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What is type inference ?

What is the type of this OCaml function ?
let f verbose msg = if verbose then msg else ""

OCaml infers it :

# let f verbose msg = if verbose then msg else "";;
val £ : bool -> string -> string = <fun>

Type inference is mostly a matter of finding out the obvious.
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Where is type inference ?

Everywhere.

Every typed programming language has some type inference.

» Pascal, C, etc. have a tiny amount
> the type of every expression is “inferred” bottom-up
C++ and Java have a bit more
» C++ has auto, decltype, inference of template parameters...
» Java infers type parameters to method calls and new (slowly... see next)
Scala has a lot
» a form of “local type inference”
> “bidirectional” (bottom-up in places, top-down in others)
SML, OCaml, Haskell have a lot, too
» “non-local” (based on unification / constraint solving)

Haskell, Scala, Coq, Agda infer not just types, but also terms (that is, code) !

v

v
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An anecdote

Anyone who has ever used the “diamond” in Java 7...

List<Integer> xs =
new Cons<> (1,
new Cons<> (1,
new Cons<> (2,
new Cons<> (3,
new Cons<> (3,
new Cons<> (5,
new Cons<> (6,
new Cons<> (6,
new Cons<> (8,
new Cons<> (9,
new Cons<> (9,
new Cons<> (9,
new Nil<> ()
YNNI ;  // Tested with javac 1.8.0_05


https://docs.oracle.com/javase/tutorial/java/generics/types.html#diamond

An anecdote

Anyone who has ever used the “diamond” in Java 7...

List<Integer> xs =

new Cons<> (1, // 0.5 seconds
new Cons<> (1, // 0.5 seconds
new Cons<> (2, // 0.5 seconds
new Cons<> (3, // 0.6 seconds
new Cons<> (3, // 0.7 seconds
new Cons<> (5, // 0.9 seconds
new Cons<> (6, // 1.4 seconds
new Cons<> (6, // 6.0 seconds
new Cons<> (8, // 6.5 seconds
new Cons<> (9, // 10.5 seconds

new Cons<> (9, // 26 seconds

new Cons<> (9, // 76 seconds

new Nil<> ()

YNNI ;  // Tested with javac 1.8.0_05

.. may be interested to hear that this feature seems to have exponential cost. ©


https://docs.oracle.com/javase/tutorial/java/generics/types.html#diamond

What is type inference good for ?



Benefits

What does type inference do for us, programmers ? Obviously,

> it reduces verbosity and redundancy,
» giving us static type checking at little syntactic cost.



Benefits

What does type inference do for us, programmers ? Obviously,

> it reduces verbosity and redundancy,
» giving us static type checking at little syntactic cost.

Less obviously,

> it sometimes helps us figure out what we are doing...



Example : sorting

What is the type of sort ?

let rec sort (xs : ’a list) =
if xs = [] then
(]
else

let pivot = List.hd xs in
let xs1, xs2 = List.partition (fun x -> x <= pivot) xs in
sort xsl @ sort xs2



Example : sorting

What is the type of sort ?

let rec sort (xs : ’a list) =
if xs = [] then
(]
else

let pivot = List.hd xs in
let xs1, xs2 = List.partition (fun x -> x <= pivot) xs in
sort xsl @ sort xs2

Oops... This is a lot more general than | thought ! ?
val sort : ’a list -> ’b list

This function never returns a non-empty list.



Example : searching a binary search tree

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree
What is the type of £ind ?

let rec find compare x = function
| Empty -> raise Not_found
| Node(1l, v, r) —>
let ¢ = compare x vV in
if ¢ = 0 then v
else find compare x (if ¢ < O then 1 else r)



Example : searching a binary search tree

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree
What is the type of £ind ?

let rec find compare x = function
| Empty -> raise Not_found
| Node(1l, v, r) —>
let ¢ = compare x vV in
if ¢ = 0 then v
else find compare x (if ¢ < O then 1 else r)

It may well be more general than you expected :
val find : (’a -> ’b -> int) -> ’a -> ’b tree -> ’b

Good — this allows us to implement lookup in a map using find.



Example : groking delimited continuations

This 1989 paper by Danvy and Filinski...

A Functional Abstraction of Typed Contexts

Olivier Danvy & Andrzej Filinski

DIKU — Computer Science Department, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen @, Denmark
uucp: danvy@diku.dk & andrzej@diku.dk


http://www.cs.au.dk/~danvy/Papers/fatc.ps.gz

Example : groking delimited continuations

This 1989 paper contains typing rules like this :

p,oFE:o,T

p,atreset(E) : 1,«
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Example : groking delimited continuations

This 1989 paper contains typing rules like this :

p,oFE:o,T

p,atreset(E) : 1,«

and this :

[f— (1/0 = a/d)|p,c FE: 0,0
p,a b shift £ in E: 7,0

How does one make sense of these rules ? How does one guess them ?


http://www.cs.au.dk/~danvy/Papers/fatc.ps.gz

Example : groking delimited continuations

Well, the semantics of shift and reset is known...

let return x k = k x

let bind ¢ f k = ¢ (fun x -> f x k)

let reset ¢ = return (c (fun x -> x))

let shift f k = f (fun v -> return (k v)) (fun x -> x)

...80 their types can be inferred.



Example : groking delimited continuations

Let us introduce a little notation :
type (’alpha, ’tau, ’beta) komputation =
(*tau -> ’alpha) -> ’beta

type (’sigma, ’alpha, ’tau, ’beta) funktion =
’sigma -> (’alpha, ’tau, ’beta) komputation



Example : groking delimited continuations

What should be the typing rule for reset ? Ask OCaml :

# (reset : (_, _, _) komputation -> (_, _, _) komputation);;
- : (’a, ’a, ’b) komputation -> (’c, ’b, ’c) komputation



Example : groking delimited continuations

What should be the typing rule for reset ? Ask OCaml :
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- : (’a, ’a, ’b) komputation -> (’c, ’b, ’c) komputation

So Danvy and Filinski were right :
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Example : groking delimited continuations

What should be the typing rule for shift ? Ask OCaml :

# (shift : ((_, _, _, _) funktion -> (_, _, _) komputation) —>

(_, _, _) komputation);;

- : ((’a, ’b, ’c, ’b) funktion -> (’d, ’d, ’e) komputation) ->
(’c, ’a, ’e) komputation



Example : groking delimited continuations

What should be the typing rule for shift ? Ask OCaml :

# (shift : ((_, _, _, _) funktion -> (_, _, _) komputation) ->

(_, _, _) komputation);;

- : ((’a, ’b, ’c, ’b) funktion -> (’d, ’d, ’e) komputation) ->
(’c, ’a, ’e) komputation

So Danvy and Filinski were right :

[f— (7/6 = a/d)lp,oFE:0,f
p,a b shift £ in E: 7,03

(’aisT,’bis o, ’cisa, ’dis o, ’eis B.)



Bottom line

Sometimes, type inference helps us figure out what we are doing.



Drawbacks

In what ways could type inference be a bad thing ?

» Liberally quoting Reynolds (1985), type inference allows us to make code
succinct to the point of unintelligibility.

» Reduced redundancy makes it harder for the machine to locate and explain
type errors.

Both issues can be mitigated by adding well-chosen type annotations.


http://link.springer.com/chapter/10.1007%2F3-540-15198-2_7

How does it work ?



A look at simple type inference

Let us focus on a simply-typed programming language.

> base types (int, bool, ...), function types (int -> bool, ...), pair types, etc.
> no polymorphism, no subtyping, no nuthin’

Type inference in this setting is particularly simple and powerful.
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Simple type inference, very informally

let f verbose msg = if verbose then msg else ""

Say £ has unknown type a.
f is a function of two arguments. Soa=a1 - ax - B
verbose has type a;.
msg has type a,.
The “if” expression must have type f.  So ay = bool.
And ap = string = f.

Solving these equations reveals that £ has type bool -> string -> string.



A partial history of simple type inference

Let us see how it has been explained / formalized through history...



The 1970s



https://courses.engr.illinois.edu/cs421/sp2013/project/milner-polymorphism.pdf
http://www.ams.org/journals/tran/1969-146-00/S0002-9947-1969-0253905-6/S0002-9947-1969-0253905-6.pdf

The 1970s

RoBIN MILNER

k Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

g A Theory of Type Polymorphism in Programming

Milner (1978) invents type inference and ML polymorphism.

He re-discovers, extends, and popularizes an earlier result by Hindley (1969).


https://courses.engr.illinois.edu/cs421/sp2013/project/milner-polymorphism.pdf
http://www.ams.org/journals/tran/1969-146-00/S0002-9947-1969-0253905-6/S0002-9947-1969-0253905-6.pdf

Milner’s description

Milner publishes a “declarative”
presentation, Algorithm W,


https://dx.doi.org/10.1145%2F321250.321253
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Milner’s description

Milner publishes a “declarative
presentation, Algorithm W,

and an “imperative” one,
Algorithm J.

(i) If fis (de), then:
let (R, d,) = #(p, d), and (S, &) = W (Rp, e);
let U = #(Sp, @ — B), § new;
then T — USR, and f = U((S2)e)s).

(ii) If f is (de) then:

p = F(p,d); 0 := J(p,e);
UNIFY (p, ¢ — B); (B new)

T =
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Milner’s description

Milner publishes a “declarative”
presentation, Algorithm W,

and an “imperative” one,
Algorithm J.

Algorithm J maintains a current
substitution in a global variable.

Both compose substitutions
produced by unification, and create
“new” variables as needed.

(i) If fis (de), then:
let (R, d,) = W'(p, d), and (S, &) = #'(Rp, ¢);
let U = #(Sp, o — B), § new;
then T — USR, and f = U((S2)e)s).

(ii) If f is (de) then:

p = F(p,d); 0 := J(p,e);
UNIFY (p, ¢ — B); (B new)

T =

Milner does not describe UNIFY.

Naive unification (Robinson, 1965)
has exponential complexity due to
lack of sharing.


https://dx.doi.org/10.1145%2F321250.321253

The 1980s



http://research.microsoft.com/Users/luca/Papers/BasicTypechecking.pdf
http://web.cs.ucla.edu/~palsberg/course/cs239/reading/wand87.pdf

The 1980s

A Simple Algorithm and Proof for Type Inference
e Mitchell Wand*

. ] i College of Computer Science
P Northeastern University
Cardelli (1987), Wand (1987) and others formulate type inference as a two-stage
process : generating and solving a conjunction of equations.

Case 3. (A, (Az.M),t). Let 71 and 7 be fresh type variables. Generate
the equation ¢ = 1 — 7 and the subgoal ((A[z <+ 71])ar, M, 72).

This leads to a higher-level, more modular presentation, which matches the
informal explanation.


http://research.microsoft.com/Users/luca/Papers/BasicTypechecking.pdf
http://web.cs.ucla.edu/~palsberg/course/cs239/reading/wand87.pdf

The 1990s

CINEMA



http://gallium.inria.fr/~remy/ftp/record-algebras.pdf

The 1990s

.
a=e=¢ TI=PIA Ty =BpAf(Br,...Bp) =e

CINEMA

ryip/\ryi‘g’ (Fuss) flr, o) = f(Br,. By) =e

Frs 1) = glon, .. og) = ¢

if f £g, " (Fam)
1

(a— 7)(e)
ifaeV(e)\e\V(r)AT¢V, 7 (GENERALIZE)
Ja-(eha=T1)

Kirchner & Jouannaud (1990), Rémy (1992) and others push this approach further.

» They explain constraint solving as rewriting.
» They explain sharing by using variables as memory addresses.
» They explain “new” variables as existential quantification.


http://gallium.inria.fr/~remy/ftp/record-algebras.pdf

Constraints

An intermediate language for describing type inference problems.
Ti=alto>1]...
C:=1|t=1|CAC|Ja.C

A constraint generator transforms the program into a constraint.

A constraint solver determines whether the constraint is satisfiable
(and computes a description of its solutions).



Constraint generation

A function of a type environment I', a term t, and a type 7 to a constraint.

Defined by cases :

[Fex:7] = (TM(x)=1)
IFrAxu: ] = Hmaz-( ErTxaLZﬁ,AJ:azﬂ)

I]:rl—htgi"[]] = 30{.(]Ir|-t110(—>’1']]/\|[r|-t220.’]])



Constraint solving as rewriting

Transform the constraint, step by step, obeying a set of rewriting rules.
If :

> every rewriting step preserves the meaning of the constraint,
> every sequence of rewriting steps terminates,
» a constraint that cannot be further rewritten either is L or is satisfiable,

then we have a solver, i.e., an algorithm for deciding satisfiability.



Variables as addresses

A new variable « can be introduced to stand for a sub-term 7 :

(e 7)(e)
—_ s

(GENERALIZE)
Ja- (eAa=r1)

Think of a as the address of 7 in the machine.

Instead of duplicating a whole sub-term, one duplicates its address :

f(rieeomp) = f(Bry---Bp) =€

BN Ty =y A (B ) = e

(DECOMPOSE)

This accounts for sharing. Robinson’s exponential blowup is avoided.



Unification, the right way

Rémy works with multi-equations, equations with more than two members :

a=eANa=¢
(Fusk)

a=e=¢

In the machine, one maintains equivalence classes of variables using a union-find
data structure.

The occurs-check (which detects cyclic equations) takes place once at the end.
(Doing it at every step, like Robinson, would cause a quadratic slowdown.)

This is Huet’s quasi-linear-time unification algorithm (1976).



Should | do research in type inference ?



A takeaway message

Just as in a compiler, an intermediate language is a useful abstraction.

» think declarative, not imperative

» say what you want computed, not how to compute it

» build a constraint, then “optimize” it step by step until it is solved
The constraint-based approach scales up and handles

> Hindley-Milner polymorphism (Pottier and Rémy, 2005)

> elaboration (Pottier, 2014)

> type classes, OCaml objects, and more.


http://gallium.inria.fr/~fpottier/publis/emlti-final.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf

Is type inference a hot topic ?

Not really. Not at this moment.
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Is type inference a hot topic ?

Not really. Not at this moment.

At ICFP 2015, 4 out of 35 papers seem directly or indirectly concerned with it :

» 1ML — Core and Modules United (F-ing First-Class Modules) (Rossberg)

> Bounded Refinement Types (Vazou, Bakst, Jhala)

> A Unification Algorithm for Coq Featuring Universe Polymorphism and Overloading (Ziliani, Sozeau)
> Practical SMT-Based Type Error Localization (Pavlinovic, King, Wies)

Yet, people still get drawn into it by necessity.

> remember, every typed programming language needs some type inference !


http://dx.doi.org/10.1145/2784731.2784738
http://dx.doi.org/10.1145/2784731.2784745
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What are the open problems ?

Inference for powerful / complex type systems.

> universal and existential types

» dependent types (Ziliani and Sozeau) and refinement types (Vazou et al.)
> linear and affine types

> subtyping

first-class modules (Rossberg)

v

Inference for tricky / ugly languages.

> e.g., JavaScript — which was not designed as a typed language, to begin with
Locating and explaining type errors.

» show all locations, or a most likely one ? (Pavlinovic et al.)

Identifying re-usable building blocks for type inference algorithms.


http://dx.doi.org/10.1145/2784731.2784751
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784738
http://dx.doi.org/10.1145/2784731.2784765

What'’s the potential impact ?

Type inference makes the difference between an awful language and a great one.

> if you care about language design, you will care about type inference



What are the potential pitfalls ?

Type inference is (often) an undecidable problem.
Type error explanation is (often) an ill-specified problem.
Your algorithm may “work well in practice”,

> but it could be difficult to formally argue that it does,
> hence difficult to publish.



YOU TOO COULD BE SUCKED INTO IT.

GOOD LUCK and HAVE FUN!!
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