François Pottier
Jean-Marie Madiot

A Separation Logic for Heap Space under GC
Reasoning about Heap Space

How can we establish \textit{formal (verified)} bounds on a program’s \textit{heap space} usage?

We wish to

- work in the setting of a \textit{program logic},
- view heap space as a \textit{resource}.
Following Hofmann (1999, 2000), let $\Diamond 1$ represent one space credit. Allocation consumes credits; deallocation produces credits.

\[
\begin{align*}
\{ \Diamond \text{size}(b) \} & \quad x := \text{alloc}(b) \quad \{ x \mapsto b \} \\
\{ x \mapsto b \} & \quad \text{free}(x) \quad \{ \Diamond \text{size}(b) \}
\end{align*}
\]

A function’s space requirement is visible in its specification.

End of talk...?
In the presence of GC, what Happens?

Garbage collection can offer superior *simplicity, safety, performance.*

In the presence of GC,

- deallocation becomes *implicit,*
- so we lose the ability to recover space credits while reasoning.
A Ghost Deallocation Operation?

It is tempting to switch to a *logical deallocation* operation:

\[x \mapsto b \iff \diamond \text{size}(b) \]

This would marry

- *manual reasoning* about memory at verification time
- *automatic management* of memory at runtime.
At least two questions spring to mind:

Is this approach \textit{practical}? Is it \textit{sound}?
A pitfall would be to get *the worst of both worlds*:

- mental burden of manual reasoning about memory deallocation,
- performance issues sometimes caused by GC.

Yet we can strive to get the *best* of each:

- simplicity and possibly superior performance afforded by GC,
- reasoning at a suitable level of abstraction: e.g., via *bulk logical deallocation*.
Soundness?

Is logical deallocation sound?

\[x \mapsto b \quad \implies \quad \Diamond \text{size}(b) \]

It does have a few good properties: *no double-free, no use-after-free.*

- a block cannot be logically deallocated twice;
- a block cannot be accessed after it has been logically deallocated.
Unfortunately, logical deallocation in this form is \textit{not sound}.

Introducing logical deallocation creates a distinction between

\begin{itemize}
 \item the \textit{logical heap} that the programmer keeps in mind,
 \item the \textit{physical heap} that exists at runtime.
\end{itemize}
The following situation is problematic.

The programmer has logically deallocated a block and obtained 3, but this block is reachable and cannot be reclaimed by the GC.

We have 3 space credits but no free space in the physical heap!
Restricting Logical Deallocation

To avoid this problem, we want to restrict logical deallocation.

- A block should be logically deallocated only if it is unreachable,
- which guarantees that the GC can reclaim this block,
- so the logical and physical heaps remain synchronized.
A Global Invariant

The logical and physical heaps *coincide on their reachable fragments*.

So, $\diamondsuit k$ implies k free words *exist* in the logical heap
implies k free words *can be created* in the physical heap.
The outstanding problem is, how do we restrict logical deallocation?

- We want to disallow deallocating a reachable block,
- but Separation Logic lets us reason about ownership.
- Ownership and reachability are unrelated!
- Furthermore, reachability is a nonlocal property.

Not requiring reachability reasoning is a strength of traditional SL.
A Solution: Predecessor Tracking

Following Kassios and Kritikos (2013),

- we keep track of the predecessors of every block.
- If a block has no predecessor, then it is unreachable,
- therefore it can be logically deallocated.
In addition to *points-to*, we use *pointed-by* assertions:

- *points-to*:
 - $l \rightarrow b$
 - Permission to read/route the block at l

- *pointed-by*:
 - $l \leftarrow L$
 - Permission to add/remove pointers to l

- Permission to deallocate if $L = \emptyset$
We get a sound logical deallocation axiom, for a single block:

\[x \rightarrow b \ast x \leftarrow \emptyset \implies \Diamond \text{size}(b) \]
Dealing with Roots

We want the pointers *from the stack(s) to the heap* to be explicit,

- so the operational semantics views them as GC *roots*,
- so our predecessor-tracking logic keeps track of them.

This leads to a calculus where *stack cells* are explicit
and *a variable denotes an address* on the stack.
Roadmap

1. Syntax, Semantics of SpaceLang
2. Reasoning Rules of SL
3. Ghost Reference Counting
4. Examples of Specifications
5. Conclusion
Values, Blocks, Stores

Memory locations: $\ell, c, r, s \in \mathcal{L}$.

Values include constants, memory locations, and \textit{closed procedures}:

$$
\nu ::= () \mid k \mid \ell \mid \lambda \vec{x}.i
$$

Memory blocks include \textit{heap tuples}, \textit{stack cells}, and deallocated blocks:

$$
b ::= \vec{\nu} \mid \langle \nu \rangle \mid \emptyset
$$

A \textit{store} maps locations to blocks, encompassing the heap and stack(s). The \textit{size} of a block:

$$
\text{size}(\vec{\nu}) = 1 + |\vec{\nu}| \quad \text{size}(\langle \nu \rangle) = \text{size}(\emptyset) = 0
$$

The size of the store is the sum of the sizes of all blocks.
A *reference* is a variable or a (stack) location and denotes a *stack cell*.

$$\rho ::= x \mid c$$

SpaceLang uses *call-by-reference*.

A variable denotes a closed reference, *not* a closed value as is usual. The operational semantics involves substitutions $[c/x]$.

This preserves the property that *the code never points to the heap*.

The *roots* of the garbage collection process are *the stack cells*.
SpaceLang is imperative. An instruction i does not return a value.

- **skip**
- **$i; i$**
- **if ϱ then i else i**
- **$\varrho(\overline{\varrho})$**
- **$\varrho = v$**
- **$\varrho = *\varrho$**

Instruction Types

- **no-op**
- **sequencing**
- **conditional**
- **procedure call**
- **constant load**
- **move**

Stack Operations

- **$\varrho = \text{alloc } n$**
- **$\varrho = [*\varrho + o]$**
- **$[\varrho + o] = \varrho$**
- **$\varrho = (\varrho == \varrho)$**
- **alloca x in i**
- **alloca c in i**
- **fork ϱ as x in i**

The operands of every instruction are stack cells (ϱ).

There is no deallocation instruction for heap blocks.
We fix a *maximum heap size* S.

Heap allocation *fails* if the heap size exceeds S.

$$\text{StepAlloc} \quad \sigma' = [\ell + = ()^n] \sigma$$

$$\text{size}(\sigma') \leq S \quad \sigma'' = \langle s := \ell \rangle \sigma'$$

$$*s = \text{alloc } n / \sigma \longrightarrow \text{skip } / \sigma''$$

S is a parameter of the operational semantics, but the reasoning rules of SL\Diamond are independent of S.
The dynamic semantics of stack allocation is in \textit{three steps}:

\[\text{StepAllocaEntry} \quad \sigma' = [c \leftarrow \langle()\rangle]\sigma \]
\[\text{alloca } x \text{ in } i / \sigma \rightarrow \text{ alloca } c \text{ in } [c/x]i / \sigma' \]

\[\text{StepAllocaExit} \quad \sigma(c) = \langle v \rangle \quad \sigma' = [c := \emptyset]\sigma \]
\[\text{alloca } c \text{ in skip } / \sigma \rightarrow \text{ skip } / \sigma' \]

Evaluation contexts: \(K ::= [] \mid K; i \mid \text{ alloca } c \text{ in } K. \)
To complete the definition of the operational semantics,

- allow *garbage collection* before every reduction step.

\[\sigma \triangleright \sigma' \text{ holds if} \]

- the stores \(\sigma \) and \(\sigma' \) have the same domain;
- for every \(\ell \) in this domain,

 either \(\sigma' (\ell) = \sigma (\ell) \), or \(\ell \) is unreachable in \(\sigma \) and \(\sigma' (\ell) = \# \).

- allow *thread interleavings* (comes for free with Iris).
Roadmap

1 Syntax, Semantics of SpaceLang
2 Reasoning Rules of SL
3 Ghost Reference Counting
4 Examples of Specifications
5 Conclusion
Heap allocation *consumes space credits.*

\[
\text{Alloc} \left\{ \begin{array}{l}
\Diamond \text{size}(\cdot)^n \\
 s \mapsto \langle v \rangle \\
 v \leftarrow_q L
\end{array} \right. \quad \ast s = \text{alloc } n
\]

\[
\exists \ell. \left\{ \begin{array}{l}
\ell \mapsto (\cdot)^n \\
\ell \leftarrow \{ s \} \\
 s \mapsto \langle \ell \rangle \\
 v \leftarrow_q L \setminus \{ s \}
\end{array} \right.
\]

Points-to and pointed-by assertions for the new location appear.

One pointer to the value \(v \) is *deleted.* (This aspect is optional.)
Writing a heap cell is simple... but involves some administration.

\[
\begin{array}{c}
\text{Heap Store} \\
\text{Writing a heap cell is simple... but involves some administration.}
\end{array}
\]

One pointer to \(\nu \) is deleted; one pointer to \(\nu' \) is created.
A points-to assertion for the new stack cell exists throughout its lifetime.

\[
\text{ALLOC}\ \{\Phi \star c \mapsto \langle () \rangle \} \ [c/x] i \ \{c \mapsto \langle () \rangle \star \Psi\} \\
\{\Phi\} \text{alloca } x \text{ in } i \ \{\Psi\}
\]

No pointed-by assertion is provided. (A design choice.)

- No pointers (from the heap or stack) to the stack.
Logical deallocation of a block is a *ghost operation*:

\[
\begin{align*}
\ell \rightarrow_1 \tilde{\nu} & \quad \star \quad \ell \leftarrow_1 L & \quad \star \quad \text{knowledge of all antecedents} \\
\text{ownership of the block} & \quad \text{no antecedent (but self)} & \\
\implies \quad \text{location now dead} & \\
\hfill \quad \text{credit!} & \\
\end{align*}
\]
Deletion of deallocated predecessors can be deferred:

\[v \leftarrow_{q} L \ast \mathbb{H} D \Rightarrow \frac{\text{removed from antecedents}}{\text{dead locations}} \text{ if } \text{dom}(L \setminus L') \subseteq D \]

A key rule: if \(L' \) is empty, then \(v \) becomes eligible for deallocation.
A group that is *closed under predecessors* can be deallocated at once:

The rules for constructing a “cloud” (omitted) are straightforward.
Points-to and pointed-by assertions can be \textit{split} and \textit{joined}.

\[
\begin{align*}
 l \rightarrow_{q_1+q_2} b & \equiv l \rightarrow_{q_1} b \ast l \rightarrow_{q_2} b \\
 \nu \leftarrow_{q_1+q_2} l_1 \uplus l_2 & \equiv \nu \leftarrow_{q_1} l_1 \ast \nu \leftarrow_{q_2} l_2 \\
 \nu \leftarrow_{q} l & \rightarrow* \nu \leftarrow_{q} l' & \text{if } l \subseteq l' \\
 l \rightarrow_{q} b \ast l' \leftarrow_{1} l & \equiv l \rightarrow_{q} b \ast l' \leftarrow_{1} l \ast \left(l' \text{ pointer } (b) \leq l \text{ pointer } l' \right)
\end{align*}
\]

Pointed-by assertions are \textit{covariant}.

Points-to and pointed-by assertions can be \textit{confronted}.
Space credits can be *split* and *joined*.

\[
\begin{align*}
\text{True} & \implies_{H} \Diamond 0 \\
\Diamond (m_1 + m_2) & \implies_{H} \Diamond m_1 * \Diamond m_2
\end{align*}
\]
Theorem (Soundness)

If \(\{\diamond S\} i \{\text{True}\} \) holds, then, executing \(i \) in an empty store cannot lead to a situation where a thread is stuck.

If the code is verified under \(S \) space credits, then its heap space usage cannot exceed \(S \).

This guarantee holds for every \(S \).

The reasoning rules are independent of \(S \).

The rules allow compositional reasoning about space.
Roadmap

1. Syntax, Semantics of SpaceLang
2. Reasoning Rules of SL
3. Ghost Reference Counting
4. Examples of Specifications
5. Conclusion
Choice of a Predecessor Tracking Discipline

Keeping track of a *multiset* of predecessors can be heavy. Sometimes

- *counting* predecessors is enough,
- or recording what *regions* the predecessors inhabit is enough.

Can *high-level predecessor tracking disciplines* be defined on top of SLdiamond?
Example: Ghost Reference Counting

The simplified pointed-by assertion $v \leftarrow n$ counts predecessors:

$$v \leftarrow n \triangleq \exists L. (v \leftarrow 1 L \ast |L| = n)$$

Edge addition / deletion increment / decrement n.
Roadmap

1. Syntax, Semantics of SpaceLang
2. Reasoning Rules of SL
3. Ghost Reference Counting
4. Examples of Specifications
 - A Stack
 - List Copy
5. Conclusion
Examples of Specifications
A Stack
List Copy
Creating a stack *consumes 4 space credits*.

\[
\begin{align*}
 f & \mapsto \langle \text{create} \rangle \\
 \text{stack} & \mapsto \langle () \rangle
\end{align*}
\]

\[\diamond 4\]

\[\star f(\text{stack})\]

\[
\begin{align*}
 \exists \ell. & \quad stack \mapsto \langle \ell \rangle \\
 \text{isStack} \ \ell \ [\] & \star \ell \leftarrow 1
\end{align*}
\]

We get unique ownership of the stack and *we have the sole pointer* to it.
Pushing *consumes 4 space credits*.

\[
\begin{align*}
 f & \mapsto \langle \text{push} \rangle \\
 stack & \mapsto \langle \ell \rangle \\
 elem & \mapsto \langle v \rangle \\
 4 \ast \text{isStack } \ell \text{ vs} & \\
 v & \leftarrow n
\end{align*}
\]

\[
\begin{align*}
 f & \mapsto \langle \text{push} \rangle \\
 stack & \mapsto \langle \ell \rangle \\
 elem & \mapsto \langle v \rangle \\
 \text{isStack } \ell (v :: vs) & \\
 v & \leftarrow n + 1
\end{align*}
\]

The value \(v \) receives *one more antecedent*.
Popping frees up 4 space credits.

\[
\begin{align*}
 f & \mapsto \langle \text{pop} \rangle \\
 \text{stack} & \mapsto \langle \ell \rangle \\
 \text{elem} & \mapsto \langle () \rangle \\
 \text{isStack } \ell \ (v :: vs) & \\
 v & \leftarrow n
\end{align*}
\]

\[
\begin{align*}
 f & \mapsto \langle \text{pop} \rangle \\
 \text{stack} & \mapsto \langle \ell \rangle \\
 \text{elem} & \mapsto \langle v \rangle \\
 \diamond 4 \ast \text{isStack } \ell \ vs & \\
 v & \leftarrow n
\end{align*}
\]

The number of antecedents of \(v \) is unchanged, as \(\text{elem} \) points to it.
Logically deallocating the entire stack is a *ghost operation*. It frees up *a linear number of space credits*.

\[
\begin{align*}
\{ \text{isStack } \ell \text{ vs } \star \ell & \leftarrow 0 \} \\
\star v & \leftarrow n \\
(v,n) \in vns
\end{align*} \quad \Rightarrow l \quad \{ \diamond(4 + 4 \times |vs|) \\
\star v & \leftarrow n - (v \$ vs) \\
(v,n) \in vns
\}
\]

The ghost reference counters of the stack elements are decremented.
Examples of Specifications

A Stack

List Copy
Each cell owns the next cell and possesses *the sole pointer* to it.

\[
\text{isList } \ell \ [\] \triangleq \ell \mapsto [0] \\
\text{isList } \ell \ (v :: vs) \triangleq \exists \ell'. \ell \mapsto [1; v; \ell'] \star \ell' \leftarrow 1 \star \text{isList } \ell' \ vs
\]

Let’s now have a look at *list copy* and its spec. (Fasten seatbelts!)
List Copy in SpaceLang

\[
copy \triangleq \lambda (\text{self}, \text{dst}, \text{src}).
\]

\[
\text{alloc} \ \text{tag} \text{ in } *\text{tag} = [*\text{src} + 0];
\]

\[
\text{if } *\text{tag} \text{ then }
\]

\[
\text{alloc} \ \text{head} \text{ in } *\text{head} = [*\text{src} + 1];
\]

\[
\text{alloc} \ \text{tail} \text{ in } *\text{tail} = [*\text{src} + 2];
\]

\[
*\text{src} = ();
\]

\[
\text{alloc} \ \text{dst}' \text{ in } \text{self}(\text{self}, \text{dst}', \text{tail});
\]

\[
*\text{dst} = \text{alloc} \ 3;
\]

\[
[*\text{dst} + 0] = *\text{tag};
\]

\[
[*\text{dst} + 1] = *\text{head};
\]

\[
[*\text{dst} + 2] = *\text{dst}'
\]

\[
\text{else }
\]

\[
*\text{src} = ();
\]

\[
*\text{dst} = \text{alloc} \ 1;
\]

\[
[*\text{dst} + 0] = *\text{tag}
\]

\[
\begin{align*}
& \quad \text{– read the list’s tag} \\
& \quad \text{– if this is a cons cell, then} \\
& \quad \text{– read the list’s head} \\
& \quad \text{– read the list’s tail} \\
& \quad \text{– clobber this root} \\
& \quad \text{– copy the list’s tail} \\
& \quad \text{– allocate a new cons cell} \\
& \quad \text{– and initialize it} \\
& \quad \text{– this must be a nil cell} \\
& \quad \text{– clobber this root} \\
& \quad \text{– allocate a new nil cell} \\
& \quad \text{– and initialize it}
\end{align*}
\]
The case $m = 1$, where we have the sole pointer to the list, is special.

\[
\begin{align*}
\{ & f \mapsto \langle \text{copy} \rangle \ \ast \ dst \mapsto \langle () \rangle \ \ast \ src \mapsto \langle \ell \rangle \\
& \quad \text{isList } \ell \ vs \ \ast \ \ell \ \leftarrow m \\
& \quad m = 1 \ ? \ 0 : \ (2 + 4 \times |vs|) \\
& \quad \forall v \in vs. \ \exists n. \ (v, n) \in vns \\
& \quad *_{(v, n)\in vns} \ v \ \leftarrow n
\} \equiv \text{need no space or linear space}
\end{align*}
\]

\[
f(f, dst, src) =
\begin{align*}
\{ & f \mapsto \langle \text{copy} \rangle \ \ast \ dst \mapsto \langle \ell' \rangle \ \ast \ src \mapsto \langle () \rangle \\
& \quad m = 1 \ ? \ True : (\text{isList } \ell \ vs \ \ast \ \ell \ \leftarrow m - 1) \\
& \quad \text{isList } \ell' \ vs \ \ast \ \ell' \ \leftarrow 1 \\
& \quad *_{(v, n)\in vns} \ v \ \leftarrow n + (m = 1 \ ? \ 0 : v \ \$_{vs}$)
\} \equiv \text{orig. list is deallocated or preserved}
\end{align*}
\]
Roadmap

1. Syntax, Semantics of SpaceLang
2. Reasoning Rules of SL
3. Ghost Reference Counting
4. Examples of Specifications
5. Conclusion
Summary of Contributions

A sound logic to reason about space usage in the presence of GC.

- Allocation consumes *space credits* ♦ n.
- *Logical deallocation* is a ghost operation.
- Logical dellocation requires *predecessor tracking* ν ← L.
Future Work

Predecessor tracking still requires *too much administration*. We are investigating

- *deferred* edge deletion;
- *automated or simplified* tracking of *roots*;
- predecessor tracking based on *regions*;
- notions of *single-entry-point* regions.

We would also like to adapt SL◊ directly to call-by-value λ-calculus.
A Bit of Controversy about OCaml

During this traversal, *which part of the tree is live?*

```ocaml
type tree = Leaf | Node of tree * tree

let rec walk t =
  match t with
    | Leaf       -> ()
    | Node (t1, t2) -> walk t1; walk t2
```

It could (should?) be the subtrees that have not yet been traversed, because \(t_2 \) remains live while \(\text{walk } t_1 \) is executed...
During this traversal, *which part of the tree is live?*

```ocaml
type tree = Leaf | Node of tree * tree

let rec walk t =
  match t with
  | Leaf            -> ()
  | Node (t1, t2)   -> walk t1; walk t2
```

It could (should?) be *the subtrees that have not yet been traversed*,

because t2 remains live while `walk t1` is executed...
But the OCaml compiler transforms the code roughly as follows:

```ocaml
type tree = Leaf | Node of tree * tree

let rec walk t =
  match t with
  | Leaf -> ()
  | Node (_, _) -> walk t.1 ; walk t.2
```

Thus, \textit{t} remains live while \textit{walk t.1} is executed.

Every \textit{left subtree remains live} until it has been entirely traversed.

Reasoning about space at this level requires a \textit{precise definition} of where each variable is a root.