
Visitors Unchained

Using visitors
to traverse abstract syntax with binding

François Pottier

WG 2.8, Edinburgh
June 15, 2017

The problem

Manipulating abstract syntax with binding requires many standard operations:

I “opening” and “closing” binders (in the locally nameless representation);
I shifting (in de Bruijn’s representation);
I deciding α-equivalence;
I testing whether a name occurs free in a term;
I performing capture-avoiding substitution;
I converting user-supplied terms to the desired internal representation;
I etc., etc.

This requires a lot of boilerplate, a.k.a. nameplate (Cheney).

Isn’t this a solved problem?

It may well be, depending on your programming language of choice.

Haskell has

I FreshLib (Cheney, 2005),
I Unbound (Weirich, Yorgey, Sheard, 2011),
I Bound (Kmett, 2013?),
I maybe more?

These libraries may have bad performance, though (?).

OCaml has... not much.

I Cαml (F.P., 2005) is monolithic, inflexible, and has performance issues, too.

(The problem also arises in theorem provers. Not studied here.)

Goal

I wish to scrap my nameplate, in OCaml, in a manner that is

I as modular, open-ended, customizable as possible,
I while relying on as little code generation as possible,
I while (simultaneously!) supporting multiple representations of names,
I and supporting multiple binding constructs, possibly user-defined.

It turns out that this can be done by exploiting the “visitor” design pattern.

Visitors

Installation & configuration

Installation:

opam update
opam install visitors

To configure ocamlbuild, add this in _tags:

true: \
package (visitors .ppx), \
package (visitors . runtime)

To configure Merlin, add this in .merlin:

PKG visitors .ppx
PKG visitors . runtime

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

one method per
data constructor

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

one method per
data type

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

an environment
is pushed down

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

default behavior
is to do nothing

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

... causes a visitor class to be auto-generated.

behavior at type
int is inherited

A “map” visitor

There are several varieties of visitors:

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "map" }]

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
EAdd (r0 , r1)

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

default behavior
is to rebuild a tree

a “map” visitor
is requested

Using a “map” visitor

Inherit a visitor class and override one or more methods:

let add e1 e2 = (* A smart constructor . *)
match e1 , e2 with
| EConst 0, e
| e, EConst 0 -> e
| _, _ -> EAdd (e1 , e2)

let optimize : expr -> expr =
let v = object (self)

inherit [_] map
method ! visit_EAdd env e1 e2 =

add
(self# visit_expr env e1)
(self# visit_expr env e2)

end in
v # visit_expr ()

This addition-optimization pass is unchanged if more expression forms are added.

What we have seen so far

I Several built-in varieties: iter, map, . . .
I Arity two, too: iter2, map2, . . .
I Generated visitor methods are monomorphic (in this talk),
I and their types are inferred.
I Visitor classes are nevertheless polymorphic.
I Polymorphic visitor methods can be hand-written and inherited.

Support for parameterized data types

Visitors can traverse parameterized data types, too.

I But: how does one traverse a subtree of type ’a?

Two approaches are supported:

I declare a virtual visitor method visit_’a
I pass a function visit_’a to every visitor method.

I allows / requires methods to be polymorphic in ’a
I more compositional

In this talk: a bit of both (details omitted...).

Visiting preexisting types

Lists can be visited, too.

type expr =
| EConst of int
| EAdd of expr list
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 =
let r0 = self# visit_list self# visit_expr env c0 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd c0 ->

self# visit_EAdd env c0
end

a preexisting
parameterized type

Visiting preexisting types

Lists can be visited, too.

type expr =
| EConst of int
| EAdd of expr list
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 =
let r0 = self# visit_list self# visit_expr env c0 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd c0 ->

self# visit_EAdd env c0
end

visitor method is passed
a visitor function

Visiting preexisting types

Lists can be visited, too.

type expr =
| EConst of int
| EAdd of expr list
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 =
let r0 = self# visit_list self# visit_expr env c0 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd c0 ->

self# visit_EAdd env c0
end

visitor method
is inherited

Predefined visitor methods

The class VisitorsRuntime.map offers this method:

class [’self] map = object (self)
(* One of many predefined methods : *)
method private visit_list : ’env ’a ’b .

(’env -> ’a -> ’b) -> ’env -> ’a list -> ’b list
= fun f env xs ->

match xs with
| [] ->

[]
| x :: xs ->

let x = f env x in
x :: self # visit_list f env xs

end

This method is polymorphic, so multiple instances of list are not a problem.

Visitors – a summary

Although they follow fixed patterns, visitors are quite versatile.

They are like higher-order functions, only more customizable and composable.

More fun with visitors:

I visitors for open data types and their fixed points (link);
I visitors for hash-consed data structures (link);
I iterators out of visitors (link).

In the remainder of this talk:

I Can we traverse abstract syntax with binding?

http://gallium.inria.fr/~fpottier/visitors/manual.pdf#section.3
http://gallium.inria.fr/~fpottier/visitors/manual.pdf#subsection.3.2
http://gallium.inria.fr/blog/from-visitors-to-iterators/

Visitors Unchained

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Can this be done in a modular way?

Exactly which separation of concerns should one enforce?

I There are many binding constructs,
I there are even combinator languages for describing binding structure!

I and many common operations on terms,
I often specific of one representation of names and binders,
I sometimes specific of two such representations, e.g., conversions.

I Can we insulate the end user from this complexity?

We suggest distinguishing three principals...

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Can this be done in a modular way?

Exactly which separation of concerns should one enforce?

I There are many binding constructs,
I there are even combinator languages for describing binding structure!

I and many common operations on terms,
I often specific of one representation of names and binders,
I sometimes specific of two such representations, e.g., conversions.

I Can we insulate the end user from this complexity?

We suggest distinguishing three principals...

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Can this be done in a modular way?

Exactly which separation of concerns should one enforce?

I There are many binding constructs,
I there are even combinator languages for describing binding structure!

I and many common operations on terms,
I often specific of one representation of names and binders,
I sometimes specific of two such representations, e.g., conversions.

I Can we insulate the end user from this complexity?

We suggest distinguishing three principals...

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Can this be done in a modular way?

Exactly which separation of concerns should one enforce?

I There are many binding constructs,
I there are even combinator languages for describing binding structure!

I and many common operations on terms,
I often specific of one representation of names and binders,
I sometimes specific of two such representations, e.g., conversions.

I Can we insulate the end user from this complexity?

We suggest distinguishing three principals...

end
user

end
user

operations
specialist

end
user

operations
specialist

binder
maestro

The end user

Desiderata

The end user wishes:

I to describe the structure of ASTs in a concise and declarative style,
I not to be bothered with implementation details,
I possibly to have access to several representations of names,
I to get access to a toolkit of ready-made operations on terms.

Example: abstract syntax of the λ-calculus

Let the type (’bn, ’term) abs be a synonym for ’bn * ’term.

The end user defines his syntax as follows:

type (’bn , ’fn) term =
| TVar of ’fn
| TLambda of (’bn , (’bn , ’fn) term) abs
| TApp of (’bn , ’fn) term * (’bn , ’fn) term

[@@deriving visitors { variety = "map";
ancestors = [" BindingForms .map"] }]

type raw_term = (string , string) term
type nominal_term = (Atom.t, Atom.t) term
type debruijn_term = (unit , int) term

He gets multiple representations of names.

I At least two are used in any single application. (Parsing. Printing.)

He gets visitors for free. The method visit_abs is used at abstractions.

I iter, map, iter2 needed in practice. Focusing on map in this talk.

Example: abstract syntax of the λ-calculus

Let the type (’bn, ’term) abs be a synonym for ’bn * ’term.

The end user defines his syntax as follows:

type (’bn , ’fn) term =
| TVar of ’fn
| TLambda of (’bn , (’bn , ’fn) term) abs
| TApp of (’bn , ’fn) term * (’bn , ’fn) term

[@@deriving visitors { variety = "map";
ancestors = [" BindingForms .map"] }]

type raw_term = (string , string) term
type nominal_term = (Atom.t, Atom.t) term
type debruijn_term = (unit , int) term

He gets multiple representations of names.

I At least two are used in any single application. (Parsing. Printing.)

He gets visitors for free. The method visit_abs is used at abstractions.

I iter, map, iter2 needed in practice. Focusing on map in this talk.

provided by the
binder maestro

The binder
maestro

An easy job?

Implementing visit_abs is the task of our sophisticated binder maestro.

The key is to extend the environment when entering the scope of a binder.

Easy?

Maybe — yet, the binder maestro:

I does not know what operation is being performed,
I does not know what representation(s) of names are in use,
I therefore does not know the types of names and environments,
I let alone how to extend the environment.

What he knows is where and with what names to extend the environment.

An easy job?

Implementing visit_abs is the task of our sophisticated binder maestro.

The key is to extend the environment when entering the scope of a binder.

Easy? Maybe — yet, the binder maestro:

I does not know what operation is being performed,
I does not know what representation(s) of names are in use,
I therefore does not know the types of names and environments,
I let alone how to extend the environment.

What he knows is where and with what names to extend the environment.

A convention

The binder maestro agrees on a deal with the operations specialist.

“I tell you when to extend the environment; you do the dirty work.”

The binder maestro calls a method which the operations specialist provides:

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

This is a bare-bones API for describing binding constructs.

Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs : ’term1 ’term2 . _ ->

(’env -> ’term1 -> ’term2) ->
’env -> (’bn1 , ’term1) abs -> (’bn2 , ’term2) abs

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,
I an abstraction, i.e., a pair of a name and a term, and
I returns a pair of a transformed name and a transformed term.

Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs : ’term1 ’term2 . _ ->

(’env -> ’term1 -> ’term2) ->
’env -> (’bn1 , ’term1) abs -> (’bn2 , ’term2) abs

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,

I an abstraction, i.e., a pair of a name and a term, and
I returns a pair of a transformed name and a transformed term.

Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs : ’term1 ’term2 . _ ->

(’env -> ’term1 -> ’term2) ->
’env -> (’bn1 , ’term1) abs -> (’bn2 , ’term2) abs

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,

I an abstraction, i.e., a pair of a name and a term, and
I returns a pair of a transformed name and a transformed term.

Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs : ’term1 ’term2 . _ ->

(’env -> ’term1 -> ’term2) ->
’env -> (’bn1 , ’term1) abs -> (’bn2 , ’term2) abs

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,
I an abstraction, i.e., a pair of a name and a term, and

I returns a pair of a transformed name and a transformed term.

Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs : ’term1 ’term2 . _ ->

(’env -> ’term1 -> ’term2) ->
’env -> (’bn1 , ’term1) abs -> (’bn2 , ’term2) abs

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,
I an abstraction, i.e., a pair of a name and a term, and
I returns a pair of a transformed name and a transformed term.

Visiting an abstraction

That’s all there is to single-name abstractions.

More binding constructs later on...

For now, let’s turn to the final participant.

The operations
specialist

A toolbox of operations

There are many operations on terms that the end user might wish for:

I testing terms for equality up to α-equivalence,
I finding out which names are free or bound in a term,
I applying a renaming or a substitution to a term,
I converting a term from one representation to another,
I (plus application-specific operations.)

Implementing an operation

To implement one operation, the specialist decides:

I the types of names and environments,
I what to do at a free name occurrence,
I how to extend the environment when entering the scope of a bound name.

Implementing import

As an example, let’s implement import, which converts raw terms to nominal
terms.

1. An import environment maps strings to atoms:

module StringMap = Map.Make(String)
type env = Atom.t StringMap .t
let empty : env = StringMap . empty

Implementing import

2. When the scope of x is entered,
the environment is extended with a mapping of the string x to a fresh atom a.

let extend (env : env) (x : string) : env * Atom.t =
let a = Atom. fresh x in
let env = StringMap .add x a env in
env , a

(An atom carries a unique integer identity.)

This is true regardless of which binding constructs are traversed.

Implementing import

3. When an occurrence of the string x is found,
the environment is looked up so as to find the corresponding atom.

exception Unbound of string
let lookup (env : env) (x : string) : Atom.t =

try StringMap .find x env
with Not_found -> raise (Unbound x)

Implementing import

The previous instructions are grouped in a little class — a “kit”:

class [’self] map = object (_ : ’self)
method private extend = extend
method private visit_ ’fn = lookup

end

This is KitImport.map.

That’s all there is to it... but...

Gluey business

The end user must work a little bit to glue everything together...

For each operation, the end user must write 5 lines of glue code:

let import_term env t =
(object

inherit [_] map (* generated by visitors *)
inherit [_] KitImport .map (* provided by AlphaLib *)

end) # visit_term env t

For 15 operations, this hurts.

Functors can help in simple cases, but are not flexible enough.

C-like macros help, but are ugly. Is there a better way?

Towards advanced
binding constructs

Defining new binding constructs

There are many binding constructs out there.

I “let”, “let rec”, patterns, telescopes, ...

We have seen how to programmatically define a binding construct.

Can it be done in a more declarative manner?

A domain-specific language

Here is a little language of binding combinators:

t ::= . . . sums, products, free occurrences of names, etc.
| abstraction(p) a pattern, with embedded subterms

| bind(p, t) — sugar for abstraction(p × inner(t))

p ::= . . . sums, products, etc.
| binder(x) a binding occurrence of a name
| outer(t) an embedded term
| rebind(p) a pattern in the scope of any bound names on the left

| inner(t) — sugar for rebind(outer(t))

Inspired by Cαml (F.P., 2005) and Unbound (Weirich et al., 2011).

A domain-specific language

Here is a little language of binding combinators:

t ::= . . . sums, products, free occurrences of names, etc.
| abstraction(p) a pattern, with embedded subterms

| bind(p, t) — sugar for abstraction(p × inner(t))

p ::= . . . sums, products, etc.
| binder(x) a binding occurrence of a name
| outer(t) an embedded term
| rebind(p) a pattern in the scope of any bound names on the left
| inner(t) — sugar for rebind(outer(t))

Inspired by Cαml (F.P., 2005) and Unbound (Weirich et al., 2011).

A domain-specific language

Here is a little language of binding combinators:

t ::= . . . sums, products, free occurrences of names, etc.
| abstraction(p) a pattern, with embedded subterms
| bind(p, t) — sugar for abstraction(p × inner(t))

p ::= . . . sums, products, etc.
| binder(x) a binding occurrence of a name
| outer(t) an embedded term
| rebind(p) a pattern in the scope of any bound names on the left
| inner(t) — sugar for rebind(outer(t))

Inspired by Cαml (F.P., 2005) and Unbound (Weirich et al., 2011).

Example use: telescopes

A dependently-typed λ-calculus whose Π and λ forms involve a telescope:

define tele (’bn , ’fn) tele
define term (’bn , ’fn) term
(* The types that follow are parametric in ’bn and ’fn: *)

type tele =
| TeleNil
| TeleCons of ’bn binder * term outer * tele rebind

and term =
| TVar of ’fn
| TPi of (tele , term) bind
| TLam of (tele , term) bind
| TApp of term * term list

[@@deriving visitors {
variety = "map";
ancestors = [" BindingCombinators .map"]

}]

Implementation

These primitive constructs are just annotations:

type ’p abstraction = ’p
type ’bn binder = ’bn
type ’t outer = ’t
type ’p rebind = ’p

Their presence triggers calls to appropriate (hand-written) visit_ methods.

Implementation

While visiting a pattern, we keep track of:

I the outer environment, which existed outside this pattern;
I the current environment, extended with the bound names encountered so far.

Thus, while visiting a pattern, we use a richer type of contexts:

type ’env context = { outer : ’env; current : ’env ref }

— Not every visitor method need have the same type of environments!

With this in mind, the implementation of the visit_ methods is straightforward...

Implementation

This code takes place in a map visitor:

class virtual [’self] map = object (self : ’self)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2
(* The four visitor methods are inserted here ... *)

end

1. At the root of an abstraction, a fresh context is allocated:

method private visit_abstraction : ’env ’p1 ’p2 .
(’env context -> ’p1 -> ’p2) ->
’env -> ’p1 abstraction -> ’p2 abstraction

= fun visit_p env p1 ->
visit_p { outer = env; current = ref env } p1

Implementation

2. When a bound name is met, the current environment is extended:

method private visit_binder : _ ->
’env context -> ’bn1 binder -> ’bn2 binder

= fun visit_ ’bn ctx x1 ->
let env = !(ctx. current) in
let env , x2 = self# extend env x1 in
ctx. current := env;
x2

Implementation

3. When a term that is not in the scope of the abstraction is found,
it is visited in the outer environment.

method private visit_outer : ’env ’t1 ’t2 .
(’env -> ’t1 -> ’t2) ->
’env context -> ’t1 outer -> ’t2 outer

= fun visit_t ctx t1 ->
visit_t ctx. outer t1

Implementation

4. When a subpattern marked rebind is found,
the current environment is installed as the outer environment.

method private visit_rebind : ’env ’p1 ’p2 .
(’env context -> ’p1 -> ’p2) ->
’env context -> ’p1 rebind -> ’p2 rebind

= fun visit_p ctx p1 ->
visit_p { ctx with outer = !(ctx. current) } p1

This affects the meaning of outer inside rebind.

Conclusion

Conclusion

Visitors are powerful.

Visitor classes are partial, composable descriptions of operations.

Visitors can traverse abstract syntax with binding.

I Syntax, binding forms, operations can be separately described.
I Syntax and even binding forms can be described in a declarative style.
I Open-ended, customizable approach.

Limitations:

I C-like macros are currently required.
I No proofs.
I Some operations may not fit the visitor framework;
I Some binding forms do not easily fit in the low-level framework

or in the higher-level DSL, e.g., Unbound’s Rec.

	Visitors
	Binding

