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We want verified software...



Therefore, we need
VERIFIED

LIBRARIES.



The Vocal project is building a verified library
of basic data structures and algorithms.

I The code is in OCaml.
I Verification can be done in higher-order separation logic :

I Charguéraud’s CFML imports a view of the code into Coq ;
I reasoning is carried out in Coq.

In this talk, I focus on one module : a hash table implementation.



Why verify a hash table implementation ?

I a simple and useful data structure

Why talk about it today ?

I dynamically allocated ; mutable
I equipped with two iteration mechanisms : fold, cascade



The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion



OCaml interface

An excerpt of HashTable.mli.

module Make (K : HashedType) : sig
type key = K.t
type ’a t
(* Creation . *)
val create: int -> ’a t
val copy: ’a t -> ’a t
(* Insertion and removal . *)
val add: ’a t -> key -> ’a -> unit
val remove: ’a t -> key -> unit
(* Lookup . *)
val find: ’a t -> key -> ’a option
val population: ’a t -> int
(* Iteration . *)
val fold: (key -> ’a -> ’b -> ’b) ->

’a t -> ’b -> ’b
val cascade: ’a t -> (key * ’a) cascade
(* ... more operations , not shown . *)

end
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(* ... more operations , not shown . *)

end

First-order operations



OCaml interface
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(* ... more operations , not shown . *)

end

Iteration
(producer in control)



OCaml interface

An excerpt of HashTable.mli.

module Make (K : HashedType) : sig
type key = K.t
type ’a t
(* Creation . *)
val create: int -> ’a t
val copy: ’a t -> ’a t
(* Insertion and removal . *)
val add: ’a t -> key -> ’a -> unit
val remove: ’a t -> key -> unit
(* Lookup . *)
val find: ’a t -> key -> ’a option
val population: ’a t -> int
(* Iteration . *)
val fold: (key -> ’a -> ’b -> ’b) ->

’a t -> ’b -> ’b
val cascade: ’a t -> (key * ’a) cascade
(* ... more operations , not shown . *)

end

Iteration
(consumer in control)



OCaml implementation

An excerpt of HashTable.ml.

module Make (K : HashedType) = struct
(* Type definitions . *)
type key = K.t
type ’a bucket =

Void
| More of key * ’a * ’a bucket
type ’a table = {

mutable data: ’a bucket array;
mutable popu: int;

init: int;
}
type ’a t = ’a table
(* Operations : see following slides ... *)

end



OCaml implementation

An excerpt of HashTable.ml.

module Make (K : HashedType) = struct
(* Type definitions . *)
type key = K.t
type ’a bucket =

Void
| More of key * ’a * ’a bucket
type ’a table = {

mutable data: ’a bucket array;
mutable popu: int;

init: int;
}
type ’a t = ’a table
(* Operations : see following slides ... *)

end

A hash table is a record...



OCaml implementation

An excerpt of HashTable.ml.

module Make (K : HashedType) = struct
(* Type definitions . *)
type key = K.t
type ’a bucket =

Void
| More of key * ’a * ’a bucket
type ’a table = {

mutable data: ’a bucket array;
mutable popu: int;

init: int;
}
type ’a t = ’a table
(* Operations : see following slides ... *)

end

...whose data field is an
array of buckets...



OCaml implementation

An excerpt of HashTable.ml.

module Make (K : HashedType) = struct
(* Type definitions . *)
type key = K.t
type ’a bucket =

Void
| More of key * ’a * ’a bucket
type ’a table = {

mutable data: ’a bucket array;
mutable popu: int;

init: int;
}
type ’a t = ’a table
(* Operations : see following slides ... *)

end

...where a bucket is a list
of key-value pairs.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init
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d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

A table represents
a finite map

of keys to (lists of) values.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

This SL predicate asserts
“the table at address h

encodes the dictionary M”.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

This one names s
the current concrete state

of the table.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

There must be a record at
address h...

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

...whose data field contains
a pointer d...

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

...to an array.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

The content of memory is
related to M.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

The address and content
of the array are exposed

under the name s.

We use s to demand / guarantee that certain operations are read-only.



Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

Implicit Type M : key -> list A.

Definition h ˜> TableInState M s :=
Hexists d pop init data ,
h ˜> ‘{

data := d;
popu := pop;
init := init

} \*
d ˜> Array data \*
\[ table_inv M init data ] \*
\[ population M = pop ] \*
\[ s = (d, data) ].

Definition h ˜> Table M :=
Hexists s, h ˜> TableInState M s.

We hide s when we do not
care about it.

We use s to demand / guarantee that certain operations are read-only.



The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion



Specifying a first-order operation : insertion

The effect of add h k x is to add the key-value pair (k, x) to the dictionary.

This is stated as a Hoare triple :

Theorem add_spec:
forall M h k x,
app MK.add [h k x]

PRE (h ˜> Table M)
POST (fun _ => Hexists M’,

h ˜> Table M’ \*
\[ M’ = add M k x ] \*
\[ lean M -> M k = nil -> lean M’ ]).
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The effect of add h k x is to add the key-value pair (k, x) to the dictionary.

This is stated as a Hoare triple :

Theorem add_spec:
forall M h k x,
app MK.add [h k x]

PRE (h ˜> Table M)
POST (fun _ => Hexists M’,

h ˜> Table M’ \*
\[ M’ = add M k x ] \*
\[ lean M -> M k = nil -> lean M’ ]).

The function call add h k x...



Specifying a first-order operation : insertion

The effect of add h k x is to add the key-value pair (k, x) to the dictionary.

This is stated as a Hoare triple :

Theorem add_spec:
forall M h k x,
app MK.add [h k x]

PRE (h ˜> Table M)
POST (fun _ => Hexists M’,

h ˜> Table M’ \*
\[ M’ = add M k x ] \*
\[ lean M -> M k = nil -> lean M’ ]).

...requires a valid table...



Specifying a first-order operation : insertion

The effect of add h k x is to add the key-value pair (k, x) to the dictionary.

This is stated as a Hoare triple :

Theorem add_spec:
forall M h k x,
app MK.add [h k x]

PRE (h ˜> Table M)
POST (fun _ => Hexists M’,

h ˜> Table M’ \*
\[ M’ = add M k x ] \*
\[ lean M -> M k = nil -> lean M’ ]).

...and produces a valid table...



Specifying a first-order operation : insertion

The effect of add h k x is to add the key-value pair (k, x) to the dictionary.

This is stated as a Hoare triple :

Theorem add_spec:
forall M h k x,
app MK.add [h k x]

PRE (h ˜> Table M)
POST (fun _ => Hexists M’,

h ˜> Table M’ \*
\[ M’ = add M k x ] \*
\[ lean M -> M k = nil -> lean M’ ]).

...representing a dictionary
with one more key-value pair.



The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion



Fold – for hash tables

let rec fold_aux f b accu =
match b with
| Void ->

accu
| More(k, x, b) ->

let accu = f k x accu in
fold_aux f b accu

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do

state := fold_aux f data.(i) !state
done;
!state

Writing a specification for a fold raises some questions :

I in what order does the consumer receive the key-value pairs ?
I is the consumer allowed to access the table for reading ? for writing ?



Fold – for hash tables

let rec fold_aux f b accu =
match b with
| Void ->

accu
| More(k, x, b) ->

let accu = f k x accu in
fold_aux f b accu

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do

state := fold_aux f data.(i) !state
done;
!state

A loop over the data array...

Writing a specification for a fold raises some questions :

I in what order does the consumer receive the key-value pairs ?
I is the consumer allowed to access the table for reading ? for writing ?



Fold – for hash tables

let rec fold_aux f b accu =
match b with
| Void ->

accu
| More(k, x, b) ->

let accu = f k x accu in
fold_aux f b accu

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do

state := fold_aux f data.(i) !state
done;
!state

...a loop over a linked list...

Writing a specification for a fold raises some questions :

I in what order does the consumer receive the key-value pairs ?
I is the consumer allowed to access the table for reading ? for writing ?



Fold – for hash tables

let rec fold_aux f b accu =
match b with
| Void ->

accu
| More(k, x, b) ->

let accu = f k x accu in
fold_aux f b accu

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do

state := fold_aux f data.(i) !state
done;
!state

...a call to the consumer.

Writing a specification for a fold raises some questions :

I in what order does the consumer receive the key-value pairs ?
I is the consumer allowed to access the table for reading ? for writing ?



Fold – for hash tables

let rec fold_aux f b accu =
match b with
| Void ->

accu
| More(k, x, b) ->

let accu = f k x accu in
fold_aux f b accu

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do

state := fold_aux f data.(i) !state
done;
!state

Writing a specification for a fold raises some questions :

I in what order does the consumer receive the key-value pairs ?
I is the consumer allowed to access the table for reading ? for writing ?



Specifying an iteration order – in general

Really a matter of specifying which orders the consumer may observe.

The events that can be observed by a consumer are :

I the production of one element ;
I the end of the sequence (this event occurs at most once, and occurs last).

An observation can be defined as a sequence of events.

A set of observations can be described by two predicates (Filliâtre and Pereira) :

Variables permitted complete : list A -> Prop.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The spec is parameterized
over permitted and complete.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The consumer may assume
every partial sequence she

observes is permitted.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

After observing termination,
the consumer may deduce
the sequence is complete.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The spec is parameterized
over a loop invariant I.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The consumer
must preserve I.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The whole iteration is then
guaranteed to preserve I.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The spec is parameterized
over SL predicates S and S’.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The producer requires S
access to the collection.



Specifying fold – in general

This is a higher-order specification : an implication between Hoare triples.

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
( forall x xs accu ,

permitted (xs & x) ->
call f x accu

PRE ( S’ c \* I xs accu)
POST (fun accu => S’ c \* I (xs & x) accu)

) ->
forall accu ,
app fold [f c accu]

PRE (S c \* I nil accu)
POST (fun accu => Hexists xs,

S c \* I xs accu \*
\[ complete xs ]).

The producer gets S’ access,
which may be weaker.



Specifying an iteration order – for hash tables

For hash tables, we give concrete definitions of permitted and complete :

Definition permitted kxs :=
exists M’, removal M kxs M’.

Definition complete kxs :=
removal M kxs empty.

where removal M kxs M’ means that from M one may remove the key-value-pair
sequence kxs to obtain M’.

This specification is semi-deterministic :

I two key-value pairs for different keys may be observed in any order ;
I two key-value pairs for the same key must be observed most-recent-value-first.



Specifying fold – for hash tables

The specification of fold for hash tables is an instance of the general spec :

Theorem fold_spec_ro:
forall M s B I,
Fold MK.fold

(* Calling convention : *)
(fun f kx (accu : B) =>

app f [(fst kx) (snd kx) accu])
(* Permitted / complete sequences : *)
(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> TableInState M s)
(* f receives and must preserve this : *)
(fun h => h ˜> TableInState M s).

This spec allows read-only access to the table during iteration,
and guarantees that iteration itself is a read-only operation.



Specifying fold – for hash tables

The specification of fold for hash tables is an instance of the general spec :

Theorem fold_spec_ro:
forall M s B I,
Fold MK.fold

(* Calling convention : *)
(fun f kx (accu : B) =>

app f [(fst kx) (snd kx) accu])
(* Permitted / complete sequences : *)
(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> TableInState M s)
(* f receives and must preserve this : *)
(fun h => h ˜> TableInState M s).

The predicates permitted and
complete for hash tables.

This spec allows read-only access to the table during iteration,
and guarantees that iteration itself is a read-only operation.



Specifying fold – for hash tables

The specification of fold for hash tables is an instance of the general spec :

Theorem fold_spec_ro:
forall M s B I,
Fold MK.fold

(* Calling convention : *)
(fun f kx (accu : B) =>

app f [(fst kx) (snd kx) accu])
(* Permitted / complete sequences : *)
(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> TableInState M s)
(* f receives and must preserve this : *)
(fun h => h ˜> TableInState M s).

fold guarantees that the table
is not modified.

This spec allows read-only access to the table during iteration,
and guarantees that iteration itself is a read-only operation.



Specifying fold – for hash tables

The specification of fold for hash tables is an instance of the general spec :

Theorem fold_spec_ro:
forall M s B I,
Fold MK.fold

(* Calling convention : *)
(fun f kx (accu : B) =>

app f [(fst kx) (snd kx) accu])
(* Permitted / complete sequences : *)
(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> TableInState M s)
(* f receives and must preserve this : *)
(fun h => h ˜> TableInState M s).

The consumer cannot modify
the table.

This spec allows read-only access to the table during iteration,
and guarantees that iteration itself is a read-only operation.



Specifying fold – for hash tables

If access to the table during iteration is not needed, a simpler spec can be given :

Theorem fold_spec:
forall M B I,
Fold MK.fold

(fun f kx (accu : B) =>
app f [(fst kx) (snd kx) accu])

(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> Table M)
(* f cannot access the table : *)
(fun h => \[]).
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Specifying fold – for hash tables

If access to the table during iteration is not needed, a simpler spec can be given :

Theorem fold_spec:
forall M B I,
Fold MK.fold

(fun f kx (accu : B) =>
app f [(fst kx) (snd kx) accu])

(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> Table M)
(* f cannot access the table : *)
(fun h => \[]).

The consumer gets no
access to the table.
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Iterators

An iterator is an on-demand producer of a sequence of elements.



Iterators

What should be the type of an iterator ?

public interface Iterator <E> {
E next () throws NoSuchElementException ;
boolean hasNext ();

}

This interface :

I requires the iterator to be mutable ;
I is more complex than strictly necessary.
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Iterators

What should be the type of an iterator ?

public interface Iterator <E> {
E next () throws NoSuchElementException ;
boolean hasNext ();

}

NOT
GREAT

This interface :

I requires the iterator to be mutable ;
I is more complex than strictly necessary.



Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

type ’a cascade =
unit -> ’a head

and ’a head =
| Nil
| Cons of ’a * ’a cascade

This definition offers an abstract, consumer-oriented view. It does not reveal :

I whether a cascade has mutable internal state, or is pure ;
I whether elements are stored in memory, or computed on demand ;
I whether elements are re-computed when re-demanded, or memoized.
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I whether elements are re-computed when re-demanded, or memoized.
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I whether elements are re-computed when re-demanded, or memoized.
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Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

type ’a cascade =
unit -> ’a head

and ’a head =
| Nil
| Cons of ’a * ’a cascade

This definition offers an abstract, consumer-oriented view. It does not reveal :

I whether a cascade has mutable internal state, or is pure ;
I whether elements are stored in memory, or computed on demand ;
I whether elements are re-computed when re-demanded, or memoized.

Cascades are easy
to build and use
because they are
“just like lists”.



A cascade – for hash tables

Constructing a cascade is like constructing a list of all key-value pairs...

let rec cascade_aux data i b =
match b with
| More (k, x, b) ->

Cons (
(k, x),
fun () -> cascade_aux data i b

)
| Void ->

let i = i + 1 in
if i < Array.length data then

cascade_aux data i data.(i)
else

Nil

let cascade h =
let data = h.data in
let b = data .(0) in
fun () ->

cascade_aux data 0 b
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...with a delay.



A cascade – for hash tables

Constructing a cascade is like constructing a list of all key-value pairs...

let rec cascade_aux data i b =
match b with
| More (k, x, b) ->

Cons (
(k, x),
fun () -> cascade_aux data i b

)
| Void ->

let i = i + 1 in
if i < Array.length data then

cascade_aux data i data.(i)
else

Nil

let cascade h =
let data = h.data in
let b = data .(0) in
fun () ->

cascade_aux data 0 b

The cascade
must not be
used after
the table is
modified!



Specifying a cascade – in general

A cascade is a function that returns an element and a cascade.

We use an impredicative encoding of this co-inductive specification.

Variable I : hprop.
Variables permitted complete : list A -> Prop.

Definition c ˜> Cascade xs :=
Hexists S : list A -> func -> hprop ,
S xs c \*
\[ forall xs c, duplicable (S xs c) ] \*
\[ forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
\[ forall xs c,

app c [tt]
INV (S xs c \* I)
POST (fun o =>

match o with
| Nil => \[ complete xs ]
| Cons x c => S (xs & x) c
end) ].
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The cascade has internal
invariant S...
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A cascade is a function that returns an element and a cascade.
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Variables permitted complete : list A -> Prop.
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...which must be duplicable.
A cascade is persistent.
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A cascade is a function that returns an element and a cascade.
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Calling c requires validity
and produces

another valid cascade.
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The spec is parameterized
over permitted and complete.



Specifying a cascade – in general

A cascade is a function that returns an element and a cascade.

We use an impredicative encoding of this co-inductive specification.

Variable I : hprop.
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The consumer may assume
that the partial sequence

produced so far is permitted.



Specifying a cascade – in general

A cascade is a function that returns an element and a cascade.

We use an impredicative encoding of this co-inductive specification.

Variable I : hprop.
Variables permitted complete : list A -> Prop.

Definition c ˜> Cascade xs :=
Hexists S : list A -> func -> hprop ,
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app c [tt]
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POST (fun o =>

match o with
| Nil => \[ complete xs ]
| Cons x c => S (xs & x) c
end) ].

Upon termination, the
consumer may deduce that
the sequence is complete.



Specifying a cascade – in general

A cascade is a function that returns an element and a cascade.

We use an impredicative encoding of this co-inductive specification.

Variable I : hprop.
Variables permitted complete : list A -> Prop.

Definition c ˜> Cascade xs :=
Hexists S : list A -> func -> hprop ,
S xs c \*
\[ forall xs c, duplicable (S xs c) ] \*
\[ forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
\[ forall xs c,

app c [tt]
INV (S xs c \* I)
POST (fun o =>

match o with
| Nil => \[ complete xs ]
| Cons x c => S (xs & x) c
end) ].

The cascade has access to
an underlying data structure.



Specifying a cascade – for hash tables

Theorem cascade_spec:
forall h M s,
app MK.cascade [h]

INV (h ˜> TableInState M s)
POST (fun c =>

c ˜> Cascade
(h ˜> TableInState M s)
(permitted M) (complete M)
nil

).

“Concurrent modifications” are disallowed.
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Theorem cascade_spec:
forall h M s,
app MK.cascade [h]

INV (h ˜> TableInState M s)
POST (fun c =>

c ˜> Cascade
(h ˜> TableInState M s)
(permitted M) (complete M)
nil

).

Same predicates permitted
and complete as in fold.

“Concurrent modifications” are disallowed.



Specifying a cascade – for hash tables

Theorem cascade_spec:
forall h M s,
app MK.cascade [h]

INV (h ˜> TableInState M s)
POST (fun c =>

c ˜> Cascade
(h ˜> TableInState M s)
(permitted M) (complete M)
nil

).

The cascade can be used
only as long as the table

remains in state s.

“Concurrent modifications” are disallowed.
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Conclusion

I have shown arguably nice specifications expressed in vanilla Separation Logic.

I No magic wands, fractional permissions, or other black wizardry.

A few statistics :

I Under 150loc of OCaml code.
I Dictionaries about 600loc of Coq specs and proofs.
I Hash tables about 1500loc of Coq specs and proofs.

Total effort about 15 man.days, but a lot of expertise still required.

Future work :

I verifying more data structures ;
I making the system more accessible.
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