
Strong Automated Testing of OCaml Libraries

François Pottier

June 28, 2021

Motivation

Sek, an implementation of ephemeral and persistent sequences.

• 4 abstract types (ephemeral/persistent sequences/iterators)
• 150+ operations
• shared mutable internal state

• operations can have results or effects that are not directly observable
• operations can affect objects that are not arguments

Want to test this library as a unit.

http://cambium.inria.fr/~fpottier/sek/doc/sek/Sek/

Reducing unit testing to whole-program testing

Want to exploit random testing and fuzz testing.

A fuzzer expects an executable and feeds it adverse
data so as to try and make it crash.

Therefore, need to wrap the library with a driver.

What driver?

Cannot test one operation at a time in isolation.

• (cannot generate data; cannot observe results)

Must generate and execute scenarios:

• sequences of instructions,
• possibly involving more than one data structure.

Requirements

OCaml is typed.

• generating well-typed scenarios requires type information

How can one tell if a scenario exhibits correct or incorrect behavior?

• a crash (e.g. an uncaught exception) is definitely bad; still,
• testing requires a specification of the expected behavior

Requirements

I ask the user to provide

• a reference implementation, plus
• a description of the relation between candidate and reference

The reference and candidate

• must provide the same types and operations,
• but may implement each abstract type in different ways.

The goal is to test a logical relation!
– recall Reynolds’ fable about Profs. Descartes and Bessel (1983).

https://people.mpi-sws.org/~dreyer/tor/papers/reynolds.pdf

Example: Persistent Arrays

Persistent arrays

The persistent array API.

type ’a t

val make : int -> ’a -> ’a t

val get : ’a t -> int -> ’a

val set : ’a t -> int -> ’a -> ’a t

Candidate

An efficient but incorrect candidate implementation, in two lines.

include Stdlib.Array

let set a i x = set a i x; a

Reference

An inefficient but correct reference implementation, also in two lines.

include Stdlib.Array

let set a i x = let a = Array.copy a in set a i x; a

Output

A typical output that we hope to obtain.

(* ./output/crashes/id:000000,sig:06,src:000000,op:flip16,pos:6 *)

(* @03: Failure in an observation: candidate and reference disagree. *)

(* @01 *) let a0 = make 1 0;;

(* @02 *) let a1 = set a0 0 1;;

(* @03 *) let observed = get a0 0;;

assert (observed = 0);; (* candidate finds 1 *)

Specification

The specification and harness. R is reference, C is candidate.

(* Specs. *)

let array = declare_abstract_type()

and element = sequential()

and length = interval 0 16

and index a = interval 0 (R.length a) in

(* Operations. *)

declare "make" (length ^> element ^> array) R.make C.make;

declare "get" (array ^>> fun a -> index a ^> element) R.get C.get;

declare "set" (array ^>> fun a -> index a ^> element ^> array) R.set C.set;

(* Run, with 5 units of fuel. *)

main 5

A domain-specific language of specifications is used.

Combinators for Specifications

The type of specifications

A value of type (’r, ’c) spec is a runtime representation of a relation
between a reference value of type ’r and a candidate value of type ’c.

type (’r, ’c) spec

Concrete base types

Base types in argument position must come with a generator.

val constructible: (unit -> ’t) -> (’t, ’t) spec

Base types in result position must come with a comparator.

val deconstructible: (’t -> ’t -> ’bool) -> (’t, ’t) spec

The two can be combined, allowing a type to appear in either position.

val ifpol: (’r, ’c) spec -> (’r, ’c) spec -> (’r, ’c) spec

sequential() and interval 0 16 have type (int, int) spec

and are defined using these combinators.

Abstract base types

Abstract types need neither a generator nor a comparator.

val declare_abstract_type: unit -> (’r, ’c) spec

Arrows

The ordinary arrow:

val (^>) : (’r1, ’c1) spec ->

(’r2, ’c2) spec ->

(’r1 -> ’r2, ’c1 -> ’c2) spec

An arrow cannot be nested in the left of an arrow.

A value of a function type cannot be generated (?).

(?) It can, in some cases, via a different mechanism.

Dependent Arrows

A dependent arrow allows access to the argument that has been picked:

val (^>>) : (’r1, ’c1) spec ->

(’r1 -> (’r2, ’c2) spec) ->

(’r1 -> ’r2, ’c1 -> ’c2) spec

This can be used e.g. to generate the next argument in a suitable range:

let index a = interval 0 (R.length a) in

declare "get" (array ^>> fun a -> index a ^> element) R.get C.get;

Nondeterminism

When this combinator is used, the candidate runs first, so the reference
can verify the candidate’s result and use it to decide its own result.

type ’r diagnostic = Valid of ’r | Invalid

val nondet: (’r, ’c) spec -> (’c -> ’r diagnostic, ’c) spec

This allows nondeterministic specifications.

More Combinators

There are more combinators for

• structural types (products and sums),
• recursive types,
• transforming data after it has been generated,
• transforming data before it is compared,
• rejecting unsuitable data,
• dealing with exceptions,

and more.

Example: Nondeterminism

Nondeterministic Increasing-Sequence Generators

The OCaml API.

type t

val create : unit -> t

val next : t -> int

create() returns a fresh generator.

next g must produce a number that is

• nonnegative,
• strictly greater than the numbers produced by previous calls next g.

Specification

The specification.

let t = declare_abstract_type() in

declare "create" (unit ^> t) R.create C.create;

declare "next" (t ^> nondet int) R.next C.next;

Whereas C.next has type C.t -> int,
R.next has type R.t -> int -> int diagnostic.

Reference

The reference implementation.

type t = int ref

let create () = ref 0

let next (g : t) (candidate : int) : int diagnostic =

if !g < candidate then (g := candidate; Valid candidate)

else Invalid

Example: Semi-Persistent Arrays

Semi-Persistent Arrays

type ’a t

val make : int -> ’a -> ’a t

val get : ’a t -> int -> ’a

val set : ’a t -> int -> ’a -> ’a t

set a i x produces a new array, a child of a.

At any time, the arrays created so far form a tree.

An array is valid if it is an ancestor of the most recently accessed array.

• Accessing an array invalidates all other arrays except its ancestors.

Specification

The reference serves as an oracle to reject invalid scenarios.

let elt = sequential()

and t = declare_abstract_type() in

declare "make" (lt 16 ^> elt ^> t)

R.make C.make;

declare "get" (R.valid % t ^>> fun a -> lt (R.length a) ^> elt)

R.get C.get;

declare "set" (R.valid % t ^>> fun a -> lt (R.length a) ^> elt ^> t)

R.set C.set;

Reference

The reference implementation recognizes valid accesses at runtime:

type ’a t = { data: ’a array; stack: ’a t list ref }

(* A validity test and an invalidation operation. *)

let valid a = List.memq a !(a.stack)

let invalidate_descendants a = ...

(* Operations on semi-persistent arrays. *)

let make n x = ...

let get a i = invalidate_descendants a; ...

let set a i x = invalidate_descendants a; ...

Conclusion

Conclusion

Used to test Sek, has helped find many bugs.

Supports multiple modes of use, such as:

• provide a deterministic reference, use equality to compare results
• provide a trivial reference, do not test results, watch out for crashes
• run candidate first, let reference verify the candidate’s result

Reference can serve as an oracle that helps pick suitable arguments.

	Example: Persistent Arrays
	Combinators for Specifications
	Example: Nondeterminism
	Example: Semi-Persistent Arrays
	Conclusion

