Visitors Unchained

Using visitors
to traverse abstract syntax with binding

Frangois Pottier

Inria Paris
May 22, 2017

Visitors

Installation & configuration

Installation:

opam update
opam install visitors

To configure ocamlbuild, add this in _tags:

true: \
package (visitors.ppx), \
package(visitors.runtime)

To configure Merlin, add this in .merlin:

PKG visitors.ppx
PKG visitors.runtime

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

..

An “iter” visitor

Annotating a type definition with [@@deriving visitors {

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env c0 =

let r0 = self#visit_int env cO in
O

method visit_EAdd env cO cl =
let rO = self#visit_expr env cO in
let rl = self#visit_expr env cl in

O
method visit_expr env this =

match this with

| EConst cO ->
self#visit_EConst env cO

| EAdd (cO, cl1) ->
self#visit_EAdd env cO ci

end

... causes a visitor class to be auto-generated.

..

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env c0 =
let r0 = self#visit_int env cO in

O

method visit_EAdd env cO cl =
let rO = self#visit_expr env cO in
let rl = self#visit_expr env cl in
O

method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

one method per
data constructor

end

... causes a visitor class to be auto-generated.

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env c0 =

let r0 = self#visit_int env cO in
O

method visit_EAdd env cO cl =
let rO = self#visit_expr env cO in
let rl = self#visit_expr env cl in

O
method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

one method per
data type

2V 4

end

... causes a visitor class to be auto-generated.

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst envgcO =
let r0 = self#visit_int
O
method visit_EAdd env
let r0 = self#visit_eX
let rl = self#visit_expr
O
method visit_expr envgthis =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

an environment
is pushed down

end

... causes a visitor class to be auto-generated.

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env c0 =
let r0 = self#visit_int env cO in

match this with

| EConst cO ->
self#visit_EConst env cO

| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

default behavior
is to do nothing

end

... causes a visitor class to be auto-generated.

An “iter” visitor

Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env c0 =

let r0 = self#visit_int
O

method visit_EAdd env cO cl =
let rO = self#visit_expr env cO in
let rl = self#visit_expr env cl in
O

method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

behavior at type
int is inherited

end

... causes a visitor class to be auto-generated.

A “map” visitor

a “map” visitor
is requested

&

There are several varieties of visitors:

type expr =
| EConst of int
| EAdd of expr * expr
[@@deriving visitors { variety = "map"

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime.map
method visit_EConst env c0 =
let rO = self#visit_int env cO in
EConst r0 €«
method visit_EAdd env cO cl =
let rO = self#visit_expr en
let rl = self#visit_ 2
EAdd (r0, ri1)
method visit_expr env this
match this with
| EConst cO0 ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO c1

default behavior
is to rebuild a tree

end

Using a “map” visitor

Inherit a visitor class and override one or more methods:

let add el e2 = (* A smart comnstructor. x*)
match el, e2 with
| EConst 0, e
| e, EConst 0 -> e
| _, - => EAdd (el, e2)

let optimize : expr -> expr =
let v = object (self)
inherit [_] map
method! visit_EAdd env el e2 =
add
(self#visit_expr env el)
(self#visit_expr env e2)
end in
v # visit_expr ()

This addition-optimization pass is unchanged if more expression forms are added.

A “reduce” visitor

a “reduce” visitor
is requested

Here is another variety:

type expr =
| EConst of (int[@opaquel)
| EAdd of expr * expr
[@@deriving visitors { variety = "reduce"

class virtual [’self] reduce = object (self : ’self)
inherit [_] VisitorsRuntime.reduce
method visit_EConst env c0 =

let sO = (fun this -> self#zero
sO
method visit EAdd env cQ
let sO =
let s1 =

self#plus®s0 si1
method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

results combined
using zero / plus

end

A “reduce” visitor

Here is another variety:

type expr =
| EConst of (int[@opaquel
| EAdd of expr * expr
[@@deriving visitors { variety = "re{uce" }]

class virtual [’self] reduce = object (self ’self)
inherit [_] VisitorsRuntime.reduce

method visit_EConst env c0 =

let sO = (fun this -> self#zero
sO
method visit_EAdd env cO cl =
let sO = self#visit_expr env cO in
let s1 = self#visit_expr env cl in

self#plus sO si
method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

Qopaque subtrees
are not visited

end

A “reduce” visitor

look Ma,

Here is another variety: ll f :
ull type inference!

type expr =
| EConst of (int[@opaquel)
| EAdd of expr * expr
[@@deriving visitors

variety

class virtual [’selff reduce = object (self
inherit [_] VisitorsRuntime.reduce
method visit_EConst env c0 =

let sO = (fun this -> self#zero) cO in
sO
method visit_EAdd env cO cl =
let sO = self#visit_expr env cO in
let s1 = self#visit_expr env cl in

self#plus sO si
method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd (cO, c1) ->
self#visit_EAdd env cO ci

class is polymorphic
in env and monoid

end

Using a “reduce” visitor

Inherit the visitor, inherit a monoid, override one or more methods:

let size : expr -> int =

let v = object
inherit [_] reduce as super
inherit [_] VisitorsRuntime.addition_monoid
method! visit_expr env e =

1 + super # visit_expr env e
end in
v # visit_expr ()

This size computation remains unchanged if more expression forms are added.

What we have seen so far

v

Several built-in varieties: iter, map, endo, reduce, mapreduce, fold

v

Arity two, too: iter2, map2, reduce2, mapreduce2, fold2

v

Monomorphic visitor methods, polymorphic visitor classes
All types inferred

v

Support for parameterized data types

We wish to traverse parameterized data types, too.
» But: how does one traverse a subtree of type ’a?
Two approaches are supported:

» declare a virtual visitor method visit_’a

> ’ais treated as a fixed/unknown type, not really as a parameter
» pass a function visit_’a to every visitor method.

> allows / requires methods to be polymorphic in ’a

> more compositional

In this talk: monomorphic generated methods, polymorphic hand-written methods.

A visitor for a parameterized type

Here is a “monomorphic-method” visitor for a parameterized type:

type ’info expr_node =

| EConst of int

| EAdd of ’info expr * ’info expr
and ’info expr =

{ info: ’info; node: ’info expr_node }
[@@deriving visitors { variety = "map" }]
class virtual [’self] map = object (self : ’self)

inherit [_] VisitorsRuntime.map

method virtual visit_’info

method visit_EConst =

method visit_EAdd =

method visit_expr_node =

method visit_expr env this =
let r0O = self#visit_’info env this.info in
let rl = self#visit_expr_node env this.node in
{ info = r0; node = r1 }

end

The type of visit_’infois ’env -> ’infol -> ’info2.

A visitor for a parameterized type

Here is a “monomorphic-method” visitor for a parameterized type:

type ’info expr_node =

| EConst of int

| EAdd of ’info expr * ’info expr
and ’info expr =

{ info: ’info; node: ’info expr_node }
[@@deriving visitors { variety = "map" }]
class virtual [’self] map = object (self ’self)

inherit [_] VisitorsRuntime.map

method virtual visit_’info

method visit_EConst =

method visit_EAdd =

method visit_expr_node =

method visit_expr env this =
let r0O = self#visit_’info”env this.info in
let rl = self#visit_expr_node env this.node in
{ info = r0; node = r1 }

a virtual method
is declared / used

end

The type of visit_’infois ’env -> ’infol -> ’info2.

Using a visitor for a parameterized type

This visitor can map undecorated expressions to decorated expressions:

let number (e : _ expr) : int expr =
let v = object
inherit [_] map

val mutable count = 0
method visit_’info _env _info =
let ¢ = count in count <- ¢ + 1; c
end in

v # visit_expr () e

and vice-versa:

let strip (e : _ expr) : unit expr =
let v = object
inherit [_] map
method visit_’info _env _info = ()
end in
v # visit_expr () e

The visitor class is polymorphic in ’env, ’infol and ’info2.

A “mapreduce” visitor for a parameterized type

Here is another variety of visitor for this parameterized type:

type ’info expr_node =
| EConst of int
| EAdd of ’info expr * ’info expr J
and ’info expr =
{ info: ’info; node: ’info expr_node }
[@@deriving visitors { variety = "mapreduce"

a “mapreduce” visitor
is requested

class virtual [’self] mapreduce = object (self : ’self)
inherit [_] VisitorsRuntime.mapreduce
method virtual visit_’info
method visit_EConst = 0
method visit_EAdd env cO CH=
let r0, sO = self#visit_expr env cO in
let rl, sl = self#visit_expr env cl in
EAdd (r0, rl), self#plus sO si
method visit_expr_node =
method visit_expr =
end

Every method returns a pair of a subtree and a summary.

Using a visitor for a parameterized type

This visitor can annotate every subexpression with its size:

let annotate (e : _ expr) : int expr =
let v = object
inherit [_] mapreduce as super
inherit [_] VisitorsRuntime.addition_monoid

method! visit_expr env { info = _; node } =
let node, size = super#visit_expr_node env node in
let size = size + 1 in
{ info = size; node }, size

method visit_’info _env _info =
assert false (*x never called *)
end in
let e, _ = v # visit_expr () e in
e

Visiting preexisting types

a preexisting

Lists can be visited, too. ;
parameterized type

type expr =
| EConst of int
| EAdd of expr 1list

[@@deriving visitors { variety = "iter" 1}]
class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env c0 =
let rO = self#visit_int env cO in
O
method visit_EAdd env cO =
let r0O = self#visit_list self#visit_expr env cO in
O

method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd cO ->
self#visit_EAdd env cO
end

Visiting preexisting types

visitor method is passed

Lists can be visited, too. ..)
a visitor function

type expr =
| EConst of int

| EAdd of expr 1list
[@@deriving visitors { variety = "iter" 1}]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env cO =

let rO = self#visit_int env cO in
O
method visit_EAdd env c0 =
let r0O = self#visit_listyself#visit_expryenv cO in
O

method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd cO ->
self#visit_EAdd env cO
end

Visiting preexisting types

visitor method

Lists can be visited, too. is inherited

type expr =
| EConst of int
| EAdd of expr 1list
[@@deriving visitors { variety = "iter" 1}]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime.iter
method visit_EConst env cO =

let rO = self#visit_int env cO in
O
method visit_EAdd env c0 =
let r0O = self#visit_list self#visit_expr env cO in
O

method visit_expr env this =
match this with
| EConst cO ->
self#visit_EConst env cO
| EAdd cO ->
self#visit_EAdd env cO
end

Predefined visitor methods

The class VisitorsRuntime.map offers this method:

class [’self] map = object (self)
(* One of many predefined methods: x*)

method private visit_list: ’env ’a ’b
(’env -> ’a -> ’b) -> ’env -> ’a list -> ’b list
= fun f env xs ->
match xs with

[[->
(1
| x :: xs ->
let x = f env x in
b d self # visit_list f env xs

end

This method is polymorphic, so multiple instances of 1ist are not a problem.

Visitors — a summary

Although they follow fixed patterns, visitors are quite versatile.
They are like higher-order functions, only more customizable and composable.
More fun with visitors:

> visitors for open data types and their fixed points (link);
» visitors for hash-consed data structures (link);
> iterators out of visitors (link).

In the remainder of this talk:

> Can we traverse abstract syntax with binding?

http://gallium.inria.fr/~fpottier/visitors/manual.pdf#section.3
http://gallium.inria.fr/~fpottier/visitors/manual.pdf#subsection.3.2
http://gallium.inria.fr/blog/from-visitors-to-iterators/

Visitors Unchained

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?

Can this be done in a modular way?

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?
Can this be done in a modular way?

Exactly which separation of concerns should one enforce?

Dealing with binding

Can a visitor traverse abstract syntax with binding constructs?
Can this be done in a modular way?
Exactly which separation of concerns should one enforce?

» There are many binding constructs,
> there are even combinator languages for describing binding structure!

» and many common operations on terms,

> often specific of one representation of names and binders,
» sometimes specific of two such representations, e.g., conversions.

» Can we insulate the end user from this complexity?

We suggest distinguishing three principals...

operations
specialist

binder
maestro

operations
specialist

The end user

Desiderata

The end user wishes:

> to describe the structure of ASTs in a concise and declarative style,
» not to be bothered with implementation detalils,

» possibly to have access to several representations of names,

» to get access to a toolkit of ready-made operations on terms.

Example: abstract syntax of the A-calculus

Let the type (’bn, ’term) abs be a synonym for ’bn * ’term.
The end user defines his syntax as follows:

type (’bn, ’fn) term =
| TVar of ’fn
| TLambda of (’bn, (’bn, ’fn) term) abs
| TApp of (’bn, ’fn) term * (’bn, ’fn) term
[@@deriving visitors { variety = "map";
ancestors = ["BindingForms.map"] }]
(string, string) term
(Atom.t, Atom.t) term
(unit, int) term

type raw_term
type nominal_term
type debruijn_term

He gets multiple representations of names.
> At least two are used in any single application. (Parsing. Printing.)
He gets visitors for free. The method visit_abs is used at abstractions.

> iter, map, iter2 needed in practice. Focusing on map in this talk.

Example: abstract syntax of the A-calculus

Let the type (’bn, ’term) abs be a synonym fo ;
provided by the
binder maestro

type (’bn, ’fn) term = p .
| TVar of ’fn d”’
| TLambda of (’bn, (’bn, ’fn) term) abs

| TApp of (’bn, ’fn) term * (’bn, ’fn) term
[@@deriving visitors { variety = "map";
ancestors = ["BindingForms™map"] }]
(string, string) term
(Atom.t, Atom.t) term
(unit, int) term

The end user defines his syntax as follows:

type raw_term
type nominal_term
type debruijn_term

He gets multiple representations of names.
> At least two are used in any single application. (Parsing. Printing.)
He gets visitors for free. The method visit_abs is used at abstractions.

> iter, map, iter2 needed in practice. Focusing on map in this talk.

The binder
maestro

An easy job?

Implementing visit_abs is the task of our sophisticated binder maestro.
The key is to extend the environment when entering the scope of a binder.

Easy?

An easy job?

Implementing visit_abs is the task of our sophisticated binder maestro.
The key is to extend the environment when entering the scope of a binder.
Easy? Maybe — yet, the binder maestro:

» does not know what operation is being performed,

» does not know what representation(s) of names are in use,

» therefore does not know the types of names and environments,
> let alone how to extend the environment.

What he knows is where and with what names to extend the environment.

A convention

The binder maestro agrees on a deal with the operations specialist.
“I tell you when to extend the environment; you do the dirty work.”

The binder maestro calls a method which the operations specialist provides:

(* A hook that defines how to extend the environment. x*)
method private virtual extend: ’env -> ’bnl -> ’env * ’bn2

This is a bare-bones API for describing binding constructs.

Visiting an abstraction

The class BindingForms .map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(¥ A visitor method for the type abs. *)
method private visit_abs: ’terml ’term2 . _ ->
(’env -> ’terml -> ’term2) ->
’env -> (’bnl, ’terml) abs -> (’bn2, ’term2) abs
= fun _ visit_’term env (x1, t1) ->
let env, x2 = self#extend env x1 in
let t2 = visit_’term env tl1 in
x2, t2
(* A hook that defines how to extend the environment.
method private virtual extend: ’env -> ’bnl -> ’env *
end

This method:

*)
’bn2

Visiting an abstraction

The class BindingForms .map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(¥ A visitor method for the type abs. *)
method private visit_abs: ’terml ’term2 . _ ->
(’env -> ’terml -> ’term2)y.->

> (’bn2, ’term2) abs
->
x1 in

env -> (’bnl, ’terml) abs
= fun _ visit_’term env (x1, t
let env, x2 = self#extend en
let t2 = visit_’term env ti1
x2, t2
(* A hook that defines how to extpnd the environment. *)
method private virtual extend: ’¢gnv -> ’bnl -> ’env * ’bn2

end

This method:

» takes a visitor function for terms,”an environment,

Visiting an abstraction

The class BindingForms .map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(¥ A visitor method for the type abs. *)
method private visit_abs: ’terml ’term2 . _ ->

(’env -> ’terml -> ’term2) ->

-> (’bnl, ’terml) abs -> (’bn2, ’term2) abs
_’term env (x1, t1) ->

x2 = self#extend env x1 in

hsit_’term env tl1 in

(* A hook that defines
method private virtual exté
end

’env -> ’bnil

This method:

» takes a visitor function for terms, an environment,

w to extend the environment.
-> ’env *

*)
’bn2

Visiting an abstraction

The class BindingForms .map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(¥ A visitor method for the type abs. *)
method private visit_abs: ’terml ’term2 . _ ->
(’env -> ’terml -> ’term2) ->
env -> (’bnl, ’terml) absy-> (’bn2, ’term2) abs
= fun _ visit_’term env (x1, %1) ->
let env, x2 = self#extend knv x1 in
let t2 = visit_’term env t in
x2, t2

extend the environment. *)
nd: ’env -> ’bnl -> ’env * ’bn2

(* A hook that defines how
method private virtual ex
end

This method:

» takes a visitor fupction for terms, an environment,

» an abstraction,”i.e., a pair of a name and a term, and

Visiting an abstraction

The class BindingForms .map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(¥ A visitor method for the type abs. *)
method private visit_abs: ’terml ’term2 . _ ->
(’env -> ’terml -> ’term2) ->
’env -> (’bnl, ’terml) abs -> (’bn2, ’term2) abs
= fun _ visit_’term env (x1, t1) ->
let env, x2 = self#extend env x1 in
let t2 = visit_’term env tl1 in
x2, t2
(* A hook that defines how to extend the environment. *
method private virtual extend: ’env -> ’bnl -> ’env * ’bR2
end
This method:

» takes a visitor function for terms, an environment,
» an abstraction, i.e., a pair of a name and a term, and
» returns a pair of a transformed name and a transformed term.

Visiting an abstraction

That's all there is to single-name abstractions.
More binding constructs later on...

For now, let’s turn to the final participant.

The operations
specialist

A toolbox of operations

There are many operations on terms that the end user might wish for:

> testing terms for equality up to a-equivalence,

» finding out which names are free or bound in a term,
» applying a renaming or a substitution to a term,

» converting a term from one representation to another,
(plus application-specific operations.)

v

Implementing an operation

To implement one operation, the specialist decides:

> the types of names and environments,
» what to do at a free name occurrence,
» how to extend the environment when entering the scope of a bound name.

Implementing import

As an example, let’'s implement import, which converts raw terms to nominal
terms.

1. An import environment maps strings to atoms:
module StringMap = Map.Make(String)

type env = Atom.t StringMap.t
let empty : env = StringMap.empty

Implementing import

2. When the scope of x is entered,
the environment is extended with a mapping of the string x to a fresh atom a.

let extend (env : env) (x : string) : env * Atom.t =
let a = Atom.fresh x in
let env = StringMap.add x a env in
env, a

(An atom carries a unique integer identity.)

This is true regardless of which binding constructs are traversed.

Implementing import

3. When an occurrence of the string x is found,
the environment is looked up so as to find the corresponding atom.

exception Unbound of string

let lookup (env : env) (x : string) : Atom.t =
try StringMap.find x env
with Not_found -> raise (Unbound x)

Implementing import

The previous instructions are grouped in a little class — a “kit™:

class [’self] map = object (_ : ’self)
method private extend = extend
method private visit_’fn = lookup
end

This is KitImport .map.

That’s all there is to it... but...

The end user must work
a little bit to glue everything together...

The end user must work
a little bit to glue everything together...

... and may feel slightly annoyed.

Typical glue

For one operation, the end user must write 5 lines of glue code:
let import_term env t =
(object
inherit [_] map (¥ generated by visitors x*)

inherit [_] KitImport.map (* provided by AlphalLib *)
end) # visit_term env t

For 15 operations, this hurts.

Functors can help in simple cases, but are not flexible enough.

Macros help, but are ugly. Is there a better way?

Towards advanced
binding constructs

Defining new binding constructs

There are many binding constructs out there.
> “let”, “let rec”, patterns, telescopes, ...
We have seen how to programmatically define a binding construct.

Can it be done in a more declarative manner?

A domain-specific language

Here is a little language of binding combinators:

t =
|

abstraction(p)

binder(x)
outer(t)
rebind(p)

sums, products, free occurrences of names, etc.
a pattern, with embedded subterms

sums, products, etc.

a binding occurrence of a name

an embedded term

a pattern in the scope of any bound names on the left

Inspired by Caml (F.P., 2005) and Unbound (Weirich et al., 2011).

A domain-specific language

Here is a little language of binding combinators:

t =
|

p =
|
|
|
|

abstraction(p)

binder(x)
outer(t)
rebind(p)
inner(t)

sums, products, free occurrences of names, etc.
a pattern, with embedded subterms

sums, products, etc.

a binding occurrence of a name

an embedded term

a pattern in the scope of any bound names on the left
— sugar for rebind(outer(t))

Inspired by Caml (F.P., 2005) and Unbound (Weirich et al., 2011).

A domain-specific language

Here is a little language of binding combinators:

t

he]
N | ——

abstraction(p)
bind(p, t)

binder(x)
outer(t)
rebind(p)
inner(t)

sums, products, free occurrences of names, etc.

a pattern, with embedded subterms

— sugar for abstraction(p x inner(t))

sums, products, etc.

a binding occurrence of a name

an embedded term

a pattern in the scope of any bound names on the left
— sugar for rebind(outer(t))

Inspired by Caml (F.P., 2005) and Unbound (Weirich et al., 2011).

Implementation

These primitive constructs are just annotations:

type ’p abstraction = ’p
type ’bn binder = ’bn
type ’t outer = ’t

type ’p rebind = ’p

Their presence triggers calls to appropriate (hand-written) visit_ methods.

Implementation

While visiting a pattern, we keep track of:

» the outer environment, which existed outside this pattern;
» the current environment, extended with the bound names encountered so far.

Thus, while visiting a pattern, we use a richer type of contexts:

type ’env context = { outer: ’env; current: ’env ref }

— Not every visitor method need have the same type of environments!

With this in mind, the implementation of the visit_ methods is straightforward...

Implementation

This code takes place in a map visitor:

class virtual [’self] map = object (self : ’self)
method private virtual extend: ’env -> ’bnl -> ’env * ’bn2
(¥ The four visitor methods are inserted here... *)

end

1. At the root of an abstraction, a fresh context is allocated:

method private visit_abstraction: ’env ’pl ’p2
(’env context -> ’pl -> ’p2) ->
’env -> ’pl abstraction -> ’p2 abstraction
= fun visit_p env pl ->
visit_p { outer = env; current = ref env } pil

Implementation

2. When a bound name is met, the current environment is extended:

method private visit_binder: _ ->
’env context -> ’bnl binder -> ’bn2 binder
= fun visit_’bn ctx x1 ->

let env = !(ctx.current) in
let env, x2 = self#extend env x1 in
ctx.current := env;

x2

Implementation

3. When a term that is not in the scope of the abstraction is found,
it is visited in the outer environment.

method private visit_outer: ’env ’tl1 ’t2
(Penv -> ’tl1 -> ’t2) ->
’env context -> ’tl outer -> ’t2 outer
= fun visit_t ctx t1 ->
visit_t ctx.outer ti

Implementation

4. When a subpattern marked rebind is found,
the current environment is installed as the outer environment.

method private visit_rebind: ’env ’pl ’p2
(’env context -> ’pl -> ’p2) ->
’env context -> ’pl rebind -> ’p2 rebind
= fun visit_p ctx pl ->
visit_p { ctx with outer = !(ctx.current) } pi

This affects the meaning of outer inside rebind.

Example use: telescopes

A dependently-typed A-calculus whose I and A forms involve a telescope:

#define tele (’bn, ’fn) tele
#define term (’bn, ’fn) term
type tele =
| TeleNil
| TeleCons of ’bn binder * term outer * tele rebind
and term =
| TVar of ’fn
| TPi of (tele, term) bind
| TLam of (tele, term) bind
| TApp of term * term list
[@@deriving visitors {
variety = "map";
ancestors = ["BindingCombinators.map"]

}

Conclusion

Conclusion

Visitors are powerful.
Visitor classes are partial, composable descriptions of operations.
Visitors can traverse abstract syntax with binding.
» Syntax, binding forms, operations can be separately described.
» Syntax and even binding forms can be described in a declarative style.
» Open-ended, customizable approach.
Limitations:
» Macros are ugly.
» No proofs.
» Some operations may not fit the visitor framework;

» Some binding forms do not easily fit in the low-level framework
or in the higher-level DSL, e.g., Unbound’s Rec.

	Visitors
	Binding

