corresponds to its index in the GNU Prolog atom table. It is possible
to obtain the information about an atom and to create new atoms using:

11.2 Manipulating Prolog terms 199

char *Atom_Name (int atom)
int Atom_Length (int atom)
Bool Atom_Needs_Quote (int atom)
Bool Atom_Needs_Scan (int atom)
Bool Is_Valid_Atom (int atom)
int Create_Atom (char *str)
int Create_Allocate_Atom(char *str)
int Find_Atom (char *str)
int ATOM_CHAR (char c)
int atom_nil
int atom_false
int atom_true
int atom_end_of_file

The macroAtom Name(atom) returns the internal string ofatom (this string should not be modified). The
functionAtom Lengh(atom) returns the length (of the name) ofatom .

The functionAtom Needs Scan(atom) indicates if the canonical form ofatom needs to be quoted as done
by writeq/2 (section 7.14.6, page 95). In that caseAtom Needs Scan(atom) indicates if this simply comes
down to write quotes around the name ofatom or if it necessary to scan each character of the name because there
are some non-printable characters (or included quote characters). The functionIs Valid Atom(atom) is true
only if atom is the internal key of an existing atom.

The functionCreate Atom(str) adds a new atom whose name is the content ofstr to the system and returns
its internal key. If the atom already exists its key is simply returned. The stringstr passed to the function should
not be modified later. The functionCreate Allocate Atom(str) is provided when this condition cannot be
ensured. It simply makes a dynamic copy ofstr .

The functionFind Atom(str) returns the internal key of the atom whose name isstr or -1 if does not exist.

All atoms corresponding to a single character already exist and their key can be obtained via the macroATOMCHAR.
For instanceATOMCHAR(’.’) is the atom associated to’.’ (this atom is the functor of lists). The other vari-
ables correspond to the internal key of frequently used atoms:[] , false , true andend of file .

11.2.3 Reading Prolog terms

The name of all functions presented here are of the formRd NameCheck() . They all check the validity of
the Prolog term to read emitting appropriate errors if necessary. Each function has a check-free version called
Rd Name() .

Simple foreign types: for each simple foreign type (section 11.1.2, page 191) there is a read function (used by the
interface when an input argument is provided):

long Rd_Integer_Check (PlTerm term)
long Rd_Positive_Check (PlTerm term)
double Rd_Float_Check (PlTerm term)
double Rd_Number_Check (PlTerm term)
int Rd_Atom_Check (PlTerm term)
int Rd_Boolean_Check (PlTerm term)
int Rd_Char_Check (PlTerm term)
int Rd_In_Char_Check (PlTerm term)
int Rd_Code_Check (PlTerm term)
int Rd_In_Code_Check (PlTerm term)
int Rd_Byte_Check (PlTerm term)
int Rd_In_Byte_Check (PlTerm term)
char *Rd_String_Check (PlTerm term)

200 11 INTERFACING PROLOG AND C

char *Rd_Chars_Check (PlTerm term)
char *Rd_Codes_Check (PlTerm term)
int Rd_Chars_Str_Check(PlTerm term, char *str)
int Rd_Codes_Str_Check(PlTerm term, char *str)

All functions returning a C string (char *) use a same buffer. The functionRd Chars Str Check() is similar
to Rd Chars Check() but accepts as argument a string to store the result and returns the length of that string
(which is also the length of the Prolog list). Similarly forRd Codes Str Check() .

Complex terms: the following functions return the sub-arguments (terms) of complex terms as an array of
PlTerm exceptRd Proper List Check() which returns the size of the list read (and initializes the array
element). Refer to the introduction of this section for more information about the arguments of complex func-
tions (section 11.2.1, page 198).

int Rd_Proper_List_Check(PlTerm term, PlTerm *arg)
PlTerm *Rd_List_Check (PlTerm term)
PlTerm *Rd_Compound_Check (PlTerm term, int *functor, int *arity)
PlTerm *Rd_Callable_Check (PlTerm term, int *functor, int *arity)

11.2.4 Unifying Prolog terms

The name of all functions presented here are of the formUn NameCheck() . They all check the validity of
the Prolog term to unify emitting appropriate errors if necessary. Each function has a check-free version called
Un Name() .

Simple foreign types: for each simple foreign type (section 11.1.2, page 191) there is an unify function (used by
the interface when an output argument is provided):

Bool Un_Integer_Check (long n, PlTerm term)
Bool Un_Positive_Check(long n, PlTerm term)
Bool Un_Float_Check (double n, PlTerm term)
Bool Un_Number_Check (double n, PlTerm term)
Bool Un_Atom_Check (int atom, PlTerm term)
Bool Un_Boolean_Check (int b, PlTerm term)
Bool Un_Char_Check (int c, PlTerm term)
Bool Un_In_Char_Check (int c, PlTerm term)
Bool Un_Code_Check (int c, PlTerm term)
Bool Un_In_Code_Check (int c, PlTerm term)
Bool Un_Byte_Check (int b, PlTerm term)
Bool Un_In_Byte_Check (int b, PlTerm term)
Bool Un_String_Check (char *str, PlTerm term)
Bool Un_Chars_Check (char *str, PlTerm term)
Bool Un_Codes_Check (char *str, PlTerm term)

The functionUn Number Check(n, term) unifies term with an integer ifn is an integer, with a floating
point number otherwise. The functionUn String Check(str, term) creates the atom corresponding to
str and then unifies term with it (same asUn Atom Check(Create Allocate Atom(str), term)).

Complex terms: the following functions accept the sub-arguments (terms) of complex terms as an array of
PlTerm . Refer to the introduction of this section for more information about the arguments of complex func-
tions (section 11.2.1, page 198).

Bool Un_Proper_List_Check(int size, PlTerm *arg, PlTerm term)
Bool Un_List_Check (PlTerm *arg, PlTerm term)
Bool Un_Compound_Check (int functor, int arity, PlTerm *arg,

PlTerm term)
Bool Un_Callable_Check (int functor, int arity, PlTerm *arg,

PlTerm term)

11.2 Manipulating Prolog terms 201

All these functions check the type of the term to unify and return the result of the unification. Generally if an
unification fails the C function returnsFALSEto enforce a failure. However if there are several arguments to unify
and if an unification fails then the C function returnsFALSEand the type of other arguments has not been checked.
Normally all error cases are tested before doing any work to be sure that the predicate fails/succeeds only if no
error condition is satisfied. So a good method is to check if the validity of all arguments to unify and later to do the
unification (using check-free functions). Obviously if there is only one to unify it is more efficient to use a unify
function checking the argument. For the other cases the interface provides a set of functions to check the type of a
term.

Simple foreign types: for each simple foreign type (section 11.1.2, page 191) there is check-for-unification func-
tion (used by the interface when an output argument is provided):

void Check_For_Un_Integer (PlTerm term)
void Check_For_Un_Positive(PlTerm term)
void Check_For_Un_Float (PlTerm term)
void Check_For_Un_Number (PlTerm term)
void Check_For_Un_Atom (PlTerm term)
void Check_For_Un_Boolean (PlTerm term)
void Check_For_Un_Char (PlTerm term)
void Check_For_Un_In_Char (PlTerm term)
void Check_For_Un_Code (PlTerm term)
void Check_For_Un_In_Code (PlTerm term)
void Check_For_Un_Byte (PlTerm term)
void Check_For_Un_In_Byte (PlTerm term)
void Check_For_Un_String (PlTerm term)
void Check_For_Un_Chars (PlTerm term)
void Check_For_Un_Codes (PlTerm term)

Complex terms: the following functions check the validity of complex terms:

void Check_For_Un_List (PlTerm term)
void Check_For_Un_Compound(PlTerm term)
void Check_For_Un_Callable(PlTerm term)
void Check_For_Un_Variable(PlTerm term)

The functionCheck For Un List(term) checks ifterm can be unified with a list. This test is done for
the entire list (not only for the functor/arity ofterm but also recursively on the tail of the list). The function
Check For Un Variable(term) ensures thatterm is not currently instantiated. These functions can be
defined using functions to test the type of a Prolog term (section 11.2.6, page 202) and functions to raise Prolog
errors (section 11.3, page 204). For instanceCheck For Un List(term) is defined as follows:

void Check_For_Un_List(PlTerm term)
{

if (!Blt_List_Or_Partial_List(term))
Pl_Err_Type(type_list, term);

}

11.2.5 Creating Prolog terms

These functions are provided to creates Prolog terms. Each function returns aPlTerm containing the created
term.

Simple foreign types: for each simple foreign type (section 11.1.2, page 191) there is a creation function:

PlTerm Mk_Integer (long n)
PlTerm Mk_Positive(long n)
PlTerm Mk_Float (double n)

202 11 INTERFACING PROLOG AND C

PlTerm Mk_Number (double n)
PlTerm Mk_Atom (int atom)
PlTerm Mk_Boolean (int b)
PlTerm Mk_Char (int c)
PlTerm Mk_In_Char (int c)
PlTerm Mk_Code (int c)
PlTerm Mk_In_Code (int c)
PlTerm Mk_Byte (int b)
PlTerm Mk_In_Byte (int b)
PlTerm Mk_String (char *str)
PlTerm Mk_Chars (char *str)
PlTerm Mk_Codes (char *str)

The functionMk Number(n, term) initializes term with an integer ifn is an integer, with a floating point
number otherwise. The functionMk String(str) first creates an atom corresponding tostr and then returns
that Prolog atom (i.e. equivalent toMk Atom(Create Allocate Atom(str))).

Complex terms: the following functions accept the sub-arguments (terms) of complex terms as an array of
PlTerm . Refer to the introduction of this section for more information about the arguments of complex func-
tions (section 11.2.1, page 198).

PlTerm Mk_Proper_List(int size, PlTerm *arg)
PlTerm Mk_List (PlTerm *arg)
PlTerm Mk_Compound (int functor, int arity, PlTerm *arg)
PlTerm Mk_Callable (int functor, int arity, PlTerm *arg)

11.2.6 Testing the type of Prolog terms

The following functions test the type of a Prolog term. Each function corresponds to a type testing built-in predicate
(section 7.1.1, page 49).

Bool Blt_Var (PlTerm term)
Bool Blt_Non_Var (PlTerm term)
Bool Blt_Atom (PlTerm term)
Bool Blt_Integer (PlTerm term)
Bool Blt_Float (PlTerm term)
Bool Blt_Number (PlTerm term)
Bool Blt_Atomic (PlTerm term)
Bool Blt_Compound (PlTerm term)
Bool Blt_Callable (PlTerm term)
Bool Blt_List (PlTerm term)
Bool Blt_Partial_List (PlTerm term)
Bool Blt_List_Or_Partial_List(PlTerm term)
Bool Blt_Fd_Var (PlTerm term)
Bool Blt_Non_Fd_Var (PlTerm term)
Bool Blt_Generic_Var (PlTerm term)
Bool Blt_Non_Generic_Var (PlTerm term)
int Type_Of_Term (PlTerm term)
int List_Length (PlTerm list)

The functionType Of Term(term) returns the type ofterm , the following constants can be used to test this
type (e.g. in aswitch instruction):

• PLV: Prolog variable.

• FDV: finite domain variable.

• INT : integer.

11.2 Manipulating Prolog terms 203

• FLT: floating point number.

• ATM: atom.

• LST: list.

• STC: structure

The tagLST means a term whose principal functor is’.’ and whose arity is 2 (recall that the empty list is the
atom[]). The tagSTCmeans any other compound term.

The functionList Length(list) returns the number of elements of thelist (0 for the empty list). If list is
not a list this function returns-1 .

11.2.7 Comparing Prolog terms

The following functions compares Prolog terms. Each function corresponds to a comparison built-in predicate
(section 7.3.2, page 51).

Bool Blt_Term_Eq (PlTerm term1, PlTerm term2)
Bool Blt_Term_Neq(PlTerm term1, PlTerm term2)
Bool Blt_Term_Lt (PlTerm term1, PlTerm term2)
Bool Blt_Term_Lte(PlTerm term1, PlTerm term2)
Bool Blt_Term_Gt (PlTerm term1, PlTerm term2)
Bool Blt_Term_Gte(PlTerm term1, PlTerm term2)

All these functions are based on a general comparison function returning a negative integer ifterm1 is less than
term2 , 0 if they are equal and a positive integer otherwise:

int Term_Compare(PlTerm term1, PlTerm term2)

11.2.8 Copying Prolog terms

The following functions make a copy of a Prolog term:

void Copy_Term (PlTerm *dst_adr, PlTerm *src_adr)
void Copy_Contiguous_Term(PlTerm *dst_adr, PlTerm *src_adr)
int Term_Size (PlTerm term)

The functionCopy Term(dst adr, src adr) makes a copy of the term located atsrc adr and stores it
from the address given bydst adr . The result is a contiguous term. If it can be ensured that the source term is
a contiguous term (i.e. result of a previous copy) the functionCopy Contiguous Term() can be used instead
(it is faster). In any case, sufficient space should be available for the copy (i.e. fromdst adr). The function
Term Size(term) returns the number ofPlTerm needed byterm .

11.2.9 Comparing and evaluating arithmetic expressions

The following functions compare arithmetic expressions. Each function corresponds to a comparison built-in
predicate (section 7.6.3, page 60).

Bool Blt_Eq (PlTerm expr1, PlTerm expr2)
Bool Blt_Neq(PlTerm expr1, PlTerm expr2)
Bool Blt_Lt (PlTerm expr1, PlTerm expr2)
Bool Blt_Lte(PlTerm expr1, PlTerm expr2)
Bool Blt_Gt (PlTerm expr1, PlTerm expr2)
Bool Blt_Gte(PlTerm expr1, PlTerm expr2)

204 11 INTERFACING PROLOG AND C

The following function evaluates the expressionexpr and stores its result as a Prolog number (integer or floating
point number) inresult :

void Math_Load_Value(PlTerm expr, PlTerm *result)

This function can be followed by a read function (section 11.2.3, page 199) to obtain the result.

11.3 Raising Prolog errors

The following functions allows a C function to raise a Prolog error. Refer to the section concerning Prolog errors
for more information about the effect of raising an error (section 5.3, page 37).

11.3.1 Managing the error context

When one of the following error function is invoked it refers to the implicit error context (section 5.3.1, page 37).
This context indicates the name and the arity of the concerned predicate. When using aforeign/2 declaration
this context is set by default to the name and arity of the associated Prolog predicate. This can be controlled using
thebip name option (section 11.1.2, page 191). In any case, the following functions can also be used to modify
this context:

void Set_C_Bip_Name (char *functor, int arity)
void Unset_C_Bip_Name(void)

The functionSet C Bip Name(functor, arity) initializes the context of the error withfunctor and
arity (if arity <0 only functor is significant). The functionUnset C Bip Name() removes such an ini-
tialization (the context is then reset to the lastFunctor /Arity set by a call toset bip name/2 (section 7.22.3,
page 134). This is useful when writing a C routine to define a context for errors occurring in this routine and, before
exiting to restore the previous context.

11.3.2 Instantiation error

The following function raises an instantiation error (section 5.3.2, page 37):

void Pl Err Instantiation(void)

11.3.3 Type error

The following function raises a type error (section 5.3.3, page 38):

void Pl Err Type(int atom type, PlTerm culprit)

atom type is (the internal key of) the atom associated to the expected type. For each type nameT there is a
corresponding predefined atom stored in a global variable whose name is of the formtype T. culprit is the
argument which caused the error.

Example: x is an atom while an integer was expected:Pl Err Type(type integer, x) .

11.3.4 Domain error

The following function raises a domain error (section 5.3.4, page 38):

11.3 Raising Prolog errors 205

void Pl Err Domain(int atom domain, PlTerm culprit)

atom domain is (the internal key of) the atom associated to the expected domain. For each domain nameD there
is a corresponding predefined atom stored in a global variable whose name is of the formdomain D. culprit
is the argument which caused the error.

Example: x is < 0 but should be≥ 0: Pl Err Domain(domain not less than zero, x) .

11.3.5 Existence error

The following function raises an existence error (section 5.3.5, page 39):

void Pl Err Existence(int atom object, PlTerm culprit)

atom object is (the internal key of) the atom associated to the type of the object. For each object nameO
there is a corresponding predefined atom stored in a global variable whose name is of the formexistence O.
culprit is the argument which caused the error.

Example: x does not refer to an existing source:Pl Err Existence(existence source sink, x) .

11.3.6 Permission error

The following function raises a permission error (section 5.3.6, page 39):

void Pl Err Permission(int atom operation, int atom permission, PlTerm culprit)

atom operation is (the internal key of) the atom associated to the operation which caused the error. For
each operation nameO there is a corresponding predefined atom stored in a global variable whose name is of
the formpermission operation O. atom permission is (the internal key of) the atom associated to the
tried permission. For each permission nameP there is a corresponding predefined atom stored in a global variable
whose name is of the formpermission type P. culprit is the argument which caused the error.

Example: reading from an output streamx : Pl Err Permission(permission operation input,
permission type stream, x) .

11.3.7 Representation error

The following function raises a representation error (section 5.3.7, page 39):

void Pl Err Representation(int atom limit)

atom limit is (the internal key of) the atom associated to the reached limit. For each limit nameL there is a
corresponding predefined atom stored in a global variable whose name is of the formrepresentation L.

Example: an arity too big occurs:Pl Err Representation(representation max arity) .

11.3.8 Evaluation error

The following function raises an evaluation error (section 5.3.8, page 40):

void Pl Err Evaluation(int atom error)

atom error is (the internal key of) the atom associated to the error. For each evaluation error nameE there is a
corresponding predefined atom stored in a global variable whose name is of the formevaluation E.

Example: a division by zero occurs:Pl Err Evaluation(evluation zero divisor) .

206 11 INTERFACING PROLOG AND C

11.3.9 Resource error

The following function raises a resource error (section 5.3.9, page 40):

void Pl Err Resource(int atom resource)

atom resource is (the internal key of) the atom associated to the resource. For each resource error nameR
there is a corresponding predefined atom stored in a global variable whose name is of the formresource R.

Example: too many open streams:Pl Err Resource(resource too many open streams) .

11.3.10 Syntax error

The following function raises a syntax error (section 5.3.10, page 40):

void Pl Err Syntax(int atom error)

atom error is (the internal key of) the atom associated to the error. There is no predefined syntax error atoms.

Example: a / is expected:Pl Err Syntax(Create Atom("/ expected")) .

The following function emits a syntax error according to the value of thesyntax error Prolog flag (sec-
tion 7.22.1, page 132). This function can then return (if the value of the flag is eitherwarning or fail). In that
case the calling function should fail (e.g. returningFALSE). This function accepts a file name (the empty string C
"" can be passed), a line and column number and an error message string. Using this function makes it possible
to further call the built-in predicatesyntax error info/4 (section 7.14.4, page 94):

void Emit Syntax Error(char *file name, int line, int column, char *message)

Example: a / is expected:Emit Syntax Error("data", 10, 30, "/ expected") .

11.3.11 System error

The following function raises a system error (4.3.11, page *):

void Pl Err System(int atom error)

atom error is (the internal key of) the atom associated to the error. There is no predefined system error atoms.

Example: an invalid pathname is given:Pl Err System(Create Atom("invalid path name")) .

The following function emits a system error associated to an operating system error according to the value of the
os error Prolog flag (section 7.22.1, page 132). This function can then return (if the value of the flag is either
warning or fail). In that case the calling function should fail (e.g. returningFALSE). This function uses the
value of theerrno C library variable:

void Os Error(void)

Example: a call to the C Unix functionchdir(3) returns-1 : Os Error() .

11.4 Calling Prolog from C

11.4.1 Introduction

The following functions allows a C function to call a Prolog predicate:

11.4 Calling Prolog from C 207

void Pl_Query_Begin (Bool recoverable)
int Pl_Query_Call (int functor, int arity, PlTerm *arg)
int Pl_Query_Next_Solution(void)
void Pl_Query_End (int op)
PlTerm Pl_Get_Exception (void)
void Pl_Exec_Continuation (int functor, int arity, PlTerm *arg)

The invocation of a Prolog predicate should be done as follows:

• open a query usingPl Query Begin()

• compute the first solution usingPl Query Call()

• eventually compute next solutions usingPl Query Next Solution()

• close the query usingPl Query End()

The functionPl Query Begin(recoverable) is used to initialize a query. The argumentrecoverable
shall be set toTRUEif the user wants to recover, at the end of the query, the memory space consumed by the
query (in that case an additional choice-point is created). All terms created in the heap, e.g. usingMk ... family
functions (section 11.2.5, page 201), after the invocation ofPl Query Begin() can be recovered when calling
Pl Query End(TRUE) (see below).

The functionPl Query Call(functor, arity, arg) calls a predicate passing arguments. It is then used
to compute the first solution. The argumentsfunctor , arity andarg are similar to those of the functions
handling complex terms (section 11.2.1, page 198). This function returns:

• PL FAILURE (a constant equal toFALSE, i.e. 0) if the query fails.

• PL SUCCESS(a constant equal toTRUE, i.e. 1) in case of success. In that case the argument arrayarg can
be used to obtain the unification performed by the query.

• PL EXCEPTION(a constant equal to 2). In that case functionPl Get Exception() can be used to
obtained the exceptional term raised bythrow/1 (section 6.2.4, page 47).

The functionPl Query Next Solution() is used to compute a new solution. It must be only used if the result
of the previous solution wasPL SUCCESS. This functions returns the same kind of values asPl Query Call()
(see above).

The functionPl Query End(op) is used to finish a query. This function mainly manages the remaining alter-
natives of the query. However, even if the query has no alternatives this function must be used to correctly finish
the query. The value ofop is:

• PL RECOVER: to recover the memory space consumed by the query. After that the state of Prolog stacks
is exactly the same as before opening the query. To use this option the query must have been initialized
specifyingTRUEfor recoverable (see above).

• PL CUT: to cut remaining alternatives. The effect of this option is similar to a cut after the query.

• PL KEEPFORPROLOG: to keep the alternatives for Prolog. This is useful when the query was invoked in
a foreign C function. In that case, when the predicate corresponding to the C foreign function is invoked a
query is executed and the remaining alternatives are then available as alternatives of that predicate.

Note that several queries can be nested since a stack of queries is maintained. For instance, it is possible to call
a query and before terminating it to call another query. In that case the first execution ofPl Query End() will
finish the second query (i.e. the inner) and the next execution ofPl Query End() will finish the first query.

Finally, the functionPl Exec Continuation(functor, arity, arg) replaces the current calculus by
the execution of the specified predicate. The argumentsfunctor , arity andarg are similar to those of the
functions handling complex terms (section 11.2.1, page 198).

208 11 INTERFACING PROLOG AND C

11.4.2 Example:my call/1 - a call/1 clone

We here define a predicatemy call(Goal) which acts likecall(Goal) except that we do not handle excep-
tions (if an exception occurs the goal simply fails):

In the prolog fileexamp.pl :

:- foreign(my call(term)).

In the C fileexamp c.c :

#include <string.h>
#include "gprolog.h"

Bool
my_call(PlTerm goal)

{
PlTerm *arg;
int functor, arity;
int result;

arg = Rd_Callable_Check(goal, &functor, &arity);
Pl_Query_Begin(FALSE);
result = Pl_Query_Call(functor, arity, arg);
Pl_Query_End(PL_KEEP_FOR_PROLOG);
return (result == PL_SUCCESS);

}

The compilation produces an executable calledexamp:

% gplc examp.pl examp c.c

Examples of use:

| ?- my call(write(hello)).
hello

| ?- my call(for(X,1,3)).

X = 1 ? (here the user presses; to compute another solution)

X = 2 ? (here the user presses; to compute another solution)

X = 3 (here the user is not prompted since there is no more alternative)

| ?- my call(1).
{exception: error(type error(callable,1),my call/1)}

| ?- my call(call(1)).

no

Whenmy call(1) is called an error is raised due to the use ofRd Callable Check() . However the error
raised bymy call(call(1)) is ignored andFALSE(i.e. a failure) is returned by the foreign function.

To really simulate the behavior ofcall/1 when an exception is recovered it should be re-raised to be captured
by an earlier handler. The idea is then to execute athrow/1 as the continuation. This is what it is done by the
following code:

11.4 Calling Prolog from C 209

#include <string.h>
#include "gprolog.h"

Bool
my_call(PlTerm goal)
{

PlTerm *args;
int functor, arity;
int result;

args = Rd_Callable_Check(goal, &functor, &arity);
Pl_Query_Begin(FALSE);
result = Pl_Query_Call(functor, arity, args);
Pl_Query_End(PL_KEEP_FOR_PROLOG);
if (result == PL_EXCEPTION)

{
PlTerm except = Pl_Get_Exception();
Pl_Exec_Continuation(Find_Atom("throw"), 1, &except);

}

return result;
}

The following code propagates the error raised bycall/1 .

| ?- my call(call(1)).
{exception: error(type error(callable,1),my call/1)}

Finally note that a simpler way to definemy call/1 is to usePl Exec Continuation() as follows:

#include <string.h>
#include "gprolog.h"

Bool
my_call(PlTerm goal)
{

PlTerm *args;
int functor, arity;

args = Rd_Callable_Check(goal, &functor, &arity);
Pl_Exec_Continuation(functor, arity, args);
return TRUE;

}

11.4.3 Example: recovering the list of all operators

We here define a predicateall op(List) which unifiesList with the list of all currently defined operators as
would be done by:findall(X,current op(, ,X),List) .

In the prolog fileexamp.pl :

:- foreign(all op(term)).

In the C fileexamp c.c :

#include <string.h>
#include "gprolog.h"

210 11 INTERFACING PROLOG AND C

Bool
all_op(PlTerm list)
{

PlTerm op[1024];
PlTerm args[3];
int n = 0;
int result;

Pl_Query_Begin(TRUE);
args[0] = Mk_Variable();
args[1] = Mk_Variable();
args[2] = Mk_Variable();
result = Pl_Query_Call(Find_Atom("current_op"), 3, args);
while (result)

{
op[n++] = Mk_Atom(Rd_Atom(args[2])); /* arg #2 is the name of the op */
result = Pl_Query_Next_Solution();

}
Pl_Query_End(PL_RECOVER);

return Un_Proper_List_Check(n, op, list);
}

Note that we know here that there is no source for exception. In that case the result ofPl Query Call and
Pl Query Next Solution can be considered as a boolean.

The compilation produces an executable calledexamp:

% gplc examp.pl examp c.c

Example of use:

| ?- all_op(L).

L = [:-,:-,\=,=:=,#>=,#<#,@>=,-->,mod,#>=#,**,*,+,+,’,’,...]

| ?- findall(X,current_op(_,_,X),L).

L = [:-,:-,\=,=:=,#>=,#<#,@>=,-->,mod,#>=#,**,*,+,+,’,’,...]

11.5 Defining a new Cmain() function

GNU Prolog allows the user to define his ownmain() function. This can be useful to perform several tasks before
starting the Prolog engine. To do this simply define a classicalmain(argc, argv) function. The following
functions can then be used:

int Start_Prolog (int argc, char *argv[])
void Stop_Prolog (void)
void Reset_Prolog (void)
Bool Try_Execute_Top_Level(void)

The functionStart Prolog(argc, argv) initializes the Prolog engine (argc andargv are the command-
line variables). This function collects all linked objects (issued from the compilation of Prolog files) and initializes
them. The initialization of a Prolog object file consists in adding to appropriate tables new atoms, new predicates
and executing its system directives. A system directive is generated by the Prolog to WAM compiler to reflect
a (user) directive executed at compile-time such asop/3 (section 6.1.10, page 44). Indeed, when the compiler
encounters such a directive it immediately executes it and also generates a system directive to execute it at the

11.5 Defining a new Cmain() function 211

start of the executable. When all system directives have been executed the Prolog engine executes all initialization
directives defined withinitialization/1 (section 6.1.13, page 45). The function returns the number of user
directives (i.e.initialization/1) executed. This function must be called only once.

The functionStop Prolog() stops the Prolog engine. This function must be called only once after all Prolog
treatment have been done.

The functionReset Prolog() reinitializes the Prolog engine (i.e. reset all Prolog stacks).

The functionTry Execute Top Level() executes the top-level if linked (section 3.4.3, page 22) and returns
TRUE. If the top-level is not present the functions returnsFALSE.

Here is the definition of the default GNU Prologmain() function:

int
Main_Wrapper(int argc, char *argv[])
{

int nb_user_directive;
Bool top_level;

nb_user_directive = Start_Prolog(argc, argv);

top_level = Try_Execute_Top_Level();

Stop_Prolog();

if (top_level || nb_user_directive)
return 0;

fprintf(stderr,
"Warning: no initial goal executed\n"
" use a directive :- initialization(Goal)\n"
" or remove the link option --no-top-level"
" (or --min-bips or --min-size)\n");

return 1;
}

int
main(int argc, char *argv[])
{

return Main_Wrapper(argc, argv);
}

Note that under some circumstances it is necessary to encapsulate the code ofmain() inside an intermediate
function called bymain() . Indeed, some C compilers (e.g. gcc) treatsmain() particularly, producing an
uncompatible code w.r.t GNU Prolog. So it is a good idea to always use a wrapper function as shown above.

11.5.1 Example: asking for ancestors

In this example we use the following Prolog code (in a file callednew main.pl):

parent(bob, mary).
parent(jane, mary).
parent(mary, peter).
parent(paul, peter).

212 11 INTERFACING PROLOG AND C

parent(peter, john).

anc(X, Y):-
parent(X, Y).

anc(X, Z) :-
parent(X, Y),
anc(Y, Z).

The following file (callednew main c.c) defines amain() function readinf the name of a person and displaying
all successors of that person. This is equivalent to the Prolog query:anc(Result, Name) .

static int
Main_Wrapper(int argc, char *argv[])
{

int func;
WamWord arg[10];
char str[100];
char *sol[100];
int i, nb_sol = 0;
Bool res;

Start_Prolog(argc, argv);

func = Find_Atom("anc");
for (;;)

{
printf("\nEnter a name (or ’end’ to finish): ");
scanf("%s", str);

if (strcmp(str, "end") == 0)
break;

Pl_Query_Begin(TRUE);

arg[0] = Mk_Variable();
arg[1] = Mk_String(str);
nb_sol = 0;
res = Pl_Query_Call(func, 2, arg);
while (res)

{
sol[nb_sol++] = Rd_String(arg[0]);
res = Pl_Query_Next_Solution();

}
Pl_Query_End(PL_RECOVER);

for (i = 0; i < nb_sol; i++)
printf(" solution: %s\n", sol[i]);

printf("%d solution(s)\n", nb_sol);
}

Stop_Prolog();
return 0;

}

int
main(int argc, char *argv[])
{

11.5 Defining a new Cmain() function 213

return Main_Wrapper(argc, argv);
}

The compilation produces an executable callednew main :

% gplc new main.pl new main c.c

Examples of use:

Enter a name (or ’end’ to finish): john
solution: peter
solution: bob
solution: jane
solution: mary
solution: paul

5 solution(s)

Enter a name (or ’end’ to finish): mary
solution: bob
solution: jane

2 solution(s)

Enter a name (or ’end’ to finish): end

214 11 INTERFACING PROLOG AND C

REFERENCES 215

References

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.
Logic Programming Series, MIT Press, 1991.
http://www.isg.sfu.ca/˜hak/documents/wam.html

[2] W.F. Clocksin and C.S. Mellish. Programming in Prolog, Springer-Verlag, 1981.

[3] P. Codognet and D. Diaz.wamcc: Compiling Prolog to C.
In 12th International Conference on Logic Programming, Tokyo, Japan, MIT Press, 1995.
ftp://ftp.inria.fr/INRIA/Projects/loco/publications/wamcc/wamcc.ps

[4] P. Codognet and D. Diaz. Compiling Constraint inclp(FD) .
Journal of Logic Programming, Vol. 27, No. 3, June 1996.
ftp://ftp.inria.fr/INRIA/Projects/loco/publications/clp fd/long clp fd.ps

[5] Information technology - Programming languages - Prolog - Part 1: General Core.
ISO/IEC 13211-1, 1995.http://www.logic-programming.org/prolog std.html

[6] J. Jaffar and J-L. Lassez. Constraint Logic Programming.
In Principles Of Programming Languages, Munich, Germany, January 1987.

[7] P. Van Hentenryck.Constraint Satisfaction in Logic Programming.
Logic Programming Series, The MIT Press, 1989.

[8] D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, Oct. 1983.

[9] C. Holzbaur. Metastructures vs. Attributed Variables in the Context of Extensible Unifica-
tion Programming Language Implementation and Logic Programming, Springer, pp.260-268,1992.
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+92-23

[10] J. Jaffar, S. Michaylov.Methodology and Implementation of CLP Sytem, Lassez J.L. (ed.), Logic Program-
ming - Proceedings of the 4th International Conference - Volume 1, MIT Press , Cambridge, 1987.

[11] C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Reserch Institute for Artificial Intelligence,
Vienna, 1995.http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09

216 REFERENCES

INDEX 217

Index
!/0 , 46, 47
’.’/2 , 135
(’,’)/2 , 46
(-->)/2 , 108
(->)/2 , 46
(;)/2 , 46
(=)/2 , 50
(=..)/2 , 53
(=:=)/2 , 60
(==)/2 , 51, 121
(=<)/2 , 60
(=\=)/2 , 60
(@=<)/2 , 51
(@<)/2 , 51
(@>)/2 , 51
(@>=)/2 , 51
(#/\)/2 (FD), 174
(#=)/2 (FD), 171
(#==>)/2 (FD), 174
(#=#)/2 (FD), 172
(#=<)/2 (FD), 171
(#=<#)/2 (FD), 172
(##)/2 (FD), 174
(#<)/2 (FD), 171
(#<=>)/2 (FD), 174
(#<#)/2 (FD), 172
(#>)/2 (FD), 171
(#>=)/2 (FD), 171
(#>=#)/2 (FD), 172
(#>#)/2 (FD), 172
(#\)/1 (FD), 174
(#\/)/2 (FD), 174
(#\/\)/2 (FD), 174
(#\=)/2 (FD), 171
(#\==>)/2 (FD), 174
(#\=#)/2 (FD), 172
(#\<=>)/2 (FD), 174
(#\\/)/2 (FD), 174
(is)/2 , 59
(<)/2 , 60
(>)/2 , 60
(>=)/2 , 60
(\+)/1 , 111
(\=)/2 , 50
(\==)/2 , 51
-- , 13
--assembly , 23
--aux-father , 27
--aux-father2 , 27
--c-compiler , 23
--cmd-line , 27
--comment , 23,23
--compile-msg , 23
--cstr-size , 24

--encode , 27
--entry-goal , 13
--fast-math , 23, 59
--fd-to-c , 23
--fixed-sizes , 19,24
--foreign-only , 23
--global-size , 24
--help , 13, 23, 27
--init-goal , 13
--keep-void-inst , 23
--local-size , 19,24
--min-bips , 24
--min-fd-bips , 24
--min-pl-bips , 24
--min-reg-opt , 23
--min-size , 24
--mini-assembly , 23
--no-call-c , 23
--no-debugger , 24,24
--no-decode-hexa , 23
--no-del-temp , 23
--no-fd-lib , 24
--no-inline , 23
--no-opt-last-subterm , 23
--no-redef-error , 23
--no-reg-opt , 23
--no-reorder , 23
--no-singl-warn , 23
--no-susp-warn , 23
--no-top-level , 24
--object , 23
--output , 23
--pl-state , 23, 135
--printf , 27
--query-goal , 13
--relax , 27
--statistics , 23
--strip , 24
--temp-dir , 23
--trail-size , 24
--verbose , 23
--version , 13, 23, 27
--wam-for-byte-code , 23
--wam-for-native , 23
-A , 23
-C , 23
-F , 23
-H , 27
-L , 24
-M, 23
-P , 27
-S , 23
-W, 23
-c , 23

218 INDEX

-h , 23
-o , 23
-s , 24
-v , 23
-w , 23
{}/1 , 187

abolish/1 , 63
abort/0 , 17, 33,111
absolute file name (property),146
absolute file name/2 , 44, 70, 135, 136,140,

141, 143–148
add linedit completion/1 , 161
add stream alias/2 , 67,78
add stream mirror/2 , 68,79
alias (option),70
alias (property),73
append (mode),70
append/1 , 106
append/3 , 120
architecture/1 , 150
arg/3 , 53
argument selector,125
argument counter/1 , 141
argument list/1 , 14,142
argument value/2 , 14,142
asserta/1 , 61
assertz/1 , 61
at end of stream/0 , 74
at end of stream/1 , 74
atom/1 , 49
atom chars/2 , 115
atom codes/2 , 115
atom concat/3 , 113
atom hash/2 , 118
atom length/2 , 113
atom property/2 , 119
atomic/1 , 49
attribute/1 (directive),182
attributed/1 , 183

back quotes (flag), 14, 91,133, 135
back quotes (token),93
backtracks (FD option),179
bagof/3 , 66
binary (option),70, 80
bind variables/2 , 56
bip name (option),191, 204
block (option),70, 81
block device (permission),146
bof (whence),75
boolean (option),191, 192
bounded (flag),132
bounds (FD option),179
break/0 , 17, 33,111
buffering (option),70
buffering (property),73

built in (property), 43,65
built in/0 (directive),43
built in/1 (directive),43
built in fd (property), 43,65
built in fd/0 (directive),43
built in fd/1 (directive),43

call/1 , 47
call/2 , 111
call with args/1-11 , 111
callable/1 , 49
catch/3 , 29, 37,47
change directory/1 , 143
char code/2 , 114, 197
char conversion (flag), 91, 102,133, 135
char conversion/2 (directive),45
char conversion/2 , 45,101
character count/2 , 76
character device (permission),146
choice size (option),191, 194
clause/2 , 62
close/1 , 71
close/2 , 71, 152, 157
close input atom stream/1 , 83
close input chars stream/1 , 83
close input codes stream/1 , 83
close output atom stream/2 , 84
close output chars stream/2 , 84
close output codes stream/2 , 84
clpr get store/2 , 188
compare/3 , 52
completion,18, 161, 162
compound/1 , 49
consult/1 , 16, 17, 20, 22,135
copy term/2 , 54
cpu time/1 , 138
create pipe/2 , 153
current (whence),75
current alias/2 , 78
current atom/1 , 119
current bip name/2 , 37,134
current char conversion/2 , 102
current input/1 , 68
current mirror/2 , 80
current op/3 , 101
current output/1 , 68
current predicate/1 , 62,64
current prolog flag/2 , 133
current stream/1 , 72

date time/1 , 148
debug (flag),133
debug/0 (debug), 17,31
debugging/0 (debug),31, 33
decompose file name/4 , 140
Definite clause grammars,seeDCG
delete/3 , 121

INDEX 219

delete directory/1 , 143
delete file/1 , 145
directory (permission),146
directory files/2 , 144
discontiguous/1 (directive),42
display/1 , 95
display/2 , 95, 104, 105
display to atom/2 , 104
display to chars/2 , 105
display to codes/2 , 105
double quotes (flag), 91,133, 135
dynamic (property),64
dynamic/1 (directive),41, 60

end of stream (property),73
end of term (option),91
ensure linked/1 (directive),43
ensure loaded/1 (directive),44
environ/2 , 143
eof (whence),75
eof action (option),70
eof action (property),73
eof code (option),70, 81
error (option),70, 81,91
escape sequence, 14, 120,133
exclude (option),56
exec/4 , 152
exec/5 , 152
execute (permission),146
expand term/2 , 110
extended (token),93
extra-constrained,seeextra cstr
extra cstr (FD), 165, 170

fail (option),91
fail/0 , 46
fct name (option),191
fd all different/1 (FD), 175
fd at least one/1 (FD), 175
fd at most one/1 (FD), 175
fd atleast/3 (FD), 177
fd atmost/3 (FD), 177
fd cardinality/2 (FD), 175, 177
fd cardinality/3 (FD), 175
fd dom/2 (FD), 169
fd domain/2 (FD), 168
fd domain/3 (FD), 167
fd domain bool/1 (FD), 167
fd element/3 (FD), 176
fd element var/3 (FD), 176
fd exactly/3 (FD), 177
fd has extra cstr/1 (FD), 170
fd has vector/1 (FD), 170
fd labeling/1 (FD), 178
fd labeling/2 (FD), 178, 180
fd labelingff/1 (FD), 178
fd max/2 (FD), 169

fd max integer (FD), 165, 166
fd max integer/1 (FD), 166
fd maximize/2 (FD), 179
fd min/2 (FD), 169
fd minimize/2 (FD), 179
fd not prime/1 (FD), 172
fd only one/1 (FD), 175
fd prime/1 (FD), 172
fd relation/2 (FD), 177
fd relationc/2 (FD), 177
fd set vector max/1 (FD), 165,167
fd size/2 (FD), 169
fd use vector/1 (FD), 170
fd var/1 (FD), 168
fd vector max/1 (FD), 165,166
fifo (permission),146
file exists/1 , 145
file name (property),73
file permission/2 , 145
file property/2 , 146
find linedit completion/2 , 162
findall/3 , 65
first fail (FD option),179
flag,seeProlog flag
float/1 , 49
flush output/0 , 72
flush output/1 , 68,72
for/3 , 112
force (option),71
foreign/1 (directive),45, 191
foreign/2 (directive),45, 191
fork prolog/1 , 153
format/2 , 97
format/3 , 97, 104, 105
format to atom/3 , 104
format to chars/3 , 105
format to codes/3 , 105
freeze/2 , 181
from (option),56
frozen/2 , 181
full (debug),31
functor/3 , 52

g array (global var.),126
g array auto (global var.),126
g array extend (global var.),126
g array size/2 , 127
g assign/2 , 126
g assignb/2 , 126
g dec/1 , 128
g dec/2 , 128
g dec/3 , 128
g deco/2 , 128
g inc/1 , 128
g inc/2 , 128
g inc/3 , 128
g inco/2 , 128

220 INDEX

g link/2 , 126
g read/2 , 127
g reset bit/2 , 128
g set bit/2 , 128
g test reset bit/2 , 128
g test set bit/2 , 128
generic var/1 (FD), 168
generic var/1 , 183
get/1 , 107
get0/1 , 107
get atts/2 , 182
get byte/1 , 88
get byte/2 , 67,88
get char/1 , 84
get char/2 , 84
get code/1 , 84
get code/2 , 84, 85
get key/1 , 85
get key/2 , 85
get key no echo/1 , 85
get key no echo/2 , 85
get linedit prompt/1 , 161
get print stream/1 , 99
get seed/1 , 139
gplc , 22, 25–27, 135

half (debug),31
halt/0 , 13, 17,111
halt/1 , 111
hash (property),119
hexgplc , 27
host name/1 , 149
hostname address/2 , 160

ignore ops (option),95
include/1 (directive),44
inf/2 , 188
infix op (property),119
initialization/1 (directive), 25,45, 211
input (property),73
integer/1 , 49
integer rounding function (flag), 59,132
interpreter,seetop-level

jump (option),191, 192

keysort/1 , 124
keysort/2 , 124

largest (FD option),179
last/2 , 123
last modification (property),147
last read start line column/2 , 94
leash/1 (debug),31, 33
length (property),119
length/2 , 123
line (option),70, 81
line count/2 , 76, 77

line position/2 , 76
linedit , 18, 85, 161, 162
list/1 , 49
list or partial list/1 , 49
listing/0 , 136
listing/1 , 33, 98,136
load/1 , 17, 22, 24,136
loose (debug),31
lower upper/2 , 115

MA, 20
make directory/1 , 143
max (FD option),179
max arity (flag),132
max atom (flag), 118,132
max depth (option),96
max integer (flag),132, 165
max list/2 , 124
max regret (FD option),179
max unget (flag), 87, 90,132
member/2 , 120
memberchk/2 , 120
middle (FD option),179
min (FD option),179
min integer (flag),132
min list/2 , 124
mini-assembly, 11,20, 27
mirror (option),70
mirror (property),73
mode (property),73
most constrained (FD option),179
multifile/1 (directive),42

name/2 , 117
name query vars/2 , 55
name singleton vars/1 , 55, 98
namevars (option), 16,56, 95
native code (property),65
needs quotes (property),120
needs scan (property),120
new atom/1 , 118
new atom/2 , 118
new atom/3 , 118
next (option),56
nl/0 , 87
nl/1 , 87
nodebug/0 (debug),31, 33
non fd var/1 (FD), 168
non generic var/1 (FD), 168
non generic var/1 , 183
none (debug),31
none (option),70, 81,191, 192
nonvar/1 , 49
nospy/1 (debug),31, 33
nospyall/0 (debug),31
notrace/0 (debug),31
nth/3 , 123

INDEX 221

number/1 , 49
number atom/2 , 116
number chars/2 , 116
number codes/2 , 116
numbervars (option), 16,56, 95
numbervars/1 , 56, 98
numbervars/3 , 56

once/1 , 111
op/3 (directive),44
op/3 , 44,99
open/3 , 69
open/4 , 67,69, 80, 81, 156
open input atom stream/2 , 82
open input chars stream/2 , 82
open input codes stream/2 , 82
open output atom stream/1 , 83
open output chars stream/1 , 83
open output codes stream/1 , 83
os error (flag),133, 206
os version/1 , 149
output (property),73

partial list/1 , 49
peek byte/1 , 89
peek byte/2 , 89
peek char/1 , 86
peek char/2 , 86
peek code/1 , 86
peek code/2 , 86
permission (property),147
permutation/2 , 121
phrase/2 , 110
phrase/3 , 110
popen/3 , 67,152
portray/1 , 95, 99
portray/2 , 181
portray attributes predicate/1 (directive),

184
portray clause/1 , 98
portray clause/2 , 98, 137
portrayed (option),95
position (property),73
postfix op (property),119
predicate property/2 , 64
prefix/2 , 122
prefix op (property),119
print/1 , 95, 97
print/2 , 95, 99, 104, 105
print to atom/2 , 104
print to chars/2 , 105
print to codes/2 , 105
priority (option),96
private (property),64
Prolog flag, 14, 36, 45, 59, 64, 87, 90, 91, 93, 102,

118,132, 134, 135, 165, 206
prolog copyright (flag),132

prolog date (flag),132
prolog file (property),65
prolog file name/2 , 135,141
prolog line (property),65
prolog name (flag),132
prolog pid/1 , 154
prolog version (flag),132
public (property),64
public/1 (directive),41, 61
punct (token),93
put/1 , 108
put atts/2 , 182
put byte/1 , 90
put byte/2 , 90
put char/1 , 87
put char/2 , 87
put code/1 , 87
put code/2 , 87

quoted (option), 16,95

random (FD option),179
random/1 , 139
random/3 , 139
randomize/0 , 138
read (mode),70
read (permission),146
read/1 , 91, 94
read/2 , 91, 94, 103, 104
read atom/1 , 92, 94
read atom/2 , 92, 94, 102
read from atom/2 , 103
read from chars/2 , 103
read from codes/2 , 104
read integer/1 , 92, 94
read integer/2 , 92, 94, 102
read number/1 , 92, 94
read number/2 , 92, 94, 102
read pl state file/1 , 135
read term/2 , 91, 94
read term/3 , 91, 94, 102–104
read term from atom/3 , 14, 91,103
read term from chars/3 , 103
read term from codes/3 , 104
read token/1 , 93, 94
read token/2 , 93, 94, 102–104
read token from atom/2 , 103
read token from chars/2 , 103
read token from codes/2 , 104
real file name (property),146
real time/1 , 138
regular (permission),146
remove stream mirror/2 , 68, 79,79
rename file/2 , 144
reorder (FD option),179
repeat/0 , 112
reposition (option),70

222 INDEX

reposition (property),73
reset (option),70, 81
retract/1 , 62
retractall/1 , 62
return (option),191, 192
reverse/2 , 121

search (permission),146
see/1 , 106
seeing/1 , 107
seek/4 , 75
seen/0 , 107
select/3 , 121
select/5 , 68,155, 158, 160
send signal/2 , 155
set bip name/2 , 37,134, 204
set input/1 , 67,69
set linedit prompt/1 , 161
set output/1 , 67,69
set prolog flag/2 (directive),45
set prolog flag/2 , 45,132
set seed/1 , 138
set stream buffering/2 , 68,81, 156, 157
set stream eof action/2 , 81
set stream line column/3 , 77
set stream position/2 , 67,74
set stream type/2 , 80, 157
setarg/3 , 54
setarg/4 , 54
setof/3 , 66
shell/0 , 150
shell/1 , 150
shell/2 , 150
singleton warning (flag),133, 135
singletons (option), 55, 56,91
size (property),147
skip/1 , 107
sleep/1 , 155
smallest (FD option),179
socket (permission),146
socket/2 , 157
socket accept/3 , 159
socket accept/4 , 159
socket bind/2 , 158
socket close/1 , 157
socket connect/4 , 67, 157,158
socket listen/2 , 159
sort/1 , 124
sort/2 , 124
sort0/1 , 124
sort0/2 , 124
space args (option),95
spawn/2 , 151
spawn/3 , 151
spy/1 (debug),31, 33
spypoint condition/3 (debug),31, 33
sr change options/2 , 163

sr close/1 , 163
sr current descriptor/1 , 163
sr error from exception/2 , 163
sr get error counters/3 , 163
sr get file name/2 , 163
sr get include list/2 , 163
sr get include stream list/2 , 163
sr get module/3 , 163
sr get position/3 , 163
sr get size counters/3 , 163
sr get stream/2 , 163
sr open/3 , 163
sr read term/4 , 163
sr set error counters/3 , 163
sr write error/2 , 163
sr write error/4 , 163
sr write error/6 , 163
sr write message/4 , 163
sr write message/6 , 163
sr write message/8 , 163
standard (FD option),178
static (property),64
statistics/0 , 137
statistics/2 , 137
stop/0 , 111
stream line column/3 , 77
stream position/2 , 74, 75
stream property/2 , 73, 74, 75, 79, 80
strict iso (flag), 36, 64,133
string (token),93
sub atom/5 , 114
sublist/2 , 122
suffix/2 , 122
sum list/2 , 124
sup/2 , 188
syntax error (flag), 91,133, 206
syntax error (option),91
syntax error info/4 , 94, 206
system/1 , 151
system/2 , 151
system time/1 , 138

tab/1 , 108
tell/1 , 106
telling/1 , 107
temporary file/3 , 148
temporary name/2 , 147
term ref/2 , 57
text (option),70, 80
throw/1 , 29, 37,47, 207
tight (debug),31
told/0 , 107
top-level,13, 18, 24, 26, 111, 161, 211
top level/0 , 13,111
trace/0 (debug), 17,31
true/0 , 46
type (option),70

INDEX 223

type (property),73, 146

unget byte/1 , 89
unget byte/2 , 89
unget char/1 , 87
unget char/2 , 87
unget code/1 , 87
unget code/2 , 87
unify with occurs check/2 , 50
unknown (flag),133
unknown (permission),146
unlink/1 , 145
user (property),64
user , 106, 107, 135, 140, 141
user input , 67, 71, 106, 107
user output , 67, 71, 106, 107
user time/1 , 138

value method (FD option),179
var (token),93
var/1 , 49
variable method (FD option),178
variable names (option), 55, 56,91
variables (option),91
vector max (FD), 165, 166, 167, 173
verify attributes predicate/1 (directive),

184

wait/2 , 154
WAM, 11, 20, 22, 33
wamdebug/0 (debug),31, 33
warning (option),91
Warren Abstract Machine,seeWAM
working directory/1 , 143
write (mode),70
write (permission),146
write/1 , 95, 97
write/2 , 95, 104, 105
write canonical/1 , 95, 97
write canonical/2 , 95, 104, 105
write canonical to atom/2 , 104
write canonical to chars/2 , 105
write canonical to codes/2 , 105
write pl state file/1 , 24,135
write term/2 , 95
write term/3 , 16, 32,95, 104, 105
write term to atom/3 , 104
write term to chars/3 , 105
write term to codes/3 , 105
write to atom/2 , 104
write to chars/2 , 105
write to codes/2 , 105
writeq/1 , 95, 97
writeq/2 , 95, 104, 105, 199
writeq to atom/2 , 104
writeq to chars/2 , 105
writeq to codes/2 , 105

	Acknowledgements
	Introduction
	Using GNU Prolog
	Introduction
	The GNU Prolog interactive interpreter
	Starting/exiting the interactive interpreter
	The interactive interpreter read-execute-write loop
	Consulting a Prolog program
	Interrupting a query
	The line editor

	Adjusting the size of Prolog stacks
	The GNU Prolog compiler
	Different kinds of codes
	Compilation scheme
	Using the compiler
	Running an executable
	Generating a new interactive interpreter
	The hexadecimal predicate name encoding

	Debugging
	Introduction
	The procedure box model
	Debugging predicates
	Running and stopping the debugger
	Leashing ports
	Spy-points

	Debugging messages
	Debugger commands
	The WAM debugger

	Format of definitions
	General format
	Types and modes
	Errors
	General format and error context
	Instantiation error
	Type error
	Domain error
	Existence error
	Permission error
	Representation error
	Evaluation error
	Resource error
	Syntax error
	System error

	Prolog directives and control constructs
	Prolog directives
	Introduction
	dynamic/1
	public/1
	multifile/1
	discontiguous/1
	ensure_linked/1
	built_in/0, built_in/1, built_in_fd/0, built_in_fd/1
	include/1
	ensure_loaded/1
	op/3
	char_conversion/2
	set_prolog_flag/2
	initialization/1
	foreign/2, foreign/1

	Prolog control constructs
	true/0, fail/0, !/0
	(',')/2 - conjunction, (;)/2 - disjunction, (-'076)/2 - if-then
	call/1
	catch/3, throw/1

	Prolog built-in predicates
	Type testing
	var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, compound/1, callable/1, list/1, partial_list/1, list_or_partial_list/1

	Term unification
	(=)/2 - Prolog unification
	unify_with_occurs_check/2
	('134=)/2 - not Prolog unifiable

	Term comparison
	Standard total ordering of terms
	(==)/2 - term identical, ('134==)/2 - term not identical, (@'074)/2 - term less than, (@='074)/2 - term less than or equal to, (@'076)/2 - term greater than, (@'076=)/2 - term greater than or equal to
	compare/3

	Term processing
	functor/3
	arg/3
	(=..)/2 - univ
	copy_term/2
	setarg/4, setarg/3

	Variable naming/numbering
	name_singleton_vars/1
	name_query_vars/2
	bind_variables/2, numbervars/3, numbervars/1
	term_ref/2

	Arithmetic
	Evaluation of an arithmetic expression
	(is)/2 - evaluate expression
	(=:=)/2 - arithmetic equal, (='134=)/2 - arithmetic not equal, ('074)/2 - arithmetic less than, (='074)/2 - arithmetic less than or equal to, ('076)/2 - arithmetic greater than, ('076=)/2 - arithmetic greater than or equal to

	Dynamic clause management
	Introduction
	asserta/1, assertz/1
	retract/1
	retractall/1
	clause/2
	abolish/1

	Predicate information
	current_predicate/1
	predicate_property/2

	All solutions
	Introduction
	findall/3
	bagof/3, setof/3

	Streams
	Introduction
	current_input/1
	current_output/1
	set_input/1
	set_output/1
	open/4, open/3
	close/2, close/1
	flush_output/1, flush_output/0
	current_stream/1
	stream_property/2
	at_end_of_stream/1, at_end_of_stream/0
	stream_position/2
	set_stream_position/2
	seek/4
	character_count/2
	line_count/2
	line_position/2
	stream_line_column/3
	set_stream_line_column/3
	add_stream_alias/2
	current_alias/2
	add_stream_mirror/2
	remove_stream_mirror/2
	current_mirror/2
	set_stream_type/2
	set_stream_eof_action/2
	set_stream_buffering/2

	Constant term streams
	Introduction
	open_input_atom_stream/2, open_input_chars_stream/2, open_input_codes_stream/2
	close_input_atom_stream/1, close_input_chars_stream/1, close_input_codes_stream/1
	open_output_atom_stream/1, open_output_chars_stream/1, open_output_codes_stream/1
	close_output_atom_stream/2, close_output_chars_stream/2, close_output_codes_stream/2

	Character input/output
	get_char/2, get_char/1, get_code/1, get_code/2
	get_key/2, get_key/1 get_key_no_echo/2, get_key_no_echo/1
	peek_char/2, peek_char/1, peek_code/1, peek_code/2
	unget_char/2, unget_char/1, unget_code/2, unget_code/1
	put_char/2, put_char/1, put_code/1, put_code/2, nl/1, nl/0

	Byte input/output
	get_byte/2, get_byte/1
	peek_byte/2, peek_byte/1
	unget_byte/2, unget_byte/1
	put_byte/2, put_byte/1

	Term input/output
	read_term/3, read_term/2, read/2, read/1
	read_atom/2, read_atom/1, read_integer/2, read_integer/1, read_number/2, read_number/1
	read_token/2, read_token/1
	syntax_error_info/4
	last_read_start_line_column/2
	write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1, write_canonical/2, write_canonical/1, display/2, display/1, print/2, print/1
	format/3, format/2
	portray_clause/2, portray_clause/1
	get_print_stream/1
	op/3
	current_op/3
	char_conversion/2
	current_char_conversion/2

	Input/output from/to constant terms
	read_term_from_atom/3, read_from_atom/2, read_token_from_atom/2
	read_term_from_chars/3, read_from_chars/2, read_token_from_chars/2
	read_term_from_codes/3, read_from_codes/2, read_token_from_codes/2
	write_term_to_atom/3, write_to_atom/2, writeq_to_atom/2, write_canonical_to_atom/2, display_to_atom/2, print_to_atom/2, format_to_atom/3
	write_term_to_chars/3, write_to_chars/2, writeq_to_chars/2, write_canonical_to_chars/2, display_to_chars/2, print_to_chars/2, format_to_chars/3
	write_term_to_codes/3, write_to_codes/2, writeq_to_codes/2, write_canonical_to_codes/2, display_to_codes/2, print_to_codes/2, format_to_codes/3

	DEC-10 compatibility input/output
	Introduction
	see/1, tell/1, append/1
	seeing/1, telling/1
	seen/0, told/0
	get0/1, get/1, skip/1
	put/1, tab/1

	Term expansion
	Definite clause grammars
	expand_term/2, term_expansion/2
	phrase/3, phrase/2

	Logic, control and exceptions
	abort/0, stop/0, top_level/0, break/0, halt/1, halt/0
	once/1, ('134+)/1 - not provable, call_with_args/1-11, call/2
	repeat/0
	for/3

	Atomic term processing
	atom_length/2
	atom_concat/3
	sub_atom/5
	char_code/2
	lower_upper/2
	atom_chars/2, atom_codes/2
	number_atom/2, number_chars/2, number_codes/2
	name/2
	atom_hash/2
	new_atom/3, new_atom/2, new_atom/1
	current_atom/1
	atom_property/2

	List processing
	append/3
	member/2, memberchk/2
	reverse/2
	delete/3, select/3
	permutation/2
	prefix/2, suffix/2
	sublist/2
	last/2
	length/2
	nth/3
	max_list/2, min_list/2, sum_list/2
	sort/2, sort0/2, keysort/2 sort/1, sort0/1, keysort/1

	Global variables
	Introduction
	g_assign/2, g_assignb/2, g_link/2
	g_read/2
	g_array_size/2
	g_inc/3, g_inc/2, g_inco/2, g_inc/1, g_dec/3, g_dec/2, g_deco/2, g_dec/1
	g_set_bit/2, g_reset_bit/2, g_test_set_bit/2, g_test_reset_bit/2
	Examples

	Prolog state
	set_prolog_flag/2
	current_prolog_flag/2
	set_bip_name/2
	current_bip_name/2
	write_pl_state_file/1, read_pl_state_file/1

	Program state
	consult/1, '.'/2 - program consult
	load/1
	listing/1, listing/0

	System statistics
	statistics/0, statistics/2
	user_time/1, system_time/1, cpu_time/1, real_time/1

	Random number generator
	set_seed/1, randomize/0
	get_seed/1
	random/1
	random/3

	File name processing
	absolute_file_name/2
	decompose_file_name/4
	prolog_file_name/2

	Operating system interface
	argument_counter/1
	argument_value/2
	argument_list/1
	environ/2
	make_directory/1, delete_directory/1, change_directory/1
	working_directory/1
	directory_files/2
	rename_file/2
	delete_file/1, unlink/1
	file_permission/2, file_exists/1
	file_property/2
	temporary_name/2
	temporary_file/3
	date_time/1
	host_name/1
	os_version/1
	architecture/1
	shell/2, shell/1, shell/0
	system/2, system/1
	spawn/3, spawn/2
	popen/3
	exec/5, exec/4
	fork_prolog/1
	create_pipe/2
	wait/2
	prolog_pid/1
	send_signal/2
	sleep/1
	select/5

	Sockets input/output
	Introduction
	socket/2
	socket_close/1
	socket_bind/2
	socket_connect/4
	socket_listen/2
	socket_accept/4, socket_accept/3
	hostname_address/2

	Linedit management
	get_linedit_prompt/1
	set_linedit_prompt/1
	add_linedit_completion/1
	find_linedit_completion/2

	Source reader facility
	Introduction
	sr_open/3
	sr_change_options/2
	sr_close/1
	sr_read_term/4
	sr_current_descriptor/1
	sr_get_stream/2
	sr_get_module/3
	sr_get_file_name/2
	sr_get_position/3
	sr_get_include_list/2
	sr_get_include_stream_list/2
	sr_get_size_counters/3
	sr_get_error_counters/3
	sr_set_error_counters/3
	sr_error_from_exception/2
	sr_write_message/8, sr_write_message/6, sr_write_message/4
	sr_write_error/6, sr_write_error/4, sr_write_error/2

	Finite domain solver and built-in predicates
	Introduction
	Finite Domain variables

	FD variable parameters
	fd_max_integer/1
	fd_vector_max/1
	fd_set_vector_max/1

	Initial value constraints
	fd_domain/3, fd_domain_bool/1
	fd_domain/2

	Type testing
	fd_var/1, non_fd_var/1, generic_var/1, non_generic_var/1

	FD variable information
	fd_min/2, fd_max/2, fd_size/2, fd_dom/2
	fd_has_extra_cstr/1, fd_has_vector/1, fd_use_vector/1

	Arithmetic constraints
	FD arithmetic expressions
	Partial AC: (#=)/2 - constraint equal, (#'134=)/2 - constraint not equal, (#'074)/2 - constraint less than, (#='074)/2 - constraint less than or equal, (#'076)/2 - constraint greater than, (#'076=)/2 - constraint greater than or equal
	Full AC: (#=#)/2 - constraint equal, (#'134=#)/2 - constraint not equal, (#'074#)/2 - constraint less than, (#='074#)/2 - constraint less than or equal, (#'076#)/2 - constraint greater than, (#'076=#)/2 - constraint greater than or equal
	fd_prime/1, fd_not_prime/1

	Boolean and reified constraints
	Boolean FD expressions
	(#'134)/1 - constraint NOT, (#'074='076)/2 - constraint equivalent, (#'134'074='076)/2 - constraint different, (##)/2 - constraint XOR, (#=='076)/2 - constraint imply, (#'134=='076)/2 - constraint not imply, (#/'134)/2 - constraint AND, (#'134/'134)/2 - constraint NAND, (#'134/)/2 - constraint OR, (#'134'134/)/2 - constraint NOR
	fd_cardinality/2, fd_cardinality/3, fd_at_least_one/1, fd_at_most_one/1, fd_only_one/1

	Symbolic constraints
	fd_all_different/1
	fd_element/3
	fd_element_var/3
	fd_atmost/3, fd_atleast/3, fd_exactly/3
	fd_relation/2, fd_relationc/2

	Labeling constraints
	fd_labeling/2, fd_labeling/1, fd_labelingff/1

	Optimization constraints
	fd_minimize/2, fd_maximize/2

	Coroutining and attributes
	Coroutining
	freeze/2
	frozen/2
	portray/2 [user-defined]

	Attributed variables
	Introduction
	Attribute declaration - attribute/1
	Attributes manipulation - get_atts/2, put_atts/2
	Type testing - attributed/1, generic_var/1, non_generic_var/1
	Unification extension - verify_attributes_predicate/1
	Attributed variables portraying - portray_attributes_predicate/1
	A simple example

	Constraint logic programming over reals
	Introduction
	Solver predicates
	{}/1
	inf/2, sup/2
	clpr_get_store/2

	Real and Herbrand domains combinations
	Unification
	Implicit equalities
	Nonlinear constraints

	Interfacing Prolog and C
	Calling C from Prolog
	Introduction
	foreign/2 directive
	The C function
	Input arguments
	Output arguments
	Input/output arguments
	Writing non-deterministic C code
	Example: input and output arguments
	Example: non-deterministic code
	Example: input/output arguments

	Manipulating Prolog terms
	Introduction
	Managing Prolog atoms
	Reading Prolog terms
	Unifying Prolog terms
	Creating Prolog terms
	Testing the type of Prolog terms
	Comparing Prolog terms
	Copying Prolog terms
	Comparing and evaluating arithmetic expressions

	Raising Prolog errors
	Managing the error context
	Instantiation error
	Type error
	Domain error
	Existence error
	Permission error
	Representation error
	Evaluation error
	Resource error
	Syntax error
	System error

	Calling Prolog from C
	Introduction
	Example: my_call/1 - a call/1 clone
	Example: recovering the list of all operators

	Defining a new C main() function
	Example: asking for ancestors

	References
	Index

