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The problem

Manipulating abstract syntax with binding requires many standard operations:

I “opening” and “closing” binders (in the locally nameless representation);
I shifting (in de Bruijn’s representation);
I deciding α-equivalence;
I testing whether a name occurs free in a term;
I performing capture-avoiding substitution;
I converting user-supplied terms to the desired internal representation;
I etc., etc.

This requires a lot of boilerplate, a.k.a. nameplate (Cheney).



Isn’t this a solved problem?

It may well be, depending on your programming language of choice.

Haskell has

I FreshLib (Cheney, 2005),
I Unbound (Weirich, Yorgey, Sheard, 2011),
I Bound (Kmett, 2013?),
I maybe more?

These libraries may have bad performance, though (?).

OCaml has... not much.

I Cαml (F.P., 2005) is monolithic, inflexible, and has performance issues, too.

(The problem also arises in theorem provers. Not studied here.)



Goal

I wish to scrap my nameplate, in OCaml, in a manner that is

I as modular, open-ended, customizable as possible,
I while relying on as little code generation as possible,
I while (simultaneously!) supporting multiple representations of names,
I and supporting multiple binding constructs, possibly user-defined.

It turns out that this can be done by exploiting the “visitor” design pattern.



Visitors



Installation & configuration

Installation:

opam update
opam install visitors

To configure ocamlbuild, add this in _tags:

true: \
package ( visitors .ppx), \
package ( visitors . runtime )

To configure Merlin, add this in .merlin:

PKG visitors .ppx
PKG visitors . runtime



An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.
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A “map” visitor

There are several varieties of visitors:

type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "map" }]

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
EAdd (r0 , r1)

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

default behavior
is to rebuild a tree

a “map” visitor
is requested



Using a “map” visitor

Inherit a visitor class and override one or more methods:

let add e1 e2 = (* A smart constructor . *)
match e1 , e2 with
| EConst 0, e
| e, EConst 0 -> e
| _, _ -> EAdd (e1 , e2)

let optimize : expr -> expr =
let v = object (self)

inherit [_] map
method ! visit_EAdd env e1 e2 =

add
(self# visit_expr env e1)
(self# visit_expr env e2)

end in
v # visit_expr ()

This addition-optimization pass is unchanged if more expression forms are added.



What we have seen so far

I Several built-in varieties: iter, map, . . .
I Arity two, too: iter2, map2, . . .
I Generated visitor methods are monomorphic (in this talk),
I and their types are inferred.
I Visitor classes are nevertheless polymorphic.
I Polymorphic visitor methods can be hand-written and inherited.



Support for parameterized data types

Visitors can traverse parameterized data types, too.

I But: how does one traverse a subtree of type ’a?

Two approaches are supported:

I declare a virtual visitor method visit_’a
I pass a function visit_’a to every visitor method.

I allows / requires methods to be polymorphic in ’a
I more compositional

In this talk: a bit of both (details omitted...).



Visiting preexisting types

Lists can be visited, too.

type expr =
| EConst of int
| EAdd of expr list
[ @@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 =
let r0 = self# visit_list self# visit_expr env c0 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd c0 ->

self# visit_EAdd env c0
end

a preexisting
parameterized type
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Predefined visitor methods

The class VisitorsRuntime.map offers this method:

class [’self] map = object (self)
(* One of many predefined methods : *)
method private visit_list : ’env ’a ’b .

(’env -> ’a -> ’b) -> ’env -> ’a list -> ’b list
= fun f env xs ->

match xs with
| [] ->

[]
| x :: xs ->

let x = f env x in
x :: self # visit_list f env xs

end

This method is polymorphic, so multiple instances of list are not a problem.



Visitors – a summary

Although they follow fixed patterns, visitors are quite versatile.

They are like higher-order functions, only more customizable and composable.

More fun with visitors:

I visitors for open data types and their fixed points (link);
I visitors for hash-consed data structures (link);
I iterators out of visitors (link).

In the remainder of this talk:

I Can we traverse abstract syntax with binding?

http://gallium.inria.fr/~fpottier/visitors/manual.pdf#section.3
http://gallium.inria.fr/~fpottier/visitors/manual.pdf#subsection.3.2
http://gallium.inria.fr/blog/from-visitors-to-iterators/


Visitors Unchained



Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Can this be done in a modular way?

Exactly which separation of concerns should one enforce?

I There are many binding constructs,
I there are even combinator languages for describing binding structure!

I and many common operations on terms,
I often specific of one representation of names and binders,
I sometimes specific of two such representations, e.g., conversions.

I Can we insulate the end user from this complexity?

We suggest distinguishing three principals...
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The end user



Desiderata

The end user wishes:

I to describe the structure of ASTs in a concise and declarative style,
I not to be bothered with implementation details,
I possibly to have access to several representations of names,
I to get access to a toolkit of ready-made operations on terms.



Example: abstract syntax of the λ-calculus

Let the type (’bn, ’term) abs be a synonym for ’bn * ’term.

The end user defines his syntax as follows:

type (’bn , ’fn) term =
| TVar of ’fn
| TLambda of (’bn , (’bn , ’fn) term) abs
| TApp of (’bn , ’fn) term * (’bn , ’fn) term

[ @@deriving visitors { variety = "map";
ancestors = [" BindingForms .map"] }]

type raw_term = (string , string ) term
type nominal_term = (Atom.t, Atom.t) term
type debruijn_term = (unit , int) term

He gets multiple representations of names.

I At least two are used in any single application. (Parsing. Printing.)

He gets visitors for free. The method visit_abs is used at abstractions.

I iter, map, iter2 needed in practice. Focusing on map in this talk.
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The binder
maestro



An easy job?

Implementing visit_abs is the task of our sophisticated binder maestro.

The key is to extend the environment when entering the scope of a binder.

Easy?

Maybe — yet, the binder maestro:

I does not know what operation is being performed,
I does not know what representation(s) of names are in use,
I therefore does not know the types of names and environments,
I let alone how to extend the environment.

What he knows is where and with what names to extend the environment.
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A convention

The binder maestro agrees on a deal with the operations specialist.

“I tell you when to extend the environment; you do the dirty work.”

The binder maestro calls a method which the operations specialist provides:

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

This is a bare-bones API for describing binding constructs.



Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs : ’term1 ’term2 . _ ->

(’env -> ’term1 -> ’term2 ) ->
’env -> (’bn1 , ’term1 ) abs -> (’bn2 , ’term2 ) abs

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,
I an abstraction, i.e., a pair of a name and a term, and
I returns a pair of a transformed name and a transformed term.
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Visiting an abstraction

That’s all there is to single-name abstractions.

More binding constructs later on...

For now, let’s turn to the final participant.



The operations
specialist



A toolbox of operations

There are many operations on terms that the end user might wish for:

I testing terms for equality up to α-equivalence,
I finding out which names are free or bound in a term,
I applying a renaming or a substitution to a term,
I converting a term from one representation to another,
I (plus application-specific operations.)



Implementing an operation

To implement one operation, the specialist decides:

I the types of names and environments,
I what to do at a free name occurrence,
I how to extend the environment when entering the scope of a bound name.



Implementing import

As an example, let’s implement import, which converts raw terms to nominal
terms.

1. An import environment maps strings to atoms:

module StringMap = Map.Make( String )
type env = Atom.t StringMap .t
let empty : env = StringMap . empty



Implementing import

2. When the scope of x is entered,
the environment is extended with a mapping of the string x to a fresh atom a.

let extend (env : env) (x : string ) : env * Atom.t =
let a = Atom. fresh x in
let env = StringMap .add x a env in
env , a

(An atom carries a unique integer identity.)

This is true regardless of which binding constructs are traversed.



Implementing import

3. When an occurrence of the string x is found,
the environment is looked up so as to find the corresponding atom.

exception Unbound of string
let lookup (env : env) (x : string ) : Atom.t =

try StringMap .find x env
with Not_found -> raise ( Unbound x)



Implementing import

The previous instructions are grouped in a little class — a “kit”:

class [’self] map = object (_ : ’self)
method private extend = extend
method private visit_ ’fn = lookup

end

This is KitImport.map.

That’s all there is to it... but...



Gluey business

The end user must work a little bit to glue everything together...

For each operation, the end user must write 5 lines of glue code:

let import_term env t =
( object

inherit [_] map (* generated by visitors *)
inherit [_] KitImport .map (* provided by AlphaLib *)

end) # visit_term env t

For 15 operations, this hurts.

Functors can help in simple cases, but are not flexible enough.

C-like macros help, but are ugly. Is there a better way?



Towards advanced
binding constructs



Defining new binding constructs

There are many binding constructs out there.

I “let”, “let rec”, patterns, telescopes, ...

We have seen how to programmatically define a binding construct.

Can it be done in a more declarative manner?



A domain-specific language

Here is a little language of binding combinators:

t ::= . . . sums, products, free occurrences of names, etc.
| abstraction(p) a pattern, with embedded subterms

| bind(p, t) — sugar for abstraction(p × inner(t))

p ::= . . . sums, products, etc.
| binder(x) a binding occurrence of a name
| outer(t) an embedded term
| rebind(p) a pattern in the scope of any bound names on the left

| inner(t) — sugar for rebind(outer(t))

Inspired by Cαml (F.P., 2005) and Unbound (Weirich et al., 2011).
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Example use: telescopes

A dependently-typed λ-calculus whose Π and λ forms involve a telescope:

# define tele (’bn , ’fn) tele
# define term (’bn , ’fn) term
(* The types that follow are parametric in ’bn and ’fn: *)

type tele =
| TeleNil
| TeleCons of ’bn binder * term outer * tele rebind

and term =
| TVar of ’fn
| TPi of (tele , term) bind
| TLam of (tele , term) bind
| TApp of term * term list

[ @@deriving visitors {
variety = "map";
ancestors = [" BindingCombinators .map"]

}]



Implementation

These primitive constructs are just annotations:

type ’p abstraction = ’p
type ’bn binder = ’bn
type ’t outer = ’t
type ’p rebind = ’p

Their presence triggers calls to appropriate (hand-written) visit_ methods.



Implementation

While visiting a pattern, we keep track of:

I the outer environment, which existed outside this pattern;
I the current environment, extended with the bound names encountered so far.

Thus, while visiting a pattern, we use a richer type of contexts:

type ’env context = { outer : ’env; current : ’env ref }

— Not every visitor method need have the same type of environments!

With this in mind, the implementation of the visit_ methods is straightforward...



Implementation

This code takes place in a map visitor:

class virtual [’self] map = object (self : ’self)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2
(* The four visitor methods are inserted here ... *)

end

1. At the root of an abstraction, a fresh context is allocated:

method private visit_abstraction : ’env ’p1 ’p2 .
(’env context -> ’p1 -> ’p2) ->
’env -> ’p1 abstraction -> ’p2 abstraction

= fun visit_p env p1 ->
visit_p { outer = env; current = ref env } p1



Implementation

2. When a bound name is met, the current environment is extended:

method private visit_binder : _ ->
’env context -> ’bn1 binder -> ’bn2 binder

= fun visit_ ’bn ctx x1 ->
let env = !( ctx. current ) in
let env , x2 = self# extend env x1 in
ctx. current := env;
x2



Implementation

3. When a term that is not in the scope of the abstraction is found,
it is visited in the outer environment.

method private visit_outer : ’env ’t1 ’t2 .
(’env -> ’t1 -> ’t2) ->
’env context -> ’t1 outer -> ’t2 outer

= fun visit_t ctx t1 ->
visit_t ctx. outer t1



Implementation

4. When a subpattern marked rebind is found,
the current environment is installed as the outer environment.

method private visit_rebind : ’env ’p1 ’p2 .
(’env context -> ’p1 -> ’p2) ->
’env context -> ’p1 rebind -> ’p2 rebind

= fun visit_p ctx p1 ->
visit_p { ctx with outer = !( ctx. current ) } p1

This affects the meaning of outer inside rebind.



Conclusion



Conclusion

Visitors are powerful.

Visitor classes are partial, composable descriptions of operations.

Visitors can traverse abstract syntax with binding.

I Syntax, binding forms, operations can be separately described.
I Syntax and even binding forms can be described in a declarative style.
I Open-ended, customizable approach.

Limitations:

I C-like macros are currently required.
I No proofs.
I Some operations may not fit the visitor framework;
I Some binding forms do not easily fit in the low-level framework

or in the higher-level DSL, e.g., Unbound’s Rec.
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