
Verifying a hash table and its iterators
in higher-order separation logic

François Pottier

Vocal meeting
Paris, November 10, 2016

Motivation

Why verify a hash table implementation ?

I a simple and useful data structure
I implements an abstract concept : a dictionary
I dynamically allocated ; mutable
I parametric in an ordered type of keys and a type of values
I equipped with two iteration mechanisms : fold, cascade

A glimpse of the OCaml code

A glimpse of the Coq invariant and specifications

Interface

module Make (K : HashedType) : sig
type key = K.t
type ’a t
(* Creation . *)
val create: int -> ’a t
val copy: ’a t -> ’a t
(* Insertion and removal . *)
val add: ’a t -> key -> ’a -> unit
val remove: ’a t -> key -> unit
(* Lookup . *)
val find: ’a t -> key -> ’a option
val population: ’a t -> int
(* Iteration . *)
val fold: (key -> ’a -> ’b -> ’b) ->

’a t -> ’b -> ’b
val cascade: ’a t -> (key * ’a) cascade
(* ... more operations , not shown . *)

end

Cascades

An iterator is an on-demand producer of a sequence of elements.

A cascade, or delayed list, is a particular kind of iterator.

type ’a head =
| Nil
| Cons of ’a * (unit -> ’a head)

type ’a cascade =
unit -> ’a head

This type definition does not reveal :

I whether a cascade has mutable internal state, or is pure ;
I whether elements are stored in memory, or computed on demand ;
I whether elements are re-computed when re-demanded, or memoized.

My credo :

Cascades are easy to build and use because they are “just like lists”.

Type definitions

A hash table is a record whose data field holds a pointer to an array of buckets.

A bucket is an immutable list of key-value pairs.

module Make (K : HashedType) = struct
(* Type definitions . *)
type key = K.t
type ’a bucket =

Void
| More of key * ’a * ’a bucket
type ’a table = {

mutable data: ’a bucket array;
mutable popu: int;

init: int;
}
type ’a t = ’a table
(* Operations : see next slides ... *)
...

end

Iteration via fold

The higher-order function fold is implemented by two nested loops.

The inner loop is implemented as a tail-recursive function.

let rec fold_aux f b accu =
match b with
| Void ->

accu
| More(k, x, b) ->

let accu = f k x accu in
fold_aux f b accu

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do

state := fold_aux f data.(i) !state
done;
!state

Iteration via a cascade

Constructing a cascade is like constructing a list of all key-value pairs.

let rec cascade_aux data i b =
match b with
| More (k, x, b) ->

Cons (
(k, x),
fun () -> cascade_aux data i b

)
| Void ->

let i = i + 1 in
if i < Array.length data then

cascade_aux data i data.(i)
else

Nil

let cascade h =
let data = h.data in
let b = data .(0) in
fun () ->

cascade_aux data 0 b

A glimpse of the OCaml code

A glimpse of the Coq invariant and specifications

Invariant

We define two abstract predicates, h ˜> TableInState M s and h ˜> Table M.

This is used later on to demand / guarantee that certain operations are read-only.

Implicit Type M : key -> list A.
Implicit Type h : MK.table_ A.
Implicit Type d : loc.
Implicit Type data : list (MK.bucket_ A).

Definition TableInState M s h :=
Hexists d pop init data ,
h ˜> ‘{ (* the record *)

MK.data ’ := d;
MK.popu ’ := pop;
MK.init ’ := init

} *
d ˜> Array data * (* the array *)
\[table_inv M init data] * (* the data invariant *)
\[population M = pop] *
\[s = (d, data)]. (* the " concrete state " *)

Definition Table M h :=
Hexists s, h ˜> TableInState M s.

Specification of insertion

The effect of add h k x is to add the key-value pair (k, x) to the dictionary.

Theorem add_spec:
forall M h k x,
app MK.add [h k x]

PRE (h ˜> Table M)
POST (fun _ => Hexists M’,
h ˜> Table M’ *
\[M’ = add M k x] *
\[lean M -> M k = nil -> lean M’]).

The first-order operations (remove, clear, . . .) have “simple” specifications like this.

Generic specification of iteration order

A generic specification of an iteration mechanism (fold, cascade, . . .)
must be parameterized with a set of possible observations.

The events that can be observed are :

I the production of one element ;
I the production of an end-of-sequence signal.

An observation could be viewed as a series of events
(where an end-of-sequence event, if present, must be the last event).

Alternatively, a set of observations can be directly encoded using two predicates :

Variables permitted complete : list A -> Prop.

Hash table iteration order

We give concrete definitions of permitted and complete for our hash table
iteration mechanisms.

They are semi-deterministic :

I two key-value pairs for different keys may be observed in any order ;
I two key-value pairs for the same key must be observed most-recent-value-first.

Definition permitted kxs :=
exists M’, removal M kxs M’.

Definition complete kxs :=
removal M kxs empty.

Generic specification of iteration via fold

Variable fold : func.
Variables A B C : Type.
Variable call : func -> A -> B -> ˜˜B.
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S’ : C -> hprop.

Definition Fold := forall f c,
(forall x xs accu ,

permitted (xs & x) ->
call f x accu

(* PRE *) (S’ c * I xs accu)
(* POST *) (fun accu =>

S’ c * I (xs & x) accu)
) ->
forall accu ,
app fold [f c accu]

PRE (S c * I nil accu)
POST (fun accu => Hexists xs,

S c * I xs accu *
\[complete xs]).

Specification of hash table iteration via fold

The specification of fold for hash tables is a special case :

Theorem fold_spec_ro:
forall M s B I,
Fold MK.fold

(* Calling convention : *)
(fun f kx (accu : B) =>

app f [(fst kx) (snd kx) accu])
(* Permitted / complete sequences : *)
(permitted M) (complete M) I
(* fold requires and preserves this ,

so does not modify the table : *)
(fun h => h ˜> TableInState M s)
(* f receives this and must preserve

it , hence can read the table : *)
(fun h => h ˜> TableInState M s).

This specification allows read-only access to the table during iteration.

Specification of hash table iteration via fold

If access to the table during iteration is not needed, a simpler spec can be given :

Theorem fold_spec:
forall M B I,
Fold MK.fold

(fun f kx (accu : B) =>
app f [(fst kx) (snd kx) accu])

(permitted M) (complete M) I
(* fold requires & preserves this : *)
(fun h => h ˜> Table M)
(* f cannot access the table : *)
(fun h => \[]).

(This spec does not guarantee that the table is unmodified.)

Generic specification of iteration via a cascade

c ˜> Cascade xs means that c is a valid cascade that will produce a valid
continuation of xs.

Thus, xs represents the elements that have been produced already.

Variable A : Type.
Variable I : hprop.
Variables permitted complete : list A -> Prop.

Definition Cascade xs c :=
Hexists S : list A -> func -> hprop ,
S xs c *
\[forall xs c, duplicable (S xs c)] *
\[forall xs c, S xs c ==> S xs c * \[permitted xs]] *
\[forall xs c,

app c [tt]
INV (S xs c * I)
POST (fun o =>

match o with
| Nil => \[complete xs]
| Cons x c => S (xs & x) c
end)].

Cascade is defined as (an impredicative encoding of) a greatest fixed point.

Specification of hash table iteration via a cascade

The specification of cascade uses the same predicates permitted and complete
as the specification of fold.

Theorem cascade_spec:
forall h M s,
app MK.cascade [h]

INV (h ˜> TableInState M s)
POST (fun c =>

c ˜> Cascade
(h ˜> TableInState M s)
(permitted M) (complete M)
nil

).

cascade produces a cascade that can be used (only) as long as the hash table
remains in the concrete state s.

That is, “concurrent modifications” are disallowed.

Statistics

I OCaml : under 150loc
I Coq (abstract dictionaries) : 300loc specs, 300loc proofs
I Coq (concrete hash tables) : 700loc specs, 700loc proofs
I total effort : under 15 man.days

	A glimpse of the OCaml code
	A glimpse of the Coq invariant and specifications

