
Introduction HM(X) HMG(X) Some design choices

Constraint-based type inference for GADTs

Vincent Simonet, François Pottier

November 16, 2004

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Introduction

HM(X)

HMG(X)

Some design choices

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Algebraic data types

The data constructors associated with an ordinary algebraic
data type constructor ε receive type schemes of the form:

K :: ∀ᾱ.τ1 · · · τn → ε(ᾱ)

For instance,

Leaf :: ∀α.tree(α)
Node :: ∀α.tree(α) · α · tree(α) → tree(α)

Matching a value of type tree(α) against the pattern Node(l, v, r)
binds l, v, and r to values of types tree(α), α, and tree(α).

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Läufer-Odersky-style existential types

In Läufer and Odersky’s extension of Hindley and Milner’s type
system with existential types, the data constructors receive
type schemes of the form:

K :: ∀ᾱβ̄.τ1 · · · τn → ε(ᾱ)

For instance,
Key :: ∀β.β · (β → int) → key

Matching a value of type key against the pattern Key (v, f) binds
v and f to values of type β and β → int, for an unknown β.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Guarded algebraic data types

Let us now assign constrained type schemes to data
constructors:

K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ)

Matching a value of type ε(ᾱ) against the pattern K x1 · · · xn
binds xi to a value of type τi, for some unknown types β̄ that
satisfy the constraint D.

In general, constraints may be arbitrary first-order formulæ
involving basic predicates on types such as type equality,
subtyping, membership in a type class, etc.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Guarded algebraic data types (cont’d)

Let
K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ)

In the clause (K x1 · · · xn).e, the expression e is typechecked
under the assumption that β̄ is unknown, but D holds.

Thus, two phenomena arise:

I D may mention β̄, so the types β̄ are partially abstract;

I D may mention ᾱ, so the success of a dynamic test yields
extra static type information.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

GADTs in the setting of equality constraints

In the simplest case, constraints are made of type equations:

τ ::= α | τ → τ | ε(τ, . . . , τ)
C, D ::= (τ = τ) | C ∧ C | ∃α.C | ¬ C

Without loss of expressiveness, data constructors may then
receive unconstrained type schemes:

K :: ∀β̄.τ1 · · · τn → ε(τ̄)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

A typical example

For instance, following Crary, Weirich, and Morrisett, one might
declare a singleton type of runtime type descriptors:

Int :: ty(int)
Pair :: ∀β1β2.ty(β1) · ty(β2) → ty(β1 × β2)

This may also be written

Int :: ∀α[α = int].ty(α)
Pair :: ∀αβ1β2[α = β1 × β2].ty(β1) · ty(β2) → ty(α)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

A typical example (cont’d)

Runtime type descriptors allow defining generic functions:

let rec print : ∀α.ty(α) → α → unit = fun t →
match t with
| Int →

(∗ α is int ∗)
print int

| Pair (t1, t2) →
(∗ α is β1 × β2 ∗)
fun (x1, x2) →
print t1 x1; print string ” ∗ ”; print t2 x2

The two branches have incompatible types int → unit and
β1 × β2 → unit, but they also have a common type, namely
α → unit.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Other applications in the setting of equality

Applications of GADTs include:

I Generic programming (Xi, Cheney and Hinze)

I Tagless interpreters (Xi, Sheard)

I Tagless automata (Pottier and Régis-Gianas)

I Type-preserving defunctionalization (Pottier and Gauthier)

I and more...

GADTs allow inductive definitions of predicates on types, that is,
they allow embedding proofs (about types) into values.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Beyond equality

Constraints may involve

I Presburger arithmetic (Xi’s Dependent ML)

I complex polynomials (Zenger’s indexed types)

I subtyping (runtime security levels à la Tse and Zdancewic)

I and more: what about type class membership assertions?

Xi and Zenger refine Hindley and Milner’s type system. Instead,
we extend it.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Introduction

HM(X)

HMG(X)

Some design choices

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Why constraints?

Constraints are useful for two reasons:

I they help specify type inference in a modular, declarative way.

I constraints need not be equations; they are more general.

In this talk, I assume that constraints are built on top of
equations, so as to remain in the spirit of Hindley and Milner’s
type system. The second motive vanishes; the first one remains.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The type system HM(X)

We choose HM(X) as a starting point because it is the most
elegant constraint-based presentation of Hindley and Milner’s
type system.

HM(X) assigns constrained type schemes to expressions:

σ ::= ∀ᾱ[C].τ

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The two facets of HM(X)

HM(X) comes with a logic specification, that is, a set of
deduction rules for typing judgments of the form

C, Γ ` e : σ

HM(X) also comes with a functional specification, that is, an
inductively defined mapping that takes every pre-judgement
Γ ` e : σ to a constraint LΓ ` e : σM.

This mapping is also known as a constraint generator.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The two facets of HM(X) (cont’d)

The two specifications are related by the following

Theorem
C, Γ ` e : σ is equivalent to C LΓ ` e : σM.

This is the analogue of the principal types theorem in Hindley
and Milner’s type system.

Deciding whether a (closed) program e is well-typed reduces to
deciding whether the (closed) constraint ∃α.L∅ ` e : αM is true.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The logic facet of HM(X)

The syntax-directed rules are as follows:

Var
Γ(x) = σ C ∃σ

C, Γ ` x : σ

Abs
C, Γ[x 7� τ′] ` e : τ

C, Γ ` λx.e : τ′ → τ

App

C, Γ ` e1 : τ′ → τ
C, Γ ` e2 : τ′

C, Γ ` e1 e2 : τ

Fix
C, Γ[x 7� σ] ` v : σ

C, Γ ` µ(x : ∃β̄.σ).v : σ

Let
C, Γ ` e1 : σ′ C, Γ[x 7� σ′] ` e2 : σ

C, Γ ` let x = e1 in e2 : σ

In this talk, in Fix, we require σ to be of the form ∀ᾱ.τ. Users
do not have access to constraints.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The logic facet of HM(X) (cont’d)

There are also a few non-syntax-directed rules:

Gen
C ∧ D, Γ ` e : τ
ᾱ # ftv(Γ, C)

C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

Inst
C, Γ ` e : ∀ᾱ[D].τ

C D

C, Γ ` e : τ

Sub
C, Γ ` e : τ′

C τ′ ≤ τ

C, Γ ` e : τ

Hide
C, Γ ` e : σ
ᾱ # ftv(Γ, σ)

∃ᾱ.C, Γ ` e : σ

In this talk, ≤ is interpreted as equality.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The functional facet of HM(X)

The constraint generator is defined as follows:

LΓ ` x : τM = Γ(x) ≤ τ
LΓ ` λx.e : τM = ∃α1α2.(τ = α1 → α2 ∧ LΓ[x 7� α1] ` e : α2M)

LΓ ` e1 e2 : τM = ∃α.(LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM)
LΓ ` µ(x : ∃β̄.σ).v : τM = ∃β̄.(LΓ[x 7� σ] ` v : σM ∧ σ ≤ τ)

LΓ ` let x = e1 in e2 : τM = LΓ[x 7� ∀α[LΓ ` e1 : αM].α] ` e2 : τM

Constraints of the form σ ≤ τ are interpreted as follows:

(∀ᾱ[C].τ) ≤ τ′ = ∃ᾱ.(C ∧ τ ≤ τ′)

The treatment of fixpoints relies on the following notation:

LΓ ` e : ∀ᾱ.τM = ∀ᾱ.LΓ ` e : τM

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The functional facet of HM(X) (cont’d)

The constraint LΓ ` e : τM is in the following grammar:

C ::= (τ = τ) | C ∧ C | ∃α.C | ∀α.C

We have not used implication or negation. Constraint solving
amounts to first-order unification under a mixed prefix.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Introduction

HM(X)

HMG(X)

Some design choices

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Patterns

The calculus is extended with data constructors K, patterns p,
and functions defined by cases.

e ::= x | λc̄ | K ē | e e | µx.v | let x = e in e
c ::= p.e
p ::= 0 | 1 | x | p ∧ p | p ∨ p | K p̄

The operational semantics is extended by defining an extended
substitution [p 7� v] which is either undefined or a mapping of
the variables bound by p to values.

There is a (classic) catch! This semantics states that matching,
say, an integer value against a pair pattern is legal—it just
doesn’t match. Yet, most compilers implement a semantics
where dereferencing an integer is illegal.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking expressions

The specification is extended with new rules for data
constructors and function definitions by cases.

Cstr
∀i C, Γ ` ei : τi

K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ) C D

C, Γ ` K e1 · · · en : ε(ᾱ)

Abs
∀i C, Γ ` ci : τ

C, Γ ` λ(c1 · · · cn) : τ

Clause
C ` p : τ′ ∃β̄[D]Γ′ C ∧ D, ΓΓ′ ` e : τ β̄ # ftv(C, Γ, τ)

C, Γ ` p.e : τ′ → τ

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking patterns

Typing judgments about patterns are written

C ` p : τ ∆

where environment fragments are defined by

∆ ::= ∃β̄[D]Γ

For instance, here are two valid judgments:

true ` Int : ty(α) ∃∅[α = int]∅
true ` Pair (t1, t2) : ty(α) ∃β1β2[α = β1 × β2](t1 : ty(β1); t2 : ty(β2))

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Operations on environment fragments

These will be used in the following slides...

Qualification: ∃ᾱ[C]∆
∃ᾱ[C](∃β̄[D]Γ) = ∃ᾱβ̄[C ∧ D]Γ

Conjunction: ∆1 × ∆2 (where ∆1 and ∆2 have disjoint domains)
(∃β̄1[D1]Γ1) × (∃β̄2[D2]Γ2) = ∃β̄1β̄2[D1 ∧ D2](Γ1 × Γ2)

Disjunction: ∆1 + ∆2 (where ∆1 and ∆2 have a common domain)
(∃β̄1[D1]Γ1) + (∃β̄2[D2]Γ2) = ∃β̄1β̄2ᾱ[(D1 ∧ Γ ≤ Γ1) ∨ (D2 ∧ Γ ≤ Γ2)]Γ

Side conditions omitted.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking patterns (cont’d)

p-Empty

C ` 0 : τ ∃∅[false]∅
p-Wild

C ` 1 : τ ∃∅[true]∅

p-Var

C ` x : τ ∃∅[true](x 7� τ)

p-And

∀i C ` pi : τ ∆i

C ` p1 ∧ p2 : τ ∆1 × ∆2

p-Or

∀i C ` pi : τ ∆

C ` p1 ∨ p2 : τ ∆

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking patterns (cont’d)

The key typechecking rule for patterns is

p-Cstr

∀i C ∧ D ` pi : τi ∆i

K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ) β̄ # ftv(C)

C ` K p1 · · · pn : ε(ᾱ) ∃β̄[D](∆1 × · · · × ∆n)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking patterns (cont’d)

We also need a few non-syntax-directed rules:

p-EqIn

C ` p : τ′ ∆
C τ = τ′

C ` p : τ ∆

p-SubOut

C ` p : τ ∆′

C ∆′ ≤ ∆

C ` p : τ ∆

p-Hide

C ` p : τ ∆
ᾱ # ftv(τ,∆)

∃ᾱ.C ` p : τ ∆

This completes the logic specification of HMG(X).

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking patterns: examples

The following are valid derivations:

true ` Int : ty(α) ∃∅[α = int]∅
p-Cstr

∀i ∈ {1,2} α = β1 × β2 ` ti : ty(βi) (ti : ty(βi))
p-Var

true ` Pair (t1, t2) : ty(α)
∃β1β2[α = β1 × β2](t1 : ty(β1); t2 : ty(β2))

p-Cstr

Recall that

Int :: ∀α[α = int].ty(α)
Pair :: ∀αβ1β2[α = β1 × β2].ty(β1) · ty(β2) → ty(α)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking clauses: examples

Here is a derivation for the first clause of print:

(. . .)

(. . .)

α = int, Γ ` print int : int → unit
α = int int → unit ≤ α → unit

α = int, Γ ` print int : α → unit
Sub

true, Γ ` Int.print int : ty(α) → α → unit
Clause

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Typechecking clauses: examples (cont’d)

Here is a derivation for the second clause:

(. . .)

(. . .)

. . . , Γ; t1 : ty(β1); t2 : ty(β2) `
λ . . . : β1 × β2 → unit

α = β1 × β2 β1 × β2 → unit ≤ α → unit

α = β1 × β2, Γ; t1 : ty(β1); t2 : ty(β2) `
λ . . . : α → unit

Sub

true, Γ ` Pair (t1, t2).λ(x1, x2).(print t1 x1; print t2 x2) :
ty(α) → α → unit

Clause

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Type soundness

Theorem
If e is well-typed and contains exhaustive case analyses only, then
it does not go wrong.

Nonexhaustive case analyses are accepted, provided the
typechecker can prove that all omitted branches are
dead—details in the paper.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The functional facet of HMG(X)

Two new rules govern applications of data constructors and
function definitions by cases (clauses):

LΓ ` K e1 · · · en : τM = ∃ᾱβ̄.(∧iLΓ ` ei : τiM ∧ D ∧ ε(ᾱ) ≤ τ)
where K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ)

LΓ ` p.e : τ1 → τ2M = Lp ↓ τ1M ∧ ∀β̄.D ⇒ LΓΓ′ ` e : τ2M
where ∃β̄[D]Γ′ is Lp ↑ τ1M

GADTs demand universal quantification (already required for
Läufer-Odersky-style existential types) and implication.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Preconditions for patterns

The constraint Lp ↓ τM asserts that it is legal to match a value
of type τ against p.

L0 ↓ τM = true

L1 ↓ τM = true

Lx ↓ τM = true

Lp1 ∧ p2 ↓ τM = Lp1 ↓ τM ∧ Lp2 ↓ τM

Lp1 ∨ p2 ↓ τM = Lp1 ↓ τM ∧ Lp2 ↓ τM

LK p1 · · · pn ↓ τM = ∃ᾱ.(ε(ᾱ) = τ ∧ ∀β̄.D ⇒ ∧iLpi ↓ τiM)
where K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Postconditions for patterns

The environment fragment Lp ↑ τM represents the extra knowledge
obtained by successfully matching a value of type τ against p.

L0 ↑ τM = ∃∅[false]∅

L1 ↑ τM = ∃∅[true]∅

Lx ↑ τM = ∃∅[true](x 7� τ)

Lp1 ∧ p2 ↑ τM = Lp1 ↑ τM × Lp2 ↑ τM

Lp1 ∨ p2 ↑ τM = Lp1 ↑ τM + Lp2 ↑ τM

LK p1 · · · pn ↑ τM = ∃ᾱβ̄[ε(ᾱ) = τ ∧ D](×iLpi ↑ τiM)
where K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The two facets of HMG(X)

The two specifications are related by the same theorem as in
HM(X):

Theorem
C, Γ ` e : σ is equivalent to C LΓ ` e : σM.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

The print example

The constraint associated with print is as follows:

LΓ0 ` µprint. . . . : ∀α.ty(α) → α → unitM
≡

∀α.
(α = int ⇒ LΓ ` print int : α → unitM
∧ ∀β1β2.α = β1 × β2 ⇒ LΓ ` λ . . . : α → unitM

)

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Have we got carried away?

The constraint LΓ ` e : τM is now in the first-order theory of
equality, whose satisfiability problem is decidable, but of
nonelementary complexity.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

A restriction

By requiring functions that analyze GADTs to be explicitly
annotated with closed type schemes, we are able to generate
tractable constraints, where all implications are of the form

∀β̄.C1 ⇒ C2 where ftv(C1) ⊆ β̄

These are (very) easy to solve and have most general unifiers.

This restriction is stronger than we’d like. Also, the details are
not particularly elegant.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Introduction

HM(X)

HMG(X)

Some design choices

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Are patterns evaluated left-to-right?

This uncurried version of print is rejected:

let rec print : ∀α.ty(α) × α → unit = fun tx →
match tx with
| (Int , x) →

print int x
| (Pair (t1, t2) , (x1, x2)) →

print t1 x1; print string ” ∗ ”; print t2 x2

The pattern (x1, x2) is not legal until the second component of
tx is known to be a pair, that is, until the pattern
Pair (t1, t2) is deemed successful.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Are patterns evaluated left-to-right? (cont’d)

The uncurried version of print is accepted if modified as follows:

let rec print : ∀α.ty(α) × α → unit = fun tx →
match tx with
| (Int , x) →

print int x
| (Pair (t1, t2) , x) →

let (x1, x2) = x in
print t1 x1; print string ” ∗ ”; print t2 x2

One could modify HMG(X) to accept both versions, provided
left-to-right evaluation of patterns is explicitly specified.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Precise treatment of disjunction

In HMG(X), the clause

(K1 x) ∨ (K2 x).e

is well-typed if and only if both (K1 x).e and (K2 x).e are.

This is not true in ocaml, where both occurrences of x in
(K1 x) ∨ (K2 x) must have the same type.

HMG(X) is more expressive and more expensive.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

A pathological case

type T : ∗ → ∗ where
K1 : T bool | K2 : T int

let f (x : T a) y =
match x with K1 → y + 1 | K2 → not y

The (inferred) principal type of f is

∀αβ[(α = bool ⇒ β = int) ∧ (α = int ⇒ β = bool)].T α → β → β

Probably overwhelming! Also, the programmer has no way of
specifying the type of y.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

A pathological case (cont’d)

Imagine we instead have

type T : ∗ → ∗ where
K1 : T int | K2 : T bool

The principal type of f is then

∀αβ[(α = int ⇒ β = int) ∧ (α = bool ⇒ β = bool)].T α → β → β

which, in a syntactic interpretation of constraints, is equivalent
to

∀αβ[β = α].T α → β → β

∀α.T α → α → α

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Conclusion

I HMG(X) is a sound and expressive type system.

I It enjoys a reduction from type inference to constraint
solving.

I The system must be restricted for tractability and
simplicity.

A prototype version of HMG(=) has been implemented by Yann
Régis-Gianas.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

Introduction HM(X) HMG(X) Some design choices

Selected References

Vincent Simonet, François Pottier.
Constraint-Based Type Inference with Guarded Algebraic
Data Types.
Submitted, 2004.

Hongwei Xi.
Applied Type System.
TYPES 2003.

Simon Peyton Jones, Geoffrey Washburn, and Stephanie
Weirich.
Wobbly types: type inference for generalised algebraic data
types.
Draft, 2004.

Vincent Simonet, François Pottier Constraint-based type inference for GADTs

http://pauillac.inria.fr/~fpottier/publis/simonet-pottier-hmg.pdf
http://pauillac.inria.fr/~fpottier/publis/simonet-pottier-hmg.pdf
http://www.cs.bu.edu/~hwxi/academic/papers/types03.pdf
http://research.microsoft.com/Users/simonpj/papers/gadt/
http://research.microsoft.com/Users/simonpj/papers/gadt/

	Introduction
	HM(X)
	HMG(X)
	Some design choices

