
Reachability and error diagnosis in LR(1) parsers

François Pottier

Inria, Paris
February 15, 2016

40 years ago

While it is at least honest, a compiler that quits upon first detecting an
error will not be popular with its users.

Many runs may be required just to remove trivial keypunching errors
from a program.

– James J. Horning, “What the compiler should tell the user” (1976)

Today

The finest tools have shortcomings

let f x == 3

$ ocamlc -c f.ml

File "f.ml", line 1, characters 8-10:
Error: Syntax error

Diagnosis using yacc’s error token is hard to get right

module StringSet = Set.Make(String)
let add (x : int) (xs : StringSet) =

StringSet.add (string_of_int x) xs

$ ocamlc -v
The Objective Caml compiler, version 3.10.0
$ ocamlc -c s.ml

File "s.ml", line 2, characters 33-34:
Syntax error: ’)’ expected
File "s.ml", line 2, characters 18-19:
This ’(’ might be unmatched

Diagnosis using yacc’s error token is hard to get right

module StringSet = Set.Make(String)
let add (x : int) (xs : StringSet) =

StringSet.add (string_of_int x) xs

$ ocamlc -v
The OCaml compiler, version 4.02.1
$ ocamlc -c s.ml

File "s.ml", line 2, characters 33-34:
Error: Syntax error: type expected.

Should this particular error be so hard to explain ?

$ echo "implementation: LET LIDENT LPAREN LIDENT COLON UIDENT RPAREN" \
> | menhir --lalr --interpret-error parser.mly

##
Ends in an error in state: 194.
##
mod_ext_longident -> mod_ext_longident . DOT UIDENT [LPAREN DOT]
mod_ext_longident -> mod_ext_longident . LPAREN mod_ext_longident

RPAREN [LPAREN DOT]
type_longident -> mod_ext_longident . DOT LIDENT [... 63 tokens]

Only 3 continuations are possible at this point.

The last one is a good suggestion, as it allows a more interesting reduction.

Should this particular error be so hard to explain ?

$ echo "implementation: LET LIDENT LPAREN LIDENT COLON UIDENT RPAREN" \
> | menhir --lalr --interpret-error parser.mly

##
Ends in an error in state: 194.
##
mod_ext_longident -> mod_ext_longident . DOT UIDENT [LPAREN DOT]
mod_ext_longident -> mod_ext_longident . LPAREN mod_ext_longident

RPAREN [LPAREN DOT]
type_longident -> mod_ext_longident . DOT LIDENT [... 63 tokens]

Only 3 continuations are possible at this point.

The last one is a good suggestion, as it allows a more interesting reduction.

Should this particular error be so hard to explain ?

We might hope to see this :

module StringSet = Set.Make(String)
let add (x : int) (xs : StringSet) =

StringSet.add (string_of_int x) xs

$ ocamlc -v
The OCaml compiler, version 4.242640687
$ ocamlc -c s.ml

File "s.ml", line 2, characters 33-34:
Syntax error: ill-formed type.
Up to this point, an extended module path has been recognized.
If this path is complete, then at this point,
a dot ’.’, followed with a type constructor, is expected.

What’s the idea ?

Jeffery’s idea (2003) :

I Associate a handwritten diagnostic message...
I ...with this invalid sentence (LET LIDENT LPAREN LIDENT COLON UIDENT RPAREN).
I Let a tool translate the sentence to a state number (194).

This way, build a collection of state/message pairs...

...BY HAND.

What’s the idea ?

Jeffery’s idea (2003) :

I Associate a handwritten diagnostic message...
I ...with this invalid sentence (LET LIDENT LPAREN LIDENT COLON UIDENT RPAREN).
I Let a tool translate the sentence to a state number (194).

This way, build a collection of state/message pairs...

...BY HAND.

Oops

Yea, right.

$ menhir --lalr -lg 1 -la 1 parser.mly

Grammar has 206 nonterminal symbols, among which 7 start symbols.
Grammar has 118 terminal symbols.
Grammar has 749 productions.
Built an LR(1) automaton with 1551 states.

Research questions

This raises two obvious questions :

I How to come up with a collection of sentences that covers all error states ?
I How to maintain this collection as the grammar evolves ?

An unanticipated question came up during this work :

I Is it possible to write an accurate diagnostic message for every error state ?

Research questions

This raises two obvious questions :

I How to come up with a collection of sentences that covers all error states ?
I How to maintain this collection as the grammar evolves ?

An unanticipated question came up during this work :

I Is it possible to write an accurate diagnostic message for every error state ?

Per-state diagnostic messages ?

Menhir’s reachability algorithm and new features

CompCert’s new diagnostic messages

Conclusion

How to diagnose syntax errors ?

Jeffery’s idea (2003) :

Choose a diagnostic message based on the LR automaton’s state,
ignoring its stack entirely.

Is this a reasonable idea ?

Let’s have a look at a few example situations...

Is this a reasonable idea ? – Yes

Sometimes, yes, clearly the state alone contains enough information.

int f (int x) { do {} while (x--) }

The error is detected in a state that looks like this :

statement: DO statement WHILE LPAREN expr RPAREN . SEMICOLON [...]

It is easy enough to give an accurate message :

$ ccomp -c dowhile.c

dowhile.c:1:34: syntax error after ’)’ and before ’}’.
Ill-formed statement.
At this point, a semicolon ’;’ is expected.

Is this a reasonable idea ? – Yes, it seems... ?

Here is another example where things seem to work out as hoped :

int f (int x) { return x + 1 }

The error is detected in a state that looks like this :

expr -> expr . COMMA assignment_expr [SEMICOLON COMMA]
expr? -> expr . [SEMICOLON]

We decide to omit the first possibility, and say a semicolon is expected.

$ ccomp -c return.c

return.c:1:29: syntax error after ’1’ and before ’}’.
Up to this point, an expression has been recognized:

’x + 1’
If this expression is complete,
then at this point, a semicolon ’;’ is expected.

Yet, ’,’ and ’;’ are clearly not the only permitted futures ! What is going on ?

Is this a reasonable idea ? – Uh, oh...

Let us change just the incorrect token in the previous example :

int f (int x) { return x + 1 2; }

The error is now detected in a different state, which looks like this :

postfix_expr -> postfix_expr . LBRACK expr RBRACK [...]
postfix_expr -> postfix_expr . LPAREN arg_expr_list? RPAREN [...]
postfix_expr -> postfix_expr . DOT general_identifier [...]
postfix_expr -> postfix_expr . PTR general_identifier [...]
postfix_expr -> postfix_expr . INC [...]
postfix_expr -> postfix_expr . DEC [...]
unary_expr -> postfix_expr . [SEMICOLON RPAREN and 34 more tokens]

Based on this information, what diagnostic message can one propose ?

Is this a reasonable idea ? – No !

Based on this, the diagnostic message could say that :

I The “postfix expression” x + 1 can be continued in 6 different ways ;
I Or maybe this “postfix expression” forms a complete “unary expression”...
I ...and in that case, it could be followed with 36 different tokens...
I among which ’;’ appears, but also ’)’, ’]’, ’}’, and others !

So,

I there is a lot of worthless information,
I yet there is still not enough information :
I we cannot see that ’;’ is permitted, while ’)’ is not.

The missing information is not encoded in the state : it is buried in the stack.

Two problems

We face two problems :

I depending on which incorrect token we look ahead at,
the error is detected in different states ;

I in some of these states, there is not enough information
to propose a good diagnostic message.

What can we do about this ?

We propose two solutions to these problems :

I Selective duplication.
In the grammar, distinguish “expressions that can be followed with a
semicolon”, “expressions that can be followed with a closing parenthesis”, etc.

(Uses Menhir’s expansion of parameterized nonterminal symbols.)

This fixes the problematic states by building more information into them.
I Reduction on error.

In the automaton, perform one more reduction to get us out of the problematic
state before the error is detected.

(Uses Menhir’s new %on_error_reduce directive.)

This avoids the problematic states.

How do we know what we are doing ?

But :

I how do we find all states where an error can be detected ?
I in a canonical LR(1) automaton, this is easy...
I in a non-canonical automaton and in the presence of conflicts, it is not !

I after tweaking the grammar or automaton, how do we know for sure
that we have fixed or avoided the problematic states ?

We need tool support.

Per-state diagnostic messages ?

Menhir’s reachability algorithm and new features

CompCert’s new diagnostic messages

Conclusion

Finding all error states

How do we find all states where an error can be detected ?

I if the grammar is LR(1) and the automaton is canonical,
then they are exactly the targets of terminal transitions.

I no longer true if the grammar has conflicts or the automaton is noncanonical !

For every state s and terminal symbol z, if (s, z) is an error entry, we must ask :

I is the configuration (s, z) reachable ?

We need a reachability algorithm.

Finding all error states

How do we find all states where an error can be detected ?

I if the grammar is LR(1) and the automaton is canonical,
then they are exactly the targets of terminal transitions.

I no longer true if the grammar has conflicts or the automaton is noncanonical !

For every state s and terminal symbol z, if (s, z) is an error entry, we must ask :

I is the configuration (s, z) reachable ?

We need a reachability algorithm.

The algorithm’s specification : a big-step semantics of LR(1) automata

Init

s
ε / ε
−−� s [z]

Step-Terminal

s
α /w
−−−� s′ [z] A ` s′ z

−→ s′′

s
αz /wz
−−−−−� s′′ [z′]

Step-NonTerminal

s
α /w
−−−� s′ [z] A ` s′ A

−→ s′′

s′
A /w′
−−−−→ s′′ [z′] z = first(w ′z′)

s
αA /ww′
−−−−−−� s′′ [z′]

Reduce

A ` s A
−→ s′′ s

α /w
−−−� s′ [z]

A ` s′ reduces A → α on z

s
A /w
−−−→ s′′ [z]

Figure: Inductive characterization of the predicates s
α /w
−−−−� s′ [z] and s

A /w
−−−−→ s′ [z].

The algorithm’s performance

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●●
●

●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●

●

●

●●CompCert

●Unicon

100

1000

100 1000
grammar size

st

at
es

●●
● ●

●

●

●●
● ●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●
●

●
●
●

●

●

●●

●

●

●

●

●

●●
●

● ●

●
●

●●
● ●●●●●

●● ●
●●●
●●●

●●● ●●●●● ●

● ● ●
●
●

●

●

●● CompCert

●Unicon

10

1000

1e+05 1e+06 1e+07
recorded facts

tim
e

(s
ec

on
ds

)

●●●

● ●

●

●●
● ●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●●●● ●●●

●

●

●

●●

●

●

●

●

●

●●
●

● ●
● ●

●
●

●

●

●
●
●

●●
●

●●
●●
●●● ●●● ●●

●●●
●
●

● ●●

●

●

●

●●
CompCert

●Unicon

100

10000

1e+05 1e+06 1e+07
recorded facts

m
ax

 h
ea

p
si

ze
 (

M
b)

●
● ●

●
●

●

● ●

●

●

●

● ●●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●●●

●

●

● ●

●

●
●

●

●

●● ●

●
●
●

●
●

●●
● ●●●● ●●

● ●●● ●●●
●

● ●
●

● ●● ●
●●

●
● ● ●

●

●

●●CompCert

●Unicon

1e+05

1e+06

1e+07

1e+07 1e+08 1e+09
total star size * # terminals ^ 2

re

co
rd

ed
 fa

ct
s

Menhir’s new features

Menhir can now :

I list all states where an error can be detected,
together with example sentences that cause these errors.

The grammar author :

I manually constructs a diagnostic message for each error state ;
I adjusts the grammar or automaton to make this task easier.

Menhir :

I updates the list of example sentences and messages as the grammar evolves ;
I checks that this list remains correct, irredundant, and complete.

A few figures

(One version of) CompCert’s ISO C99 parser :

I 145 nonterminal symbols, 93 terminal symbols, 365 productions ;
I 677-state LALR(1) automaton ;
I 263 error states found in 43 seconds using 1Gb of memory ;
I 150 distinct hand-written diagnostic messages.

Per-state diagnostic messages ?

Menhir’s reachability algorithm and new features

CompCert’s new diagnostic messages

Conclusion

Show the past, show (some) futures

color->y = (sc.kd * amb->y + il.y + sc.ks * is.y * sc.y;

$ ccomp -c render.c

render.c:70:57: syntax error after ’y’ and before ’;’.
Up to this point, an expression has been recognized:

’sc.kd * amb->y + il.y + sc.ks * is.y * sc.y’
If this expression is complete,
then at this point, a closing parenthesis ’)’ is expected.

Guidelines :

I Show the past : what has been recently understood.
I Show the future : what is expected next...
I ...but do not show every possible future.

Stay where we are

multvec_i[i = multvec_j[i] = 0;

$ ccomp -c subsumption.c

subsumption.c:71:34: syntax error after ’0’ and before ’;’.
Ill-formed expression.
Up to this point, an expression has been recognized:

’i = multvec_j[i] = 0’
If this expression is complete,
then at this point, a closing bracket ’]’ is expected.

Guidelines :

I Show where the problem was detected,
I even if the actual error took place earlier.

Show high-level futures ; show enough futures

void f (void) { return; }}

$ gcc -c braces.c

braces.c:1: error: expected identifier or ‘(’ before ‘}’ token

$ clang -c braces.c

braces.c:1:26: error: expected external declaration

$ ccomp -c braces.c

braces.c:1:25: syntax error after ’}’ and before ’}’.
At this point, one of the following is expected:

a function definition; or
a declaration; or
a pragma; or
the end of the file.

Show high-level futures ; show enough futures

Guidelines :

I Do not just say what tokens are allowed next :
I instead, say what high-level constructs are allowed.
I List all permitted futures, if that is reasonable.

Show enough futures

int f(void) { int x;) }

$ gcc -c extra.c

extra.c: In function ‘f’:
extra.c:1: error: expected statement before ‘)’ token

$ clang -c extra.c

extra.c:1:7: error: expected expression

$ ccomp -c extra.c

extra.c:1:20: syntax error after ’;’ and before ’)’.
At this point, one of the following is expected:

a declaration; or
a statement; or
a pragma; or
a closing brace ’}’.

Show the goal(s)

int main (void) { static const x; }

$ ccomp -c staticconstlocal.c

staticconstlocal.c:1:31: syntax error after ’const’ and before ’x’.
Ill-formed declaration.
At this point, one of the following is expected:

a storage class specifier; or
a type qualifier; or
a type specifier.

Guidelines :

I If possible and useful, show the goal.
I Here, we definitely hope to recognize a “declaration”.

Show the goal(s)

static const x;

$ ccomp -c staticconstglobal.c

staticconstglobal.c:1:13: syntax error after ’const’ and before ’x’.
Ill-formed declaration or function definition.
At this point, one of the following is expected:

a storage class specifier; or
a type qualifier; or
a type specifier.

Guidelines :

I Show multiple goals when the choice has not been made yet.
I Here, we hope to recognize a “declaration” or a “function definition”.

Per-state diagnostic messages ?

Menhir’s reachability algorithm and new features

CompCert’s new diagnostic messages

Conclusion

Contribution

I We equip the Menhir parser generator with tools that help :
I understand and fine-tune the landscape of syntax errors ;
I build and maintain a complete collection of diagnostic messages.

I We apply this approach to the CompCert C99 (pre-)parser.

You can do it, too !

	Per-state diagnostic messages?
	Menhir's reachability algorithm and new features
	CompCert's new diagnostic messages
	Conclusion

