Formal Verification of a Concurrent Bounded Queue in a Weak Memory Model

Glen Mével, Jacques-Henri Jourdan
ICFP 2021, online
LMF & Inria Paris
contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml
contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:
specifying a concurrent data structure under weak memory
contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:
specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership \Rightarrow logical atomicity
contribution:
spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk:
specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership \implies logical atomicity
2. weak memory \implies thread synchronization
 contribution:
spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml
	his talk:
specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership \implies logical atomicity
2. weak memory \implies thread synchronization
 - fine-grained concurrency \implies weaker than lock-based
contribution: spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk: specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership \implies logical atomicity
2. weak memory \implies thread synchronization
 - fine-grained concurrency \implies weaker than lock-based

tool: Cosmo, our program logic for Multicore OCaml
Sequential queues
A specification for sequential queues

\[
\begin{align*}
\{ & \text{True} \} & & \{ & \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} \\
\text{make } () & & \text{enqueue } q v \\
\{ & \lambda q. \text{IsQueue } q [] \} & & \{ & \lambda () . \text{IsQueue } q [v_0, \ldots, v_{n-1}, v] \} \\
\{ & \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} & & \text{dequeue } q \\
\{ & \lambda v. 1 \leq n \times v = v_0 \times \text{IsQueue } q [v_1, \ldots, v_{n-1}] \}
\end{align*}
\]
A specification for sequential queues

\[
\begin{align*}
\{ \text{True} \} & \quad \{ \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} \\
\text{make } () & \\
\{ \lambda q. \text{IsQueue } q [] \} & \\
\end{align*}
\]

\[
\begin{align*}
\{ \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} & \\
\text{enqueue } q \; v & \\
\{ \lambda() . \text{IsQueue } q [v_0, \ldots, v_{n-1}, v] \} & \\
\end{align*}
\]

\[
\begin{align*}
\{ \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} & \\
\text{dequeue } q & \\
\{ \lambda v . 1 \leq n \; * \; v = v_0 \; * \; \text{IsQueue } q [v_1, \ldots, v_{n-1}] \} & \\
\end{align*}
\]
A specification for sequential queues

\[
\begin{align*}
\{\text{True}\} & \quad \{\text{IsQueue} \ q \ [v_0, \ldots, v_{n-1}]\} \\
\text{make ()} & \quad \text{enqueue} \ q \ v \\
\{\lambda q. \text{IsQueue} \ q \ [\]\} & \quad \{\lambda () . \text{IsQueue} \ q \ [v_0, \ldots, v_{n-1}, v]\} \\
\text{dequeue} \ q & \\
\{\text{IsQueue} \ q \ [v_0, \ldots, v_{n-1}]\} & \quad \{\lambda v . 1 \leq n \ast v = v_0 \ast \text{IsQueue} \ q \ [v_1, \ldots, v_{n-1}]\}
\end{align*}
\]
A specification for sequential queues

\[
\begin{align*}
\{ \text{True} \} & \quad \{ \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} \\
\text{make } () & \quad \text{enqueue } q \; v \\
\{ \lambda q. \text{IsQueue } q \; [\] \} & \quad \{ \lambda () . \text{IsQueue } q [v_0, \ldots, v_{n-1}, v] \} \\
\{ \text{IsQueue } q [v_0, \ldots, v_{n-1}] \} & \quad \text{dequeue } q \\
\{ \lambda v. 1 \leq n \; * \; v = v_0 \; * \; \text{IsQueue } q [v_1, \ldots, v_{n-1}] \} &
\end{align*}
\]
Concurrent queues
for now we assume sequential consistency: behaviors of the program are interleavings of its threads

can we keep the sequential spec?
for now we assume **sequential consistency**: behaviors of the program are interleavings of its threads

can we keep the sequential spec? valid, but...

```
IsQueue q [v_0, ..., v_{n-1}] is exclusive
⇒ effectively no concurrent usage
```
Invariants

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}. \text{IsQueue } q [v_0, ..., v_{n-1}]$$

the invariant owns q
Invariants

[in a concurrent separation logic such as Iris]

an **invariant** holds at all times

idea: the user shares q in an invariant:

\[I \triangleq \exists n, v_0, ..., v_{n-1}. \text{IsQueue } q [v_0, ..., v_{n-1}] \]

the invariant owns q
[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, \ldots, v_{n-1}. \text{IsQueue} \ q \ [v_0, \ldots, v_{n-1}] \ast R \ [v_0, \ldots, v_{n-1}]$$

the invariant owns q
Invariants

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}. \text{IsQueue } q [v_0, ..., v_{n-1}] \ast R [v_0, ..., v_{n-1}]$$

the invariant owns q

anyone can access q by “opening” I:

$$\{P \ast I\} e \{I \ast Q\} \quad I \text{ is an invariant} \quad e \text{ completes in one step}$$

$$\{P\} e \{Q\}$$
Invariants

[in a concurrent separation logic such as Iris]

an **invariant** holds at all times

idea: the user shares \(q \) in an invariant:

\[
I \triangleq \exists n, v_0, ..., v_{n-1}. \text{IsQueue } q [v_0, ..., v_{n-1}] \ast R [v_0, ..., v_{n-1}]
\]

the invariant owns \(q \)

anyone can access \(q \) by “opening” \(I \):

\[
\{ P \ast I \} e \{ I \ast Q \} \quad I \text{ is an invariant} \quad e \text{ completes in one step}
\]

\[
\{ P \} e \{ Q \}
\]
Invariants

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares \(q \) in an invariant:

\[
I \triangleq \exists n, v_0, ..., v_{n-1}. \text{IsQueue} \ q \ [v_0, ..., v_{n-1}] \ast R \ [v_0, ..., v_{n-1}]
\]

the invariant owns \(q \)

anyone can access \(q \) by “opening” \(I \):

\[
\{ P \ast I \} e \{ I \ast Q \} \quad I \text{ is an invariant} \quad e \text{ completes in one step}
\]

\[
\{ P \} e \{ Q \}
\]
Logical atomicity

[in Iris]

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

\[
\begin{align*}
\langle P \rangle e \langle Q \rangle & \quad \ Quad
Logical atomicity

[in Iris]

Logically atomic triples are triples $⟨·⟩ · ⟨·⟩$ such that:

- $⟨P⟩ e ⟨Q⟩$ implies $⟨P⟩ e ⟨Q⟩$
- $⟨P ∗ I⟩ e ⟨I ∗ Q⟩$ implies $⟨P⟩ e ⟨Q⟩$

I is an invariant

tells that e behaves "atomically"
Logical atomicity

[in Iris]

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

\[
\langle P \rangle \mathbin{e} \langle Q \rangle \\
\{P\} \mathbin{e} \{Q\}
\]

\[
\langle P \mathbin{*} I \rangle \mathbin{e} \langle I \mathbin{*} Q \rangle \\
I \text{ is an invariant}
\]

\[
\langle P \rangle \mathbin{e} \langle Q \rangle
\]

tells that e behaves “atomically”

intuition: e takes a step which satisfies $\{P\} \cdot \{Q\}$

(\Longrightarrow related to linearizability)
Logical atomicity

[in Iris]

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

\[
\begin{align*}
\langle x. P \rangle & e \langle Q \rangle \\
\forall x. \{ P \} & e \{ Q \}
\end{align*}
\]

\[
\begin{align*}
\langle x. P \ast I \rangle & e \langle I \ast Q \rangle \\
I & \text{ is an invariant}
\end{align*}
\]

\[
\begin{align*}
\langle x. P \rangle & e \langle Q \rangle
\end{align*}
\]

tells that e behaves “atomically”

intuition: e takes a step which satisfies $\forall x. \{ P \} \cdot \{ Q \}$

$(\Longrightarrow$ related to linearizability$)$

x binds things which are known only during that step
A specification for concurrent queues under SC

\[
\begin{align*}
\{ \text{True} \} & \quad \langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [v_0, \ldots, v_{n-1}] \rangle \\
\text{make } () & \quad \langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [] \rangle \\
\lambda q. \text{IsQueue } q [] & \quad \langle \lambda () . \text{IsQueue } q [v_0, \ldots, v_{n-1}, v] \rangle \\
\end{align*}
\]

\[
\begin{align*}
\langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [v_0, \ldots, v_{n-1}] \rangle & \quad \text{dequeue } q \\
\lambda v. 1 \leq n \land v = v_0 \land \text{IsQueue } q [v_1, \ldots, v_{n-1}] & \\
\end{align*}
\]
A specification for concurrent queues under SC

\{ \text{True} \}

\text{make} (\) \\
\{ \lambda q. \text{IsQueue} q [\] \}

\langle n, v_0, \ldots, v_{n-1}. \text{IsQueue} q [v_0, \ldots, v_{n-1}] \rangle

\text{enqueue} q \ v \\
\langle \lambda (). \text{IsQueue} q [v_0, \ldots, v_{n-1}, v] \rangle

\langle n, v_0, \ldots, v_{n-1}. \text{IsQueue} q [v_0, \ldots, v_{n-1}] \rangle

\text{dequeue} q \\
\langle \lambda v. 1 \leq n * \ v = v_0 * \text{IsQueue} q [v_1, \ldots, v_{n-1}] \rangle
A specification for concurrent queues under SC

\[
\begin{align*}
\{ \text{True} \} & \quad \langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [v_0, \ldots, v_{n-1}] \rangle \\
\text{make } () & \quad \langle \lambda q. \text{IsQueue } q [] \rangle \\
\{ \lambda q. \text{IsQueue } q [] \} & \quad \langle \lambda () \cdot \text{IsQueue } q [v_0, \ldots, v_{n-1}, v] \rangle \\
\end{align*}
\]
A specification for concurrent queues under SC

\[
\begin{align*}
\{ \text{True} \} & \quad \langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [v_0, \ldots, v_{n-1}] \rangle \\
\text{make } () & \quad \langle \lambda q. \text{IsQueue } q [] \rangle \\
\{ \lambda q. \text{IsQueue } q [] \} & \quad \langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [v_0, \ldots, v_{n-1}] \rangle \\
\text{enqueue } q \ v & \quad \langle \lambda () . \text{IsQueue } q [v_0, \ldots, v_{n-1}, v] \rangle \\
\text{dequeue } q & \quad \langle n, v_0, \ldots, v_{n-1}. \text{IsQueue } q [v_0, \ldots, v_{n-1}] \rangle \\
& \quad \langle \lambda v. 1 \leq n \ * \ v = v_0 \ * \ \text{IsQueue } q [v_1, \ldots, v_{n-1}] \rangle \\
& \quad \text{(simplified)}
\end{align*}
\]
Concurrent queues in weak memory
Weak memory models:

- each thread has its own view of the state of the shared memory
 - example: C11
 - example: Multicore OCaml

[Dolan et al, PLDI 2018, *Bounding data races in space and time*]

operational semantics with thread-local views
Weak memory models

weak memory models: each thread has its own view of the state of the shared memory

- example: C11
- example: Multicore OCaml

[Dolan et al, PLDI 2018, *Bounding data races in space and time*

operational semantics with thread-local views
Weak memory models:

- each thread has its own **view** of the state of the shared memory

 - example: C11
 - example: Multicore OCaml

[Dolan et al, PLDI 2018, *Bounding data races in space and time*]

Operational semantics with thread-local views

Cosmo: a program logic for M-OCaml based on this semantics

[ICFP 2020]
based on Iris (hence: separation logic, ghost state, invariants)

assertions can be **subjective**: depend on current (thread’s) view

- example: $x \rightsquigarrow 42$
Cosmo

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be **subjective**: depend on current (thread’s) view

- example: \(x \rightsquigarrow 42 \)

restriction: invariants are available to all threads

\(\implies \) **objective** assertions only
based on Iris (hence: separation logic, ghost state, **invariants**)

assertions can be **subjective**: depend on current (thread’s) view

- example: \(x \rightsquigarrow 42 \)

restriction: invariants are available to all threads

\(\implies \) **objective** assertions only

to be specified: IsQueue \(q [v_0, ..., v_{n-1}] \) is objective
Synchronizing through the queue?

can we keep the SC spec?
Synchronizing through the queue?

can we keep the SC spec? valid, usable in limited cases, but...

let enqueueer q =
 let x = array[2] in
 x[1] ← 3;
 { x[1] ⇝ 3 }
 enqueue q x

let dequeueer q =
 let x = dequeue q in
 { x[1] ⇝ 3 }
 do_something x[1]
Synchronizing through the queue?

can we keep the SC spec? valid, usable in limited cases, but...

let enqueuer q =
 | let x = array[2] in
 | x[1] ← 3 ;
 | { x[1] ↝ 3 }
 | enqueue q x

let dequeuer q =
 | let x = dequeue q in
 | { x[1] ↝ 3 }
 | do_something x[1]

x[1] ↝ 3 is subjective
⇒ cannot be transferred solely with an invariant
Synchronizing through the queue?

can we keep the SC spec? valid, usable in limited cases, but...

let enqueue q =
 let x = array[2] in
 x[1] ← 3 ;
 { x[1] ⇝ 3 }
 enqueue q x

let dequeue q =
 let x = dequeue q in
 { x[1] ⇝ 3 }
 do_something x[1]

x[1] ⇝ 3 is subjective
⇒ cannot be transferred solely with an invariant
to be specified: dequeue observes all writes done by enqueue
(⇒ “release-acquire” pattern)
Views in Cosmo

a lattice of views (larger = more up-to-date)
Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

\(
\uparrow V \quad \text{“the ambient view contains } V \text{”} \implies \text{subjective}
\)

\(P \odot V \quad \text{“} P \text{ where the ambient view has been fixed to } V \text{”} \implies \text{objective} \)
Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

\[\uparrow \mathcal{V} \ "the \ ambient \ view \ contains \ \mathcal{V}" \Rightarrow \text{subjective} \]

\[P @ \mathcal{V} \ "P \ where \ the \ ambient \ view \ has \ been \ fixed \ to \ \mathcal{V}" \Rightarrow \text{objective} \]

splitting rule:

\[P \models \exists \mathcal{V}. (\uparrow \mathcal{V} \ast P @ \mathcal{V}) \]
Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

$\uparrow V$ “the ambient view contains V” \implies subjective

$P @ V$ “P where the ambient view has been fixed to V” \implies objective

shareable via an invariant

splitting rule:

$P \models \exists V. (\uparrow V * P @ V)$
a lattice of views (larger = more up-to-date)

new assertions:

\(\uparrow V \) “the ambient view contains \(V \)” \(\Rightarrow \) subjective transferred via thread synchronization

\(P \otimes V \) “\(P \) where the ambient view has been fixed to \(V \)” \(\Rightarrow \) objective shareable via an invariant

splitting rule:

\[P \models \exists V. (\uparrow V \ast P \otimes V) \]
idea: pretend the queue stores the views being transferred

\[\text{IsQueue } q \ [\ v_0 \ , \ldots , \ v_{n-1} \] \]

the enqueuer pushes its view alongside the enqueued value:

\[
\begin{align*}
\langle & n, \ v_0 \ , \ldots \ , \ v_{n-1} \ , \ \text{IsQueue } q \ [\ v_0 \ , \ldots \ , \ v_{n-1} \] \\
\langle & \lambda(). \text{IsQueue } q \ [\ v_0 \ , \ldots , \ v_{n-1} \ , \ v \] \rangle
\end{align*}
\]
Transferring views through the queue

idea: pretend the queue stores the views being transferred

\[\text{IsQueue } q \ [(v_0, V_0), \ldots, (v_{n-1}, V_{n-1})] \]

the enqueuer pushes its view alongside the enqueued value:

\[
\begin{align*}
\langle n, v_0, \ldots, v_{n-1} \rangle \\
\text{IsQueue } q \ [(v_0, \ldots, v_{n-1})] \\
\text{enqueue } q \ v \\
\lambda(). \text{IsQueue } q \ [(v_0, \ldots, v_{n-1}, v)]
\end{align*}
\]
Transferring views through the queue

idea: pretend the queue stores the views being transferred

\[
\text{IsQueue } q \ [(v_0, \mathcal{V}_0), \ldots, (v_{n-1}, \mathcal{V}_{n-1})]\]

the enqueuer \textbf{pushes} its view alongside the enqueued value:

\[
\langle \lambda(). \text{IsQueue } q \ [(v_0, \mathcal{V}_0), \ldots, (v_{n-1}, \mathcal{V}_{n-1})] \rangle
\]

\[
\text{enqueue } q \ v
\]

\[
\langle \lambda(). \text{IsQueue } q \ [(v_0, \mathcal{V}_0), \ldots, (v_{n-1}, \mathcal{V}_{n-1}), (v, \mathcal{V})] \rangle
\]
Transferring views through the queue

idea: pretend the queue stores the views being transferred

\[
\text{IsQueue } q \ [(v_0, V_0), \ldots, (v_{n-1}, V_{n-1})]
\]

the dequeuer pulls that view:

\[
\langle n, v_0, \ldots, v_{n-1} \rangle
\]

\[
\text{IsQueue } q \ [v_0, v_1, \ldots, v_{n-1}]
\]

dequeue \(q \)

\[
\langle \lambda v. \text{IsQueue } q \ [v_1, \ldots, v_{n-1}] \rangle \quad * \ 1 \leq n \ * \ v = v_0 \]
Transferring views through the queue

idea: pretend the queue stores the views being transferred

\[
\text{IsQueue } q \ [(v_0, V_0), \ldots, (v_{n-1}, V_{n-1})]
\]

the dequeuer pulls that view:

\[
\langle n, (v_0, V_0), \ldots, (v_{n-1}, V_{n-1}) \rangle
\]

\[
\text{IsQueue } q \ [(v_0, V_0), (v_1, V_1), \ldots, (v_{n-1}, V_{n-1})]
\]

dequeue \(q \) \[
\langle \lambda v. \text{IsQueue } q \ [(v_1, V_1), \ldots, (v_{n-1}, V_{n-1})] \ * \uparrow V_0 \ * \ 1 \leq n \ * \ v = v_0 \rangle
\]
Comparison with refinement in weak memory

refinement spec: “this queue can replace a naïve queue + a lock”
Comparison with refinement in weak memory

refinement spec: “this queue can replace a naïve queue + a lock”

issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!)

⇒ they do not satisfy the refinement spec
Comparison with refinement in weak memory

refinement spec: “this queue can replace a naïve queue + a lock”

issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!)
⇒ they do not satisfy the refinement spec

our spec is weaker (no guaranteed sync. from dequeuer to enqueuer)
⇒ covers more lock-free queues
Conclusion
concurrent program verification:

- **invariants** share resources among threads
- **(logical) atomicity** is part of specs
Conclusion

concurrent program verification in weak memory:

- **invariants** share resources among threads
- **(logical) atomicity** is part of specs
- **view transfers** express synchronizations, also part of specs

Also in this work:

- proof of a non-trivial lock-free queue (does not refine a lock-based queue w.r.t. sync.)
- proof of a simple client
 - machine-checked (Coq, Iris)
Conclusion

concurrent program verification in weak memory:

- **invariants** share resources among threads
- (logical) **atomicity** is part of specs
- **view transfers** express synchronizations, also part of specs

also in this work:

- proof of a non-trivial lock-free queue
 (does not refine a lock-based queue w.r.t. sync.)

- proof of a simple client
- machine-checked (Coq, Iris) ✨
concurrent program verification in weak memory:

- **invariants** share resources among threads
- (logical) **atomicity** is part of specs
- **view transfers** express synchronizations, also part of specs

also in this work:

- proof of a non-trivial lock-free queue
 (does not refine a lock-based queue w.r.t. sync.)
 [a refinement proof in SC: Vindum & Birkedal, 2021, *Mechanized Verification of a Fine-Grained Concurrent Queue from Facebook’s Folly Library*]
- proof of a simple client
- machine-checked (Coq, Iris) 🍀